Chapter 6

Probing the non-linear structure of
general rdativity with black hole binaries

6.1 Introduction

Binary pulsar observations provide one of the most stringent methods to test the strong field
regime of gravity in general relativity (GR) and its alternatives [212]. The test is possible
since the orbital dynamics of the binary is relativistic enough to alow the measurement of
effects due to gravitational radiation damping at the post-Newtonian order (v/c)®. Binary
pulsar measurements are performed by fitting the pulse arrival timesto arelativistic ‘timing'
model [212, 147, 171, 213] which isafunction of the Keplerian parameters (orbital period,
eccentricity and the projected semi-magjor axis of the pulsar orbit) and post-Keplerian (PK)
parameters (the periastron advance, time-dilation and secular change of the orbital period).
Two more PK parameters, related to the Shapiro-delay caused by the gravitational field of the
companion, can be measured if the orbit is seen nearly edge-on. Different theories of gravity
have different predictions for the values of the PK parameters as functions of the individual
masses of the binary constituents m; and m,. Thus, a measurement of three or more PK
parameters facilitates a test by requiring consistency, within the observational errors, in the
estimation of the masses of the two bodies as determined by the various parameters. The
most rigorous test possible so far is with the most relativistic binary pulsar PSR J0737-3039
[131]. Observed ailmost edge-on, it permitted the measurement of five PK parameters, which
together with an additional constraint from the measurement of mass-ratio, determine and
check the consistency of the masses of the two pulsarsin the m;-m; plane [131].

As mentioned in the previous chapter, although radio binary pulsars are capable of test-
ing certain lower post-Newtonian (PN) order general relativistic effects, such as the advance
of the periastron and the quadrupol e approximation to the generation of gravitational waves,
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they will, unfortunately, not be able to probe the strong field non-linear effects, such as
the tails of gravitational waves [145]. This is because the PN expansion parameter is of
order v ~ 1073 — far too small for the effects that first appear at higher post-Newtonian
orders to play a significant role in radio observations of binary neutron stars. Space- and
ground-based gravitational wave detectors, such as the Laser Interferometer Space Antenna
(LISA), Laser Interferometer Gravitational-Wave Observatory (LIGO), VIRGO and Euro-
pean Gravitational-WaveObservatory (EGO), will observe compact binary neutron stars and
binary black holes (BBH) in the last stages of their non-linear evolution, during which the
parameter v is two orders of magnitude larger (v = 0.2-0.4) than it isfor current radio obser-
vations of such systems. For some of the rare (about once per year) inspiral events observed
by LISA (EGO) the amplitude signal-to-noise ratio could be as large as 3,000 (100). Such
high SNR events will allow us to measure the parameters of the signal and the source quite
accurately, thereby allowing tests that were not feasible earlier. Different tests of GR have
been proposed by various authors using GW observations of the inspiralling compact bina-
ries [168, 214, 136, 196} and contrasted with the binary pulsar observations [211]. These
tests would necessitate an accurate parameter extraction scheme using the highest PN order
waveform available [215].

The GW 'phasing formula' is very close in spirit to the 'timing formula used in the bi-
nary pulsar observations. The timing formula, ¢ESR=F[t,, p;], connectsthe rotational phase
¢, of aspinning pulsar to the time-of-arriva ¢, of the radio signal and a set of Keplerian and
PK parameters p;={ p¥,p™). Similarly, a precise model for GWs from acompact binary will
need accurate information about the continuous evolution of the GW phase. Schematically,
the phasing formula reads ¢V =F5[t, g;] where, in Einstein's theory, g; carry theinformation
of the source viafunctions of theindividual masses and spins. The phasing formula consists
of different PN parameters ¢;, sSimilar to the PK parameters of the timing formula, and is
currently available up to relative 3.5PN order i.e., O@") [200, 95, 108, 109, 154].

In the present chapter we propose and explore an interesting possibility of testing Gen-
eral Relativity with the high-SNR GW observations of BBH inspirals by LISA and EGO
using a new variant of the proposal discussed in the previous chapter. The proposed test is
closer in essence to the binary pulsar test, but in a stronger and dynamic regime of gravity.
Given a high SNR binary black hole event one can, in principle, make a model-independent
measurement of the various PN coefficientsby accepting those valuesthat best fit the dataas
our estimates. A procedure in which al the parameters @ = (¢¢, ©c, Y1, ¥u), kK =0,2,...,7,
are independently varied to obtain the best possiblefit of the signal to the data subjects gen-
eral relativity to the most stringent test possible. In the previous chapter, we explored the
power of such atest to determine all the known coefficientsto a relative accuracy of 100%
or better [169]. However, thisis by no means the most powerful test. Thisis because the
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covariances between the various parameters enhance the errorsin their estimation, thereby
diluting the effectiveness of the test. In the present chapter we have studied the accuracy
with which we can measure the PN coefficientsby treating at atime only three of the nine y;
coefficientsto be independent and taking therest asfunctions of two of the three parameters.
Thus, once a high SNR event is identified, we suggest to fit the data to a template wherein
three terms in the PN expansion, rather than just two as in detection problem, (or all the
PN terms as proposed in Ref. [169]), are treated as independent parameters. Using the two
lowest order PN coefficientsg; as basic variablesto parametrize the waveform and choosing
the other PN coefficientsas 'test' parameters, one at a time, it is possible to perform many
consistency checks of the PN coefficientsin the m,-m, plane. In the rest of the chapter we
investigate this possibility in greater detail.

6.2 Tegting PN gravity usng GW phasing formula

Binary black holesin close orbit around each other are highly relativistic and mandate thein-
clusion of higher PN order termsin their description. Gravitational wavesemitted during the
inspiral phase comprise avariety of termsarising from the non-linear multipole interactions
as the radiation propagates from the source to the far-zone [63, 158]. These non-linear inter-
actionslead to the phenomenon of tailsat orders 1.5PN and 2.5PN (propagation not only on
but inside the light cone as well) and tails-of-tails at 3PN. For spinning binaries, there also
exist effects of spin-orbit and spin-spin couplings at 1.5PN and 2PN, respectively. These
effectsare imprinted in the emitted gravitational radiation and can be extracted by matching
the detector data with an expected gravitational waveform, often called an optimal filter or a
template. The template itself can only be computed using post-Newtonian theory in which
the various physical quantities relevant to the emission of gravitational waves are expanded
in an asymptotic series in the small parameter v — the characteristic velocity in the system
I, An important feature of the PN expansion is the presence of log-terms v(Inv)", where
m and » are integers. General relativity is incompatible with a smple Taylor expansion in
only powersof v. For instance, currently, the expansions of the specific binding energy E and
gravitational wave flux # are known to order v/ (i.e. 3.5PN order) and given by

3

1
E = —EVUZZEkvzk, 6.1)
k=0
_ 3250 ; p_ 1712 6
F o= v ;Tkv o5 In@Y’, (6.2)

'We useasystem of unitsinwhiche =G = 1.
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where, v = mym,/M?, is the symmetric mass ratio in terms of the total mass M = m; + m,
and where the coefficients E; and F; can be found in Ref. [26]. Note the presence of the
log-term at order v5 in the expression for the flux.

To understand how we might test the non-linear structure of general relativity let usbegin
with the Fourier domain representation H(f) of the signal from a binary at a luminosity
distance D, consisting of black holes of masses m; and m;:

. 516 | o
R(f) = M %f-7/6et‘l’(f)+m/4, (6.3)

D3

where M =33 M is thechirp massand 0 < C < 1isaconstant that depends on the relative
orientation of the detector and source with a root-mean-square value of 2/5 when averaged
over all sky locations and source orientations. The phase W(f) isgiven by

7
W(f) = 2mfte = @+ ) [+ g ln f] 48, (6.4)
k=0

Herer. and @, are the epoch of merger and the signal's phase at that epoch, respectively.
Y and Yy are independent of f and given by

3
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The non-vanishing coefficientsof the log-terms up to 3.5PN are

651 386457
Y1 = ~382 * 32256y (6.7a)
and 107
Yo = ——@M)'>. (6.7b)
42y

We have a tota of nine post-Newtonian parameters, seven of these are the coefficientsof v”
termsforn = 0,2,3,4,5, 6,7, and two are coefficientsof " In(v) termsfor n = 5, 6,2 but each
of these parameters depends only on the masses of the two black holes for the nonspinning
casein GR.

