
Chapter 4 

Gravitational recoil of compact binary 

systems to second post-Newtonian order 

4.1 Introduction 

Recoil is an important physical phenomena observed in classical electromagnetism where it 

is possible for a material system to recoil in reaction to electromagnetic wave emission. The 

reason for the recoil is the interference between the electric dipole and the electric quadrupole 

or the magnetic dipole radiation fields. The analogous situation in general relativity was 

discussed by Peres [172], who showed that the emission of gravitational radiation can also 

give rise to the recoil of the emitting system using a near zone computation of linearized 

gravity. The effect in this case is due to the interference between the mass quadrupole and 

the mass octupole. 

There have been other earlier theoretical works investigating the application of gravita- 

tional wave (GW) recoil in astrophysical systems. For instance , Bekenstein [I731 roughly 

estimated the possible recoil velocity of collapse of a stellar core to a black hole to be 

-300 Km s-' using the linearized theory of gravitational waves extended to octupole or- 

der. Breakup of a binary upon collapse of one of its components, runaway binaries with 

a black-hole component, escape of black holes from globular clusters and galaxies were 

noted as being some consequences of black hole recoil. Using perturbation techniques of 

Cunningham, Moncrief and Price [174], Moncrief [175, 1761 found that a collapsing star 

would give rise to a typical recoil velocity of -25 Km s-' for small non-spherical pertur- 

bations and indicated that the velocities up to -300 Km s-' could be attained for a rapidly 

rotating collapse model. Fitchett [I271 calculated the linear momentum flux carried by the 

gravitational waves from a binary system of two point masses in Keplerian orbit using the 

quasi-Newtonian approach and the resultant motion of center of mass with significant values 



Chapter 4 146 

of the order of tens of Km s-' for neutron stars and hundreds of Km s-' for a binary black 

hole systems. The quasi-Newtonian approach gives reasonably large recoil velocities in the 

regime in which it is no longer applicable. Oohara and Nakarnura [I771 computed the net 

change in the linear momentum for a test particle of mass m plunging into a Schwarzschild 

black hole of mass M and found it be IAPI = 9 x 10-6(4L2 + 5Lz + 10)2(m/M)mc. Fitchett 

and Detweiler - [I781 used perturbation theory to calculate the linear momentum flux carried 

by gravitational waves from a test particle moving on a circular orbit in the Schwarzschild 

geometry. They found that if the radius of the test particle orbit is larger than 6M, where M is 

the mass of a Schwarzschild black hole, the perturbation and quasi-Newtonian approach are 

in a good agreement. Other works include flux computations of the recoil as an interaction 

between the quadrupole and octupole moments [59, 1791, a general multipole expansion for 

the linear momentum flux [54], and a radiation-reaction computation of the leading-order 

post-Newtonian recoil [180]. 

The gravitational recoil of a system in response to the anisotropic emission of gravita- 

tional waves is a phenomenon with potentially important astrophysical consequences [129]. 

Specifically, in models for massive black hole formation involving successive mergers from 

smaller black hole seeds, a recoil with a velocity sufficient to eject the system from the host 

galaxy or mini-halo would effectively terminate the process. Recoils could eject coalescing 

black holes from dwarf galaxies or globular clusters. Even in galaxies whose potential wells 

are deep enough to confine the recoiling system, displacement of the system from the center 

could have important dynamical consequences for the galactic core. Consequently, it is im- 

portant to have a robust estimate for the recoil velocity from inspiralling black hole binaries. 

The "gravitational rocket" may 

1. produce off-nuclear quasars, including unusual radio morphologies during the recoil 

of a radio-loud source; 

2. deplete massive black holes (MBHs) from late-type spiral galaxies, dwarf galaxies, 

and stellar clusters; and, 

3. give rise to a population of interstellar and intergalactic MBHs. 

Recently, [I811 estimated the kick velocity for inspirals of both non-spinning and spin- 

ning black holes. For example, for non-spinning holes, with a mass ratio of 1:8, they esti- 

mated kick velocities between 20 and 200Kms-'. The result was obtained by (i) making 

an estimate of the kick velocity accumulated during the adiabatic inspiral of the system up 

to its innermost stable circular orbit (ISCO), calculated using black-hole perturbation theory 

(valid in the small mass ratio limit), extended to finite mass ratios using scaling results from 

the quadrupole approximation, and (ii) combining that with a crude estimate of the kick ve- 

locity accumulated during the plunge phase (from the innermost stable circular orbit (ISCO) 
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up to the horizon). The plunge contribution generally dominates the recoil, and is the most 

uncertain. 

The physical picture of the recoil can be explained as the following : Since we consider 

the system in circular orbit, where ml < m2 (see Fig. [4. I]), the smaller mass, ml, will be 

moving faster than the heavier one m2, i.e. vl > u2 , hence the ml will be more effective in 

forward beaming its gravitational wave. This gives a net momentum ejection in the direction 

of motion of the ml, thus causing a recoil of the system in the opposite direction [182]. 

In this chapter we compute more precisely the gravitational recoil velocity during the 

inspiral phase up to the ISCO, and to attempt to narrow the uncertainty in the plunge contri- 

bution for non-spinning inspiralling black holes moving in a quasi-circular orbit. 

