1 Introduction.

Any system in equilibrium can be fully described by the Bolt&am-Gibb’s theory of en-
sembles. For a system in contact with a heat bath, the pipase-probability distribution
is given by the canonical distribution. This expressionasngeneral and can be applied to
any given equilibrium system. One can then calculate thitjparfunction and from this the
free energy of the system. From this all equilibrium projgsrof a system can, in principle,
be calculated. In practice of course this can gdlilt and an explicit calculation of specific
properties may not always be possible.

There is a large class of phenomena which cannot be desdrjbie Boltzmann-Gibb’s
ensemble theory. These include non-equilibrium phenonermgassy systems, granular
material, electrical and thermal transport. The reasaatshie equilibrium description breaks
down in these systems can be various: for example there may Hamiltonian description;
or the Hamiltonian is time-dependent; or relaxation timesextremely slow, etc.

There are few theories, such as those of non-equilibriutmtbdynamics and theory of
linear response, to describe some of these non-equilipphenomena. However, they work
only in the linear regime where the perturbed system is 8}ighut of equilibrium. These
theories thus have a very limited range of applicability.efiénis no general framework to
treat non-equilibrium phenomena which is valid for systdarsfrom equilibrium. In the
absence of a general theory for such systems, one approtxtaigee simple but nontrivial
model systems and understand their behaviour from firstiples.

In the last decade the situation has changed somewhat. ICgetaeral relations have been
discovered which are valid independent of how far a systedrii&en out of equilibrium.

These results include (1) the Jarzynski equality-[8] and (2) the fluctuation theorems



[7 — 17]. These results are now being extended and shown to i fealmany diterent
systems, dynamics ( deterministic as well as stochastia )emsembles. They have been
verified for a variety of systems theoretically [+80] as well as experimentally [21 24].
After the work by Crooks [10] and Seifert [11], it is now undexsd that many of these
relations are closely related and are the manifestatiores igle theorem, the theorem
which connects the path probability of a thermostattedesygb its time reversed trajectory.
In Sec. (1.1) we will briefly describe these results on noaHdaium fluctuations and state
the new results obtained by us.

Another class of problems in non-equilibrium physics, vitheannot be treated by con-
ventional theories, is that of ratchet systems and of méde@umps and engines. These are
systems which are driven out of equilibrium by some extegpashmeter and exhibit many in-
teresting phenomenas like uni-directional current, rasoes etc. Among their applications
it has been proposed to model the behaviour of molecular nii@ied pumps in biological
systems. There have also been many studies on the quantsiorvet such particle and heat
pumps. So it is interesting to look at whether the quanturareatf a system is an essential
requirement. In Sec. (1.2) we will briefly describe some knoasults on these systems and

discuss our contribution.

1.1 The Jarzynski equality and the fluctuation theorems

Consider a system in contact with a heat reservoir. Let somenper,4, for example
the external field on a magnet or the volume of a gas etc. bed/aritime from an initial
point 1, to a final pointig ( in general there can be many time-dependent paramkters
{11, A2, ......, An} In the system ). With this parameter variation, work is dondhe system.
Then, conventional thermodynamics tells us that the worled, on the system is always

greater than or equal to the free energy ( Helmholtz freegseifference. Thus:

W > AF, (1.1)



X(t)

Figure 1.1: A polymer being stretched by an optical trap pioaée

where,AF = F(4g) — F(44). This result basically follows from the second law. The &gy
holds for a quasi-static, reversible process. For exampiesider a system as shown in
Fig. (1.1). This is an example of a polymer placed in a batemiperaturd and stretched
by an external time-dependent for€@) ( thusA(t) = f(t) in this case ) by means of, for
example, an optical trap. The process is done in the follgwiay. At timet = 0 the system
is in equilibrium at a temperature. Then the force is applied from timte= O tot = 7.
This stretching process is done for large number of timesryetime starting the system
in equilibrium and with the force following the same protbddt). If such a process is
done at a finite rate, then since we start witlietient initial equilibrium conditions and also
because of the stochastic dynamics, we will géiedent amount of work done in fiierent
realizations. Hence we can find the distribution of w&®V). Though the average work
(W) is always greater thanF for all rates, the distribution may have a large negative. par
This negative part implies that for some realizations ofekgeriment, system is doing work
on the external agent while extracting heat from the reservbis contribution can be large
if the system is non-thermodynamic, and can be viewed asigatviolation of the second
law. This observation of apparent violation of second lagoaitartled early observers of
Brownian motion. In his book [2], Perrin discusses this poidere we give a paragraph
from the same book:

