Modelling Hard Electron Energy
Spectrum

2.1 Introduction

The non-thermal electron distribution, which produces the afterglow synchrotron
radiation, is assumed to be distributed as a power law in energy, of the form given
by equation 1.11. The standard fireball model assumes the power law index p
of the distribution to be greater than 2, leading to simplification of theoretical
models. Accommodating harder electron energy spectra, with values of p < 2,
requires modifications in some of the basic expressions of the model because the

upper cutoff of the distribution can not be neglected.

2.2 Modified Electron Distribution and the In-
jection Break

The upper cut-off v, of equation 1.11, depends on the micro-physics in the shock
downstream. Nature of the distribution beyond this upper cutoff could be a sharp
drop or a steeper (p > 2) powerlaw. Bhattacharya 2001 [15, hereafter B01| has
used a 7, which is a function of the bulk lorentz factor (I') of the shock. The
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2.2 Mod:ified Electron Distribution and the Injection Break

dependence on I' is parametrised by an index q.
Yu = qu (2'1)

The time dependence of 7, is altered by the introduction of 7,. This in turn
modifies the spectral evolution. Moreover, a new break frequency corresponding
to v, will appear in the spectrum.

Dai & Cheng 2001 [35, hereafter DCO01] has followed the same approach but

with a special case of v, (their notation is 7,,) where VM MeC?

is the energy in
which acceleration time scale for the particle exceeds its cooling time scale. Their
model is a special case of BO1 with ¢ = —1/2. But this upper limit 7,,, in typical
conditions lie at very high energies, so any observable feature of a corresponding

break v, is unlikely to be seen.

Panaitescu & Kumar 2001 [98, hereafter PKO01] consider two conditions to
determine the upper limit of the hard electron energy distribution. (i) The upper
limit (7yas1) results when the acceleration mechanism is overtaken by the radiative
energy loss, and the corresponding break frequency lies much above the obser-
vation limit. (ii) In the second case, the upper cut-off (yus2) is determined by
the amount of energy available to electrons. A steeper powerlaw is assumed be-
yond the cutoff. Nature and temporal evolution of v, is not considered, as a
result, evolution of other breaks and the spectrum remains the same as that of
the standard model. In reality, v,9 is a result of some process which terminates
the acceleration process and its time evolution is important in determining the
spectral evolution of the afterglow. One cannot expect the same lightcurve decay

indices as the standard model.

In this chapter, we continue the investigation of BO1. The upper cutoff v, of
B01 (equation 2.1) is identified as an injection break ;. We assume a steeper
powerlaw beyond this lorentz factor. The major difference we have, from the pre-
vious works is g-dependent lightcurve evolution. We present analytical estimates

for the lightcurve slope in terms of q.
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2.3 Equations of Dynamics : Modifications by
Huang et al.

We consider the fireball evolution from ultra-relativistic to newtonian regime.
The equations used in defining the dynamics of the ultra-relativistic shock are

given in chapter 1 (equations 1.6 to 1.8).

From equation 1.8, M at any distance r can be written in terms of m as,
M
fMej aM = fom (1= e +€e|dm
Hence, M = M+ [(1 — e)T +€¢|m

In the adiabatic condition (which we will be concerned about, in this chapter),
the thermal energy radiated away is negligible, or in other words ¢ = 0. This will

reduce equation 1.7 to

ar  T2-1

- - = 2.2
dm I'm + M,; (2.2)

dm, is the amount of mass swept up by the shock at a distance r from the
ambient medium of density p(r), which is given by equation 1.9 Equation 1.6,
defining the time elapsed in the observer’s frame, after the redshift correction

will become,

dr
= 2.
dt 2(1+ )¢ (2:3)

Only in rare cases the non-relativistic transition has been observed so far
[50, 111] and it was treated separately from the ultra-relativistic phase since
the expressions used dealt only with the limiting cases. Huang et al. 2000 [72,
hereafter HOO], modified the fireball hydrodynamics equations to account for a
smooth evolution to the newtonian regime from the initial relativistic phase. We
adopt their expressions to obtain the evolution of dynamical parameters of the
expanding blastwave. Method of HOO is the following:

They modify the expression for dEy, as

dEy, = d[(T — 1)m Y] (2.4)
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2.3 FEquations of Dynamics : Modifications by Huang et al.

Hence the amount of thermal energy remaining in the shock will be,
(1 —¢€) [dT'm + (T — 1)dm)] ¢
Using this expression with the condition of energy conservation
dExinetic + dEradiated = 0
one obtains,
d[(T' = 1)(Mej + m)c® + (1 — )T Ey| = —el(I' — 1)dmc? (2.5)

Solving the above expression gives the alternative to equation 2.1,

dr rz-1

e _ 2.6
dm Mg +em+2(1—¢)I'm (2.6)
Assuming € = 0, ze.,for the adiabatic evolution, this reduces to,
dar rz—1
— (2.7)
dm Mej + 2Fm
instead of equation 2.2.
The expression for dm is the same.
d
d—T = Qr2p(r) (2.8)
dr/dt is given as,
d
d—: = (1+2)Bcl(T + VT2 —1) (2.9)

in lieu of equation 2.3. The solid angle €2 is defined as 27(1 — cos(f;)) where 6, is
the half opening angle of the shock at a distance r from the explosion. The half

opening angle evolves with time as,

db; _ 1 2] (2.10)

dr ~ AU le
We obtain the dynamics of the fireball by numerical integration of equations (2.6),

(2.8) and (2.9), for both spherical and conical geometry of the ejecta.
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2.3 FEquations of Dynamics : Modifications by Huang et al.

