2 Work distribution functions for
Hysteresis loops in a single spin
system.

2.1 Introduction

Consider a magnetic system in a time-dependent magnetic Askklime that the magnetic
field is varied periodically. Then plotting the magnetipatiof the system against the in-
stantaneous magnetic field we get the well-known hystemsige. The area enclosed by
the hysteresis loop gives the work done on the system by tieersi field and this leads to
heating of the magnet. In the usual picture, that one has sithgsis, one expects that the
work done is positive. However if the magnetic system is shal contains small number of
magnetic moments) then this is no longer true. For a smalhetagne finds that the work is
a fluctuating quantity, and in a particular realization df tiysteresis experiment one could
actually find that the magnet cools and does work on the dyifonce.

In general, for aamall system driven by time-dependent forces whose ratesairslow
compared to relaxation times, one typically finds that waioon-equilibrium quantities,
such as the work done or the heat exchanged, take values fi@triaution. Recently there
has been a lot of interest in the properties of such distohat Part of the reason for the in-
terest is that it leads us to examine the question as to howustha laws of thermodynamics,
which are true for macroscopic systems, need to be modifieshwie deal with mesoscopic
systems [1].

For instance in our example of the magnet with a small numbspios, there is a finite

probability that all the spins could suddenly spontangoftigl against the direction of the
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field by drawing energy from the heat bath. Intuitively thigss one the feeling that there has
been a violation of the second law. In fact historically garbservers of Brownian motion
had the same feeling when they saw the “perpetual” motiom@frownian particles [2].
However if one looks at the precise statement of the secomaiee realizes that there is
no real violation.The second law is a statement on the madiginle behavior while here
we are looking at fluctuations about the most probable valldsgese become extremely
small for thermodynamic systems. On the other hand, forlssgatems these fluctuations
are significant and a study of the properties of these fluctsitcould provide us with a
better understanding of the meaning of the second law in itegept context. This will be
necessary for an understanding of the behavior of mesassygptems such as molecular
motors, nanomagnets, quantum dots etc. which are currarghs of active experimental
interest.

Much of the recent interest on these non-equilibrium flutbbws has focused on two inter-
esting results on the distribution of the fluctuations. Bw® (1) the Jarzynski relation{8]
and (2) the fluctuation theorems {717]. A large number of studies, both theoretical and
experimental [19- 24] have looked at the validity of these theorems in a vaétyystems
and also their implications. At a fundamental level bothsththeorems give some measure
of “second law violations”. At a practical level the posstlgi of using these theorems to
determine the equilibrium free energy profile of systemsigislata from non-equilibrium
experiments and simulations has been explored-[28].

In this chapter we will be interested in the fluctuations @& #nea under a hysteresis loop
for a small magnet. We look at the simplest example, nameiggesising spin in a time-
dependent magnetic field and evolving through Glauber dyesarhlysteresis in kinetic Ising
systems have been studied earlier {383] where the main aim was to understand various
features such as dependence of the average loop area onirsyvesges and amplitudes,
system size féects and dynamical phase transitions . The area distributas also studied
in [33] but the emphasis was onfidirent aspects and so is quite incomplete from our present

viewpoint.
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A two state model with Markovian dynamics was earlier stddig Ritortet al. [34] to
analyze experiments on stretching of single moleculeste8yswith more than two states
have also been studied [35] in the context of single-mokexiperiments. However, the
detailed forms of the work-distributions have not been stigmted and that is the main aim
of this study. These distributions are of interest sinceetlage only a few examples where
the explicit forms of the distributions have actually beevrked out [37— 40]. Most of the
experiments so far, for example those in the RNA stretchingpements of Liphardet al.
[19] or the more recent experiment of Douardtel. [25] on torsionally driven mirrors, are
in regimes where the work-distributions are Gaussian.

We perform Monte-Carlo simulations to obtain the distribos for diferent driving rates.
We consider dferent driving protocols and look at the two cases correspgra the tran-
sient and the steady state fluctuation theorems. It is shioatrifie limiting cases of slow and
fast driving rates can be solved analytically. We also pouttthat the problem of computing

work-distributions is similar to that of computing residertime distributions.

2.2 Definition of model and dynamics

Consider a single spin, with magnetic momgnin a time-dependent magnetic fie).