Asin the previous chapter, we assume a cosmological model with zero spatial curvature
Q, = 0, matter density Q, + Q,, = 1 and Hubbl€e's constant H, = 70 km s~! Mpc~'. The
luminosity distance as mentioned earlier

c(l1+2) fz dz
D, = , (6.8)
YT Hy  Jo [Qul 2 Qa2

where z denotes the redshift of the source.

6.3 Modd of the gravitational waveform and assumptions
involved

Before proceeding with the description of our work, let us summarise the assumptions im-
plicitin the analysis, thejustificationfor doing so and their possible implications. Asin most
works on this subject, to demonstrate the 'principle’ of the proposed method we neglect the
effects of spinsand eccentricity. What will change on including these additional parameters
is the accuracy of the test. The spin effects are relevant only when one of the black holesis

2In the Fourier domain the log-terms appear at 2.5PN order rather than 3PN because of an integration that
involves1/f .
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much smaller than the other and/or when the black holes have their dimensionless spin an-
gular momentum close to unity. It isnot clear that astrophysical black holes, especialy the
supermassive ones, will be extreme Kerr. Except in cases where both BHs are extreme Kerr
(or close to it) spin effects are less important for the proposed tests since we have consid-
ered black holes of comparable massesin our study. The issue of eccentricity, especially for
certain LISA sources, isacomplex issue depending on the astrophysical scenario related to
formation mechanisms of the binary. Our neglect of eccentricity isasimplifying assumption
at present. Finaly, let us comment on the use of the so-called restricted PN waveform in
this work. Not merely in connection with tests that have been proposed but more seriously in
most worksrelated to the detection problemin GW dataanalysis, thelateinspiral and merger
part isignored in thefirstinstance. One beginsby using state-of -the-art restricted PN inspiral
templates. Thisis not just a theoretical convenience but appropriate as well since both for
EGO and for LISA there would be a sub-class of sources that would be inspiral-dominated.
By the time LISA and EGO operate there could be reliable merger waveforms that can be
included in the phasing and this would make this test more robust.

6.4 |Implementation of the proposed test

As mentioned earlier, given ahigh SNR binary black hole event one can, in principle, make
a model-independent measurement of the various above PN coefficients by accepting those
values that best fit the data as our estimates. We now investigate the accuracy with which
one can measure the PN coefficientsby treating at atimejust three of the niney, coefficients
to be independent and taking the rest as functions of two of the three parameters. More
precisely, in Einstein's GR, the tests consist in treating the parameters ¢, and ¥, as the
fundamental onesfrom which we can measure the massesof the two black holes by inverting
the relationships ¥y = Yo(my, my) and y, = y¥,(my, my), and asking if the measurement of a
third parameter, say v = e (my, my), is consistent with the other two. Instead of the pair
(Y0, ¥2) Onecan, in principle, equally well take any other pair to be the fundamental set. The
parameters ¥, and ¢,, being lower order coefficients, are best determined ascompared to the
othersand constitute our favoured pair. In analogy with the binary pulsar case each PN order
coefficient can be thought of as comprising different physical effects. The determination of
aparticular PN coefficient is thus the measurement of particular PN effects. The possibility
to confirm the PN coefficientsis what we principally explore and for that what we propose
is appropriate. The proposal to check a fundamental feature about PN theory such as the
presence of log-terms by measuring the relevant parameter directly from observations is
significant. One could aternatively use the entire PN expansion up to some order &’ as
a basis, and then check consistency with ., (ignoring higher order terms). This would
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be relevant for testing alternative theories where deviations from GR may grow larger with
stronger gravity. The procedure we prescribe has the advantage over the above scheme that
even if one istesting a low order PN coefficient, the systematic effects arising from neglect
of higher PN order termsis controlled to the extent possible.

We shall consider the estimation of parameters using the covariance matrix, in the
ground-based EGO and space-based LISA cases, for which we assume the noise PSDs as
givenin Ref. [216] and [208], respectively. We shall take the fundamental parameters to
be ¢ and ¥, in addition to the usua extrinsic parameters t, and ®.. We shall take the test
parameter yr to be in turn s, ..., ¢4, ¥s and ¥g. It should be noted that as in the previ-
ous chapter thereis no test corresponding to the term involving s since it has no frequency
dependence and simply leads to a shift in the coal escence phase @..

For ground-based detectors, Advanced LIGO and EGO, each (independent) test involves
the parameters t,, ®, and the three chosen y;’s. For LISA, on the other hand, the results
correspond to the case of a single detector but with amplitude modulation caused by the
motion of the detector relative to the source. Thus, for LISA our Fourier domain waveform
will have amplitude, phase and frequency modulations due to the orbital motion of LISA
and we use the waveform given in Ref [207]. In thecase of LISA, in addition to the three v
parameters related to our tests we also have the luminosity distance D, and the four angles
related to the source's location and orientation us = cosfs, és, 4 = cosby, é;.

6.4.1 SNR for Advanced LIGO, EGO and LI1SA

The power of the tests depends on the SNR achieved for the source. In Fig. [6.1] we have
plotted the SNRin LISA, EGO andfor comparison, Advanced LIGO [215}, for BBH binaries
at adistance of z = 1 for LISA and adistance of D; = 200 Mpc for EGO and Advanced
LIGO. In the case of EGO, we consider stellar mass BBH of equal masses with the total
mass in the range 1 M, to 400M,, whilein the case of LISA the mass range is from 10*M,
to 107 M,, but scaled down by 10* so asto fit al the curvesin the same plot. While the SNR
in EGO can reach several 100's for sources that it might observe every once in a year, in
the case of LI1SA the SNR could be several 1,000's for the supermassive BBH sources that
it is expected to observe about once per year. The SNR’s in both LISA and EGO are large
enough for the tests to be powerful probes of the PN coefficients and the non-linear effects
of GR.
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Figure 6.1: The signal-to-noiseratiofor steflar massbinary black holes (BBH) in Advanced
LIGO and EGO and supermassveBBHin LI SA for equal masshinariesat a disance of 200
Mpc (for EGO and Advanced LIGO) and z = 1 (LISA) respectively. In the case of L1SA we
assume that thesignal isintegrated for a year (last year before coalescence) and in the case
of EGO weassumethat thesignal isintegrated over abandwidth from 10 Hz until the binary
reaches itsinnermost circular orbit. The masses of supermassive BBHin the case of LISA
have been scaled down by a factor of 10%. The maximum SNR far Advanced LIGO, EGO
and LISA is 52, 310, 2922 respectively corresponding to the total binary mass of 55Ma,
112M,, 106M,,.
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6.4.2 Thetest usng Advanced LIGO

Let us begin with the case of Advanced LIGO. For a source at 200 Mpc the errorsin the
lowest order parameters ¢, and y, are measured with the smallest relative errors of order
10~* — 1072. Fig. [6.2] plots the rlative errors Ay /i 7 for various parametersyr as afunc-
tion of the total mass M. From the plots, it isclear that the proposed tests can be performed
only for y; and ¥s; with fractional accuraci esbetter than 100% for stellar mass BBH binaries
with the totd massin the range 2-50 M. For sources with the total mass in a very narrow
range around = 15M,, dl the parameters, except ¥4 and ¢, can aso be measured to a rel-
ative accuracy of 100%. Thus, though the 3PN log-term cannot be probed with Advanced
LIGO, the 2.5PN log-term can be tested leading to an interesting possibility in the moreim-
mediate future.

6.4.3 Thetest usng EGO

In the case of EGO for asourceat 200 Mpc the errorsin the lowest order parametersyy, and
Y, are measured with the smallest errors of order 1075 = 1073. Fig. [6.3] plots the relative
errors Ay r/yr for various parametersyr as afunction of the total mass M. From the plots,
it is clear that the proposed tests can be performed for all y,’s, with fractional accuracies
better than 100% for stellar mass BBH binaries with the total mass in the range 5-14M,,.
This demonstrates the exciting possibility of testing the non-linear structure of general rel-
ativity using the GW observationsby EGO. More quantitative details including the relevant
correlation coefficients are summarizedin Tables [6.1] - [6.6].

From those tables[6.1] -[6.6] and fig. [6.4] of the correlationsfor EGO, we find the follow-

ing:
¢ Thecorrelation coefficientsin general are very much mass dependent.

e Thecorrelation coefficient ¢ is almost constant (varying between 0.9997-1) for binary
totd masses in the range 2 - 200M,,. Thus variablesy, and ¥4 are very strongly
correlated.