2.3.1 Calculation of velocity of sound in the shocked plasma

The jet opening angle varies according to the lateral expansion of the jet in its
comoving frame. Velocity of this expansion is that of sound in the medium. In the
ultra relativistic phase the sound velocity equals (1/+/3) of that of the velocity of
light. But once I' and consequently the internal energy of the plasma decreases,
the velocity of sound also drops. To calculate the sound velocity in the shocked
medium we follow a different approach than that of Huang et al. The adiabatic
sound velocity is defined as ¢; = dP/dp where P is the gas pressure and p is the
mass density. Chandrasekhar 1989 [28] derives for the thermal energy density u

of mono-atomic gas,

_ . [3K35(0) + Ki(©) 2
u=n 1K,(0) — 1| mye (2.11)

where n is the particle number density of the gas and m; is mass of a single
particle. © = myc®/kpT, where T is the temperature of the gas. K;(0) is the
modified Bessel function of order j. In terms of temperature, thermal energy den-
sity is usually expressed as, na(T)kgT, where a(T') parametrises the temperature

dependence. It follows from the two expressions,

3K3(0) + K1(0)
oT) =6 [ 11G0) 1}

In the non-relativistic regime «(7") approaches the familiar value 3/2 and in the

(2.12)

relativistic limit it tends to 3. For a blast wave downstream plasma, with single
particle rest mass m;, the average thermal energy per particle a(7T)kgT can be
written as (T' — 1)myc?. ie.,
- [3K3(®) + K;1(©)
4K,(0)
from which we identify (3K3(0) + K1(©))/4K,(0) with I'. Temperature of the

gas can be solved for in terms of I' by inverting this relation. But the total

— 1] = (T —1)myc® (2.13)

energy density is independent of the dynamic regime of the gas and is given by,
u = pc? = (u+nmic®)/V where p' is the total (rest mass + inertia) mass density.

Using this expression we obtain,

!

P _ @3K3(®) + K1(0)

P 1K,(©)

—er (2.14)
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2.3 FEquations of Dynamics : Modifications by Huang et al.

which gives sound velocity in the downstream in terms of I' as,
cs] 2 1
— == 2.15
[ c oer ( )

Let us examine the limiting values of the above expression and check the consis-
tency. In the non-relativistic limit, k5T < mic? ie., © > 1, the Bessel function

takes the form

N[

o~

Substituting (equation 2.16) in (equation 2.15);

(2.16)

2 _
exp (—O) [1 + 4n8@ 1}

15
2 = hol 41+ g0 (2.17)
mi 31+ 8]+ 1+ 3]

Neglecting terms of the order of 1/©, expression for sound velocity in a non-

relativistic gas is reduced to

S

c (2.18)

my
Now, in the relativistic limit, ie., when © < 1 The limiting expression for Bessel

function is,
_ 1(j—1)!
J

(2.19)

Substituting the above expression in (12), and neglecting terms O(©?%), we get

for the sound velocity in a relativistic gas,

kT 80 ¢
2 B

= — = — 2.20
¢ my, 24 3 ( )

2.3.2 Shell Thickness

We approximate the thickness of the post shock medium in its rest frame to be

dS" = csteo [112], where
"1
o= | 37 (2.21)

We use primes to denote quantities measured in this frame. This shell thickness
appears in the estimation of the optical depth of the swept up matter which in

turn determines the synchrotron self absorption frequency of the plasma.
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2.4 Magnetic Field

The magnetic energy density in the comoving frame of the plasma is considered
as a fraction ep of the total thermal energy density u;, (See Piran 1999). We
calculate uy, as % where V,, = 7(rfy + csteo)?dS’ (Ref: Rhoads 1999). 6,
is the initial half opening angle of the jet. The comoving magnetic field density

B can be obtained as

(L' =1)m :

B =8
- (ng + Cstco)zcstco

(2.22)

2.5 Electron energy distribution

As described in section 2.2, we assume the electrons to be distributed in a power-

law of the form,

N(’Ye) = K., ™, (7m <% < ’Yi)
= K7, (i < 7e < 00) (2.23)

where K, is the normalisation constant. (see fig. 2.1)

K] can be written in terms of K, as,
K! = K% (2.24)

For an electron-proton plasma with upstream number density n(r) at a distance
r from the center of explosion, the post shock particle density and energy density
are 4I'n(r) and 4T (T — 1)n(r)m,c? respectively (SPN98). Hence,

/ " N(v)dre = 4Tn(r) (2.25)