It is clear that this agitation ( of a Brownian particle ) is nobntradictory to the principle



of conservation of energy. It is gigient that every increase in the speed of a granule is
accompanied by a cooling of the liquid in its immediate nbmlrhood, and like wise every
decrease of speed by a local heating, without loss or gain eifggn

Perrin also stresses the following point that the Browniariono( or motion at small
scales) is not reconcilable with rigid enunciations togjérently given to Carnot’s principle,
because in a given realization a particle can spontanealasiyork at the expense of the
surrounding medium ( heat bath ).

So it must not any longer be said that perpetual motion of de®id sort is impossible,
but one must say: “ On the scale of size ( macroscopic ) whickrests us practically,
perpetual motion of the second sort is in general so insicguifi that it would be absurd to
take into account”

But at the microscopic scales this fluctuations about the progtable behaviour are im-
portant and their study might provide us with a better undeding of the second law.

Let us now go back to our discussion of the Jarzynski equallfg consider a general
Hamiltonian of a system given by, (X, p), wherex = {Xq, X, ....Xa} andp = {ps, P2, ... Pn}
are usual phase-space variables aimlthe parameter which is varied in time frotp to Ag
in time 7 following a fixed protocoli(t). Then Jarzynski considers the following definition

of work done on the system:

(T oHuX, p) ., [T OHa(X, p) da
W [ D) [T MR 8L w2)

We take an ensemble of such processes, with initial comditior the system generated
from a canonical distribution at temperatdreThen the work don&V; can be calculated for
every trajectory in the phase-space given x{§)( p(t)). This work is a fluctuating quantity

because of two reasons:

1. The initial conditions are generated from a canonicdtibistion, hence we get ffer-

ent work for diferent initial conditions.

2. The heat bath generates stochastic forces, which cagseaflions in the phase-space



paths taken by the system.

It was proved by Jarzynski, that the distributiB(\;) satisfies the following equality:

(eXp—BW)) = f AW expl—BW; | P(Ws) = expl—BAF ), (1.3)

wheres = 1/kgT. We now give a proof that of the Jarzynski equality, for theecarhere the
system is in contact with a heat bath at time 0 and in equilibrium, but the heat bath is then
removed during the driving process. Then the evolution efdisstem is deterministic and
described by the phase-space trajecta(t)( p(t)) which evolves according td,(x(t), p(t)),

with A taken froma, to Ag in time 7. Let the ensemble of such trajectories be described by

the initial phase-space density given by:

pax(x(0). p(0)) = % expl—BH..(x(0), p(0))}, (1.4)

whereZ, = fexn—,BHA} dx dp. For a particular phase-space trajectory starting from
(x(0), p(0)) at timet = 0, the work done in time is given by Eq. (1.2). The probabil-

ity of the initial state is,,(x(0), p(0)). Hence we get the following average:

(expl—pW;}) = f P (X(0), p(0)) exp—BW,} dx(0) dp(0). (1.5)

Since the system is isolated, we can widid/ot = dH/dt, and hence the work done,
Eq. (1.2) on the system is nothing but the change in the totatgy of the system, i.e.,
W; = H,,(X(7), p(r)) — H,,(X(0), p(0)). This gives us:

(exp{—BW;})
= % . exp{—BH ., (x(0), p(0))} expl—=B[ His(X(7), p(7)) — Ha,(x(0), p(0)) ]} dx(0) dp(0).

(1.6)

Using Liouville’s theorem, giving conservation of phagmse volume we getx(0) dp(0) =

dx(7) dp(r) and the above equation then gives:

Z
(XP—W,) = Zi f eXp-BH(X(7). P} o) dp(r) = 7 (1.7)



SinceF, = —kgT In(Z,), we then get the Jarzynski equality, given by Eq. (1.3)sHugjuality
can also be proved for the situation where system remairanitact with the heat bath during
the driving process. In this case, the system and the resaneconsidered to be a larger
isolated system, with Hamiltonian given b, = H, + Hg + h;, whereH, is the system
Hamiltonian,Hg is the reservoir Hamiltonian ard is the coupling between the system and
the reservoir. The result in Eq. (1.3) was proved for weakpting between the system and
reservoir in [3] then for the general case in [6]. This relatcan also be proved for discrete
Markovian process [10], with heat bath dynamics and for lesmmgdynamics [15] ( we will
outline this proof later in this section ). It is remarkabtat the result in Eq. (1.3) is valid
independent of the rate at which the external parameterisdzal he only requirement is that
the system should be in the equilibrium when the driving psscstarts. Unlike Eq. (1.1),
this is anequalitywhich relates a non-equilibrium quantity to an equilibridiree energy
difference.

