
2 Work distribution functions for
Hysteresis loops in a single spin
system.

2.1 Introduction

Consider a magnetic system in a time-dependent magnetic field. Assume that the magnetic

field is varied periodically. Then plotting the magnetization of the system against the in-

stantaneous magnetic field we get the well-known hysteresiscurve. The area enclosed by

the hysteresis loop gives the work done on the system by the external field and this leads to

heating of the magnet. In the usual picture, that one has of hysteresis, one expects that the

work done is positive. However if the magnetic system is small (i.e contains small number of

magnetic moments) then this is no longer true. For a small magnet, one finds that the work is

a fluctuating quantity, and in a particular realization of the hysteresis experiment one could

actually find that the magnet cools and does work on the driving force.

In general, for asmall system driven by time-dependent forces whose rates arenot slow

compared to relaxation times, one typically finds that various non-equilibrium quantities,

such as the work done or the heat exchanged, take values from adistribution. Recently there

has been a lot of interest in the properties of such distributions. Part of the reason for the in-

terest is that it leads us to examine the question as to how theusual laws of thermodynamics,

which are true for macroscopic systems, need to be modified when we deal with mesoscopic

systems [1].

For instance in our example of the magnet with a small number of spins, there is a finite

probability that all the spins could suddenly spontaneously flip against the direction of the
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field by drawing energy from the heat bath. Intuitively this gives one the feeling that there has

been a violation of the second law. In fact historically early observers of Brownian motion

had the same feeling when they saw the “perpetual” motion of the Brownian particles [2].

However if one looks at the precise statement of the second law one realizes that there is

no real violation.The second law is a statement on the most probable behavior while here

we are looking at fluctuations about the most probable values. These become extremely

small for thermodynamic systems. On the other hand, for small systems these fluctuations

are significant and a study of the properties of these fluctuations could provide us with a

better understanding of the meaning of the second law in the present context. This will be

necessary for an understanding of the behavior of mesoscopic systems such as molecular

motors, nanomagnets, quantum dots etc. which are currentlyareas of active experimental

interest.

Much of the recent interest on these non-equilibrium fluctuations has focused on two inter-

esting results on the distribution of the fluctuations. These are (1) the Jarzynski relation [3−6]

and (2) the fluctuation theorems [7− 17]. A large number of studies, both theoretical and

experimental [19− 24] have looked at the validity of these theorems in a varietyof systems

and also their implications. At a fundamental level both these theorems give some measure

of “second law violations”. At a practical level the possibility of using these theorems to

determine the equilibrium free energy profile of systems using data from non-equilibrium

experiments and simulations has been explored [25− 29].

In this chapter we will be interested in the fluctuations of the area under a hysteresis loop

for a small magnet. We look at the simplest example, namely a single Ising spin in a time-

dependent magnetic field and evolving through Glauber dynamics. Hysteresis in kinetic Ising

systems have been studied earlier [30− 33] where the main aim was to understand various

features such as dependence of the average loop area on sweeping rates and amplitudes,

system size effects and dynamical phase transitions . The area distribution was also studied

in [33] but the emphasis was on different aspects and so is quite incomplete from our present

viewpoint.
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A two state model with Markovian dynamics was earlier studied by Ritortet al. [34] to

analyze experiments on stretching of single molecules. Systems with more than two states

have also been studied [35] in the context of single-molecule experiments. However, the

detailed forms of the work-distributions have not been investigated and that is the main aim

of this study. These distributions are of interest since there are only a few examples where

the explicit forms of the distributions have actually been worked out [37− 40]. Most of the

experiments so far, for example those in the RNA stretching experiments of Liphardtet al.

[19] or the more recent experiment of Douarcheet al. [25] on torsionally driven mirrors, are

in regimes where the work-distributions are Gaussian.

We perform Monte-Carlo simulations to obtain the distributions for different driving rates.

We consider different driving protocols and look at the two cases corresponding to the tran-

sient and the steady state fluctuation theorems. It is shown that the limiting cases of slow and

fast driving rates can be solved analytically. We also pointout that the problem of computing

work-distributions is similar to that of computing residence-time distributions.

2.2 Definition of model and dynamics

Consider a single spin, with magnetic momentµ, in a time-dependent magnetic fieldh(t).