/ fyemec2N(*ye)d'ye = e AT'(T" — 1)n(7‘)mpc2 (2.26)

TYm
where ¢, is the fraction of thermal energy shared by the non-thermal electron pop-

ulation. m, and m, are the mass of the proton and the electron respectively. The
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2.5 Electron energy distribution

Ibg N(y)

Y

log vy

Figure 2.1. A schematic display of the modified electron distribution. Instead of the
conventional single powerlaw, we assume a double power-law with slope p1(< 2) upto
a lorentz factor v; and pa(> 2) above. py could as well tend to oco.

injection break +; in the electron spectrum is parametrised similar to B0O1 (equa-
tion 2.1), but since the treatment here extends to the non-relativistic evolution

of the fireball too, we generalise this expression to be

Solving equation 2.25 and equation 2.26 by assuming the distribution given by

equation 2.23 and equation 2.27, one obtains the expressions for v, and K.

_ mp €e 1 1—q(2—p1)]
Ke = 47’L(7")gp E 52_1)1 W [F —_ ].] F[ q P (228)
| my e (1’11—1) 1 (ml—l) . 1_1 7(1(;—_1111)
Ym = [m_e §2*p1 fp:| [m] [P - 1] 1 r 1 (2.29)

WheI‘e gp == fp (pl - 1) and fp = (;2lip11))((pz)22:1321))
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2.6 New Spectral Break

2.6 New Spectral Break

Apart from the four spectral parameters described in section 1.8.7, the radia-
tion spectrum emerging from a double slope electron distribution will exhibit an
additional break which leads to a steeper slope at the “injection break” v; cor-

responding to the synchrotron frequency of an electron with Lorentz factor -;

0286 e ..

= 2.30
1+ z7mmec ( )

v;

2.7 Spectrum and Lightcurve

The afterglow radiation flux at any given time and frequency can be considered
as a power law of the form F, () oc 1°t*. When any of the break frequencies
described in section 1.8.7 is encountered, the value of § changes and a different

spectral segment starts.

Though in reality a smooth transition is expected from one spectral segment
to the other, we joined the power-law segments with sharp breaks, except at v,.
We incorporated absorption into the synchrotron optical depth, which along with

the source function yields the flux at any given frequency.

The nature of the smooth transition at other breaks can be calculated by
doing an integration over the emitting surface, taking care of light travel time
effects. We have not attempted such an exercise in this thesis. We considered
four possible regimes in the spectral evolution of the afterglow, depending upon
the relative positions of the break frequencies. In the following subsections, we
describe each spectral regime which is characterised by the positioning of the

spectral breaks.

2.7.1 spectrum 1 (v, < vy, < v; < V)

The electrons are in a slow cooling regime (ie.,v,, < v.). The spectral index
in the range v < vy, < vy (60 =2), Vg < v < vy (6 =1/3) and v, < v < v
(6 = —(p1 —1)/2) are the same as in the standard model (see equation 1.29). The
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2.7 Spectrum and Lightcurve

spectral slope steepens at the injection break to —(ps —2)/2 corresponding to the
electron energy distribution index py. A further steepening to —p,/2 happens at

the cooling frequency.

2.7.2 spectrum 2 (v, < v, < v; < V)

This case is similar to case 1 except the fireball is optically thick even above
the synchrotron frequency. The peak flux which would have otherwise appeared
at v, is suppressed by self absorption. As in the standard model, in the range
vV < Uy <V, § =2 and between v, and v,,,, 0 assumes the value 5/2. The spectral
slope assumes value —(p — 1)/2 for v, < v < y;, like the previous case. Above v;

and v., § values are same as case-1.

2.7.3 spectrum 3 (v, < vy < Ve < 1)

Here the cooling frequency falls below the injection break. The spectral shape
is the same as that of the standard model till the injection break. At v = v;, §

changes from —p;/2 to —p,/2.

2.7.4 spectrum 4 (v, < v, < V. < 1)

This is similar to the previous case, but the peak flux is suppressed by synchrotron
self absorption. For v < v, the spectral slopes will change the same way as

described in case 2.

Our code calculates the afterglow flux in any of these four regimes for spherical
or collimated jet decelerating into an ambient medium of either homogeneous or
stratified (n(r) oc 7=%) density profile, and produces the lightcurve at the desired
frequency. In figure 2.2 to 2.3 we display the spectral parameters v,, v, and v; (v,
and f,, are not shown since their evolution is not affected by the modified electron
energy spectrum) and lightcurves in radio (22 GHz), optical (4 x 10'* Hz) and
x-ray (10'® Hz) bands for three different values of g. For the figures we considered
a burst at z = 1, with spherical outflow of isotropic equivalent energy 10°! ergs

and initial lorentz factor 350 in a homogeneous ambient medium of density 0.1
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2.7 Spectrum and Lightcurve
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Figure 2.2. Spectral breaks v, (top left), vy, (top right) and v; (bottom). All the
figures are in logscale. For comparison, result of a ‘single universal power law’ with
p = 2.2 is also shown (dash-dot curve). Since there is no v; for p > 2, we have not made
a comparison with the standard model in this case. Notice that ¢ = 1 and the single
power law have the same temporal slope. Also see the change of evolution as ¢ varies.
The parameters gone into calculating the curves are listed at the end of section 2.7.
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Figure 2.3. Optical lightcurve (4 x 10'* Hz), radio lightcurve (22 GHz) and x-ray

lightcurve (10'8 Hz) for the three different values of q.
atom/cc. The shock microphysics parameters are: ¢, = 0.1, eg = 0.01, p; = 1.5,

p2 = 2.2 and & = 2000.
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2.8 Adiabatic Evolution in the Ultra-relativistic Limit