The Hamiltonian is given by
H=-uho o==+1 (2.1)

We assume that the time-evolution of the spin is given by tlaeikGer dynamics. Let us first
consider a discretized version of the dynamics. Let theevafithe magnetic field at the end
of the (h— 1)th time step bé,_; and let the value of the spin log_;. The discrete dynamics
consists of two distinct process during tité time step:

1. The field is changed froim,_; to h, = h,_; + Ah,. During this step an amount of work
AW = —uop_1Ah, is done on the system.

2. The spin flips with probabilitp(e#™on1/7) whereZ = &M + e is the equilibrium

partition function at the instantaneous field value. Thédiap is a parameter that is required
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when we take the continuum time limit and whose value willesgiilibration times. At the
end of this step the spin is in the statg During this step the system takes in an amount of
heatAQ = —uhy(on — on_1) from the reservoir.

Given the microscopic dynamics we can derive time-evotugiquations for various prob-
ability distributions. These are standard results but ywea@uce them here for completeness.

Time-evolution equation for spin distributiofirst let us consider the spin configuration
probability P,(c) which gives the probability that at timethe spin is in the state. We
write the field in the formh, = hyf, wheref, is dimensionless and let us defiae= Buh.

Then we get the following evolution equation:

[PM(T)]:(l—pe;” P ][an]
Pnoa(1) P 1-p% )\ Pal)

To go to the continuum-time limit we take the limifs—»0, At—0, with p/At — r and

f, = f(t), Pn(o0) — P(o,t). Using the dimensionless time= rt we then get:
P _
or

—ef(7) f(r)
IS:(P(T’T)] 7-:( ezf() _e:(z) J
s —ef (7 ef@ .
P(l, T) —£ Z Z

The magnetizatiom(r) = (o (7)) = 2P(1, 7) — 1 thus satisfies the equation

-7P  where (2.2)

AMT) _ (o) + tanHef ()] (2.3)
dr
whose solution is
m(z) = e "m(0) + f e ) tanh F ()], (2.4)
0

Time-evolution equation for Work distributioithe total work done at the end of thih

time step is given by:

n
W= —u Z o1_1Ah, (2.5)
=1

To write evolution equations for the work-distributionstiecessary to first defirg,(W. o),
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the joint probability that at the end of timth step the spin is in the stateand the total work

done on it isW. ThenQ,(W. o) will satisfy the following recursions:

e €fne1 fn+1

QW T)=(1-p Zos ))Qn(W + uAhp, T) + p( 7o

—€ fn+1 1:n-¢-1

)Qn(W + uAhn, T) + (1 - IO(

I’]+ n

)Qn(W — uAhy, 1)

Qn+1(W l) = p(

))Qn(W — pAhy, 1)

We take the limitsAt —» 0, p — 0 with p/(At) — r, h, — h(t) and Ah,/(At) — h.
Then using the dimensionless variabldefined earlier, and the total work done upto time

w=BW = —¢ [ dr'o(r’) df/de’ we finally get

File) df 4Q
—TQ+Ed v

(i) ==(o )
Qw,l7) ) ° (0 1

From Eq. (2.6) we get the following equation iQ(w, 7) = Q(w, T,7) + Q(w, |, 7):

where (2.6)

O

aZQ : Fle) ,8°Q

+(1- —)— = eftanh@f)a + (f) s 2.7)

We have not been able to solve these equations analyticadpein the limiting cases where
the rate of change of the magnetic field is very slow or very. fasa recent study done by
Chvostaet al. [38, 39], this kind of evolution equation for a two level syst is solved
analytically, and their results match with our simulatiesults.

In the next two sections we will first present results from Moe@arlo simulations which

give accurate results for any rates and then discuss theabpases.

2.3 Results from Monte-Carlo simulations

We have studied threeftigrent driving processes:

(A) The system is initially in equilibrium at zero field andethield Buh) is then increased
linearly as a function of time from 0 te. The total time duration of the processtis(or
Tm in dimensionless units). By changing while keepinge fixed we can control the rate at

which the magnetic field sweep takes place.
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(B) The system is initially in equilibrium and the field, which taken to be piecewise
linear, is changed over one cycle. The total time duratiamefycle is 4, for a symmetric
cycle and is 2, + 1,,) for an asymmetric cycle.