The Hamiltonian is given by

H = −µhσ σ = ±1 (2.1)

We assume that the time-evolution of the spin is given by the Glauber dynamics. Let us first

consider a discretized version of the dynamics. Let the value of the magnetic field at the end

of the (n−1)th time step behn−1 and let the value of the spin beσn−1. The discrete dynamics

consists of two distinct process during thenth time step:

1. The field is changed fromhn−1 to hn = hn−1 + ∆hn. During this step an amount of work

∆W = −µσn−1∆hn is done on the system.

2. The spin flips with probabilityp(e−βµhnσn−1/Z) whereZ = eβµhn+e−βµhn is the equilibrium

partition function at the instantaneous field value. The factor p is a parameter that is required
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when we take the continuum time limit and whose value will setequilibration times. At the

end of this step the spin is in the stateσn. During this step the system takes in an amount of

heat∆Q = −µhn(σn − σn−1) from the reservoir.

Given the microscopic dynamics we can derive time-evolution equations for various prob-

ability distributions. These are standard results but we reproduce them here for completeness.

Time-evolution equation for spin distribution: First let us consider the spin configuration

probability Pn(σ) which gives the probability that at timen the spin is in the stateσ. We

write the field in the formhn = h0 fn where fn is dimensionless and let us defineǫ = βµh0.

Then we get the following evolution equation:
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To go to the continuum-time limit we take the limitsp→0, ∆t→0, with p/∆t → r and

fn→ f (t), Pn(σ)→ P(σ, t). Using the dimensionless timeτ = rt we then get:

∂P̂
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= −T P̂ where (2.2)
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The magnetizationm(τ) = 〈σ(τ)〉 = 2P(↑, τ) − 1 thus satisfies the equation

dm(τ)
dτ

= −m(τ) + tanh[ǫ f (τ)] (2.3)

whose solution is

m(τ) = e−τm(0)+
∫ τ

0
dτ′e−(τ−τ′) tanh[ǫ f (τ′)]. (2.4)

Time-evolution equation for Work distribution: The total work done at the end of thenth

time step is given by:

W = −µ
n
∑

l=1

σl−1∆hl (2.5)

To write evolution equations for the work-distribution it is necessary to first defineQn(W, σ),
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the joint probability that at the end of thenth step the spin is in the stateσ and the total work

done on it isW. ThenQn(W, σ) will satisfy the following recursions:

Qn+1(W, ↑) = (1− p
e−ǫ fn+1

Zn+1
))Qn(W+ µ∆hn, ↑) + p(

eǫ fn+1

Zn+1
)Qn(W− µ∆hn, ↓)

Qn+1(W, ↓) = p(
e−ǫ fn+1

Zn+1
)Qn(W+ µ∆hn, ↑) + (1− p(

eǫ fn+1

Zn+1
))Qn(W− µ∆hn, ↓).

We take the limits∆t → 0, p → 0 with p/(∆t) → r, hn → h(t) and∆hn/(∆t) → ḣ.

Then using the dimensionless variableτ defined earlier, and the total work done upto timeτ,

w = βW = −ǫ
∫ τ

0
dτ′σ(τ′) d f/dτ′ we finally get

∂Q̂
∂τ

= −T .Q̂+ ǫd f
dτ
σz.
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where (2.6)
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From Eq. (2.6) we get the following equation forQ(w, τ) = Q(w, ↑, τ) + Q(w, ↓, τ):

∂2Q
∂τ2
+ (1− f̈

ḟ
)
∂Q
∂τ
= ǫ ḟ tanh(ǫ f )

∂Q
∂w
+ (ǫ ḟ )2∂

2Q
∂w2

(2.7)

We have not been able to solve these equations analytically except in the limiting cases where

the rate of change of the magnetic field is very slow or very fast. In a recent study done by

Chvostaet al. [38, 39], this kind of evolution equation for a two level system is solved

analytically, and their results match with our simulation results.

In the next two sections we will first present results from Monte-Carlo simulations which

give accurate results for any rates and then discuss the special cases.

2.3 Results from Monte-Carlo simulations

We have studied three different driving processes:

(A) The system is initially in equilibrium at zero field and the field (βµh) is then increased

linearly as a function of time from 0 toǫ. The total time duration of the process istm (or

τm in dimensionless units). By changingτm while keepingǫ fixed we can control the rate at

which the magnetic field sweep takes place.
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(B) The system is initially in equilibrium and the field, whichis taken to be piecewise

linear, is changed over one cycle. The total time duration ofthe cycle is 4τm for a symmetric

cycle and is 2(τm+ τn) for an asymmetric cycle.

(C) The system is run through many cycles till it reaches a non-equilibrium steady state.