2.8 Adiabatic Evolution in the Ultra-relativistic
Limit

Modelling GRB afterglows till date have shown little evidence of a radiative
evolution. We present analytical treatment for the evolution of an adiabatic
blastwave (¢ = 0) in the ultra-relativistic regime(I" > 1,5 ~ 1). In this case
the equations for blastwave dynamics yield analytical solutions, and one will be
able to derive the break frequencies also analytically. Hence it is possible to write
down the temporal dependence of the flux in various spectral regimes explained in
section 2.7. For the electron energy distribution given in section 2.5, table 2.1 lists
the time dependences of spectral parameters, v,,, v;, and v,. Time dependences
of v, and f,,, will not be affected by the modification of electron energy spectrum.
But we list these parameters also for completion. In Table 2.2 we list the final

spectral and temporal indices («&d) as functions of p;, ps and gq.

2.8.1 Dynamics

The three expressions which one has to solve here are,

Me;

T(r) = /T (2.31)

m(r) = /07" Q@) ' p(r') dr’ (2.32)

and

dt  (1+2)1

- — — 2.

dr 2¢ I? (2:33)
where, Q(r) = 7(fy + ©=~)? and p(r) < r=*. The index s is 0 for ISM and 2

¢ I'(r)
for a density profile created by a constant velocity stellar wind. For the latter,

a convenient normalisation, p(r) = 5 x 107°A4,(r/10'%)"2gm/cc [29] is used. All
the solutions presented below are for pre-jet break evolution. For post jet-break

dynamics, we will only present scaling laws (see table 2.1).

3—s
From equation (2.32), m(r) = 63 pors [L] hence,

03—s |79
(3=5)Eo, 4 1[0
[(r)=14/—F— 2= 2.34
() =\ o) | (2:34)
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2.8 Adiabatic Evolution in the Ultra-relativistic Limit

1
2ct EO 1 1/|%s

2.35
1+ 2Qc? 0T0:| (235)

r=la-9e-9

Expressions for I'(r), 7(¢) and I'(¢t) for the two density profiles are :

o172
30.82 [B2| T () 92 (s=0)
F(T) - 4 is0,52 T —-1/2 (236)
1.33 x 10/ S0z [t ] (s=2)

0109¢m

425[ is0,52 tq ] /4
n 14z

(s= )
™7 = o
135,/ ’/1+z s—

LT
4.14 [575] [££]7%* s=0
I(t) = (2.38)

1/4 -
3.62 ST ]V (s=2)

where &5, 52 is the isotropic equivalent energy normalised in units of 10°? ergs,

(2.37)

and 4 is time ¢ in days.

Following the assumption in section 2.4 and using ' > 1, magnetic field B
for the pre jet break evolution is,

B =,/8meg— G p( NG (2.39)

And for s = 0 and s = 2, respectively,

2 1/8 -
g ) 0:88Gauss V& \epn [ s } 7] Y (s=0) (2.40)

2.85 Gauss \/; 8i80,52*1/4 613/2 3/4 [lir—dz]_g/4 (s=2)

2.8.2 Electron Energy Distribution

To calculate K, and 7, one can apply the limit of I' >> 1 and § = 1 in equation
2.28 and equation 2.29 directly.

K, = 4ngp My 52661;1 2-a@—p1) (2.41)
1/(p1—1)
m €e 1-g(2-p1)
= [mp f%”l] i) (2.42)
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2.8 Adiabatic Evolution in the Ultra-relativistic Limit

2.8.3 Spectral Parameters

The above expressions are used to obtain the spectral parameters for the ism
(s = 0) and the wind (s = 2) density profiles. In this section, we are giving full

expressions for both these cases.

210.45 mJy ¢p1 d2 \/7 VeéEBT 81s0 52 (S = 0)

fm = (112 ~1/2 (2.43)
1021.5mJy ¢ G? /e p—— [ a ] (s=2)
—q(2— 2 2
(1.87 % 107Hz (17.14) 5=t R
Me c 14z
_2127;511 8iso,52 p14-a;11p11)2q tq _3(p‘11(;(ip_11_)2q) == 0
DR as] (5=0)
5.77 x 107 Hz (13.1)v /% 22 [ fpl] ST g A
) L s *(2+y)
x /es 66/(101— ) £@2-D [(1tiz] (s =2)
— 1=4¢(2-p1)
where y = Tll

5.84 x 108 Hz [=]” €02 n~t & [ta(1 + 2)] /2 (s =0)