We will now give a simple example of a driven system with Larigelynamics, where
one can explicitly calculate the work distribution functiand verify the Jarzynski equality.
Consider a Brownian particle in a harmonic trap, which is movéd a constant velocity.

The Hamiltonian of the system is given by:

2
H= %n - % k(x - a(t))%, (1.8)

wherea(t) = utis now the external control parameter. We consider the daerped limit in

which case the inertial term drops out and the Langevin éguaf motion is given by:

yXx = —k[x=a(t)] +n(t), (1.9)

wheren(t) is a Gaussian white noise, satisfyifg(t)) = 0 and{n(t)n(t")) = 2kgTys(t — t).

Using the Jarzynski definition of work, Eq. (1.2), we get foe ivork done in time:

fﬁddt:—kfd[x—a(t)]dt
0o Oa 0

5 a0 -0 -k [ axa (110

W;



The general solution of Eq. (1.9) is given by:
1 (1 :
X(t) = e @Mty + = f e W D [ ka(t') + p(t')] dt. (1.11)
Y Jo

We choose = x(t = 0) from the initial equilibrium distributiodP(X,) = exp{—BHq(0)}/Za(0)-
It can be seen from Eqg. (1.10) thag is linear inx, while x itself is linear in bothx, and
n(t) which are Gaussian variables. Hence it follows that th&itigion of W; will also be

Gaussian. We thus just need to find the first and second moroktits distribution. We

have:
W; — (W;))?
P(W;) = exp| - (32—2”) | (1.12)
271'0'\2/\/J O-WJ

Using Egs. (1.10) and (1.11), itis straightforward to cltesW;) ando, = (W;—(W5))?),

where we note that..) denotes an average over initial conditions as well as ovisendVe

find:
(Wy) = yur[l+ % (eWnr _1y],
o2, = 2k T yiPr[1+ % (€ 7 _ 1) = 2ksT(W). (1.13)

For this particular Hamiltonian given by Eq. (1.8), it is gds show that the free energy is

independent o and hence\F = 0. Using Egs. (1.12, 1.13), we immediately get:
(exp—BW;}) = 1 = exp—BAF}. (1.14)

Thus we have verified that the Jarzynski equality Eq. (1.3aissfied.

Now we will discuss the fluctuation theorems which are sonawiore general than the
Jarzynski equality and give information about the fluctuadi of the entropy production in
a non-equilibrium system. In fact we will see that the Jaskyrequality can be derived
from one of the fluctuation theorems. There are various @ass0f the fluctuation theorems.
All of them start with some definition of the entropy produc®dh a particular realization

of a non-equilibrium process in time As discussed earlier ( for the work dow¢), we



expect this entropys to be also a fluctuating quantity with a distribution, 8§5). The
transient fluctuation theorem (TFT),[B2 — 15], states that for a system initially in thermal

equilibrium, P(S) satisfies the following equation:

PO) _ sk
PS) - evke, (1.15)

This result is valid for any time interval Another version of TFT, due to Crooks [10] gives:

Pe(S) sk
—PR(—S) =e"e, (1.16)

wherePg(S) andPg(S) are the probabilities in forward and time reversed proegssspec-
tively. This theorem is also true for all times The steady state fluctuation theorem (SSFT)
looks at the case where the initial state is chosen from aeqpiilibrium steady state, rather
from an equilibrium state as in TFT. In this case, the statérokthe theorem as obtained by

Cohen and Gallavotti [9] is

Plo) .~
o) =€ (1.17)

whereo = S/(kg7) is rate of entropy production and one looks at the limib co.