We measure work fluctuations in this steady state.

In cases (A) and (B) we will be interested in testing the transient fluctuation theorem (TFT)

while in case (C) we will look at the steady state fluctuation theorem (SSFT). Let us briefly

recall the statements of these theorems for work distributions in systems with Markovian

dynamics.

Crooks’ Fluctuation Theorem: Let us quickly recall the various definitions of the fluc-

tuation theorems with our present notation. Consider our spin system, initially in thermal

equilibrium and then external magnetic fieldh(t), is changed from an initial valuehi, at time

t = 0, to a final valuehf in a finite timetm. Suppose the work done on the system during

this process isW and the change in equilibrium free energy is∆F. Let the dissipated work

Wd =W−∆F, have a distributionQ(Wd). Now consider a time-reversed path for the external

field hR(t) = h(tm − t) for which the work distribution isQR(Wd). The fluctuation theorem of

Crooks’ then states:

Q(Wd)
QR(−Wd)

= eβWd. (2.8)

For Gaussian processes it can be shown thatQR(Wd) = Q(Wd) [15] and hence we get the

usual form of the transient fluctuation theorem (TFT)

Q(Wd)
Q(−Wd)

= eβWd. (2.9)

Another situation where TFT is satisfied is the case where thefield is kept constant or if the

process is time-reversal symmetric. Finally we note that the Jarzynski relation

〈e−βWd〉 =
∫

dWde
−βWdQ(Wd) = 1 (2.10)

follows immediately from Crooks’ theorem Eq. (2.8) and so will be satisfied in all cases
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where Crooks’ holds.

In the following sections we will verify that Crooks’ FT is always satisfied but that TFT

does not hold whenever the distributions are non-Gaussian processes and the process does not

have time-reversal symmetry. We will also test the validitya particular version of the steady

state fluctuation theorem (SSFT), which differs from the Cohen-Gallavotti theorem in that

we consider a finite timeτ. Thus, this version of SSFT has the same form as Eq. (2.9) with

the difference that the initial state is chosen from a non-equilibrium steady state distribution

instead of an equilibrium distribution.

In the simulations we used the discrete time dynamics specified in the beginning of

Sec. (2.2). To get results corresponding to the continuum time limit we took the param-

eter values∆t = tm/10000 andp = ∆t. The distribution functions for a given rate were

obtained by generating 2× 106 realizations.

2.3.1 Field increased linearly from 0 to ǫ

In this casef (τ) = τ/τm and we have chosenǫ = 0.5. We note that with a static field,

the equilibrium relaxation time is given bytr = 1/r or τr = 1. The rate of change of

magnetic field∼ 1/tm and comparing this with the relaxation time we find that slow and

fast rates correspond, respectively, to large and small values fortm/tr = τm. In Fig. (2.1) we

plot the work distributions for various values ofτm. We have plotted the distribution of the

dissipated workwd = w− β∆F (Hereβ∆F = − ln coshǫ). In Fig. (2.2) we plot the average

magnetization as a function of field, again for different rates. Some interesting features of

the work-distributions are:

(i) The distributions are in general broad. This is true evenat the slowest driving rates

where the average magnetization (Fig. (2.2)) itself is close to the equilibrium prediction.

Note that the allowed range of values ofwd is [−ǫ − β∆F, ǫ − β∆F] ≈ [−0.38,0.62]. Also we

see that the probability of negative dissipated work is significant.

(ii) For slow rates the distributions are Gaussian and this can be understood in the follow-

ing way. Imagine dividing the time range into small intervals. Because the rate is slow, there
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Figure 2.1: Distributions of the work done in driving a magnet at different rates when mag-
netic field is changed linearly.

are a large number of spin flips within each such interval, andso the average magnetization

from one interval to the next can be expected to be uncorrelated. Since the work is a weighted

sum of the magnetization over all the time intervals we can expect it to be a Gaussian.

(iii) For fast rates we getδ−function peaks atw = ±ǫ. This again is easy to understand

since the spin doesn’t have time to react and stays in its initial state. In Sec. (2.4) we will

work out analytic expressions for the the work distributions by considering probabilities of

0−spin flip and 1−spin flip processes.

For slow rates we have verified (see Fig. (2.3)) that the fluctuation theorem is satisfied.