Ve = ‘ _ —1/4
5.03 x 10 He s /% Ve A7 € [(13‘22)} (s =2)
(2.44)

F(Hq) [ . }_TS(H'Q)

v, = 13X 106 Hz (4.14)112¢ \/ﬁ 62 €B n [ is0,52 i

1—|—z n

(2.45)
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( p1+2
2(p1+4+gp a+apy) 1
3.66 x 106 Hz (4.17)%71“11 (7346. 58)1’17“1 [0 2\/5] P+
- 2+p p1+1
(261 x 109)7r (838 x 109) 77 (8.2 x 107 H (0.88) 70t (3)55
r1+2

—29+p19)

(1" o [ /2]
(23 x 10-9)a0% [T232) )00 [L87 x 10712,v/35] 7

P1+6+49pr1—2¢ P1 +6—gp1+2¢ 2—p
4(p1+4) 2(p1+4) 2/(p1+4) L P Jo &
vy = { 8130,52 €p €e n  41+4) é‘ p1+4
: *10*2P173zp1+6q
[ﬁ} 1) (5=0 vy > vp)
3p1+2
10g+3p1 ~59p) =8 23/40 B =D
2.61 x 104 Hz (4.14)" o [=]* lfp =D
_ 18—13py —10g+5 _ _
(-2 17 s G it o ittt e
Git2/3)(p2—p1)| B Ce €is0,52 n
‘ 3(p1—-2)(g—1
\ [ﬁ] 81 —1) (s=0 v, <vp)
(2.46)
( 53\ s 7y 2L (p12+4)
(3.62)¥2 (3.42 x 10%3) @19 (2.4 x 107) G1+4) [g,, gf_epl}
- P1+2 2
Ts T4 3pg+2 3py+22 cs| pr 14
[V vEs] e M) oeg?) [e]n
ap1—2q 1.4+2py+49—2p1q 20—22?1:15)1—8
2(p1+4) p1H4 tq P1 o
81s0 52 A, [(1+z)] (S 2 v, > Vm)
Vg = 3/2 +3p1
23/40 5( 1)
6.16 x 101 .62 [ 2327 [a]P/0 [m fpl 7o
P1-2)1-q¢) 6_(p1—-2)(1—q) 3_ _243py
3/5 1/5 8 4(p1-1) A5 4(p1-1) €e 5 5(p1—1)
9p 80,52 * £2-n
7p1—2(—10q+5p1q
tg 20(p1—1) -
\ [(Hz)] (s =2 vy > p)
_ p1+6—4q+2qp1 _ (p1—2)(1—q)
where y, = B-=—E=E and y3 = =0

2.8.4 Physical Parameters

Expressions for the five important physical parameters €, n(A4), €, €p and
& can be derived from that of the five spectral parameters, presented in section
2.8.3. Let us define Cy, Cy,, C;, C; and C, to be the combination of numerical
and physical constants in the equations of f, , v, V., v; and v, respectively.

From inverting the equations, one obtains,
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2.8 Adiabatic Evolution in the Ultra-relativistic Limit

We calculate the expressions for a constant ambient medium density profile.

_ 2@—42(«1—)() 44)—2%@)—)() 2<I>—2<p<1(>w—3x)
14 14 14
& - |2 —a = 247
50,52 _Cm:| |:Ca:| |:Cc:| ( )
— w % w;3x
Um, Vg Ve
n = |—= — — 2.48
_Cm] [Ca] |:Cc:| (243
_ 9 2(w—x+2P—4dwp—4px) w—x+82—4dpw+4dpx
€rn = f”_m Ym ’ Ya ’ (2.49)
b Cr] |Cm C, '
_ 4(2—wotex)
Ve 2
.

_ 1/2 _1/2 w—xP—4dpw—wx
e = (4] [m Vm | (2.50)
| Cs Cy Cm
_ w—x+sq>—4<pw+4sox+(w—x)(q—l)_(2<I>—w+sax)(1+tJ)

V. % 8% 1

LCe

B
Ce

_P-wotdox | (a=1)(w=3x) _ (14+9)(P—pw+3px)
3 1% T

The expression for €, is complicated and we present it only in terms of the

other parameters.

1-p1
€, = [g] [3150,52](p1_1)a1 [GB](pl—l)/5 [n](pl—l)al [5]2—111 (2'51)

where ¢ = a; + my — 1
X = 4as + 2mgy — 1
Y =4a, +2m; — 3
w=4as +2mqe — 3

D =20pw — xv
__ p1—qp1—2+2¢q
m 8(p1—1)
__ p1tgp1—2q
M2 = "4p-1)
a1 = 14—19p1+10q—5p1q
1= 40(p1—1)
Qo = 18—13p1—10g+5p1q
2= 40(p1—1)
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2.9 Adiabatic Evolution in the Non-relativistic Limit

Table 2.1. Temporal indices of the spectral parameters, for general ¢ and s

frequency before jet break after jet break
U 5+(s=6)p1—2¢(2—p1)(5—3) 2¢—pi—qp
mn 2(4—s)(p1-1) pi—1
U (< U ) 5(10g—4—p1—5p19)+15(—p1+p1g—29+2) | _ Tp1—5p1g+10g—12
a m 10(4-s)(p1—1) 10(p1—1)
$(2+p1—4q+2p1q) —6p1 —20+12g—6psq (29—4-p1—gp1)
Va(> Vi) 2(4—s)(p1+4) pr+4
14+2¢)—6(q+1
g
35—4
Ve 2(4-s) 0
S
Jom " 2(4—s) !

