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Synopsis

The widely popular and successful standard fireball model for Gamma Ray Burst
(GRB) afterglows is based on ultra-relativistic external shocks sweeping up matter
around the explosion site to accelerate electrons upto GeV energies and boost
the magnetic field to values close a few Gauss in its downstream. According
to the model, the afterglow radiation is the synchrotron emission from these
electrons gyrating around the enhanced magnetic field. A contribution from

inverse compton scattering may also appear in the total flux at higher frequencies.

The synchrotron spectrum is characterised by ‘breaks’ which arise due to var-
ious physical processes. The spectral slope changes due to the synchrotron self
absorption below a frequency v,. The synchrotron peak frequency (v,,) corre-
sponds to the emission by electrons at the lower limit of the power law distribu-
tion of energies and the cooling break v, corresponds to the electron energy above
which synchrotron radiation loss becomes very significant. Apart from these, the
lightcurves exhibit achromatic slope changes due to dynamical processes within
the fireball. The ejected matter is collimated and initially undergoes a radial
expansion. Later, the lateral expansion of the jet takes over and this is reflected
as an achromatic break (jet break) in the lightcurve. The next achromatic change

of slope marks the transition of the fireball into the non-relativistic regime.

The spectrum of afterglow radiation itself evolves with time, reflecting the
expansion of the fireball, hence a data set well sampled in both spectral and in

temporal domain is essential for useful study.

Multiband modelling of GRB afterglow (AG) lightcurves is at present the best
available tool to understand the true nature of the explosion and its surroundings.
Apart from that, detailed modelling also holds the key to the secrets of particle

acceleration processes in collisionless shocks.

By modelling the well-sampled data set of an afterglow, the energy content
(Eiot) of the jet, its angle of collimation (), the density profile of the ambient
medium (n(r) where r is the distance from the site of the explosion) and some
relevant parameters of shock microphysics (p, the power law index of the distribu-

tion of electrons which are radiating via synchrotron mechanism, e, the fraction
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of energy in those electrons and ep that in downstream magnetic field) can be

obtained.

Afterglow data of the nearby (z = 0.16, one of the nearest GRBs) GRB 030329
was unprecedentedly rich in both optical and radio bands (but unfortunately poor
in x-rays) which enabled detailed and well constrained modelling attempts. The
rigorous monitoring campaign revealed an unexpected behaviour of the radio flux,
for which one explanation was that that the early optical emission and the late
radio emission arose in two different jets. However, our detailed modelling using
the rich data set allowed us to propose a new mechanism in which the initial

outflux of energy is ‘refreshed’ by a later episode of injection.

The standard fireball model uses certain simplistic assumptions owing to our
lack of knowledge of the shock acceleration process. One common assumption
is that of a universal spectrum of the accelerated electrons, a steep non-thermal
energy distribution with power law of index ~ 2.2. It owes its origin to theoretical
simulations of shock acceleration which often produce a steep (p > 2) spectrum.
This also fits many observed cases of such energy distributions. Further, this
assumption leads to a simplification in theoretical models, since the upper cut off

energy of the distribution plays virtually no role.

The presence of harder, p < 2 spectrum, in a minority of cases, has hence not
received a fair share of attention. Calculations to derive the physical parameters
of the burst in such cases are often not done consistently. Early attempts to model
GRB afterglows with hard electron energy spectrum had several loop holes. In
this thesis, we have done these calculations consistently and applied them to a

few afterglows with fairly good temporal and spectral coverage.

Apart from multiband modelling, this thesis also presents late time obser-
vations of the GRB030329 afterglow in low frequency radio bands. Radio ob-
servations have always been special since they allow the estimation of the self
absorption frequency, thus giving a direct clue to the size of the fireball. After-
glows are long lived in low radio frequencies (< 1 GHz) while they quickly decay
below visibility in all other bands, even at high radio frequencies (say 15 GHz).
Hence monitoring at low radio frequencies is the only way to study the late time

evolution including the transition from relativistic to non-relativistic dynamics.
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GRB030329 had one such rare bright radio afterglow and we followed it up
in low frequencies (1280 MHz and 610 MHz) using the Giant Meterwave Radio
Telescope (GMRT). The follow-up campaign is still continuing thanks to the
slow evolution in low radio frequencies. This afterglow has hence become the
longest (~ 1000 days) observed, beating the earlier record of ~ 500 day long
observtions of Radio afterglow of GRB970508. It also is the only one which is

seen in frequencies below 1 GHz.
This thesis is organized in the following manner:

Chapter 1 gives a general introduction to GRBs and their afterglows. After
describing the properties of the burst and the afterglow, we proceed to explain
the standard fireball model in detail. The dynamics of the external shock and
the profile of the bulk lorentz factor (I') vs. r is described. We explain the jet
break (¢,;) and non-relativistic transition (t,;), two major developments in the life
of the fireball. We then give a detailed description of the synchrotron radiation
mechanism, which is the source of afterglow radiation. The spectral breaks (v,
Vm and v,.) and their time evolution is explained. We conclude this chapter by

listing a few unanswered questions relevant to this thesis.