Here we will give a proof of Crooks’ fluctuation theorem for agle particle following
Langevin dynamics. Then we will also show how to obtain theylaski equality from this
theorem. Consider a Brownian particle in the presence of arrmadtpotentialJ(x). The

Hamiltonian of the system is given by:

p2
H =S +U(X). (1.18)

This particle is driven by an external time-dependent fdrige doing work on the particle.
We also assume that the system is in contact with a heat b&maeraturd and it's time

evolution is described by Langevin dynamics. The Langeguegion of motion is thus given



by:

ou

OH;
—& + f(t) —yx+n(t) = —6——7X+n(t)

— f(t)x, (1.19)

mx

with H;

wheren(t) is a Gaussian noise satisfyikg(t)) = and{n(t)n(t')) = 2kgTyé(t — t’). For such
stochastic systems the proof of Crooks’ fluctuation theorachthe Jarzynski equality can
be shown to follow from the principle of microscopic revéibiy. For discrete systems,
evolving for example through Monte Carlo dynamics, this @pie has been proved by
Crooks. Here we give a proof for Langevin dynamics [15].

We first state the principle of microscopic reversibility. rGaler the evolution of the
system from time = O tot = 7, through a path in phase-space given{kft), p(t), f(t)}.
This path will correspond to a particular realization of tfwser(t). The probability of this

path is then given by:

1 P ,
Ty fo n? dty = N exp{ - 4kBT7 f ( i+ 2 f(t) +yx)? dt},

(1.20)

P, = N exp-

where N is a normalization factor. Now consider the time reversegettory given by

{(X(@®), p'(t), f'(t)} = {X(r = 1), —p(r = t), f(r — t)}. The probability of this path is:

P. = N exp{—4ij anf dt} = N exp 4kBTy f( mx’ +—U - f'(t) + yX )Zdt}
= N exp|{- 4kBTy f(mx+ — - f(t)—yx)?dt}. (1.21)

We then get after some simplification:
% = exp f (—yx+mn) x dt} =exp —BQ}, (1.22)

whereQ = fOT(—yX+77) x dt, is the amount of heat transferred from the heat bath to tstesy
in time 7. The identification ofQ as heat transferred follows from the fact thaik + n) is

the force from the heat bath on the patrticle.



Eq. (1.22) is the principle of microscopic reversibilityhi principle is similar to that of
detailed balance principle. The principle of microscomearsibility relates the probability
of a specified path in phase-space to the probability of the tieversed path. The detailed
balance condition refers to the probability of transiti@tvieen two points in phase-space
sayC andC’ and states tha®(C — C’) = P(C’ — C) e#[E€)-EC@I and does not make
reference to any specific path in phase-space.

Now we proceed to prove Crooks’ fluctuation theorem. Follgv@rooks we will first
motivate the definition of the entropy producél, for a given trajectory. This entrop$
consists of two parts: a contribution from change in entropthe bath which is-3Q and
another contribution coming from the change in entropy efdiistem. The entropy change
of the system is found in the following way. Let some paramé{#), be switched from
an initial valuefy = f(0) to a final valuefg = f(r). Let the equilibrium distributions
corresponding to the parametdgsand fg beps, andp¢, respectively, wherp; = e#H1/z;.

Then the equilibrium entropy of the ensembile is given by:

S = ks f pi(% p)Inpi(x p) dx dp (1.23)

One can think of-kg In p¢(x, p) as the entropy of a micro-state and the change in entropy of
the system is given bykg Inpt, + KgInps,. Thus for a given path, Crooks’ definition of the

total entropy generated is:

S/kB = lnpfA - Inpr _ﬁQ (124)

Then Pe(S), the probability of entropys generated in time, in time forward process is

given as:

P:(S)

f D[, p] dX(0) dp(0) dx(r) dp(r) p, P+ 5(Sk — S)

fD[X, pl dx(0) dp(0) dx(r) dp(x) py, P- €¥?5(Sk - S),  (1.25)

whereSk is the entropy generated for a given forward trajectory Bfxd p] denotes a sum

over all pathgx(t), p(t)} between{x(0), p(0)} and{x(r), p(r)}. Also from Eq. (1.24) we can

10



write pg, €79 = e5F/ke p, . Note that under time revers@lchanges sign hence we can write

Sr = —Sg. Substituting these relations in Eq. (1.25), we get:

Pe(S) = f DIx, p] dX(0)dp(0) dX(7)dp() pr, P- &5/ §(Sg + S) = €% Pg(-S),

(1.26)

thus proving Eq. (1.16).