2.9 Adiabatic Evolution in the Non-relativistic
Limit

The dynamics of the fireball in this regime is the same as that of supernova

remnants. The fireball by this time would have undergone a considerable lateral

spread and the geometry can be approximated to be that of a spherical fireball.

The solid angle €2 may now be set to 4.

2.9.1 Dynamics

The radius will evolve with time according to,

dr  [3(32—1)Ey r=%?
dt 87 p(r)4/?

(2.52)

where Ej is the total kinetic energy in the explosion, 4 is the ratio of specific heats
for the plasma (which can be approximated to 5/3 since one assumes the ambient

medium to be mono-atomic and non-relativistic) Assuming p(r) as po [%} ) , and
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2.9 Adiabatic Evolution in the Non-relativistic Limit

Table 2.2. The spectral indices and lightcurve decay indices for various spectral
regimes as a function of ¢. Note that a depends upon the value g assumes.

spectral segment 0

a; (ISM,WIND) Qo
V<V <Vp <V
¢ " ‘ 9 _ (10-7p1+3p1g—6q) 6—5pi1+pig—2g 3p1—6—3p1g+6g
8(p1-1) * o 4(l-p1) 6(p1—1)
V< Uy < Vpy <V
Vg < VULV <V
’ " ‘ 1 P1+p1g—29 2-p14+p1q—2q —2p1+3—2+p1
3 4P-1) ° 6P 1) 3(p1 1)
Um <V < U, 3 51 1
Up <V <V <V
_ (m;l) —%(m + pig — 2q), (2q—p1q4—2p1—1) p1(1+q)2+2(qfl)
Up <V <V, <VY;
U <V <V <V, (P22—1) g(Qq—p2q—p2),i(2q—p2(2+q) — 1) w
. _p 1(9(30 = 1) — 3p:(1 1(9g — _9 2(¢—1)-p1(g+1)
Um < Ve <V <V 2 8( (q ) pl( +q))a4(q p1q pl) 2
Up <V <V <V
_%2 %(3@ — P2 — P2q) — 2), i(Qq — 2py — P2q) w
Up < Ve < V; <V

solving the above equation,

one obtains,

—_s11/(5—s
- (5 — s)*Eorg / )t2/(5—s)
67 po
and s
PO T (Rt 2l =
(5—s)c 67 po
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2.9 Adiabatic Evolution in the Non-relativistic Limit

For s = 0,
15 1 t 2/ tNr 25
ro= 251 x10%cm (&;,/n)° [@} {1 + z]
4 s | 1 B e 17
B = 3.34x 10* (Esp/n)Y [@] [1 +z]
For s =2,

) ¢ 2/3 T, 2/3
= 493 x 1083cm (&5 /A3 | —
T X cm ( 52/ ) tNR 1 Tz

£ 173 Tt —1/3
= 1094.75 (&:,/A )3 | — NR
ﬁ ( 52/ *) |:tNR:| [1+Z

where txr is the reference time for non-relativistic transition, which can be
set to the time when I' — 1.
2.9.2 Electron energy spectrum

The thermal energy density in the shock downstream is

9 po B2 (r/10)= (2.55)

Uth =

The expressions for electron number and energy will give, respectively,

K, B
W = 4p0/mp (T/To) (256)
1= m
K.m, _ 9¢?
S o) = e B (r/ro) (2.57)

9p
after assuming 4 to be 5/3. Solving equation 2.57 and equation 2.56, one obtains
the expressions for K, and 7,,.

9 c s g2 g
K. = Sgp % 2 (r/ro)* p2 070 (2.58)

€= 9%, o

9. my e 1777 emeemn
= {g f”ﬁg?m} RS (2.59)
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2.9 Adiabatic Evolution in the Non-relativistic Limit

2.9.3 Spectral Parameters

The magnetic field energy density is assumed, as usual, to be a fraction eg times

the thermal energy density. ie.,
B = \/9mep%c?p(r) (2.60)

which for s = 0 will reduce to,

" 3/5 ¢ 3/5
4.72 x 107 %Gauss y/eg n (852/n)1/5 [—] [ NR }
tNR 1+z

and for s = 2,

-1 —1
t t
2.51 x 10°Gauss \/eg A, [—] [ NR }

tNR 147z

Having obtained all the ingredients for the spectral parameters, we proceed to
calculate them now. Here we calculate the four spectral breaks, v,, vy, v. and v;

and the peak flux f,,. All the parameters are in cgs units.