Using the post-Minkowskian and matching approach [62, 97, 981 for calculating equa- 

tions of motion and gravitational radiation from compact binary systems in a post-Newtonian 

(PN) sequence, [95, 1091 have derived the gravitational energy loss and phase to O[(V/C)~] 

beyond the lowest-order quadrupole approximation, corresponding to 3.5PN order, and the 

gravitational wave amplitude to 2.5PN order [110]. Using results from this program, the 

linear momentum flux is derived from compact binary inspiral to O[(V/C)~], or 2PN order, 

beyond the lowest-order result. The leading, "Newtonian" contribution for binaries was first 

derived by [127], and was extended to 1PN order by [182]. These results are extended by 

including both the 1.5PN order contributions caused by gravitational-wave tail effects, and 

the next 2PN order terms. In the usual terminology, the leading-order contribution to the re- 

coil is denoted as "Newtonian", although it really corresponds to a 3.5PN radiation-reaction 

effect in the local equations of motion. 

The remainder of this chapter provides details. In Sec. 4.2, the 2PN accurate linear 

momentum flux is derived using a multipole decomposition, together with 2PN expressions 

for the multipole moments in terms of source variables. In Sec. 4.3 we specialize to binary 

systems, and to circular orbits. In Sec. 4.4, These results are used to estimate the recoil 

velocity and discuss various checks of our estimates. Sec. 4.5 makes concluding remarks. 

4.2 General formulae for linear momentum flux 

The flux of linear momentum P, carried away from general isolated sources, is first expressed 

in terms of symmetric and trace-free (STF) radiative multipole moments, which constitute 

very convenient sets of observables parametrizing the asymptotic wave form at the lead- 

ing order 1x1-' in the distance to the source, in an appropriate radiative coordinate system 

XP = (T, X) [54]. Denoting by Ui,..+(T) and Vi,...i,(T) the mass-type and current-type ra- 
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Figure 4.1: Recoil of the center of mass (C.M.)is a sequence of linear momentum ejected 
by the binary system where ml < mz and Iv21 < lvll. Ai and are two normal unit vectors, 
respectively along the binary's separation r and along the relative velocity. i,b is the phase 
angle 
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diative moments at radiative coordinate time T (where & is the multipolar order), the linear 

momentum flux reads 

where the superscript (n) refers to the time-derivatives, and ~ i j k  is Levi-Civita's antisyrnmet- 

ric symbol, such that El23 = + 1. Taking into account all terms up to relative 2PN order (in 

the case of slowly moving, PN sources), we obtain 

The first two terms represent the leading order in the linear momentum flux, which corre- 

sponds to radiation reaction effects in the source's equations of motion occuring at the 3.5PN 

order with respect to the Newtonian force law. Indeed, recall that although the dominant ra- 

diation reaction force is at 2.5PN order, the total integrated radiation reaction force on the 

system (which gives the linear momentum loss or recoil) starts only at the next 3.5PN order 

[172, 59, 1791. Radiation reaction terms at the 3.5PN level for compact binaries in general 

orbits have been computed by [183], [9 11, [I 041, [I841 and [107]. In Eq. (4.2) all the terms 

up to 2PN order relative to the leading linear momentum flux are included. This precision 

corresponds formally to radiation reaction effects up to 5.5PN order. 

The mass and current radiative multipole moments, seen at (Minkowskian) future null 

infinity, Ui,...ie and Vil...i, respectively, are now related to the source mass and current multi- 

pole moments, say Iil...i, and Jil...i,, following the post-Minkowskian and matching approach 

of [62] and [97, 981. The radiative moments differ from the source moments by non- 

linear multipole interactions. At the relative 2PN order considered in the present work, the 

difference is only due to interactions of the mass monopole M of the source with higher 

moments; the gravitational-wave tail effects. For the source moments Zil...ie and Jil...i,, the 

expressions obtained in [97, 981, valid for a general extended isolated PN source are used. 

These moments are the analogues of the multipole moments originally introduced by [70] 
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and generalized by 1541, and which constitute the building blocks of the direct integration 

of the retarded Einstein equations (DIRE) formalism [15 1, 1031. The radiative moments 

appearing in Eq. (4.2) are given in terms of the source moments by (see Eqs. (4.35) in [97]) 

where M I denotes the constant mass monopole or total ADM mass of the source. The 

relative order of the tail integrals in Eqs. (4.3a) is 1.5PN. The constant b entering the loga- 

rithmic kernel of the tail integrals represents an arbitrary scale which is defined by 

where t~ and pH correspond to a harmonic coordinate chart covering the local isolated source 

(pH is the distance of the source in harmonic coordinates). Insert Eqs. (4.3a) into the linear 

momentum flux (4.2) and naturally decompose it into 

where the "instantaneous" piece, which depends on the state of the source only at time T, is 

given by 

1 ( 5 )  (4) 1 + - 4 
I . .  I ,  + P C . .  Z ( ~ ) ~ ~ + - J ! ? $ , ~ )  1 134 i ~ k l  ~ k l  126 ' j k  jlm 63 l ~ k  ~k 

1 + -  2 
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and the "tail" piece, formally depending on the entire integrated past of the source, reads 
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The four terms in Eq. (4.7) correspond to the tail parts of the moments parametrizing the 

"Newtonian" approximation to the flux given by the first line of Eq. (4.2). All of them will 

contribute at 1.5PN order. 