(C) The system is run through many cycles till it reaches aegquitibrium steady state.
We measure work fluctuations in this steady state.

In cases (A) and (B) we will be interested in testing the tramisiluctuation theorem (TFT)
while in case (C) we will look at the steady state fluctuaticgottem (SSFT). Let us briefly
recall the statements of these theorems for work distobstin systems with Markovian
dynamics.

Crooks’ Fluctuation TheoremLet us quickly recall the various definitions of the fluc-
tuation theorems with our present notation. Consider our spstem, initially in thermal
equilibrium and then external magnetic fi¢lfd), is changed from an initial valug, at time
t = 0, to a final valuen; in a finite timet,,. Suppose the work done on the system during
this process i8V and the change in equilibrium free energyis. Let the dissipated work
Wy = W-AF, have a distributiolQ(W,). Now consider a time-reversed path for the external
field hg(t) = h(ty, — t) for which the work distribution i€9Qr(W;y). The fluctuation theorem of
Crooks’ then states:

Q(Wd) eBWd
— = . 2.8
Qr(-Wa) (2.8)
For Gaussian processes it can be shown @gW,) = Q(Wy) [15] and hence we get the

usual form of the transient fluctuation theorem (TFT)

QWa) s,
W) ~ e, (2.9)

Another situation where TFT is satisfied is the case wherd@elkis kept constant or if the

process is time-reversal symmetric. Finally we note thatlgrzynski relation
@) = [ dwie Qe - 1 (2.10)

follows immediately from Crooks’ theorem Eq. (2.8) and sol w# satisfied in all cases
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where Crooks’ holds.

In the following sections we will verify that Crooks’ FT is ahys satisfied but that TFT
does not hold whenever the distributions are non-Gausswepses and the process does not
have time-reversal symmetry. We will also test the validifyarticular version of the steady
state fluctuation theorem (SSFT), whiclitdis from the Cohen-Gallavotti theorem in that
we consider a finite time. Thus, this version of SSFT has the same form as Eg. (2.9) with
the diference that the initial state is chosen from a non-equilibrsteady state distribution
instead of an equilibrium distribution.

In the simulations we used the discrete time dynamics spdcifi the beginning of
Sec. (2.2). To get results corresponding to the continuonme timit we took the param-
eter valuesAt = t,,/10000 andp = At. The distribution functions for a given rate were

obtained by generating2 1(° realizations.

2.3.1 Field increased linearly from Oto €

In this casef(r) = 7/t and we have chosen = 0.5. We note that with a static field,
the equilibrium relaxation time is given iy = 1/r or r, = 1. The rate of change of
magnetic field~ 1/t,, and comparing this with the relaxation time we find that slowd a
fast rates correspond, respectively, to large and smalksgdbort,,/t, = 7. In Fig. (2.1) we
plot the work distributions for various values of. We have plotted the distribution of the
dissipated workvy = w — BAF (HereAF = —Incoshe). In Fig. (2.2) we plot the average
magnetization as a function of field, again foffdrent rates. Some interesting features of
the work-distributions are:

(i) The distributions are in general broad. This is true esethe slowest driving rates
where the average magnetization (Fig. (2.2)) itself is eltmsthe equilibrium prediction.
Note that the allowed range of valuesvafis [-e — BAF, e — BAF] ~ [-0.38,0.62]. Also we
see that the probability of negative dissipated work isificant.

(ii) For slow rates the distributions are Gaussian and thrsle understood in the follow-

ing way. Imagine dividing the time range into small inteszaBecause the rate is slow, there

29



Figure 2.1: Distributions of the work done in driving a magaedifferent rates when mag-
netic field is changed linearly.

are a large number of spin flips within each such interval,smthe average magnetization
from one interval to the next can be expected to be uncoeel&ince the work is a weighted
sum of the magnetization over all the time intervals we cgeekit to be a Gaussian.

(ii) For fast rates we ged—function peaks atv = +e. This again is easy to understand
since the spin doesn’'t have time to react and stays in itglistate. In Sec. (2.4) we will
work out analytic expressions for the the work distribuiday considering probabilities of
O—spin flip and Lspin flip processes.