2.94 x 10~ K. B
fr = T 0053 TCe) TCeg) 2 (2.61)
2/(p1—1)
o 6 Tp €e W
v, = 2.8x10 1+ B [2065.7fp7€(2p1)] 1 (2.62)
1 t1 [ tar 17
. = 4.81 x 108 = |— 2.63
v X B2 |:tNR:| [1 +Z:| ( )
1
;= 8.0 x10° BE? g 2.64
v T BEO (2:64)
3/5
172 [ 22 R | n S 8BS (for v, > )
Vg = (2.65)

(6.72 x 10-13) 57 (1.25 x 109) 747 (7 x 10-5) 7
[ Mg BAE 2ens (for v, < )
The factor a in equation 2.61 takes care of the dependence the shell thickness has

on the radius r, it is of the order of 10.
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2.10 Synchrotron Self Compton (SSC)

2.10 Synchrotron Self Compton (SSC)

The contribution to the total flux from synchrotron photons which are comp-
ton scattered due to the non-thermal electron spectrum itself, can be significant

towards higher energies.

We calculated the compton component following the method adopted by Sari
& Esin [117]. Initially we estimated the approximate ratio of Inverse Compton
(IC) to synchrotron luminosities. (The calculations are done only for a constant

ambient density profile and a slow cooling regime)

The spectral parameters for the IC spectrum are assumed following Sari &
Esin [117].

Vi = 22y (2.66)
viC = 2y%ym (2.67)
v,¢ = 29AP" (2.68)
Vi€ = 242 svm (2.69)
LS = f¥ornr (2.70)

For v™ < 1" < y%" energy emitted by compton process peaks at v.¢ and
that by synchrotron process will peak at v»®. Hence, x = L!®/L™ can be

calculated as,

JIC fIC
~ c Ve
(p1—1)o.5 ) (p2—1)1.5
~ TOOR_, %27 [’Ym,soo} [%,5}
’ 3,5 Ye,7

The energy peaks at v; for both the processes, if v™ < 2 < 7"

JIC fIC
~ 1 Vi
28 P

Ym,500

Q

] (p1—1)o.s

T00R_7 Yi,7 Ve,s [
Yi, 7
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2.11 Physical Implications

1C Syn
where Yo, = 7./10", Y500 = Ym /500, R_7 = f”%/_f?m and (p—1); = (p—1)/f.
In both the cases, the energy peaks at very high frequencies (for both the
cases, the peak will be ~ 10%! Hz %%). In currently observable frequencies,
the contribution from SSC for hard electron distribution could be insignificant.
However, to obtain the complete SSC spectrum we estimated the IC flux from

full numerical integration over the photon and electron spectra.

We used the expression given by Sari & Esin 2001 [117] for the inverse compton
flux due to an electron energy spectrum N () of the form given by equation 1.11
and the synchrotron radiation spectrum f5¥" generated by this electron energy

spectrum,

f,° =ror / TayN (7) / i dz f" (x) (2.73)

Tm 0
where x5 ~ 0.5
The synchrotron and compton fluxes obtained by the above calculation is
displayed in figure 2.4

2.11 Physical Implications

Having calculated the spectral evolution for the double power law with a general
value of ¢, a discussion on the physical origin of such distributions and expected

values of the parameter are due.

2.11.1 ¢ =1: The minimum energy for electron accelera-
tion

Origin of non-thermal electron distribution in the fireball plasma is usually at-
tributed to Diffusive Shock Acceleration (DSA), which is a variant of the first
order fermi mechanism [41]. An already relativistic particle diffuses through the
medium on either side of the shock by scattering on magnetic irregularities, and
gain energy on each scatter [9, 19]. A major difficulty in accelerating electrons

by this mechanism, is the need of an ‘injection process’ for the sub and mildly
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2.11 Physical Implications

2 T T T T T T T

T
p<2,syn ------
p<2, compt ——
. p>2,syn -—----—
0F S p>2,compt —— |

log flux in mJy

10 1 1 1 1 1 1 1 1 1 -
14 15 16 17 18 19 20 21 22 23 24

log frequency (in Hz)

Figure 2.4. The compton contribution from hard electron energy spectrum, in com-
parison with that from a steep spectrum. For frequencies less than 10 Hz, the contri-
bution from SSA is rather low for p < 2 spectrum. The parameters used for calculation
are, Eigo52 = 102, n = 100, e, = 0.3 and eg = 1073. For hard spectrum p; = 1.8,
po = 2.2, ¢ =1 and £ = 5000 are used, and for steep spectrum a p of 2.2 is used. The
displayed spectra are for ~ 5 days.