For faster rates we see that the probability of negative workprocesses is higher than what is

predicted by the TFT.
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Figure 2.2: Average magnetizationm(τ) for different rates, when magnetic field is changed
linearly.
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Figure 2.3: Plot shows that the fluctuation theorem is valid for slow processes with Gaussian
work-distributions. Inset shows that for a fast rate (τm = 5.0) the probability of
negative work is much larger than that predicted by the FT.
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Figure 2.4: Magnetic field changed over a cycle. In the symmetric case the total cycle time
is 4τm while in the asymmetric case it is 2(τm+ τn).

2.3.2 Field is taken around a cycle

As shown in Fig. (2.4) we consider two different cyclic forms forf (τ). One is a symmet-

ric cycle and the other a asymmetric one. For these two cases the work-distributions are

plotted in Fig. (2.5) and Fig. (2.6) respectively. For the symmetric cycle we plot the aver-

age magnetization as a function of the field in Fig. (2.7). This gives the familiar hysteresis

curves.

As before we again find that the work-distributions are broad. For slow rates we get

Gaussian distributions while for fast rates we get aδ−function peak at the origin which

correspond to a 0−spin flip process. The slow and fast cases are treated analytically in

Sec. (2.4).

As expected we can verify the transient fluctuation theorem for both the symmetric and

asymmetric processes. That TFT should be satisfied follows from Crooks FT and noting that

the time reversed process has the same distribution as the forward process because of the

additionalh→ −h symmetry that we have in this case. We have also studied an asymmetric

half-cycle for which QR(wd) , Q(wd). Consequently we find that the usual TFT is not

satisfied while the more general form of TFT of Crooks holds. Weshow this in Fig. (2.8)

where we have plottedQ(wd), ewdQ(−wd) andewdQR(−wd).

32



-1 0 1
w

d

0

1

2
Q

( 
w

d )

τ
m
 = 0.2

τ
m
 = 1.0

τ
m
 = 5.0

τ
m
 = 10.0

τ
m
 = 25.0

τ
m
 = 50.0

Figure 2.5: Plot of work-distributions for different driving rates when magnetic field is
changed in a symmetric cycle.
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Figure 2.9: Work-distributions in the non-equilibrium steady state.

2.3.3 Properties in the non-equilibrium steady state

We now look at the case when the spin is driven by the oscillating field into a non-equilibrium

steady state and we measure fluctuations in this steady state. In this case the work distribu-

tions (over a cycle) have the same forms as in the transient case (Fig. (2.9)). The joint

distribution functionQ(w, σ, τ) satisfies the same equation Eq. (2.6) but now the initial con-

ditions are different. In Fig. (2.10) we plot the steady state hysteresis curves. Note that unlike

the transient case the hysteresis curves are now closed loops.

Finally we test the validity of the steady state fluctuation theorem (SSFT). This theorem

has been proved for dynamical systems evolving through deterministic equations but there

exists no proof that a similar result holds for stochastic dynamics. From Fig. (2.11) it is clear

that SSFT does not hold.
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Figure 2.10: Hysteresis curves in the non-equilibrium steady state.
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2.4 Analytic results for slow and fast rates

2.4.1 Field increased linearly from 0 to ǫ

(i) Slow case: τm >> 1

As argued in the previous section we expect that the work-distributions to be Gaussians

which will be of the general form

Q(w) =
1

√

2πσ2
w

e
−(w−〈w〉)2

2σ2
w . (2.11)

where〈w〉 andσ2
w are the mean and the variance of the distributionQ(w). Since the distribu-

tion satisfies the Jarzynski equality, it follows at once that they are related by

σ2
w = 2(〈w〉 − β∆F). (2.12)

Hence we just need to find the mean work done. The mean work doneis given by〈w〉 =

−(ǫ/τm)
∫ τm

0
dτm(τ). In the strict adiabatic limitτm → ∞ we havemad(τ) = tanh(ǫτ/τm)

and the mean work done〈w〉 = − log(cosh(ǫ)) = β∆F. For largeτm we try the perturbative

solution

m(τ) = mad(τ) +
1
τm

g(τ) (2.13)

Substituting in Eq. (2.3) we get an equation forg(τ) whose solution gives

g(τ) = − ǫ
τm

sech2(
ǫτ

τm
) +O(

1
τ2m

) (2.14)

For the work done we then get

〈w〉 = β∆F +
ǫ

τm
tanh(ǫ) (2.15)

In Fig. (2.12) we compare the simulations for slow rates withthe analytic results.

(ii) Fast case: τm << 1.