For slow rates we have verified (see Fig. (2.3)) that the fatain theorem is satisfied.
For faster rates we see that the probability of negative wookesses is higher than what is

predicted by the TFT.
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Figure 2.2: Average magnetization(r) for different rates, when magnetic field is changed
linearly.

Figure 2.3: Plot shows that the fluctuation theorem is validsfow processes with Gaussian
work-distributions. Inset shows that for a fast ratg & 5.0) the probability of
negative work is much larger than that predicted by the FT.
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h --- Symmetric cycle
o T v — Asymmetric cycle

Figure 2.4: Magnetic field changed over a cycle. In the symmease the total cycle time
is 4r, while in the asymmetric case it iS2(+ 7).

2.3.2 Field is taken around a cycle

As shown in Fig. (2.4) we consider twoftirent cyclic forms forf(r). One is a symmet-
ric cycle and the other a asymmetric one. For these two casewdrk-distributions are
plotted in Fig. (2.5) and Fig. (2.6) respectively. For thensyetric cycle we plot the aver-
age magnetization as a function of the field in Fig. (2.7).sTdives the familiar hysteresis
curves.

As before we again find that the work-distributions are bro&wr slow rates we get
Gaussian distributions while for fast rates we gef-dunction peak at the origin which
correspond to a-Bspin flip process. The slow and fast cases are treated aradlytin
Sec. (2.4).

As expected we can verify the transient fluctuation theorenbbth the symmetric and
asymmetric processes. That TFT should be satisfied follows €rooks FT and noting that
the time reversed process has the same distribution as tvarftb process because of the
additionalh - —h symmetry that we have in this case. We have also studied amnastric
half-cycle for which Qr(wg) # Q(wg). Consequently we find that the usual TFT is not
satisfied while the more general form of TFT of Crooks holds. ahew this in Fig. (2.8)

where we have plotte@(wy), €Y Q(—wy) ande™ Qr(—Wqy).
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Figure 2.5: Plot of work-distributions for fierent driving rates when magnetic field is
changed in a symmetric cycle.
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Figure 2.6: Plot of work-distributions obtained forffédirent asymmetric cycles of the mag-
netic field.
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Figure 2.7: Hysteresis curves in driving a magnet #iedent rates when magnetic field is
changed in a symmetric cycle and with the spin initially imdégQrium.

6
5] - Qw( Wy ) | Half cycle of magnetic field
i — € dQR( -Wd)
w
4] |0 oe"Q(-w,) -
T =
3-
i T
2]

Figure 2.8: Plot showing the work-distribution for an asyatnt half-cycle and the valid-
ity of Crook’s fluctuation theorem. Note that the probabilitiynegative work
processes is much higher than that predicted by usual TFT.
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Figure 2.9: Work-distributions in the non-equilibrium atly state.

2.3.3 Properties in the non-equilibrium steady state

We now look at the case when the spin is driven by the oscitidteld into a non-equilibrium
steady state and we measure fluctuations in this steady bidtes case the work distribu-
tions (over a cycle) have the same forms as in the transies @&ag. (2.9)). The joint
distribution functionQ(w, o, ) satisfies the same equation Eq. (2.6) but now the initiat con
ditions are diferent. In Fig. (2.10) we plot the steady state hysteresigesuiNote that unlike
the transient case the hysteresis curves are now closesl loop

Finally we test the validity of the steady state fluctuatibadrem (SSFT). This theorem
has been proved for dynamical systems evolving throughmétestic equations but there
exists no proof that a similar result holds for stochasticatyics. From Fig. (2.11) itis clear

that SSFT does not hold.
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Figure 2.11: Violation of the fluctuation theorem for theastg state work-distribution cor-
responding ta, = 1.0. Inset shows the same plots for the transient case where
FT is clearly satisfied.
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2.4 Analytic results for slow and fast rates

2.4.1 Field increased linearly from 0Oto €

() Slow casety, >> 1
As argued in the previous section we expect that the wortkHoligions to be Gaussians

which will be of the general form

=(w={w) 2

Q(w) = e ¥ . (2.11)

2
Ow

where(w) ando2, are the mean and the variance of the distribu@gw). Since the distribu-

tion satisfies the Jarzynski equality, it follows at once thay are related by
o2 = 2((wy — BAF). (2.12)