relativistic electrons. Those electrons with energy lower than that of the ther-
mal protons will not perceive the shock as a discontinuity [84]. Hence DSA has
a threshold lorentz factor (7ae) for electrons, which equals to m,I'/m.. Below
Yacc, the acceleration process is unable to operate. The assumption made in the
external shock model of GRB afterglow is that a fraction ¢, of the thermal energy
produced by the shock in the downstream plasma goes into the electron popu-
lation which extends from a lorentz factor v, to co. As is obvious from figure
2.5, for a low €, the 7, estimated by the standard afterglow model works out
to be much lower than 7,.. This clearly says that the ‘universal spectrum’ can
not be applied for v, < 7e < Yace- We conjecture an unknown pre-acceleration
mechanism to operate in this range, to produce a flat spectral index for electron

distribution in that range. (A candidate process could be the ‘cyclotron resonance
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log ('Ym/’VaCC)
N
(6]

loge,

Figure 2.5. <, from the universal powerlaw and the double slope spectrum in a
comparison. x-axis is €, and y-axis is -y, normalised by Ya.c(= ";r’;:) The universal
powerlaw is for p = 2.2, and ~,,, computed using that equals to v, only when €, = 1,
which is not an achievable condition. This implies that the universal powerlaw cannot
be extended down to the values of electron lorentz factors which it conventionally
includes. It must stop around ,c.. The double slope spectrum is calculated for p; = 1.5
and po = 2.2, and for the whole range of €., 7, remains below the injection threshold

as expected from the pre-acceleration mechanism

mechanism’ proposed for explaining the multi-band spectrum of crab nebula [71])
In this situation the lower cutoff of the universal spectrum, 7,.., may be identified

with the injection break ;. As
m
Me
the value of ¢ in this picture works out to be 1.

When ¢ = 1, the dependence of v, and K, on I'" will be reduced to that of
p > 2 case. 7y; and 7, will be similar functions of time. Thus the frequencies
Vm and v, will follow the same time evolution as they do in case of the standard
model. Since time dependences of v, and f,, are not affected by the change in

the electron energy spectrum, this brings the lightcurve evolution to be similar to
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2.11 Physical Implications

that of the standard case (See figure 2.2). Table 2.3 summarizes temporal slopes

of various spectral regimes in this case.

Table 2.3. The spectral indices (§) and lightcurve decay indices («) for various spectral
regimes if ¢ = 1. The usual p > 2 expressions are recovered.

spectral segment ) a; (ISM,WIND) Q9
V< Uy < VUp <V
2 21 0
V< Vpyp < Vy <V
Vo < VU<V <1
1 1 _1
3 2 3
U <V < Vg 5 21 1
UV < VU<V <V
-1 _
_(plg ) 21 —1),—10Bp1—1) | —p
UV <ULV, <V
U <V <v <, | =B | =3(py—1),—1(3pa—1) | —p»
Up <V < V<Y _% _i(3p1 - 2)5 _i(3p1 - 2) —D1
U < Vi < Vg < VU
—B | —3(8p2 —2),—3(3p2 — 2) | —p»
U < Ve < V; <V

2.11.2 ¢ = —0.5 : The maximum threshold of particle ac-
celeration

A double slope spectrum can also originate due to the upper cutoff of the parti-
cle acceleration process. The acceleration process becomes ineffective when the

acceleration timescale exceeds the timescale for radiative energy loss [1].

The maximum electron lorentz factor from this process can be calculated by

equating the downstream residence time t4 with the synchrotron cooling time tgy,,
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2.12 Conclusion

[2, 37], which yields, v, = 1/3e/(Bor) (This result is same as DC01). Substitut-
ing the expression for B, one obtains ¢ = —0.5 and £ ~ 107. Above this upper
cutoff, which will be identified as 7;, the energy spectrum will fall off quickly

giving rise to a large value of ps.

If this process is responsible for the double slope spectrum, one would need
the Fermi process to produce a p < 2 electron spectrum, which is contrary to the
results of numerical simulations, where a p ~ 2.2 power law is usually obtained.
Nevertheless, a wide range of p values are observed, including hard spectra, in

situations involving relativistic shocks [122].

2.12 Conclusion

Almost all of theoretical and modelling work in GRB afterglow physics, by default,
assume a single steep power law for the distribution of electrons in the downstream
plasma. This assumption is motivated by the result of numerical simulations
involving relativistic shock acceleration where a universal p ~ 2.2 is often obtained

and also by the observational evidence of a majority of p > 2 afterglows.

The presence of p < 2 spectrum, in a minority of cases, has however not
received a fair share of attention. Calculations to derive the physical parameters
of the burst in such cases are often not done consistently. Early attempts (DCO01
& PKO1), to model GRB afterglows with hard electron energy spectrum had
several loop holes. DCO01 does the calculation only for the special case which is
described in section 2.11.2. In PKO1, the evolution of v; and its significance in

determining the spectral evolution has been ignored.

We have, instead taken the approach of parametrising the temporal evolution
of v; (and thereby leaving room to account for different possible physical processes
that could determine ~;) as 7; o< I'? and obtaining the afterglow flux decay index
for different values of g. We have obtained expressions to calculate the observables
from the physical parameters of the system which in turn can be used to derive
the latter.

The upper cut-off of the electron energy spectrum can have its origin in more

than one physical mechanisms. In section 2.2, we have listed a couple of them
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2.12 Conclusion

which are known within the current understanding of the physics of relativistic
shocks as sites of particle acceleration. The numerical simulations which are done
at present, give rise to a more or less ‘universal’ value of p, which is not supported
by observations. A more detailed study of relativistic shock acceleration could

perhaps solve this mystery.
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