4.3 Application to compact binary systems 

Specialize the expressions given in Sec. 4.2, which are valid for general PN sources, to 

the case of compact binary systems modelled by two point masses rnl and rn2. For this 

application, all the required source multipole moments up to 2PN order admit known explicit 

expressions, computed in [77,95] and [I101 for circular binary orbits. Here the results are 

only quoted . Mass parameters are rn = rnl + rn2,6rn = rnl - rn2 and the symmetric mass ratio 

v = rnlrn2/rn2. We define x xl - x2 and r 1x1 to be the relative position vector and the 

relative separation between the particles in harmonic coordinates respectively, and v E dxldt 

to be their relative velocity (t tH is the harmonic coordinate time). For mass-type moments, 

while, for current-type moments, 
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Recall we indicate the symmetric-trace-free projection using carets surrounding indices. The 
. . 

STF product of l spatial vectors, say x U " ' l L  = xh . . ~ 3 ,  is thus denoted ~ ( ' l " . ~ )  = STF [nb ie ] .  
Similarly, X( i l . . . i ku ik+ l  " ' i t )  - - STF [x i l  . - ik  U  "+I . - i t ]  

The total mass M in front of the tail integrals in Eq. (4.3a) is the ADM mass which 

simply reduces, at the approximation considered here, to the sum of the masses, i.e. M = 

m = ml + m2. To compute the tail contributions (4.7), we simply need the Newtonian 

approximation for all the moments. 

As seen in Eqs. (4.6)- (4.7) one needs to perform repeated time-differentiations of the 

moments. These are consistently computed using for the replacement of accelerations the 

binary's 2PN equations of motion in harmonic coordinates for circular 2PN orbits 

where w denotes the angular frequency of the circular motion, which is related to the orbital 

separatiop r by the generalized Kepler law 

The inverse of this law yields [using x (m 

The tail integrals of Eq. (4.7) are computed in the adiabatic approximation by substitut- 

ing into the integrands the components of the moments calculated for exactly circular orbits, 

with the current value of the orbital frequency w (at time T), but with different phases cor- 

responding to whether the moment is evaluated at the current time T or at the retarded time 

T < T. For exactly circular orbits the phase difference is simply 64 = w(T - r). All the 

contractions of indices are performed, and the result is obtained in the form of a sum of terms 

which can all be analytically computed by means of the mathematical formula 
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where w is the orbital frequency, n the number labeling the relevant harmonic of the signal 

(n = 1, 2 or 3 at the present 2PN order) and C = 0.577 . . . the Euler's constant. As shown in 

[I451 (see also [77, 1 lo]), this procedure to compute the tails is correct in the adiabatic limit, 

i.e. modulo the neglect of 2.5PN radiation reaction terms O[(V/C)~] which do not contribute 

at the present order. 

As it will turn out, the effect of tails in the linear momentum flux comes only from the 

first term in the right side of Eq. (4.13), proportional to n. All the contributions due to the 

second term in Eq. (4.13), which involves the logarithm of frequency, can be re-absorbed into 

a convenient definition of the phase variable, and then shown to correspond to a very small 

phase modulation which is negligible at the present PN order. This possibility of introducing 

a new phase variable containing all the logarithms of frequency was usefully applied in 

previous computations of the binary's polarization waveforms [43, 1101. We introduce the 

phase variable 9 differing from the actual orbital phase angle 4, whose time derivative equals 

the orbital frequency (4 = w), by 

where G denotes a certain constant frequency scale that is related to the constant b which was 

introduced into the tail integrals Eq. (4.3a), and parametrizes the coordinate transformation 

Eq. (4.4) between harmonic and radiative coordinates. The constants G and b are in fact 

devoid of any physical meaning and can be chosen at will [43, 1101. To check this let us use 

the time dependence of the orbital phase @ due to radiation-reaction inspiral in the adiabatic 

limit, given at the lowest quadrupolar order by (see e.g. [43]) 

where Tc and 4, denote the instant of coalescence and the value of the phase at that instant. 

It is then easy to verify that an arbitrary rescaling of the constant 23 by 23 + RG simply 

corresponds to a constant shift in the value of the instant of coalescence, namely Tc + 

Tc + 2(Gm / c3)  In R. Thus, any choice for G is in fact irrelevant since it is equivalent to a 

choice of the origin of time in the wave zone. The relation between i3 and b is given here for 

completeness, 

The irrelevance of G and b is also clear from Eq. (4.4) where one sees that they correspond 

to an adjustment of the time origin of radiative coordinates with respect to that of the source- 

rooted harmonic coordinates. 
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Let us next point out that the phase modulation of the log-term in Eq. (4.14) represents 

in fact a very small effect, which is formally of order 4PN relative to the dominant radiation- 

reaction expression of the phase as a function of time, given by Eq. (4.15). This is clear from 

the fact that Eq. (4.15) is of the order of the inverse of radiation-reaction effects, which 

can be said to correspond to -2.5PN order, and that, in comparison, the tail term is of order 

+ 1 SPN, which means 4PN relative order. In the present work we shall neglect such 4PN 

effects and will therefore identify the phase $ with the actual orbital phase of the binary. 