Now we show how the Jarzynski equality can be derived fromGhmoks’ fluctuation
theorem. To do this we note that, = exp(—BH:,}/Z:, andps, = exp—BH1,}/Zs, , Where
Hi(x, p) = p?/2m+ U(X) — f(t)x. This implies, using Eq. (1.24):

S/ks

IBHfB + InZ(fB) - ﬁHfA - lnz(fA) - BQ

_ﬁ (FfB - Ff/.\) + ﬁ (HfB - HfA) - ﬁ Q9 (127)

where,H¢, andHy, are initial and final Hamiltoniang;;, andF+, are initial and final free

energies. Using the equation of motion Eq. (1.19) and theidiefn of H¢ (X, p), it is easily

seen that:
dHi(x,p)  dHi(X%,p) = dQ
a0 = p + it (1.28)
Which then giveds, — H;, = W; + Q. Hence from Eq. (1.27) we get:
S/kB = —ﬁ AF + ﬁWJ = ﬁWd, (129)

where we have definatly = W;—AF as the dissipated work. Thus from the Crooks’ identity

we have:
Pr (Wd) egwd
— = : 1.30
Pr(—Wa) (1.30)
This is the Crooks’ fluctuation theorem for work distributiand from this we get:
f Pe(Wy) e dwy = f Pr(-Wy) dW; = 1. (1.31)

11



Thus

(exp—-BWy}) = (exp(—B(W; — AF)}) = 1, (1.32)

which is the Jarzynski equality in Eq. (1.3).

Let us see the validity of this Crooks’ fluctuation theorem tloe example we consid-
ered previously, namely a Brownian particle in a moving harmdrap. In this example
we proved that the distribution of woM/; is Gaussian. For Gaussian distribution it can
be shown that [15] the distribution for forward trajectd®y(W,) is same as that for time
reversed trajectoryPr(W;) and therefore the Crooks’ fluctuation theorem also imples t
transient fluctuation theorem. Sing& = 0 for this system, dissipated wo¥k; is nothing
but the Jarzynski workV;. Hence from the distribution given in Egs. (1.12) and (1,13
get:

P(W;) 2 (W) W,
pwy

W;

| =™, (1.33)

which is the transient fluctuation theorem.

Contribution of thisthesis: The fluctuation theorems have been proved for a large class
of systems. However, their general validity has not beeabdished and is still an open
guestion. Here we look at the validity of these relationsnely the Jarzynski equality and
the fluctuation theorems, for a single classical spin in tlies@nce of a time-dependent mag-
netic field and where the dynamics of the spin is modeled bylég#adynamics. Also, we
note that the Jarzynski equality and the fluctuation thesram general relations satisfied by
the probability distribution function of some non-equiliom quantity like work, and do not
make any reference to the actual form of these distributidhere have been very few earlier
studies which have explicitly looked at the form of the disition functions, except in linear
systems where the distributions are Gaussian. We haverperibMonte-Carlo simulations
to obtain the distributions for fferent driving protocols such as ramped magnetic field and
periodically varied fields which can be symmetric or asynrioetn general we find that the

distributions are broad and have non-trivial forms. In s@pecial limits, namely fast and

12



slow driving rates we show that the work distributions carabalytically calculated. We
verify that Crooks’ fluctuation theorem is always satisfiedleithe usual TFT and a steady

state version is not.

1.2 Ratchets, heat engines and molecular motors

Ratchet models have been studied for a long time to examineditested motion occurs
in non-equilibrium systems even in the absence of any neteak bias. Among its appli-
cations it has been proposed that Brownian ratchets coulddera possible mechanism of
transport of motors in biological cells. An example of a noollar motors is kinesin which
moves uni-directionally on microtubules inside the cells@molecular pumps, like sodium
or potassium pumps maintain active transport across merabragainst a concentration
gradient. Note that these motors and pumps work in a verymrigironment and still they
exhibit directed motion. It is thus of interest to understaime functioning of these highly
complex systems by studying simple microscopic models.his ¢ontext several ratchet
models like flashing ratchets, rocking ratchets, corretatatchets, frictional ratchets etc.
have been proposed [75]. In all these models one tries tomet motion, by combining the
effects of thermal ( or a-thermal ) fluctuations, spatial or terapanisotropy and external
non-directed driving. In some cases, the system is in comidls several thermal baths (
thermal ratchets ) at filerent temperatures. One of the first example of a ratchetfecin
Feynman'’s ratchet and pawl machine [49], where the mackifkept in contact with two
baths at dferent temperatures, and is able to extract work from the tnaasferred. In
many of these models, one is interested in the dependenbe pftticle current on system
parameters like temperatureffdsion constant, amplitude of external driving etc. Also one
is interested in finding out thdfeciency of these motors, a question which is of obvious prac-
tical interest. Many studies have been done to understarse thspects [64 66, 79]. The
efficiency has mainly been studied as a function of temperandexternal load in rocking,
frictional ratchets. There have been lot of studies on imipigpthe dficiency of such ratchet