In Chapter 2, we present the theoretical modifications required for the stan-
dard model to accommodate electron energy spectra with power-law indices less
than 2. The energy spectrum requires a new parameter -y;, which is the lorentz
factor corresponding to the upper cut-off of the hard energy distribution. Above
7, the distribution either terminates or steepens (double slope electron distribu-
tion) to a value of p larger than 2. The functional form of this cut-off is decided
by the particle acceleration processes, which are at present poorly understood.
We therefore parametrised the temporal evolution of v;, in terms of the bulk
lorentz factor of the shock. We discuss two possible origins for the cut-off. As
a result of this cut-off in the energy spectrum, a new break v; is introduced in
the radiation spectrum, which is the synchrotron frequency corresponding to ;.
Apart from that, the expressions for v, and v, differ from the standard scenario.
We have calculated the shock dynamics using the method adopted by Huang
et. al. 2000, which allows a smooth transition from ultra-relativistic to non-

relativistic regime of the fireball. Using this profile of I' vs. observed time, we
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calculated the synchrotron spectral evolution from a double slope electron energy
distribution semi-analytically. The self compton emission also is calculated. For
ultra-relativistic and non-relativistic regimes, analytical solutions are presented
for both ISM [n(r) o 7°] and stellar wind driven [n(r) o< 7~2?] ambient medium

density profiles.

The way one identifies potential candidates which could have an underlying
hard electron energy spectrum, is by looking at the lightcurve decay index past
the jet break. The choice is confirmed by the optical and x-ray spectral indices.
According to the standard model, the flux in higher frequencies, past jet break,
decay as a power-law of index p; the spectrum below v, should have a slope of
(p—1)/2 and above it should fall as p/2. The value of p one thus obtains from all
these methods is expected to be consistent. In chapter 3, we chose three such af-
terglows (GRB010222, GRB020813 and GRB041006), which show shallow decay
of fluxes in the optical as well as in x-ray bands and relatively flat spectra. Out
of a dozen such afterglows, these three have well sampled multi-band lightcurves.
We fitted the data set with the model and estimated the physical parameters.
For GRB041006, we have estimated the contribution of the associated supernova
by subtracting the afterglow model from the total emission. We found the con-
tribution from compton emission to be negligible in all these cases. Interestingly,
all these afterglows had relatively low cooling frequency, which could perhaps be

due to some unknown relation to the acceleration mechanism itself.

Chapter 4 and 5 are devoted to GRB030329, one of the best monitored af-
terglows till date. The 4th Chapter focuses on the radio observations of the
afterglow done with the GMRT at low frequencies. To begin with, we give a
brief introduction to the interferometric techniques and the instrument. GMRT,
an interferometric array with 30 elements, each of diameter 45 meters has an
excellent sensitivity at low frequencies which allowed it to detect and monitor
the afterglow for a long time. We then present observations in 1280 MHz and
610 MHz bands during the second year of the afterglow. Thanks to this long
coverage, we were able to pin-point the location of v, and the transition of the

fireball to the newtonian regime.

Chapter 5 describes the multiband modelling of this afterglow. The evolution
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of the afterglow was complex. While the afterglow flux in optical as well as in
x-ray exhibited a jet break around half a day, the radio flux past 0.5 days did not
follow the expectations from a jet which has already entered the lateral expansion
regime. Instead, it showed an achromatic steepening around ~ 10 days. Hence,
a novel suggestion of two co-aligned jets, one narrow and one wide, together giv-
ing rise to the observed flux has emerged (Berger et. al. 2003). We test the
predictions of this conjecture and get a refined set of parameters, prompted pri-
marily by the additional data from GMRT. We then proceed to suggest a different
scenario in which the initial jet which gave rise to the x-ray and optical flux is
re-energized by the central engine during its lateral expansion that makes it once
again collimated, now to a wider opening angle. This new jet enters a lateral ex-
pansion phase around 10 days, resulting in the jet break seen in radio bands. One
peculiarity of this GRB was its association with a supernova (SN2003dh) which
dominated the optical flux beyond a week. The refined afterglow flux calcula-
tion allowed us to subtract the afterglow contribution from the total optical flux
and compare the resulting supernova contribution with the stereotype SN1998bw.
While being similar in lightcurve, SN2003dh is fainter compared to a redshifted
SN1998bw.

The contribution of this thesis lies in presenting a consistent mod-
elling platform for ‘hard’ electron energy spectra as well as in the low
frequency campaign of GRB030329 afterglow and the interpretation of
its evolution. Chapter 6 concludes the thesis along with a few sugges-

tions for future directions.
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