The correlation coefficient ¢, for test variablesyr (T = 51, 6, 61, 7) increasesfrom
0.84 to 1.0 when the binary mass varies from 2M,, to 200M,,. Thus variablesy, and
¥, are also correlated. However the correlation varies from strong to very strong de-
pending on the binary mass.

e The correlation coefficient ¢ (T = 51, 6, 61, 7) similarly increases from -1 to ~.75
as the total mass varies from 2M,, to 200M,. Thus the parameter ¥ and yr, (T =
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Figure 6.2: Plot showing the relative erars Ayr/yr, In the test parameas yr =
W3, Wa, Usi, We, Yel, Y7, as a function o the total mass M of a BBH at a disanceof D, =
200 Mpc observed by Advanced LIGO. W assume that thesgnal is integrated over aband-
width from 20 Hz until the binary reachesits innermost circular orbit. The proposad tests
can beperformedonly for 3 and ¥s; (with fractional accuraciesbetter than 100% for stetlar
mass BBH binarieswith total massin the range 2-50 Mo, Far sources with the total massin
a very narrow range around ~ 15My, all theparameters, except ¥4 ad g, Can be similarly
measured.
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Figure 6.3: Plot showing the relative errors Ay /yr, in the test parameters yr =
W3, Was s, We, Wel, Y7, a8 a function of the total mass M of a BBH at a disance of Dy =
200 Mpc observed by EGO. We assume that the Sgnal is integrated over a bandwidth from
10 Hz until the binary reachesits innermost circular orbit. The proposed tests can be per-
formed for all i,’s, with fractional accur aciesbetter than 100%for stellar MaSSBBH binaries

with total massin therange 5- 14 M.
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51, 6, 61, 7) are always anti-correlated.

e Thecorrelation coefficient ¢ (when y = y3) varies between —0.98 and —0.95in the
same mass range. Thus parameters o and 5 are strongly anti-correlated.

e Thecorrelation coefficient c® (whenyr = i) and c** vary over thefull range [~1, 1]
as the total mass varies between 2 - 200M,. They are positive in the mass range
between 3 and 100 solar mass and negativein the rest of the range.

e Thecorrelation coefficientsc® and ¢2* vary in thefull range [~1, 1] very similarly, but
relatively differby asign. ¢%(c?*) startsfrom +1(—1) decreases through zero at amass
of about 5.5M, and then saturates at —1(+1) from a total mass value of 10M,, up to
200M,,.

6.44 ThetestusingLISA

In the case of LISA theerrors in the parameters ¢y and ¢, for asource at z = 1 are of order
1077 = 1075 in the range of the total mass 10*-107 M,. The cosmologica model used is
(Q=0,Q) =03and Qs =0.7) and theredshiftisz = 1. Fig. [6.5] plotstherelativeerrors
Ay /Y7 for various parameters yr as afunction of the total mass M. The top panel corre-
spondsto therelativeerrors when the waveform model includes the orientation of the source.
The orientation of the sourceischosen to be (cosfs, és,cos;, ¢.) = (09, 2, =0.8, =5). The
bottom panel corresponds to the averaged pattern waveform. From the plots, it is clear that
the proposed tests can be performed effectively with all ¢,’s. This is another reason why
LISA is such an important mission. All the test parameters, including thelog-terms at 2.5PN
and 3PN order, can beestimated with fractional accuracies better than 102 for massive BBH
binaries with the total mass in the range 10*-10” M>. This demonstrates the exciting pos-
sibility of testing the non-linear structure of general relativity using the GW observations of
LISA. Further quantitative details like the correlation coefficientsare tabulated in Tables6.7
- 6.12 for LISA with the pattern averaged waveform. The more complex case without pattern
averaging i.e. with a specificchoice of "optimal’ orientation angles isalso investigated. The
details are summarised in Tables6.13 - 6.18.

6.45 Notest for ¥y ?

With reference to Fig. [6.3] and [6.5], one may wonder why the error in ¥4 is the largest
relative to the other higher order ¢,’s. We believe that there are several reasons for this odd

31t should be emphesized that here one is only talking about the statistical errors and that the systematic
errors (i.e. biases) might dominate over the statistical errors and must be investigated in the future
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Table 6.1: Variation with total binary mass M of SNR, the relative errorsin the ¥, ¢, and
Y3 for EGO when the test parameter isys. The luminosity distance is D, = 200 Mpc. Also
listed are the correlation coefficientsc/ = ¢/ between the parametersy; and ¢, i, j = 0, 2, 3.

M(Mo) [ SNRT Ayo/u®  Apa/yn%e  Ays/us | < ™ ]
2 22.8 | 0.00708 0.431 0.380 -0.970 0.882 -0.968 |
2x10%% | 36.8 0.0107 0.383 0.192 -0963 0.726 -0.878
2 x 1003 594 0.0170 0.343 0.0934 -0.957 -0.303 0.0320
2% 1097 || 94.9 0.0299 0.331 0.199 -0.953 -0.961 0.848
2 x 10" 144. 0.0630 0.392 0.440 -0.955 -0.997 0.946

2x 1012 | 196. 0.172 0.618 1.08 -0.963 -0.998 0.973
2x 10 || 270. 0.577 1.12 3.08 -0.969 -0.998 0.982
2x 107 || 310. 3.07 2.99 13.6 -0.975 -0.999 0.986
2% 10* 257. 454 184 165. -0.980 -0.999 0.986

Table6.2: A similar table as abovefor the test parameter 4. Also listed are the correlation
coefficientsc’/ between the parametersy; and y;, i, j = 0,2, 4.

[ M(Mo) || SNR [ Ado/to% Apo/:% Adu/u% | c”  * ]

2 22.8 | 0.00302 1.33 62.2 -0.906 -0.915 1.00
2x 10°% || 36.8 | 0.00221 1.11 50.0 0293 0272 1.00
2x10% | 59.4 | 0.00752 1.21 522 0878 0.869 1.00
2x10%7 |1 949 | 0.0232 1.79 74.9 0961 0957 1.00
2 x 10" 144. | 0.0878 4.35 178. 0989 0988 1.00
2x 105 || 196. 0.452 17.7 714. 0998 0998 1.00
2x 103 || 270. 0.367 15.3 619. 0975 0974 1.00
2x 1017 || 310. 0.331 27.4 1140 0244 0232 1.00
2 x 10* 257. 9.92 177. 7720 -0.956 -0.960 1.00
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Table 6.3: Variation with total binary mass M of SNR, the relative errorsin the ¥, ¥, and
Y5 for EGO when the test parameter is 5. The luminosity distanceis D; = 200 Mpc. Also
listed are the correlation coefficientsc” = ¢/ between the parametersy; and ;, i, j = 0,2, 51.

[ MMy [ SNR[Avo/tn% A fyn% Aysifys% | & < ]

2 22.8 | 0.00193 0.254 6.94 0.843 -0.760 -0.986
2x10%% || 36.8 | 0.00422 0.226 4.68 0914 -0.845 -0.986
2x10% |l 59.4 | 0.00869 0.226 3.54 0943 -0.885 -0.987
2x10%75 | 949 | 0.0184 0.262 3.16 0961 -0912 -0.988
2 x 10" 144. | 0.0441 0.388 3.70 0975 -0.938 -0.991
2x 10" | 196. 0.133 0.793 6.15 0986 -0.962 -0.994
2x 10 | 270. 0.486 2.05 12.8 0.993 -0979 -0.996
2x 10'7 || 310. 2.83 8.88 45.0 0997 -0.991 -0.998
| 2 x 10> 257. 45.7 113. 473. 0.999 -0.997 -0.999

Table6.4: A similar table as abovefor the test parameter 6. Also listed are the correlation
coefficients ¢’/ between the parametersy; and ¢, i, j = 0,2, 6.

| M(M.) || SNRT Ayo/vo%  Ayafa% Ags/ps% | c® ]

2 22.8 [ 0.00192 0.140 710. 0.885 -0.769 -0.967
2x10%% || 36.8 | 0.00384 0.127 279. 0.924 -0.826 -0.970
2% 10% || 59.4 | 0.00757 0.127 72.5 0945 -0.864 -0.974
2x 1007 ) 949} 0.0155 0.146 366 | 0961 -0.894 -0.979
2 x 10" 144. | 0.0361 0.211 28.9 0.974 -0.923 -0.984
2% 105 | 196. | 0.106 0.422 356 | 0986 -0.953 -0.990
2x 105 || 270. | 0.374 1.06 56.7 0.993 -0.973 -0.993
2 x 107 | 310. 2.09 4.43 157. 0.997 -0.987 -0.996
2% 10% || 257. 32.1 537 1300 |0.999 -0.996 -0.999
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Table 6.5: Variation with total binary mass M of SNR, the relative errorsin the y, ¥, and
e for EGO when the test parameter is g . The luminosity distanceis D, = 200 Mpc. Also
listed are the correlation coefficientsc” = ¢/ between the parametersy; and ¢, i, j = 0,2, 61.