Hence we just need to find the mean work done. The mean work idayieen by(w) =
~(€e/Tm) [, "drm(7). In the strict adiabatic limit, — co we havemy(r) = tanh(er/7y)
and the mean work dongv) = —log(cosh¢)) = BAF. For larger,, we try the perturbative

solution
1
m(r) = Mag(r) + —g(7) (2.13)
m
Substituting in Eq. (2.3) we get an equation §r) whose solution gives
€ €T 1
g(r) = ——seck(—) + O(5) (2.14)
Tm Tm Tm
For the work done we then get
W) = BAF + = tanhe) (2.15)
Tm

In Fig. (2.12) we compare the simulations for slow rates \htéhanalytic results.
(ii) Fast casery, << 1.
If we change the field very fast then the spin is not able toaedmnd so there are few

spin flips during the entire process. At the lowest ordergheno flip and this gives rise to
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Figure 2.12: Comparison of work-distributions for slow satdtained from simulations and
from the analytic form. Solid lines show the analytic result

thed—functions peaks ate seen in the distribution. We now calculate the work-disttiidmn
by looking at contributions from-8spin flip and Espin flip processes. L&(T, 7o, 7) be the
probability that, given that the spin fsat timerg, it remains in the same state till time It

is easy to see th&(T, 7o, 7) satisfies the equation

0S(1,70,7) g’

or —— S(1,70.7) (2.16)
Solving we get, for the linear cadér) = v/1,
S(1,0,7) = & b T4 = % (cosh(L))E (2.17)
Tm

Puttingr = 1, corresponds to the process for which the work done is—e. Hence, since

the probability of the spin being initially if state is 12, we get

Prob(w = —¢) = %e‘TTm[cosh(s)]Tz—T (2.18)
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Proceeding in a similar fashion by starting witt) apin we get
1 —tm _Im
Prob(w =€) = > e2 (coshg)) = (2.19)

Next let us consider-4spin flip processes which (for fast rates) are the major dmrtors to
the part of the distribution between the two peaks. &1, r)dr be the probability that the
spin starts in the state flips once between timesto  + dr, and stayq till time 7,,. This

is given by
Si(1,7)dr = S(1,0,7)(e “/™/Z)drS(l, T, Trm) (2.20)
The work done during such a process is given by
€
W=—-— (2r — 1) (2.21)
Tm
Similarly the case where the spin starts froj state gives
Si(l,7)dr = S({,0,7)(e7™/Z)drS(1, 7, Trw) (2.22)
and the work done in this case is

W= (20 - ) (2.23)

Tm
Adding this two contributions and plugging in the form®fo-, 7o, 7) obtained earlier we get

the following contribution to the work-distribution:

_ Tm_-tgw €7 (coshg)®)  e?(coshg)?)
Ql(w)_See = cosh&Y) " coshEY)

The full distribution is given by
1 _Tm m 1 _™m _m
Qw) = ée 2 [coshE)] = 6(w + €) + ée 2 [cosh)] 2z 6(w — €) + Qr(w) (2.24)

for —e < w < ¢, and zero elsewhere. In Fig. (2.13) we show a comparisoni®ftialytic
form with simulation results for,, = 0.01. The strengths of th&-functions atw = +¢ are

accurately given by Egs. (2.18), (2.19).
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Figure 2.13: Comparison of work-distribution for a fast rat#ained from simulation and
from the analytic form.

2.4.2 Field is taken around a cycle

(i) Slow casery, >> 1
We again expect a Gaussian distribution and siiEe= O for a cyclic process, hence the
mean and variance of the distribution are relatedrfy= 2(w). As before we compute the

mean work to order /r, and find

(W) = ﬁtanr(e). (2.25)

Tm

In Fig. (2.14) we show the comparison of analytical and satiah results.
(ii) Fast caser,, << 1. In this case the work distribution givesafunction peak at the

origin for O-spin flip processes. To find the probability of this, we solge @.16) withf(7)
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Figure 2.14: Comparison of work-distributions for slow satétained from simulations of
the cyclic case and from the analytic form. Solid lines shiogvanalytic results.

for the cycle given by

€
—T ,0<1t<1h
Tm

f(7)
f(7)
f(7)