We introduce two unit vectors A' and 2, respectively along the binary's separation, i.e. in 

the direction of the phase angle 9, and along the relative velocity, in the direction of $ + ;, 
namely 

cos $ - sin $ 

Ai = [ ~ i ; $  1 and 2 = [ co;$ 1. 
Using the source moments Eqs. (4.8a)- (4.9c), the final result for instantaneous and tail 

contributions in the linear momentum flux are 

The total linear momentum flux for compact binaries is 

The first term is the "Newtonian" one which, as we noted above, really corresponds to a 

3.5PN radiation reaction effect. It is followed by the IPN relative correction, then the 1.5PN 

correction, proportional to lr and which is exclusively due to tails, and finally the 2PN cor- 

rection term. We find that the IPN term is in agreement with the previous result by [182]. 

The tail term at order 1.5PN and the 2PN term are new in the present work. Alternatively 

we can also express the flux in terms of the orbital frequency w, with the help of the PN 
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parameter defined by x = (m w ) ~ / ~ .  Using Eq. (4.12) we obtain 

The latter form is interesting because it remains invariant under a large class of gauge trans- 

formations. 

Next, in order to obtain the local loss of linear momentum by the source, we apply the 

momentum balance equation 

which yields 

Upon integration, this yields the net change of linear momentum, say 

In the adiabatic limit, i.e. at any instant before the passage at the ISCO, the closed form of 

APi can be simply obtained (for circular orbits) from the fact that 

and the constancy of the orbital frequency w. This is of course correct modulo fractional error 

terms O [ ( V / C ) ~ ]  which are negligible here. So, integrating the balance equation (4.22) in the 

adiabatic approximation simply amounts to replacing the unit vector 2 by hi and dividing by 

the orbital frequency w. In this way we obtain the recoil velocity 
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or, alternatively, in terms of the x-parameter, 

The recoil could also be defined from the special-relativistic relation 

but since AP' is of order 3.5PN the latter "relativistic" definition yields the same 2PN results, 

and in fact differs from our own definition by extremely small corrections, at the 7PN order. 

Fig. [4.2], shows the behavior of the kick velocity at the ISCO and the cartesian compo- 

nents. The maximum kick is 22 Km s-' appears at v = 0.2. 

Eqs. (4.21) and (4.28) will be the basis for our numerical estimates of the recoil velocity, 

to be carried out in the next Section. 

4.4 Estimating the recoil velocity 

4.4.1 Basic assumptions and analytic formulae 

We now wish to use Eqs. (4.23) and (4.28) to estimate the recoil velocity that results from 

the inspiral and merger of two black holes. It is clear that the PN approximation becomes 

less reliable inside the innermost stable circular orbit (ISCO). Nevertheless, we have an 

expression that is accurate to 2PN order beyond the leading effect, which will therefore be 

very accurate over all the inspiral phase all the way down to the ISCO, so we have some hope 

that, if the higher-order terms can be seen to be small corrections throughout the process, we 

can make a robust estimate of the overall kick. 

In Eq. (4.28) we have re-expressed the recoil velocity in terms of the orbital angular ve- 

locity w ,  Eq. (4.1 I), consistently to 2PN order. One advantage of this change of variables is 

that the momentum loss is now expressed in terms of a somewhat less coordinate dependent 

quantity, namely the orbital angular velocity as seen from infinity. A second advantage is that 

the convergence of the PN series is significantly improved. In terms of the variable mlr,  the 
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Symmetric Mass Ratio v 

Figure 4.2: Recoil velocity of the center of mass of a binary and its x and y components at 
the ISCO as a function of symmetric mass ratio v. The dashed curve is the x-component, the 
dotted curve is the y-component and the solid curve the absolute value of the kick velocity. 
The maximum is - 22 Km s-I and occurs at v = 0.2 
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coefficients of the 1PN and 2PN terms are of order -10 and 33 - 41, respectively, depending 

on the value of v, whereas in terms of x, they are of order -5 and -3 - + 1.4, respectively. 

We assume that the system undergoes an adiabatic inspiral along a sequence of circular 

orbits up to the ISCO. For the present discussion the ISCO is taken to be the one for point- 

mass motion around a Schwarzschild black hole of mass rn = rnl + rn2, namely rn w~sco = 

6-312 or XISCO = 116. The recoil velocity at the ISCO is thus given by 

In order to determine the kick velocity accumulated during the plunge, we make a num- 

ber of simplifying assumptions. We first assume that the plunge can be viewed as that of 

a "test" particle of mass ,u moving in the fixed Schwarzschild geometry of a body of mass 

rn, following the "effective one-body" approach of [24] and [185]. We also assume that 

the effect on the plunge orbit of the radiation of energy and angular momentum may be ig- 

nored. Over the small number of orbits that make up the plunge, this seems like a reasonable 

approximation ( [I8 11 makes the same assumption). 

We therefore adopt the geodesic equations for the Schwarzschild geometry, 

where T is proper time along the geodesic, E = ~ / , u c ~  is the energy per unit mass (,u in this 

case), and = A = a i; is the angular momentum per unit mass. Then, from Eqs. (4.31b) 
/LC= - c3 

and (4.31c), we obtain the phase angle of the orbit + as a function of y = G m/rs c2 by 

where we choose + = 0 at the beginning of the plunge orbit defined by y = yo. 

The kick velocity accumulated during the plunge is then given by 
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The radiative time T in the linear momentum loss law Eq. (4.22) can be viewed as a 

dummy variable, and we henceforth replace it by the Schwarzschild coordinate time t .  