models. It turns out that thidfeciency is small due to the non-equilibrium and irreversible
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nature of the system. Questions like whether irreversjbdian be suppressed, and whether
a system can be made to achieve Carfiaitiency, have also been studied [69, 74]. To study
efficiency of such ratchets models one usually uses the methstdiastic energetics de-
veloped by Sekimoto [64]. In this framework all the quaestiike work done, input energy,
output energy etc. can be understood and computed by theelzargguation approach.

In the following sections we discuss a few ratchet modelsbéggn with the well known
Feynman'’s ratchet and pawl model and then we look at some otbdels of externally

driven ratchets, namely flashing, rocking and inhomogeseaichets.

1.2.1 Feynman’s ratchet and pawl model

In this section we will look at a model discussedHeynman lectures on Physics, Vol. 1
This model was devised to understand, from a molecular atikipoint of view, how much
maximum amount of work could be extracted from a heat engisewe know from ther-
modynamics, there is a maximum limit to thiffieiency, given by the Carnotffeciency.
Feynman was trying to understand this through a microsamgichanical model and using
statistical mechanics. Feynman'’s ratchet and pawl desis@own in Fig. (1.2). This con-
sists of two compartments containing gases at temperaityraad T,. The compartment
(1), at temperaturd@,, contains vanes which are able to rotate freely in both toes. The
compartmentl(), at temperaturd,, contains a ratchet and a pawl as shown. This ratchet
with the pawl ( with a spring ) pressing on its teeth isemymmetricobject. With the pawl
pressing on it, the ratchet can move only in one directiore fEtchet and the vanes are con-
nected by a rigid rod. Let us consider a situation where dugliémperatures are same, i.e.,
T, =T, = T. In compartmentl(), gas molecules bombard on the vanes and make it rotate
randomly. When the vanes try to move in one direction it isvedid but the other direction
appears to be forbidden due to the presence of ratchet and@avhich it is connected.
Thus we should see the vanes moving only in one directionfatbad moves up. It appar-
ently looks like we get a directed motion out of random motiothermal equilibrium. The

flaw in above argument lies in the fact that, in our analysisiasen’t considered the motion
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(1) Axle and wheel

/

Load \.fa'ne

Figure 1.2: Feynman’s ratchet and pawl! engine.

of the pawl at all. Just as the vanes are getting kicks frongésemolecules, the pawl in the
other compartment is also getting bombarded by the gas meem its compartment. Due
to these kicks the pawl could be pressing against the ratotuieit can also get lifted above
the ratchet once in a while. At this particular instant wheapawl is lifted, if vanes get the
kick in other direction ( so calletbrbidden then the ratchet is free to rotate. Thus we can
see that in fact there can be motion in both the directionsiceléf we look at the load tied
to the rigid rod, we will see it moving up and down at varioustances, but on an average
there will be no net motion.

Now let us see what happens when the temperaturesféeectit. LetfT, > T,, that is the
pawl is colder than the vanes. In this case, Feynman showditieated motion is possible.
Roughly the argument is as follows. The probability of a famvenotion, by one tooth of
the ratchet is~</%T:, wheree is the energy required to lift the pawl. On the other hand the

probability of a reverse motion is</*¢T2, Hence, as the rate of these jumps are no longer
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equal, whenT, > T,, there can be a net forward motion of the ratchet. This carskd to
do work, thus working as an engine.

Feynman then argues that in the reversible mode of operaliemfticiency of this model
reaches a Carnotieciency. In this analysis there are some flaws, which weretgdiout by
Parrondo [50] and Magnasco [51]. The point of their criticizas that, this system unlike
other usual heat engines, is in contact with two heat bathwatdifferent temperatures
simultaneouslythus it can never work in a reversible way.