€
—Q@2tm—1) ,Tm <7< 31
Tm

i(T —4ty) ,3tm < T < 4Ty
Tm

This has the solution
S(1,0,7) = €2 (2.26)

Adding up an equal contribution froi8({, 0, 7,), and since both initial conditions occur

with probability half, we finally get
Prob(w = 0) = e %™ (2.27)

Next we look at the contribution of-dspin flip processes. Let the spin flip occur between
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Figure 2.15: Comparison of work-distribution, for the syntrizecycle with a fast rate, ob-
tained from simulations and from the analytic results.

timest andr + dr. It is convenient to divide the total timergl into four equal intervals, the
dependence ok on r being ditferent in each of the intervals. Thus if we start with the spin

initially in an 7 state then we have

W = —— O<1t<1h
= —(t-2ty) ,Tm<T7<21
= —Q2tm—-1) ,2tn <7< 31

= —(t—-41y) ,3tm <7 <41
The probabilities of each of these processes is again giyen b
Si(1,7)dr = S(1,0,7)(e"/2)drS(l, 7, 411m) (2.28)

Using the relations between and v and summing up the four fierent possibilities we
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finally get (for initial spin state)

Ql(w) = ‘ZTmez[(cosh( )et+ (coshg)) ““-1(coshg)) ] (2.29)

for -1 < w < 1 and zero elsewhere. Note that the allowed range isf[-2, 2] but single
spin-flip processes only contribute to work in the rang&, [L]. Similarly if we start with

spin statel we get

Qi(w) = ‘ZTmez [(cosh( ))‘_‘1+ (cosh%))_ (coshg)) ] (2.30)

for -1 < w < 1. The full work-distribution (contribution from-ispin flip processes) is thus:

QW) = &2 ms(w) + Qj(W) + Qj(w) (2.31)

In Fig. (2.15) we compare the analytic and simulation resdihe strength of thé-function

atw = 0 is accurately given by Eq. (2.27).

2.5 Conclusions

We have computed probability distributions of the work davieen a single spin, with
Markovian dynamics, is driven by a time-dependent magrirtid. We find that work fluc-
tuations are quite large (even for slow driving rates) aretehs significant probability for
processes with negative dissipated work. For slow drivirgriumber of spin flips during
the entire process is very large and the total workfisatively a sum of random variables.
Hence the distributions are Gaussian with widths propoaiido the driving rate. On the
other hand for very fast driving the probability of flipping low and we can compute the
work-distributions perturbatively from probabilities aéro-flip, one-flip, etc. processes.
While the two special cases of slow and fast rates can be soketiave not been able to
obtain a general solution valid for all rates even in thigknparticle problem. An exact
solution of this problem was recently obtained by Chvestal. [38, 39].

Recently [40], work distribution functions for a chargedlomal particle placed in a time-

dependent magnetic field has also been studied by Langeuatieq approach. Where the
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work distributions were Gaussian. Distributions of worlddreat in a driven double well

potential have been studied [41, 42] and also experimgntadllised [43, 44], where non-

Gaussian work distributions have been obtained. This systeembles to the two state Ising
spin model discussed by us here.

We note that the problem of calculating the work-distribatis similar to that of calcu-
lating residence-time distributions in stochastic preesqd43- 45]. In fact for the case in
Sec. (2.4.1) the work done is proportional to the averagenet@ation which is easily re-
lated to the residence time (time spin spends @tate). For stationary stochastic processes,
such as the random walk, the residence time distributiorbeambtained exactly. However
for non-stationary processes this becomdsatilt and no exact solutions are available [47].
In our spin-problem too it appears that the non-statioparitthe process makes an exact
solution dfficult.

For a system wittN spins the total work done on the system is simply a sum of th& wo
done on each of the spins. For the case where the spins anatecacting we thus get a
sum of N independent random variables. For lafgehe distribution will be a Gaussian
with a mean that scales with and variance adl'/2. For interacting spins the properties
of the work-distribution is an open problem. Especially offerest is the question as to
what happens as we cross the transition temperature. Thibd®en studied by Chatelain
et al. [48], who found that the Jarzynki equality do hold irffdrent temperature regions.
Finally we note that the large fluctuations in the area undeysieresis curve should be

experimentally observable in nano-scale magnets.
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