However, the coordinate time t  is singular at the event horizon, so we must find a non- 

singular variable to carry out the integration. We choose the "proper" angular frequency, 

i;, = d@/dr .  In addition to being monotonically increasing, this variable has the following 

useful properties along the plunge geodesic: 

mi;, = L y 2 ,  

Then 

d ~ '  di;, = 'J-- 
Av;,,, m dt di;,/dt 

where yo is defined by the matching to a circular orbit at the ISCO that we shall discuss 

below. 

Fig. [4.3], shows the behavior of the kick velocity at the plunge and the cartesian com- 

ponents. The maximum kick of - 265 Km s-' appears at v = 0.2. 

Notice that, because dpi/dt  cc x"l2 cc (m u)"I3, the quantity in parentheses in Eq. (4.35) 

is well behaved at the horizon; in fact it vanishes at the horizon because w = 0 there [cf. Eq. 
(4.34b)l. Thus, we find that the integrand of Eq. (4.35) behaves like (m u)8/3 cc (1 - 2y)8/3 

at the horizon, and the integral is perfectly convergent. Furthermore, since the expansion 

of dpi /d t  is in powers of m o ,  the convergence of the PN series is actually improved as the , 

particle approaches the horizon. To carry out the integral, then, we substitute for x = (m w)2/3 

in dpi /d t  using Eq. (4.34b), and integrate over y. 

We regard this approach as robust, because it uses invariant quantities such as angular 

frequencies, and uses the nature of the flux formula itself to obtain an integral that is auto- 

matically convergent. [I811 tried to control the singular behavior of the t  integration with an 

ad hoe regularization scheme. 

We then combine Eqs. (4.30) and (4.35) vectorially to obtain the net kick velocity, 
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Symmetric Mass Ratio v 

Figure 4.3: &oil velocity due to the plunge as a function of symmetric mass ratio v. The 
dashed curve is the x-component, the dotted curve is the y - c o m p n t  and the solid curve, 
the absolute value of the kick velocity. The maximum is 265 Km s-' and occurs at Y = 0.2. 
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in which V&,, is given by Eq. (4.30) above with Atsco = (1,0,0). 

Fig. [4.4], shows the behavior of the net kick velocity and its cartesian components. The 

maximum kick is - 243 Krn s-' appears at v = 0.2. 

There are many ways to match a circular orbit at the ISCO to a suitable plunge orbit; 

we use two different methods. In one, we give the particle an energy E such that, at the 

ISCO, and for an ISCO angular momentum EIsco = fi m, the particle has a radial velocity 

given by the standard quadrupole energy-loss formula for a circular orbit, namely drH/dt = 

- (64 /5 )~(m/ r~)~ ,  where r~ is the orbital separation in harmonic coordinates. At the ISCO for 

a test body, r~ = 5m, so we have (drH/dt)Isco = -(8125)~v. This means also (drs/dt)Isco = 

-(8/25)2v in the Schwarzschild coordinate rs = rH + m (recall that ts = tH = t). It is 

straightforward to show that the required energy for such an orbit is given by 

We therefore integrate Eq. (4.35) with that energy, together with EIsco = and the 

initial condition yo = ylsco = 116 (from Eq. (4.34b) we note that, with this choice of initial 

condition, m wo # 6-312). We choose also to terminate the integration when rs = 2(m + p)  

hence Y,:,Z,n = 2(1 + v). 

With this initial condition, the number of orbits ranges from 1.2 for v = 1 /4 to 1.8 

for v = 1/10 to 4.3 for v = 1/100. It is also useful to note that the radial velocity re- 

mains small compared to the tangential velocity throughout most of the plunge; the ratio 

(drs/d~)/(rs dt,b/dr) = rildrs/dt,b reaches 0.14 at rs = 4m, 0.3 at rs = 3m, and 0.5 at 

rs = 2m, roughly independently of the value of v. This justifies our use of the circular orbit 

formulae for the momentum flux as a reasonable approximation. 

In a second method, we evolve an orbit at the ISCO piecewise to a new orbit inside the 

ISCO, as follows: using the energy and angular momentum balance equations for circular 

orbits in the adiabatic limit at the ISCO, we have 

We approximate these relations by "discretizing" the variations of the energy and angular 

momentum on the left hand sides around the ISCO values EISCO = and tIscO = fi m. 

Hence, we write dE/dt = (E - EIsco)/(a~) and dz/dt = ( z  - hsco) / (a~) ,  where aP 

denotes a fraction of the orbital period P of the circular motion at the ISCO. Using then 
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Symmetric Mass Ratio v 

Figure 4.4: The Total Fiecoil velocity and its components as a function of symmetric mass 
ratio v. The dashed curve is the x-component, the dotted curve is the y-component and the 
solid curve, the absolute value of 'be kick velocity. The maximum is 243 Km s-' and occurs 
at Y = 0.2. 
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-1 312 w~sco = 2nJP = m xIsco this gives the following values for the plunge orbit 

Then, in this second model we integrate Eq. (4.35) with the latter values, and using the 

initial inverse radius yo = (mJrs)i,i,i,l of this new orbit which is given by the solution of the 

equation 

-312 = L 
m w1sco = 6 y;(l - 2 ~ 0 )  

For the final value we simply take the horizon at rs = 2m (hence y ~ ~ f i ~ ~ ~  = 1/2), in the spirit 

of the effective one-body approach [24, 1851 where the binary's total mass m is identified 

with the black-hole mass and where p is the test particle's mass. For the fraction a of the 

period, we choose values between 1 and 0.01, and check the dependence of the result on this 

choice (see below). 