If we change the field very fast then the spin is not able to respond and so there are few

spin flips during the entire process. At the lowest order there is no flip and this gives rise to
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Figure 2.12: Comparison of work-distributions for slow rates obtained from simulations and
from the analytic form. Solid lines show the analytic results.

theδ−functions peaks at±ǫ seen in the distribution. We now calculate the work-distribution

by looking at contributions from 0−spin flip and 1−spin flip processes. LetS(↑, τ0, τ) be the

probability that, given that the spin is↑ at timeτ0, it remains in the same state till timeτ. It

is easy to see thatS(↑, τ0, τ) satisfies the equation

∂S(↑, τ0, τ)
∂τ

= −e−ǫ f (τ)

Z
S(↑, τ0, τ) (2.16)

Solving we get, for the linear casef (τ) = τ/τm,

S(↑,0, τ) = e−
∫ τ

0
e
−ǫ τ
′
τm

Z(τ′) dτ′
= e

−τ
2 (cosh(

ǫτ

τm
))
τm
2ǫ (2.17)

Puttingτ = τm corresponds to the process for which the work done isw = −ǫ. Hence, since

the probability of the spin being initially in↑ state is 1/2, we get

Prob(w = −ǫ) = 1
2

e−
τm
2 [cosh(ǫ)]

τm
2ǫ (2.18)
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Proceeding in a similar fashion by starting with a↓ spin we get

Prob(w = ǫ) =
1
2

e
−τm

2 (cosh(ǫ))−
τm
2ǫ (2.19)

Next let us consider 1−spin flip processes which (for fast rates) are the major contributors to

the part of the distribution between the two peaks. LetS1(↑, τ)dτ be the probability that the

spin starts in the↑ state, flips once between timesτ to τ + dτ, and stays↓ till time τm. This

is given by

S1(↑, τ)dτ = S(↑,0, τ)(e−ǫτ/τm/Z)dτS(↓, τ, τm) (2.20)

The work done during such a process is given by

w = − ǫ
τm

(2τ − τm) (2.21)

Similarly the case where the spin starts from a↓ state gives

S1(↓, τ)dτ = S(↓,0, τ)(eǫτ/τm/Z)dτS(↑, τ, τm) (2.22)

and the work done in this case is

w =
ǫ

τm
(2τ − τm) (2.23)

Adding this two contributions and plugging in the form ofS(σ, τ0, τ) obtained earlier we get

the following contribution to the work-distribution:

Q1(w) =
τm

8ǫ
e
−(τm−w)

2 (
e
−ǫ
2 (cosh(ǫ)

τm
2ǫ )

cosh(ǫ−w
2 )

+
e
ǫ
2 (cosh(ǫ)

−τm
2ǫ )

cosh(ǫ+w
2 )

)

The full distribution is given by

Q(w) =
1
2

e−
τm
2 [cosh(ǫ)]

τm
2ǫ δ(w+ ǫ) +

1
2

e−
τm
2 [cosh(ǫ)]−

τm
2ǫ δ(w− ǫ) + Q1(w) (2.24)

for −ǫ < w < ǫ, and zero elsewhere. In Fig. (2.13) we show a comparison of this analytic

form with simulation results forτm = 0.01. The strengths of theδ−functions atw = ±ǫ are

accurately given by Eqs. (2.18), (2.19).
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Figure 2.13: Comparison of work-distribution for a fast rateobtained from simulation and
from the analytic form.

2.4.2 Field is taken around a cycle

(i) Slow case: τm >> 1

We again expect a Gaussian distribution and since∆F = 0 for a cyclic process, hence the

mean and variance of the distribution are related byσ2
w = 2〈w〉. As before we compute the

mean work to order 1/τm and find

〈w〉 = 4ǫ
τm

tanh(ǫ). (2.25)

In Fig. (2.14) we show the comparison of analytical and simulation results.

(ii) Fast case: τm << 1. In this case the work distribution gives aδ−function peak at the

origin for 0−spin flip processes. To find the probability of this, we solve Eq. (2.16) with f (τ)
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Figure 2.14: Comparison of work-distributions for slow rates obtained from simulations of
the cyclic case and from the analytic form. Solid lines show the analytic results.

for the cycle given by

f (τ) =
ǫ

τm
τ ,0 ≤ τ ≤ τm

f (τ) =
ǫ

τm
(2τm− τ) , τm ≤ τ ≤ 3τm

f (τ) =
ǫ

τm
(τ − 4τm) ,3τm ≤ τ ≤ 4τm

This has the solution

S(↑,0, τm) = e−2τm (2.26)