LM (M5) [ SNR [ Ayo/n% Apa/yn% Mpalya% | @ O ]
2 22.8 | 0.00188 0.117 21.1 0.892 -0.768 -0.959
2x10%% || 36.8 | 0.00369 0.106 13.5 0926 -0.824 -0.965
2 x 1093 59.4 | 0.00719 0.106 9.81 0.947 -0.863 -0.972
2x10%7 || 94.9 0.0146 0.122 8.51 0.962 -0.895 -0.978
2 x 10" 144. 0.0337 0.174 09.84 0975 -0.924 -0.984
2x 10" || 196. 0.0974 0.344 164 0986 -0.952 -0.989
2 x 1013 270. 0.342 0.852 334 0.993 -0.972 -0.993
2 x 1017 || 310. 1.88 3.51 113. 0.997 -0.987 -0.996
2 x 10 257. 28.5 420 1120 0999 -0.996 -0.998

Table6.6: A similar table as above for the test parameter ;. Also listed are the correlation
coefficients ¢’/ between the parametersy; and yj, i, j = 0,2, 7.

[M M) [ SNRT Mo/t Aol Ayofin% ] ¢ 7 7]
2 22.8 | 0.00178 0.0966 57.5 0.892 -0.726 -0.933
2x10°% || 36.8 | 0.00346 0.0889 30.7 0.924 -0.783 -0.942
2x10% | 59.4 | 0.00671 0.0899 18.5 0945 -0.826 -0.951

2x10°7 || 949 | 0.0136 0.103 133 0960 -0.861 -0.959
2 x 10" 144. | 0.0312 0.149 12.9 0.974 -0.896 -0.969
2x 10125 | 196. | 0.0899 0.296 18.2 0986 -0.933 -0.978
2x 101 || 270. 0314 0.739 31.0 0.993 -0.960 -0.986
2x 10'7 | 310. 1.73 3.08 874 0.997 -0.980 -0.992

2 x 10* 257. 26.2 37.3 715. 0.999 -0993 -0.997
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Figure 6.4: Plot showing the variation of the correlation coeffici entscfT for EGO with the
total mass of the binary. The luminosity distanceis D;, = 200 Mpc. ¢'T is the correlation
coefficient between ¥;, i = 0,2 and the test parameter yr, T = 3,4, 51, 6,61, 7.
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Figure 65: Plot showing the relative errors Ayr/yr, in the test parameters yr
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W3, Ya, s, e, Yel, Y7, as afunction of the total mass M of a supermassive BBH at a red-
shift of Z = 1 observed by LISA. We assume that the signa is integrated for a year.
The cosmological model used is (R, = 0, Q4 = 03 and Q, = 0.7). The top fig-
ure corresponds to a waveform including a particular ‘optimum' orientation of the source
(cosbs, ds,cosb;,¢,) = (0.9, 2, 0.8, -5). The bottom figure correspondsto the averaged
pattern waveform. In both cases al the y,’s can be tested in the total binary mass range
10%-2 X 105 M.
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Table 6.7: Variaion with total binary mass M of SNR, therelativeerrorsin the g, i, and yr;
for LISA when the test parameter isy;. The cosmological modd usedis(Q, =0, Q4 = 0.3
and Q4 = 0.7) and the redshift isz = 1. The waveform model corresponds to the pattern
averaged case. Also listed are the correl ation coefficients ¢/ = ¢/ between the parametersy;

andy,i,j=0.2,3.

M (M) || SNRX10® | Ayo/vo%  Aya/vn%  Ays/ys% | ™ ® s

2x 10> | 0.0148 0.00302 0.685 1.49 -0991 0.976 -0.996
2% 1033 0.0437 0.00206 0.270 0.429 -0985 0.959 -0.993
2 x 10* 0.115 0.00160 0.117 0.123 -0.967 0.903 -0.981
2% 10%3 0.299 0.00143 0.0558 0.0278 | -0.960 0.721 -0.872
2 x 10> 0.776 0.00141 0.0276 0.0121 -0.934 -0.698 0.452
2% 10°3 1.71 0.00193 0.0236 0.0176 | -0909 -0945 0.784
2 x 10% 0.972 0.00436 0.0406 0.0354 | -0.930 -0981 0.886
2 % 10%3 0.896 0.00987 0.0624 0.0745 -0936 -0.993 0.936
2 x 107 0.935 0.0253 0.106 0.175 -0942 -0.995 0.959

Table6.8: A similar table as abovefor the test parameter 4. Also listed are the correlation

coefficientsc” between the parametersy; and ¢, i, j = 0,2,4.

[M(M,) [SNRXI0° | Ao/t Maldn% Abalt | &
2 x 10* 0.0148 0.00618 2.10 97.5 -0.999 -1.00 0.999
2 x 1033 0.0437 0.00829 248 122. -1.00 -1.00 1.00
2 x 10* 0.115 0.00106 0.390 18.6 -0.955 -0.960 1.00
2 x 10*3 0.299 0.000310 0.168 7.54 -0.0284 -0.0471 1.00
2 x 10> 0.776 0.000649 0.113 4.82 0.816 0.805 1.00
2 x 1033 1.71 0.00143 0.150 6.28 0.909 0.903 1.00
2 x 108 0.972 0.00396 0.297 12.3 0.956 0.952 1.00
2 x 1063 0.896 0.0128 0.703 28.8 0.981 0.980 1.00
2 x 107 0.935 0.0524 2.36 96.0 0.994 0.993 1.00
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Table6.9: Vaiation with tota binary massM of SNR, therelative errorsin the o, i, and s,
for LISA when the test parameter isy5. The cosmological modd usedis (€2, =0, Q4 = 0.3
and Q4 = 0.7) and the redshift isz = 1. The waveform model corresponds to the pattern
averaged case. Also listed are the correl ation coefficients ¢/ = ¢/* between the parametersy;
andy;,i,j=0,2,5l.

M (My) [ SNRX10® | Ayo/o% Ay /yn%  Aysi/ys% | c* ! "

2 % 10° 0.0148 0.00265 1.29 72.4 -0997 0999 -0.997
2 x 1033 0.0437 0.000254 0.219 9.79 -0.609 0.693 -0.992
2 x 10* 0.115 0.000391 0.0693 2.17 0.734 -0.637 -0.987
2 x 1043 0.299 0.000545 0.0339 0.694 0872 -0.806 -0.986
2x 10> 0.776 0.000773 0.0210 0.288 0913 -0.842 -0.980
2 x 10°° 1.71 0.00121 0.0201 0.226 0914 -0.832 -0.979
2 x 10% 0972 0.00288 0.0366 0.387 0944 -0.885 -0.986
2 x 1083 0.896 0.00701 0.0641 0.595 0960 -0913 -0.989
2 x 107 0.935 0.0193 0.130 1.04 0973 -0936 -0.991

Table 6.10: A similar table as above for the test parameter y¢. Also listed are the correlation

coefficients ¢/ between the parametersy; andyj, i, j = 0,2, 6.