4.4.2 Numerical results and checks 

First, we display the recoil velocities at the ISCO given by Eq. (4.30) for each PN order 

and various values of v in Table [4.1]. The 2PN values of the velocity at the ISCO are also 

plotted as a function of v in Fig. [4.6] (dot-dash curve). On should note, from Table [4.1], 

the somewhat strange behavior of the IPN order, which nearly cancels out the Newtonian 

approximation (as already pointed out by [182]). The maximum velocity accumulated in 

the inspiral phase is around 22 Km s-'. 

In Fig. [4.5], the kick velocity at ISCO for Newtonian Order=OPN, up to IPN, 1.5PN 

and 2 PN respectively are plotted. The maxima almost occur at v = 0.2. The effect of the 

1PN term is to decreases the maximum of the leading term by approximately 6 times. The 

difference between 1.5PN and 2PN is negligible. 

Next, we evaluate the kick velocity from the plunge phase, and carry out a number of 

tests of the result. In our first model, where the plunge energy is given by Eq. (4.37), we 

choose rs = 6 m as the ISCO, and rs = 2(m + p)  = 2 m(l + v) as the final merger point. The 

latter value corresponds to the sum of the event horizons of black holes of mass m and p, and 

is an effort to estimate the end of the merger when a common event horizon envelops the two 

black holes, and any momentum radiation shuts off. 

The resulting total kick velocity as a function of v is plotted as the solid (red) curve 

in Fig. [4.6]. We also consider the kick velocity generated when we take only the leading 

"Newtonian" contribution (dashed [black] curve), and when we include the IPN terms (short 
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Table 4.1 : Recoil velocity (Krn s-') at the ISCO defined by x~sco = 116. The second column 
is the recoil velocity taking only the leader term(Newtonian order), the next column is the 
recoil velocity 

KT 
0. 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.2 
0.21 
0.22 
0.23 
0.24 
0.25 

up to 1PN order, and so on. 
N I N+1PN I N+lPN+l.SPN 
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4.5: The kick velocity at ISCO for Newtonian Onkr=OPN, up to lPN, 1.5PN d 2 
PN respective1y are plotted. The maxima occur at marly v = 0.2. The 1PN term rdms 
the maximum recoil arising from the leading term by approximately 6 times, The difference 
between 1.5P.N a d  2PN is negligible. 
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Table 4.2: Net Recoil velocity (Krn s-'). The net recoil velocity is the vectorial summation 
of velocity at 

v 
0. 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 
0.1 1 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.2 
0.21 
0.22 
0.23 
0.24 
0.25 

the plunge. 
N+ 1PN+ ISPN 

0 
1.3663 1 
5.33482 
1 1.7058 
20.2732 
30.8242 
43.1375 
56.9828 
72.1187 
88.291 1 
105.231 
122.65 
140.239 
157.661 
174.546 
190.478 
204.987 
217.523 
227.43 1 
233.899 
235.873 
231.891 
219.735 
195.496 
150.058 

0 

N+ lPN+lSPN+2PN 
0 

2.0471 
5.83461 
11.951 
20.2262 
30.4807 
42.5244 
56.1547 
71.1554 
87.2942 
104.32 
121.959 
139.913 
157.849 
175.395 
192.132 
207.572 
221.143 
232.156 
239.746 
242.789 
239.72 
228.165 
203.95 1 
157.398 

0 

ISCO and the 
N 
0 

0.710953 
2.78393 
6.12617 
10.6406 
16.2252 
22.7727 
30.1694 
38.2948 
47.0197 
56.2057 
65.7029 
75.3476 
84.9596 
94.3382 
103.257 
111.454 
118.625 
124.402 
128.327 
129.802 
127.998 
121.658 
108.569 
83.5906 

0 

velocity during 
N+ 1PN 

0 
0.416319 
1.63196 
3.59507 
6.25109 
9.5424 
13.4079 
17.7827 
22.5974 
27.7773 
33.2419 
38.9034 
44.6658 
50.4225 
56.0543 
61.426 
66.3817 
70.7376 
74.2722 
76.7084 
77.6849 

76.7 
72.9914 
65.2197 
50.2778 

0 
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dashed [green] curve) and the 1PN + 1.5PN terms (dotted [blue] curve). Notice that, because 

the IPN term has a negative coefficient, the net kick velocity at IPN order is smaller than 

at Newtonian order. On the other hand, because the 2PN coefficient is so small, the 1.5PN 

correct value and the 2PN correct value are very close to each other. 

In order to test the sensitivity of the result to the PN expansion, we have considered 

terms of 2.5PN, 3PN and 3.5PN order, by adding to the expression (4.42) terms of the form 

a2.5PN$/2 + a3PN~3 + a3.5PN~7/2, and varying each coefficient between +10 and -10. For 

example, varying ~ Z . S P N  and a3p~,  leads to a maximum variation in the velocity of k 30% [i.e. 

between the values (- 10,- 10) and (10, lo)] for a range of v. Assuming that the probability 

of occurrence of a specific value of each coefficient is uniform within the interval [-10,101, 

we estimate an rms error in the kick velocity, shown as "error bars" in Fig. [4.6]. Varying 

a 3 . 5 ~ ~  between -10 and 10 has only a 10% effect on the final velocity. These considerations 

lead us to crudely estimate that our results are probably good to f20%. 