Adding up an equal contribution fromS(↓,0, τm), and since both initial conditions occur

with probability half, we finally get

Prob(w = 0) = e−2τm (2.27)

Next we look at the contribution of 1−spin flip processes. Let the spin flip occur between
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Figure 2.15: Comparison of work-distribution, for the symmetric cycle with a fast rate, ob-
tained from simulations and from the analytic results.

timesτ andτ + dτ. It is convenient to divide the total time 4τm into four equal intervals, the

dependence ofw on τ being different in each of the intervals. Thus if we start with the spin

initially in an ↑ state then we have

w = −2ǫτ
τm

,0 < τ < τm

=
2ǫ
τm

(τ − 2τm) , τm < τ < 2τm

=
2ǫ
τm

(2τm− τ) ,2τm < τ < 3τm

=
2ǫ
τm

(τ − 4τm) ,3τm < τ < 4τm.

The probabilities of each of these processes is again given by:

S1(↑, τ)dτ = S(↑,0, τ)(e−ǫ f (τ)/Z)dτS(↓, τ,4τm) (2.28)

Using the relations betweenw and τ and summing up the four different possibilities we
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finally get (for initial spin state↑)

Q↑1(w) =
τm

8ǫ
e−2τme

w
2 [(cosh(

w
2

))
τm
ǫ
−1 + (cosh(

w
2

))−
τm
ǫ
−1(cosh(ǫ))

2τm
ǫ ] (2.29)

for −1 < w < 1 and zero elsewhere. Note that the allowed range ofw is [−2,2] but single

spin-flip processes only contribute to work in the range [−1,1]. Similarly if we start with

spin state↓ we get

Q↓1(w) =
τm

8ǫ
e−2τme

w
2 [(cosh(

w
2

))−
τm
ǫ
−1 + (cosh(

w
2

))
τm
ǫ
−1(cosh(ǫ))−

2τm
ǫ ] (2.30)

for −1 < w < 1. The full work-distribution (contribution from 1−spin flip processes) is thus:

Q(w) = e−2τmδ(w) + Q↑1(w) + Q↓1(w) (2.31)

In Fig. (2.15) we compare the analytic and simulation results. The strength of theδ−function

atw = 0 is accurately given by Eq. (2.27).

2.5 Conclusions

We have computed probability distributions of the work donewhen a single spin, with

Markovian dynamics, is driven by a time-dependent magneticfield. We find that work fluc-

tuations are quite large (even for slow driving rates) and there is significant probability for

processes with negative dissipated work. For slow driving the number of spin flips during

the entire process is very large and the total work is effectively a sum of random variables.

Hence the distributions are Gaussian with widths proportional to the driving rate. On the

other hand for very fast driving the probability of flipping is low and we can compute the

work-distributions perturbatively from probabilities ofzero-flip, one-flip, etc. processes.

While the two special cases of slow and fast rates can be solved, we have not been able to

obtain a general solution valid for all rates even in this single particle problem. An exact

solution of this problem was recently obtained by Chvostaet al. [38, 39].

Recently [40], work distribution functions for a charged colloidal particle placed in a time-

dependent magnetic field has also been studied by Langevin equation approach. Where the
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work distributions were Gaussian. Distributions of work and heat in a driven double well

potential have been studied [41, 42] and also experimentally realised [43, 44], where non-

Gaussian work distributions have been obtained. This system resembles to the two state Ising

spin model discussed by us here.

We note that the problem of calculating the work-distribution is similar to that of calcu-

lating residence-time distributions in stochastic processes [43− 45]. In fact for the case in

Sec. (2.4.1) the work done is proportional to the average magnetization which is easily re-

lated to the residence time (time spin spends in↑ state). For stationary stochastic processes,

such as the random walk, the residence time distribution canbe obtained exactly. However

for non-stationary processes this becomes difficult and no exact solutions are available [47].

In our spin-problem too it appears that the non-stationarity of the process makes an exact

solution difficult.

For a system withN spins the total work done on the system is simply a sum of the work

done on each of the spins. For the case where the spins are non-interacting we thus get a

sum of N independent random variables. For largeN the distribution will be a Gaussian

with a mean that scales withN and variance asN1/2. For interacting spins the properties

of the work-distribution is an open problem. Especially of interest is the question as to

what happens as we cross the transition temperature. This has been studied by Chatelain

et al. [48], who found that the Jarzynki equality do hold in different temperature regions.

Finally we note that the large fluctuations in the area under ahysteresis curve should be

experimentally observable in nano-scale magnets.
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