| M(Mo) || SNRX10° | Ago/yo%  Aya/yn%  Ags/ys%o | % c*®
2x 10> 0.0148 0.000700 0.476 301. -0.968 0991 -0.985
2 x 1033 0.0437 0.000207 0.106 35.8 0.606 —-0441 -0.975
2 x 10* 0.115 0.000410 0.0372 6.18 0822 -0.694 -0.969
2 x 1043 0.299 0.000503 0.0189 1.55 0875 -0.791 -0.976
2 % 10% 0.776 0.000694 0.0124 0.555 0911 -0.838 -0.976
2% 10°3 1.71 0.00106 0.0113 0.373 0911 -0.825 -0.976
2 x 106 0.972 0.00246 0.0205 0.596 0941 -0.880 -0.984
2 x 1083 0.896 0.00587 0.0354 0.853 0958 -0.909 -0.988
2 x 107 0.935 0.0158 0.0709 1.40 0971 -0933 -0.991
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Table 6.11: Variation with total binary mass M of SNR, the relative errors in the v, ¥,
and y for LISA when the test parameter is . The cosmological model used is (©, = 0,
Qy = 03and Q, = 0.7) and the redshift is Z = 1. The waveform model corresponds to
the pattern averaged case. Also listed are the correlation coefficients ¢/ = cJ' between the

parameters y; and ¢ ;, i,j = 0,2, 6l.
| M (Mo) || SNRX10® | Ayo/o%  Aya/2% Apa/pa% | % c*®
2x 10> 0.0148 0.0127 5.85 11900 -1.00 -1.00 1.00
2x 103 | 0.0437 | 0.000323 0.321 351. -0.779 -0.819 0.997
2 x 10* 0.115 | 0.000436 0.0773 414 0.798 0.733 0.993
2 x 10%3 0.299 0.000588 0.0329 8.33 0.896 0.848 0.991
2% 10> 0.776 | 0.000783  0.0183 2.31 0921 0.867 0.986
2 x 10°° 171 0.00118  0.0158 1.22 0918 0.846 0.982
2 x 10% 0.972 0.00269  0.0266 1.49 0945 0.886 0.985
2 x 1083 0.896 0.00637 0.0441 1.74 0960 0.908 0.987
2% 107 0.935 0.0170 0.0858 2.35 0972 0928 0.988

Table6.12: A similar table as abovefor the test parameter ;. Also listed are the correlation

coefficientsc”/ between the parametersy; and ¢, i, j = 0,2,7.

[M(Mo) | SNRX1O? | Ao/t %

Ao /Yo% A7 /% |

C02

C07

27

2 x 10> 0.0148 | 0.000297 0.276 1120 -0.874 0951 -0.954
2x10%° | 0.0437 | 0.000227  0.0681 130. 0.791 -0.576 -0.935
2 x 10* 0.115 0.000390  0.0252 20.6 0.841 -0.649 -0.929
2 x 10*° 0.299 0.000456  0.0133 4.50 0.864 -0.731 -0.944
2 x 10> 0.776 0.000632  0.00916 1.42 0904 -0.785 -0.943
2 x 10%3 1.71 0.000958  0.00825 0.868 0907 -0.755 -0.935
2 x 108 0.972 0.00219 0.0148 1.45 0938 -0.824 -0.955
2 x 1053 0.896 0.00517 0.0253 2.04 0956 -0.860 -0.964
2 x 107 0.935 0.0138 0.0505 3.17 0970 -0.892 -0.970
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Figure 6.6: Plot showing the variation of the correlation coefficients ¢'™ for LISA with the
totd mass of the binary. The cosmological model usedis (R, =0, Qy =0.3andQ, =0.7)
and the redshift isz = 1. The waveform model corresponds to the pattern averaged case. ¢'’
is the correlation coefficient between y;, i = 0,2 and the test parameter ¢, T = 6,61,7.



Table 6.13: Variation with total binary mass M of SNR, the relativeerrorsin the A, ¥y, ¥, and y; for LISA when the test parameter is ;.
The cosmologicai model used is (€, = 0, Q = 0.3 and 24 = 0.7) and theredshift isz = 1. The waveform model includes the orientation
of the source. The orientation of the source is chosen to be (cosfs, és,cos, ;) = (09, 2, -0.8, -5). Also listed are the correlation
coefficientsc’ = ¢/ between parametersy; andy, i, j = 0, 2, 3. ¢™* is the correl ation coefficient between parameters A and y;.

g9 1dey)

[ M (M) || SNR x10° [ AA/A% [ Apolto% DpalynTe  Ass% | ™ 7 | cw s e |
2 x 10* 0.0246 1690 0.00436 0.852 1.67 -0.0138 0.00873 -0.00324 | —0.991 0974 -0.995
2x 103 0.0777 1080 0.00280 0.316 0.441 -0.338 0.316 -0.284 | -0.983 0.949 -0.990
2 x 10* 0.186 1390 0.00170 0.111 0.101 -0.323 0.368 -0.347 | 0956 0.857 -0.966
2 x 1043 0.465 768. 0.00126 0.0455 0.0198 -0.242 0.237 -0.133 | -0.925 0544 -0.791
2x 10> 1.19 397. 0.00123 0.0225 0.0106 -0390 0.303 0.376 -0.892 -0.826 0.630
2x 10°3 2.64 249, 0.00165 0.0184 0.0154 -0.451 0.256 0.427 -0.853 -0940 0.836
2 x 105 1.50 196. 0.00384 0.0337 0.0331 -0.430 0.215 0.376 -0.902 -0969 0919
2 x 1083 1.39 176. 0.00898 0.0540 0.0717 -0.383 0.163 0.303 -0.921 -0.978 0.954
2x 107 1.45 171. 0.0241 0.0952 0.174 -0.273  0.0649 0.185 -0.939 -0986 0.970

Table6.14: A similar tableas abovefor the test parameter iS 4.

MM, | NRXIO | AA/A% | Ayo/peT Apafpa% Aps/ps% | ™ 7 AT e Coa C24

2x 10> 0.0246 1690 0.0123 3.98 192. 0.00642 -0.00736 -0.00615|-0.999 -1.00 1.00

2x 1033 | 0.0777 1030 0.00594 1.82 89.6 0.136 -0.143 -0.141 | -0.998 -0.999 1.00

2X 10* 0.186 1340 | 0.000867  0.342 16.1 0.321 -0.276 -0.276 | —-0.887 -0.897 1.00

2X 1043 0.465 767. 0.000403 0.137 6.09 -0.0534 -0.243 -0.241 0.101 0.0811 1.00

2X 10> 1.19 401. 0.000656  0.0988 4.18 -0.413  -0.360 -0.355 | 0.704 0.693 1.00

2x10°3 264 252. 0.00136 0.136 5.69 -0.494 -0.333 -0.328 0.851 0.845 1.00

2x 105 150 194. 0.00395 0.301 124 -0.393  -0.229 -0.224 | 0941 0938 1.00

2X 1053 1.39 172. 0.0141 0.801 32.7 -0.134  -0.0205 -0.0173 | 0.981 0980 1.00

2x 107 145 186. 0.0476 2.21 89.8 0.334 0.409 0411 0992 0992 1.00 N
W



Table6.15: Variaion with total binary mass M of SNR, the relativeerrorsin the A, v, ¥, and y5 for LISA when the test parameter isys,.
The cosmological model used is (€, = 0, Q) = 0.3 and Q4 = 0.7) and theredshift isz = 1. The waveform modd includesthe orientation
of the source. The orientation of the source is chosen to be (cosfs, és,cosb,, ;) = (09, 2, -0.8, -5). Also listed are the correlation
coefficientsc’/ = ¢/ between parametersy; and ¢, i, j = 0, 2, 5L ¢™* isthe correlation coefficient between parameters.A and ;.

| M(Ms) | SNR X10° | AA/A% | Ago/o% A /% Arsi [P | 70 c7? Lo Co2 Cosl Cas1
2% 10* 0.0246 1690 0.00213 1.12 59.4 0.0326 -0.0352 0.0302 [ —0.990 0.998 -0.996
2x 1033 0.0777 1050 0.000314 0.224 8.97 —-0.0561 -0.275 0.251 | 0.0306 0.0795 -0.990
2 x 10* 0.186 1340 0.000495 0.0659 1.86 -0.0469 -0.273 0.277 | 0.714 -0.615 -0.984
2x 1043 0.465 762. 0.000564 0.0274 0.530 -0.172 -0.217 0.207 | 0.768 -0.678 -0.984
2 x 10> 1.19 395. 0.000728 0.0172 0.226 -0.393 -0.341 0304 | 0.813 -0.736 -0.983
2 x 10%3 2.64 250. 0.00112 0.0161 0.173 -0.497 -0351 0.279 | 0.821 -0.731 -0.980
2 x 10% 1.50 196. 0.00260 0.0314 0317 -0.506 -0.318 0.250 | 0.890 -0.830 -0.988
2 x 1067 1.39 177. 0.00644 0.0578 0.512 -0454 -0.270 0205 | 0931 -0.885 -0.991
2% 107 1.45 171. 0.0184 0.124 0.944 -0329 -0.170 0.111 0962 -0.930 -0.993

Table6.16: A smilar table as abovefor the test parameter is .