In the limit of small v, our numerical results give an estimate for the kick velocity: 

= 0.043v2- when v -+ 0 ,  
C 

with the coefficient probably good to about 20 %. 

We also test the sensitivity of the results to the end point: carrying out the integration all 

the way to rs = 2m, as in our second model, Eqs. (4.38a)- (4.40), has only a one percent 

effect on the velocity for v = 0.2, and has essentially negligible effect for smaller values of v. 

We also vary the value of the radius where we match the adiabatic part of the velocity with 

the beginning of the plunge integration. For matching radii between 5.3 m and 6 m, the final 

kick velocity varies by at most seven percent for v = 0.2 and five percent for v = 0.1. 

In establishing the initial energy for the plunge orbit, we used the quadrupole approxi- 

mation for drH/dt  in harmonic coordinates. We have repeated the computation using a 2PN 

expression for drH/dt  expressed in terms of m w; the effect of the change is negligible. 

Our second method for matching to the plunge orbit, Eqs. (4.38a)- (4.40), gives virtually 

identical results. For the 2PN correct values, and for values of the parameter a below 0.1, 

this method gives velocities that are in close agreement with those shown in Fig. [4.6]. For 

instance, with a = 0.1 and v = 0.2, the kick velocity is equal to 245 Km s-', compared to 

243 Krn s-' with the first method. Small values of a correspond to a smoother match between 

the circular orbit at the ISCO and the plunge orbit. For a = 1, implying a cruder match, the 

kick velocities are lower than those shown in Fig. [4.6]: 4 % lower for v = 0.1, 10 % lower 

for v = 0.2, and 14 % lower for v = 0.24. These differences are still within our overall error 

estimate of about 20 % indicated in Fig. [ 4.61. 
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4.5 Results and summary 

The linear momentum loss for binary systems in circular orbits is given by 

where m = ml + rn2,6m = ml - m2, v = mlm2/m2 (we have 0 < v 5 114, with v = 114 for 

equal masses), and where x = (m w ) ~ ~ ~  is the PN parameter of the order of O[(V/C)~], where 

w = d@/dt is the orbital angular velocity. The quantity 2 is a unit tangential vector directed 

in the same sense as the orbital velocity v = vl - v2. The term at order x3I2 = O[(V/C)~] 

comes from gravitational-wave tails. Notice that, as expected for non-spinning systems, the 

flux vanishes for equal-mass systems (6m = 0 or v = 114). 

To calculate the net recoil velocity, this flux is integrated along a sequence of adiabatic 

quasi-circular inspiral orbits up to the ISCO. That orbit is then connected to an unstable in- 

spiral orbit of a test particle with mass p = v m in the geometry of a Schwarzschild black hole 

of mass m, with initial conditions that include the effects of gravitational radiation damping. 

Using an integration variable that is regular all the way to the event horizon of the black hole, 

the momentum flux vector is integrated over the plunge orbit. Combining the adiabatic and 

plunge contributions, calculating the magnitude, and dividing by m gives the net recoil ve- 

locity. Fig. [ 4.61 shows the results. Plotted as a function of the reduced mass parameter v are 

curves showing the results correct to Newtonian order, to 1PN order, to 1.5PN order and to 

2PN order. Also shown is the contribution of the adiabatic part corresponding to the inspiral 

up to the ISCO (calculated to 2PN order). The "error bars" shown are an attempt to assess 

the accuracy of the result by including 2.5PN and 3PN terms with numerical coefficients that 

are allowed to range over values between -10 and 10. 

The 1PN result is smaller than the Newtonian result due to the rather large negative 

coefficient seen in Eq. (4.42). On the other hand, the tail term at 1.5PN order plays a 

crucial role in increasing the magnitude of the effect (both for the adiabatic and plunge 

phases). The small 2PN coefficient in Eq. (4.42) leads to the very small difference between 

the 1.5PN and 2PN curves in Fig. [4.6]. In our opinion this constitutes a good indication 

of the "convergence" of the result. The momentum flux vanishes for the equal-mass case, 

v = 114, and reaches a maximum around v = 0.2 (a mass ratio of 0.38), which corresponds 

to the maximum of the overall factor v26m/m = v2 q m ,  reflecting the relatively weak 

dependence on v in the PN corrections. We propose in Eq. (4.43) below a phenomenological 

analytic formula which embodies this weak v dependence, and fits our 2PN curve remarkably 



Chapter 4 

0.00 0.05 0.10 0.15 0.20 0.25 

Symmetric Mass Ratio v 

Figure 4.6: Recoil velocity as a function of v by taking only the leading 'Wewtonian" con- 
tribution (dashed [black] curve), and when we include the 1PN terms (short dashed [green] 
curve) and the 1PN + 1.5PN terms (dotted Blue] curve). Notice that, because the 1 PN term 
has a negative coefficient, the net kick velocity at 1PN order is smaller than at Newtonian or- 
der. On the other hand, because the 2PN coefficient is so small, the 1.5PN correct value and 
the 2PN correct value are very close to each other. The ermr bar at the point is the estimate 
of the rms error in the kick velocity at that point. 
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well. 