Actual analysis, of the Feynman’s ratchet and pawl systenstaut to be quite dicult,
so diferent models have been proposed to model this engine Bf. A simple way of
modeling is that given by Magnasco [51]. Consider a systerh twib degrees of freedom,
x andy, wherex is a cyclic coordinate representing the ratchet motion yargpresenting
the pawl. These two coordinates are in contact with heatsbatdiferent temperaturel,
andT, respectively, corresponding to the two compartments waihig Feynman’s model,
and modelled by Langevin equation. An asymmetric periodieptial U(X,y) is included
to represent the asymmetry and periodicity of ratchet t@with the interaction of ratchet
and pawl degree of freedom. When the pawl is pressing aga@satchet, this potential is
infinite. For a particular choice df(x,y) considered by Magnasco [51], the system works
as an engine depending on the two temperatures, similanyjionfraan’s model. Also it was
shown that the ficiency of this model is quite low, and it doesn’t reach Carrificiency.

In such devices it is important to note the following poinss difference between such
microscopic engines and thermodynamic engines like Camgihes is that herefiects of
thermal fluctuations are important. The second importafiiem@ince is that the system is
simultaneously in contact with two (or more) heat baths fiedent temperatures and hence

is essentially always a non-equilibrium system.

1.2.2 Other ratchet models

In the last section we discussed the ratchet and pawl modehwsan example of an engine

driven by temperature flerences, with no external driving. Work is extracted sdiedyn the
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heat baths at efierent temperatures. There are other class of ratchets wherdernal time-
dependent driving drives the system into a non-equilibrateady state, and useful work is
done. These models usually look at particle transport. &l snodels the general situation
is as follows. Consider a Brownian particle placed in an asymmgeriodic potential such
as shown in Fig. (1.3). Then, even if the potential is asymicighe system equilibrates at
the temperature of the bath and reaches Boltzmann distibut this equilibrium situation
there will be no net particle current. Thus we need to makeyiseem non-equilibrium, and
this can be done by various means and below we will discusg #sxamples.

I. Flashing ratchet: Suppose now that the asymmetric potential is made time e
[55]. This will drive the system into a non-equilibrium stand in such a situation we can
have a uni-directional current in the system. In generah susystem can be described by a

Langevin equation as follows:

mi= -20%0 i, (1.34)

where,m is the mass of the particle, is the dissipation in the bati)(x, t) is the external
asymmetric time-dependent periodic potential. For flaghaitchets one taked(x,t) =
U(X)f(t). Also n(t) is the noise due to the heat bath. This noise is usually takdre
a Gaussian white noise satisfyidg(t)) = 0 and{n(t)n(t')) = 2kgTydé(t — t’). A simple
example of a time-dependent potential is one shown in Fi8).(1n this case this potential
is switched on ( for timd, ) and df ( for time Tyt ) and this is repeated periodically.
When the potential isf® ( during To¢¢), then particles are free toftlise. Suppose we
choose,To¢r ~ X2/2D, whereD is the difusion constant. Then, during this time, many
particles starting from close to the potential minima woldde difused to the peak on the
left hand side while few particles would have reached thé peathe right. Now when we
switch on the potential, the particles on the left will sldi@vn the slope to the next minima
while those on the right return to the same minima (see Figl)).1 Hence we get a net
motion to the left. It is important to note thate require djfusionin order to get a directed

motion.
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Figure 1.3: Partd) of the figure shows a saw-tooth potential, an example of gmasetric
potential. Partl§) shows a switching function used to generate a time-depgnde
potentialU;(x) = U(X)f(t), whereV(x) is as given in partd). For timeT,,
potential in on and for timd,¢¢, U(X) = 0. Such a driving can lead to an uni-
directional particle current.
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Figure 1.4: Brownian particles are trapped in a periodicjrasgtric potential that can be
turned on and . The random dfusion when the potential isflois converted
into net motion to the left when the ratchet is switched on.
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Figure 1.5: A rocking ratchet model where the external fascearied periodically in time.
Because of the asymmetry of the potential, the situatiprs(not same as that of
(©). In this case we get a motion in the direction of steepereslop

Now suppose there is a gradient in the potential (which ogpte current, usually called
asload). Then till some maximum load called atalledload, the particles are able to move
against this gradient and thus useful work can be done.