M(Mo) || SNRX10° | AA/A% | Apo/ho% A /Y% As /W% 70 Lo 0 Co2 Cos C26

2 x 10> 0.0246 1690 0.000554 0.479 261. 0.0344 -0.0382 0.0281 | -0.912 0.966 —0.981
2 x 1033 0.0777 1050 0.000379 0.114 32.0 -0.193 -0.274 0.237 0.701 -0.563 -0.973
2 x 10* 0.186 1330 0.000503 0.0363 5.16 -0.0310 -0.235 0.245 0.781 -0.651 -0.966
2x10%3 0.465 758. 0.000532 0.0154 1.17 -0.149 -0.199 0.189 | 0.774 -0.660 -0.972
2 x 10* 1.19 393. 0.000667 0.00996 0.428 -0.377 -0.337 0.300 0.798 -0.712 -0.979
2 x 1033 2.64 249. 0.00101 0.00897 0.282 -0.500 -0.374 0.301 0.806 -0.704 -0.977
2 x 10% 1.50 196. 0.00224 0.0173 0.481 -0.535 -0.355 0.282 0.871 -0.801 -0.986
2 x 1067 1.39 177. 0.00535 0.0313 0.725 -0.504 -0.319 0.248 0915 -0.861 -0.990
2 x 10" 1.45 172. 0.0148 0.0661 1.25 —0400 -0233 0.168 | 0953 -0.915 -0.993

9191dey)

9¢T



Table 6.17: Variation with total binary mass M of SNR, therelativeerrorsin the 34, i, ¥, and ¢ for LISA when the test parameter is y,.
The cosmological model used is (€ = 0, Q4 = 0.3and Q4 = 0.7) and theredshift isz = 1. The waveform model includes the orientation
of the source. The orientation of the source is chosen to be (cosfs, s, cos, ¢;) = (09, 2, 0.8, -5). Also listed are the correlation
coefficientsc” = ¢/ between parametersy; and ¢, i, j = 0, 2, 6L ¢™* isthe correl ation coefficient between parameters A and y;.

MMy) | SNRX10° | AA/A% | Apo/eP A /2% Aya/Ya% | ™0 ™ 7 | co Cosl 2 |
2X 10> 0.0246 1690 0.00860 4.00 8110 0.00763 -0.00843 -0.00716 | —0.999 —-1.00 1.00
2% 1033 0.0777 1070 0.000337 0.381 387. 0.0519 -0.329 -0.317 | -0.320 -0.373 0.998
2X 10* 0.186 1360 0.000545 0.0775 38.1 -0.113 -0.318 -0.321 0.773 0.711 0.992
2X 10%° 0.465 764. 0.000596 0.0272 6.57 -0.188 —-0.230 —-0.223 0.801 0.736 0.990
2% 10> 119 396. 0.000736 0.0151 1.84 -0.395 —0.347 —-0.317 0.825 0.763 0.988
2X10°3 264 250. 0.00109 0.0127 0.941 -0.499 -0.362 —-0.297 0.824 0.741 0.983
2 X 108 1.50 196. 0.00244 0.0227 1.22 -0.519 -0.337 -0.267 0.885 0.822 0.987
2X 1097 1.39 177. 0.00582 0.0394 1.48 -0.482 —-0.298 -0.226 0.924 0.871 0.989
2Xx 10" 1.45 172. 0.0161 0.0806 2.10 -0.373 -0.210 —0.139 0.957 0.917 0990

Table6.18: A similar tableas above for the test parameter isy.

M (M) [ SNRx10°TA Aol N [n% A% | € I

2 x 10> 0.0246 1690 0.000226 0.293 A1, 0.0387 -0.0431 00271 |-0590 0.772 -0949
2 % 1033 0.0777 1040 0.000389 0.0747 109. -0.185 <0265 0211 | 0.783 -0.592 -0.933
2 % 10* 0.186 1320 0.000480 0.0251 16.4 0.00755 -0.194 0.211 | 0.792 -0.601 -0.924
2 % 10%° 0.465 755. 0.000501 0.0108 3.28 -0.128 -0.181 0.167 | 0.768 -0.591 -0.935
2 x 10> 1.19 390. 0.000623 0.00726 1.06 -0.361 -0.331 0.275 | 0.783 -0.644 -0.949
2% 10°3 2.64 248, 0.000938 0.00650 0.635 -0.498 0390 0.274 | 0.796 -0.622 -0.937
2 % 10% 1.50 196. 0.00202 0.0123 1.12 -0.552 -0.382 0.263 | 0.856 -0.728 -0.960
2 x 1083 1.39 178. 0.00473 0.0221 1.66 -0.537 -0.355 0.236 | 0903 -0.799 -0.968
2 x 107 1.45 173. 0.0128 0.0465 2.71 -0.448 -0.280 0.168 | 0.945 -0.869 -0.975

9 11dey)

LET
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Figure 6.7: Plot showing the variation of the correlation coefficients c*” for LISA with the
total mass of the binary.The cosmological model usedis (Q, = 0, Q, = 03 and Q, = 0.7)
and the redshift isZ = 1. The waveform model includes the orientation of the source. The
orientation of the source is chosen to be (cosfs, s, cosf,, ¢) = (09,2, -0.8, -5). ¢*7 is
the correlation coefficient between A and the test parameter ¥ 7, T=3, 4, 51, 6, 61, 7.
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Figure 6.8: Plot showing the variation of the correlation coefficientsc'™ for LISA with the
total massof the binary. The cosmologica mode used is(©, = 0, Q) = 0.3and Q) =0.7)
and the redshift isz = 1. The waveform model includes the orientation of the source. The
orientation of the source is chosen to be (cosés, ¢s,cosby, ¢.) = (09,2, -0.8,-5).cT is
the correl ation coefficient between i = O, 2 and the test parameter 1, T=3, 4, 51,6, 61, 7.
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behaviour. Recall that the PN termsin the Fourier phase are given by y f¢-373, Whenk = 5,
thereis no dependence on thefrequency and when k = 4 theterm variesvery slowly as £~1/3.
Therefore, terms close to k = 5 are likely to suffer from large variances since the frequency
dependence of the corresponding term is weak. Although one might expect ¢ to aso suffer
from large relative errors, the fact that in this case the term increases with frequency asf /3,
makes it a more important term than 4. We aso observe that y,4 has significantly larger
covariances with ¥, (see Tables6.2, 6.8 and 6.14), which adds to its poor determination.

6.5 Representation inthem;-m, plane

InFig. [6.10]and [6.9] , we have depicted the power of the proposed test in the m,-m, plane.
We present for EGO and LISA the uncertainty contours, with 1-o- error bars, associated with
the different test parameters yr = 3, ¥4, Ys1, Ye, Y, ¥7 in the my-m, plane, when ¢, and
¥ are used to parametrize the waveform. For EGO the source corresponds to a (10, 10)M,,
black hole binary at a luminosity distance D;, = 200 Mpc. For LISA the corresponding
sourceisa (108, 10%)M, supermassive black hole binary at aredshift of z = 1 observed in its
last year before merger.

The region in the m; — m, plane for a binary of total mass M, corresponding to the
parameter . is determined asfollows. It isgiven by Ri(my, my; (Yi)lm=m, — 6¢))=0, Where
—AYilm=pm, < Ok < AYlm=m,- IN the dbove Ay, corresponds to the estimated errorsin y, for
aparticilar detector and particular source of total mass M,. Normally, thereis an ‘allowed'
region in the m; — m, plane associated with each of the ¢,’s. However, one boundary for
¥4 does not appear in the plot; the region determined by ¢4 is amost the whole areain the
figure. Thisimplies that the test using ¢4 isa poor one and thus the determination of m; and
my using 4 not recommended. The test parameter 5 corresponds to the smallest region in
the m,-m, plane relative to the other parameters. The 1-o- uncertainty in 5 is smaller than
the thickness of the line. The allowed region corresponding to s has only one boundary.
In this case, the equation determining the other boundary has no real solution. Finaly, the
parameter g is much better determined by LISA than EGO, as one would expect. These
figures are an explicit demonstration of the efficacy of the proposed test and the accuracy
with which the future GW observations of BH binaries by EGO and LISA and in the more
immediate future, Advanced LIGO, can test GR initsstrong field regime.

As mentioned earlier, the spin and angular parameters add alot of structure to the wave-
form which contain additional information that can be extracted and more tests conducted.
Covariance between the old and new parametersis likely to increase the error boxes but the
tests become more demanding as a result of seeking consistency amongst a greater num-
ber of parameters. Future studies should look into the more general case incorporating the
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Figure6.9 Rd showing theregionsin the m;-m, planethat correspond t 0 1-o- uncertainties
in the test parameters Y7 = Y3, ¥a, ¥si, e, Yai. Y7 for a (10, 10)M,, (ie. My = 20 My),
black hole binary at a luminogity distance D;, = 200 Mpc observed usng EGO. Normally,
thereis an 'allowed' regionin them; — m, planeassoci at ed with each of they,’s. However,
one boundary for ¥4 does not appear in the plat; theregion determined by ¥4 iS almost the
whole area in the figure. This quantifies how bad the test of 4 actually is and thus how
bad will be the determination of m; and m, wing y4. Thetest parameter 3 Correpondst o
the smallest region in the m;-m;, planerédative to theather parameters. Finally, the allowed
region correpondingto ¥s; has only oneboundary. In thiscase, the equation determining
the atha boundary has no real solution.
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Figure6.10: Plot show ng theregionsin them;-m; planethat corregpondto 1-o- uncertainties
inthe test paramaHSIﬁT = i3, Wy, Wsi, e, Wl Yrq for a (106, 106)MO, (ie. Mp=2X 106 Mg),
supermassive black holebinary a a redshift of z = 1 asobservedfor a year beforemerger by
LISA, Normally, there is an “allowed’ region in the m; — m, plane associ at ed with each of
the ¥x’s. However, one boundary for i, does not appear in the plot; the region determined
by ¥4 is dmost the wholearea in the figure. This quantifieshow bad the test of 4 actually
isand thus how bad will be the determination of m;, and m, using¥4. Thetest parameer ¥
correspondsto the smallest region in the m;-m;, plane relative to the other parameters The
1-o uncertainty in ¢ is smaller than the thickness of the line. Finally, the alowed region
correspondingto ¥s; hasonly one boundary. |n thiscase, the equation determiningthe other
boundary has noreal solution. :
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effects of spin and systematic effects of orbital eccentricity that could affect the tests, and
more interestingly, go beyond the restricted waveform approximation by incorporating the
amplitude corrections [110] to the GW phasing.

6.6 Boundson Compton waveength of the graviton using
the current proposal

We conclude by discussing theextent to which wecan extend the current proposal to discrim-
inate between different theoriesof gravity such asmassivegraviton theories and scalar-tensor
theories [214, 136, 217]. The limitations of GW phasing to quantitatively discriminate be-
tween aternate theories of gravity has been critically discussed in [211] and should be kept
in mind. For massivegraviton theoriesthe 1PN phasing term y, i sdifferent and also involves
the Compton wavelength of the graviton A,

We adopt the following procedure to calculate the bounds on the mass of the graviton.
The presence of a massive graviton modifies the 1PN terms of the phasing formula which
for our analysis can be viewed as

Ya=y5 +yyc, (6.9)
3715 55 1
GR _ 2190 99
where, ¥ = 32256 * 334 V) v M’ (6.10)
and wg‘G the leading correction due to the effect of the massive graviton is given by
yho - __<xD (6.11)
g (1 +2)22

S will alter the arrival time of the waves of a given frequency and depends only on the
size of the graviton Compton wavelength A, and on a distance parameter D which is defined

as [196, 195]
_c(l+2) (¢ dz

Ho Jo (1202 [Qu(1 22 + Q4]
Recall that D is not the conventional cosmological distance measure, D, [195].
Using ¢, and 3 asbasic variablesand ¥, as atest, wefind that bounds can be set on the
vaue of A, modulo the neglect of uncomputed higher PN order corrections in the theory.
For a BH binary of total mass 2 X 106 M, at the luminosity distance D; = 6612.2 Mpc, that
is, (z = 1 and D = 3523.2 Mpc) in the LISA band, one obtains the values y® = 0.0195
and yC =~ _m. From the results in Sec. 6.4.4, the error in estimating v is

Ay, = "’%7 The massive graviton model can be distinguished from GR if ¢ > Ay, say,

D

(6.12)
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MG = 10 x Ay, which we adopt as our criterion. For the system considered, we use our
estimate of Ay, to obtain the value of A, that satisfies our criterion. Any massive graviton
theory of thistype, with 4, less than or equal to this value can be distinguished from GR by
the proposed test.

Given the theoretical status of the phasing formula in the massive graviton case, this
choice we implement is the most convenient one at present. Our analyses for the alternative
gravity case is modulo uncomputed higher order effects in these aternative theories. In a
more complete theory ¢3 could in general depend on the Compton wavelength as well and
there would be not much rationale behind the choice proposed. One could then use ¢, and
¥, asbasic variablesand y; as atest, as before. Using EGO, which will observe stellar mass
BH coalescences, we can set a bound on A, to be 1.3 X 103 km whereas with LISA the
bounds are as high as 7.12 X 106 km.

Scalar-tensor theories like Brans-Dicke theory, which predicts dipolar GW emission,
have additional leading terms in the the phasing formula at a PN order lower than in GR.
But the dipole GW emission is more important for asymmetric binaries than it isfor equal
mass systems. However, for such systems spin effects are also expected to play a crucial
role. The present chapter deals with only non-spinning binaries and we will have to post-
pone the questions relating to dipolar radiation including spin effects to a future analysis.
Once again, these tests will be limited by the uncomputed higher order PN contributions in
the Brans-Dicke theory.

6.7 Summary

Based on the analyses of the previous sections, we can finally provide an executive summary
of the results that we have discovered in this chapter. In Table 6.7 the relative errors Ay /i
is summarised for the Advanced LIGO, EGO and LISA cases respectively. The relative
errors have been calculated for the total binary mass of 20M; and 2 X 105M,, at luminosity
distance D; = 0.200 Gpc and D; = 6.61223 Gpc (z = 1) for Advanced-LIGO/EGO and
LISA respectively. The corresponding values of SNR are about 38, 144 and 1000-1500
respectively. In the case of LISA the two vaues corresponds to the averaged waveform
pattern and to the waveform including the orientation pattern. With the prototypical black
hole binary at atypical distance chosen here, Advanced-L1GO can only hope to test y3, ¥,
and y¢. With EGO, however, al the ,’s, except ¢4, can be tested. The LISA detector can
test all the y,’s with excellent accuracy with a supermassive black hole binary of total mass
2 X 10°M,, at acosmological redshift z = 1.

In Table 6.20 the minimum SNR required in this proposal to test various PN order coef-
ficients are summarized for Advanced LIGO, EGO and LISA detectors. From the Tableone
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can see that with a prototypical 2 X 10M, BBH, EGO only requires a SNR of 20 to test y3,
¥si, e, and y7. LISA can do much better. With its SMBH prototypical source it can test all
the PN coefficientsy, using thisschemeat aSNR of 120-200. We also provide an aternative
presentation viz the maximum distance at which the source can be located and yet lead to a
feasible test of the particular PN coefficient in the phasing formula.

6.8

Tesing PN gravity: Future prospects

We conclude with afew directions in which this present work can be extended in the furure.

In the future weintend to devel op the proposed test in such a way that this can be im-
plemented with the real data from LIGO/VIRGO/LISA. The assumptions with which
we work at present could be relaxed and the test generalized.

The effect of spin which we have neglected in the present work, can be included es-
pecially with the 2.5PN spin-orbit term in the phasing being completed recently [218,
219].

The effect of orbital eccentricity could be significant, at least for many of the antici-
pated LISA sources. Though including eccentricity in acomplete way may be a hard
task, one can use the treatment in [220] which is applicable for small eccentricities to
understand the effect of its inclusion.