I1. Rocking ratchet: In the case of flashing ratchets, discussed above, the Ebtiundt-
tuates between on andfstates. In another class of ratchets known as rocking rst¢be],
where one applies a time-dependent force with zero meark{geél.5)). For example such
a potential can be given dy(x,t) = U(X) — sin(wt)x. This corresponds to a situation where
the slope of the saw-tooth potential is periodically vairetime. More generally, this vari-
ation of slope can be done in a random or periodic way, the @gyirement being that the
average slope is zero. Consider the zero temperature case, When the force is negative,
( part ©) in Fig. (1.5)), particles can remain trapped in the valléyhe potential, where

local force there is positive. On the other hand, when therazat force is positive ( part)

19



(@)

U(x) = Uy sin(x)

(b)

Temperature profile, T(x) =§ AT  sin(>xp- )

Figure 1.6: Inhomogeneous ratchet model where a periodenpal @), and a temperature
profile (b), is separated by a phasdtfdrencep. Dark regions in&) correspond
to the higher temperature regions. Direction of the curdepiends on this phase
difference.

in Fig. (1.5)), then patrticles slide down the slope. Thusditeations+F and—F are not
equal and opposite to each other, which happens due the agyyrohthe potential, and we
get a net current. This can be shown to be true even for fimi@éeatures. Unlike the case
of flashing ratchets, the direction of the current in thiseciasan the direction of the steeper
slope. Note that the flashing and rocking ratchets can betitai as examples wherefaC
current is generated by applying & field.

[11. Inhomogeneous ratchet: A third type of ratchet is the inhomogeneous ratchets
[57, 58], which unlike flashing and rocking ratchets, havatisfly symmetric periodic po-
tential U(X). They show directional transport due to the presence afesgapendent tfu-
sion codficientD(x). This space dependence can arise, for example from alpasieying
temperaturd (X) [57 — 60], since the dfusion constant is given y(x) = ksT(X)/y. These
systems are common in nature. For example, colloidal pestdifusing near any surface
have space dependentfdsion codicient, molecular motors moving on the microtubules
experience space dependent mobility [63]. In this caserdtuhet &ect arises because the
system dissipates energyffeérently at diferent places due to the space dependent tempera-

tureT(X). In this case the only criterion to be satisfied is that bbéhgotentiald (x) and the
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temperaturel (x) have to be periodic, and should be separated by a phéseedice other
than O orr.

Consider partd) in Fig. (1.6), where dark regions corresponds to highempenature (
this is sometimes called as Landauer torch ) correspondiriget maxima of temperature
profile. Particles try to settle at the minima of the potdriiat, all the time they fluctuate
around this minima due to noise from the bath. Thus whengdesticome into the contact
with these higher temperature regions they get enough gteicyoss the barrier and jump
to next valley on the right. Thus particles in any minima \ittid it easier to jump to the
right than to the left. Hence this temperature anisotropylpces a net particle transport in
the system, whose direction and magnitude depends on tisepha

Contribution of this thesis. Here we look at models of both heat and particle pumps.
These models are somewhaffeient from various ratchet models which we have described
above and are motivated by models of quantum pumps. Unl&dléishing and rocking
ratchets, there is no asymmetric potential in the examplestwdy. These models have
external time-dependent magnetic field, forces etc. doiagkwen the system and driving
the system in to non-equilibrium steady state. The ratcffiet&ls achieved through the fact
that the external driving is both time, as well as space dépean

In chapter (3) we study following two classical models ofty@amp,

1. A spin system consisting of two coupled Ising spins eacledrby periodic magnetic

fields with a phase ¢lierence, and connected to two heat reservoirs.

2. An oscillator system of two interacting particles drivmnperiodic forces with a phase

difference and connected to two reservoirs.

In both these models we drive the system by external periidie-dependent magnetic
fields or forces, with a phaseftBrence and connected to multiple reservoirs. We find that
though these models are based on same designing prin@pkesf them ( Ising system ) is
able to work both as a heat pump and as an engine but the othet: i8s discussed earlier

for ratchet systems, to work, require spatial or temponairasetry. In these models there is
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no built-in asymmetry but the phasdférent driving leads to an overall symmetry breaking.
In chapter (4) we study a model of a particle pump. We look atsymmetric exclusion
process (SEP), with time-dependent hop-out rates at twoooe sites. These hop-out rates
are periodic in time and with a phasefdrence. We find that in this system, in the steady
state we get a non ze©C current. Unlike previous models studied in chapter (3)eher
there is a particle transport. The hop-out rate is relatetheéodifusion constant and the
modulation of this dfusion constant can be thought of as arising from a spatialeangoral
modulation of the temperature or friction dheient. We study this model by simulations and
also analytically by doing a perturbation theory in drivetgength around the exactly known
time-independent SEP. We calculate general current esipreand study its behaviour in
few special cases. We look at the behaviour of this curreatfaaction of driving frequency

and the phase flerence and also get a formal expression in adiabatic andrfastg limits.
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