Another obvious modificationisto go beyond theinspiral waveform and include avail-
able information about the merger phase. Though one might have to wait till the nu-
merical simulations succeed in their hard task of computing the merger waveforms
using numerical relativity, asafirst step, one can try modelling the merger phase using
approaches like the effectiveone body formalism [24].

Recently Luna and Sintes [221] noted that adding the ringdown information to the
inspiral waveform will improve the parameter estimation of the mass parameters com-
pared to that in Ref [215]. Though a similar study could be performed in the present
context, there would be conceptual issues since the masses appearing in the ringdown
and inspiral waveformsare not the same.

Restricted PN waveformswill only bring new variety (higher harmonics) without in-
creasing the number of parameters; afull test should definitely use thefull waveform.
One should thus investigate in detail the effect of the full waveform [43, 110, 222]
(as opposed to the restricted waveform used here). The additional information about
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Table6.19: Thefollowing table summarizes the central resultsof thischapter. It lists the val-
ues of therelative errors Ay, /i, for k={0, 2, T} where T labels the test parameter. The table
is horizontally partitioned into 6 sub-tables, corresponding to the six possible test parameters
at 3.5PN order. Every sub-table has three rows, thefirst two rows corresponding to the basic
chosen variables, (in this work we choose ¥ and ), and the third row corresponding to the
test parameter 7. The values of the relative errors have been calculated for the total binary
mass of 20M;, and 2x 10°M,, at luminosity distance D, = 0.200 Gpc and D, = 6.61223 Gpc
(z = 1) for ground based detectors (Advanced-LIGO and EGO) and space based detector
(LISA) respectively, as shown in the table. The corresponding values of SNR are listed. In
the case of LISA there are two columns: one corresponds to the averaged waveform pattern
and the other to the waveform including the orientation pattern. With the prototypical black
hole binary at a typical distance chosen here, Advanced-L1GO can only hope to test v, ¥,
Y3, Yrs, and 6. With EGO however, all they,’s, except 4, can betested. The LISA detector
can test al the ¢,’s with excellent accuracy using a supennassive black hole binary of total
mass 2 X 10°M,, at acosmological redshift z = 1.

M =20M, M =2x 10°M,
D; = 0.200 Gpc D; =6.61223Gpc, z=1
Advanced EGO LISA LISA
LIGO (Without pattern) | (With pattern)
SNR=p 37.5313 143.923 971.629 1499.26
Ayo/o || 0013137 | 0.00063028 | 0.000043626 | 0.000038441
Ay [ 0.0400%4 | 0.0039177 0.00040555 | 0.00033733
As/ys || 0079637 | 0.0043976 0.00035428 | 0.00033069
Ayo/ye || 0.026753 | 0.00087828 | 0.000039616 | 0.000039470
Ay /s 1.0303 0.043544 0.0029701 0.0030124
Ay /Yy 41612 17786 0.12312 0.12444
Ayo/the || 0.010391 | 0,00044110 | 0.000028807 | 0.000026011
Ay, /v, || 0.056181 | 0.0038843 0.00036579 | 0.00031403
A, _/us | 041028 0.037013 0.0038650 0.0031684
Ao/ || 0.0082127 | 0.00036098 || 0.000024594 | 0.000022372
Ay /|l 0.029740 | 0.0021116 0.00020513 | 0.00017274
AYg /g || 0.94272 0.28855 0.0059558 0.0048112
Ao/ || 0.0063744 | 0.00033679 || 0.000026946 | 0.000024382
Ay [ 0.013845 | 0.0017404 0.00026571 0.00022679
A /e 2.7794 0.098413 0.014930 0.012201
Ao/ o || 0.0069857 | 0.00031177 || 0.000021906 | 0.000020221
Ay [ 0.020836 | 0.0014859 0.00014789 | 0.00012303
Ay [y 1.1504 0.12867 0.014483 0.011228
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Table 6.20: The table shows the minimum value of signal to noise ratio (SNR) p required
to test the PN coefficient y (i.e. Ay/y ~ 1 for k={0,2,T}={0,2,3}, {0,2,4},...,{0,2,7}) with
a prototypical black hole binary of mass 2 x 10M,, for ground based detectors (Advanced-
LIGO, EGO) and supermassive black hole binary of mass 2X 106 M,, for space based detector
(LISA) respectively. The tableisdivided into 6 sub-tables. Every sub-table has three rows,
one each for yo, ¥2, Yr wherey, and -, are the chosen fundamental variablesand ¢+ isthe
test parameter. From the table one can conclude that with a2 X 10M,, black hole binary EGO
only requires a SNR of 20 to test ¥, ¥s), 6 and ¢, if one uses the scheme proposed here
considering two basic variablesand a test parameter. LISA using a supermassive black hole
binary can test all they,’s if the SNR isabout 120 using the pattern averaged waveform and
190 using the orientation waveform.

M =20M, M =2 x 105M,
Advanced | EGO LISA LISA
LIGO (Without pattern) | (With pattern)
Yo 04931 | 0.09071 0.04239 0.05763
W 1503 0.5638 0.3940 0.5057
93 2.989 0.6329 0.3442 0.4958
o 1.004 0.1264 0.03849 0.05918
W 38.67 6.267 2.886 4516
& 1562. 256.0 1196 186.6
o 0.3900 | 0.06348 0.02799 0.03900
U, 2.109 0.5590 0.35%4 0.4708
L Us) 1540 5327 3.755 4.750
Yo 0.3082 | 0.05195 0.02390 0.033%4
Yo 1116 0.3039 0.1993 0.2590
e 35.38 4153 5.787 7.213
o 0.2392 | 0.04847 0.02618 0.03655
Y, 05196 | 0.2505 0.2582 0.3400
el 104.3 14.16 1451 18.29
Yo 0.2622 | 0.04487 0.02128 0.03032
Y 0.7820 | 0.2138 0.1437 0.1845
W 43.18 1852 14.07 16.83
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Table 6.21: The following table summarizes the maximum values of luminosity distance D,
in Gpc up to which thetest for a particular ¢ isfeasible using aBBH of the total mass20M,,
for ground based detectors (Advanced-L1GO, EGO) and aSMBBH of total mass 2 X 105M,,
for the space based detector LISA (Ayy /¢ ~ 1 for k={0,2,T}={0,2,3}, {0,2,4},..., {0,2,7}).
The table is divided to 5 sub-tables; every sub-table has three rows yq, ¥,, ¥r where i,
and ¥, are our selected fundamental variables and ¥ is the test parameter. From the table
one can conclude that with a20M, BBH EGO can test for al the y,’s except ¢, and y¢ at
D, = 6.7 Gpc or Z = 1. More importantly, with a2 X 106M, SMBBH LISA can test all the
Yi’s at z = 1and even asfar as 53 Gpc. Testing GR using only three parameters yg, ¥», ¥r
at atimeisapowerful test.

M = 20M, M=2x 10°M,
Advanced EGO LISA LISA
LIGO (Without pattern) | (With pattern)
Yo 15.2238 317.320 151565. 172010.

v, | 499331 | 510510 | 163044 19601.9
4, | 251138 | 454798 | 186639 199955
vo | 747581 | 227.719 | 166900, 167524,
"y, | 0194118 | 459300 | 222628 2194.99
W, | 000480634 | 0112448 | 53.7058 53.1340
vo | 192482 | 453410 | 229535, 254207
v, | 355990 | 514880 | 180764 21056.2
¥s | 0487476 | 540357 | 171078 2086.96

v | 243525 | 554045 |  268856. 295556.
v, | 672495 | 947140 | 322343 38279.6
we | 0212151 | 0693109 | 1110.21 137435
vo | 313754 | 593841 | 245386, 271193,
w, | 144455 | 114917 | 248854 29155.8
W | 00719581 | 203226 | 442.890 541,951
vo | 266298 | 641498 | 301852, 327003.

u, | 959884 | 134603 | 447116 | 537448
4, || 0173349 | 155436 | 456565 588.930
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the masses could make possible more interesting tests [223]. Including PN ampli-
tude corrections is generally expected to improve the tests and thisis what would be a
follow-up of the present analysis.

e In the LISA case one should eventualy deal with the problem in terms of the time
delay interferometry variables [224] so as to have close contact with the real LISA
situation. Lastly, acareful analysis will have to be done to extend the present proposal
to include, in greater detail, the case of aternate theories of gravity, especialy the
scalar tensor theorieslike BD theory.

We wish to return to these issues and devel op them further in future works.
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