In contrast to the range 20 - 200 Kms-' for v = 0.1 estimated by [181], we obtain 

a recoil velocity of 100 * 20 Km s-I for this mass ratio. For v = 0.2 the estimated recoil 

is between 200 and 300 Krn s-', with a "best guess" of 250 Krn s-' (the maximum velocity 

shown in Fig. [4.6] is 243 Km s-I). The present computation of the recoil in the adiabatic 

inspiral phase (up to the 1SCO)may be regarded as rather solid thanks to the accurate 2PN 

formula used, and the fact that the 1.5PN and 2PN results are so close to each other. How- 

ever, obviously, using PN methods to study binary inspiral inside the ISCO is not without 

risks, and so it would be very desirable to see a check of our estimates using either black hole 

perturbation theory (along the lines of [177], [I861 or [178]) or full numerical relativity. It 

is relevant to point out that our estimates agree well with those obtained using numerical rel- 

ativity in the "Lazarus approach", or close-limit approximation, which treats the final merger 

of comparable-mass black holes using a hybrid method combining numerical relativity with 

perturbation theory [187]. In the small mass-ratio limit, they also agree well with a calcu- 

lation of the recoil from the head-on plunge from infinity using perturbation theory [188]. 

Therefore, it is hoped that these estimates will enable a more focussed discussion of the 

astrophysical consequences of gravitational radiation recoil. 

Our results are consistent with, but substantially sharper than the estimates for kick ve- 

locity for non-spinning binary black holes given by [181]. They are also consistent with 

estimates given by [I871 obtained from the Lazarus program for studying binary black hole 

inspiral using a mixture of perturbation theory and numerical relativity. A recent improved 

analysis [I871 gives 240 * 140 ~ r n  s-' at v = 0.22 and 190 + 100 Km s-' at v = 0.23; as 

compared with our estimates of 21 1 k 40 and 183 * 37, respectively. In the limit of small 

mass ratio, Eq. (4.41) agrees very well with the result V/c = 0.045v2 obtained by [I881 

using black hole perturbation theory for a head-on collision from infinity. Since, as we have 

seen, the contribution of the inspiral phase is small and the recoil is dominated by the final 

plunge, one might expect a calculation of the recoil from a head-on plunge to be roughly con- 

sistent with that from a plunge following an inspiral, despite the different initial conditions; 

accordingly the agreement we find with [I881 for the recoil values is satisfying. 

Finally, we remark on the curious fact that our 2PN result shown in Fig. [4.6] can be fit 

to better than one percent accuracy over the entire range of v by the simple formula 

v - = 0.043 v2 dm (1 + i) (phenomenological) . 
C 

While we ascribe no special physical significance to this formula in view of the uncertain- 

ties in our PN expansion, it illustrates that, beyond the overall v2 4- dependence, the 

post-~ewtonian corrections and the plunge orbit generate relatively weak dependence on the 
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mass ratio. Such an analytic formula may be useful in astrophysical modeling involving 

populations of binary black hole systems. 

Beyond our work a similar analysis to estimate the recoil velocity of a binary due to 

linear momentum ejection was carried out by Damour and Gopakumar [189]. Using the 

effective one body approach which includes nonperturbative resurnrned estimates for the 

damping and conservative parts of the compact binary dynamics, they computed the recoil 

during the late inspiral and the subsequent plunge of non-spinning black holes of compa- 

rable masses moving in quasi-circular orbits. They also used a prescription that smoothly 

connects the plunge phase to a perturbed single black hole, and obtain an estimate for the 

total recoil associated with the binary black hole coalescence. They showed that the crucial 

physical feature which determines the magnitude of the terminal recoil is the presence of a 

burst of linear momentum flux emitted slightly before coalescence. They estimated that the 

maximum recoil velocity for non-spinning coalescing black holes is of order 50-70 Km s-' 

significantly smaller than ours. They also found that away from v - 0.2, the recoil decreases 

approximately proportional to v2 d m ( 1 . 0 9 1 2  - 1 . 0 4 ~  + 2.29v2). 

Numerical simulations of binary black hole coalescence will, hopefully, in the near future 

get estimates for the kick velocity due to linear momentum loss by GWs. Presently the 

simulations by Baker et.al. [I901 estimated the kick to be 105 Km s-' with an error of less 

than 10%. Their result is intermediate between our result and the result of [189]. 

4.6 Conclusion and future directions 

The loss of linear momentum by gravitational radiation and the resulting gravitational recoil 

of black-hole binary systems may play an important role in the growth of massive black holes 

in early galaxies. 

We calculate the gravitational recoil of non-spinning black-hole binaries at the second 

post-Newtonian order (2PN) beyond the dominant effect, obtaining, for the first time, the 

1.5PN correction term due to tails of waves and the next 2PN term. 

We find that the maximum value of the net recoil experienced by the binary due to the 

inspiral phase up to the innermost stable circular orbit (ISCO) is of the order of 22 km/s. 

We estimate the kick velocity accumulated during the plunge from the ISCO up to the 

horizon by integrating the momentum flux using the 2PN formula along a plunge geodesic 

of the Schwarzschild metric. 

We find that the contribution of the plunge dominates over that of the inspiral. 

For a mass ratio mz/ml = 118, we estimate a total recoil velocity (due to both adiabatic 

and plunge phases) of 1003~20 km/s. For a ratio 0.38, the recoil is maximum and we estimate 
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it to be 250 * 50 km/s. In the limit of small mass ratio, we estimate v/c to be approximately 

0.043 (1 * 20%)(rn~/rnI)~. 

Our estimates are consistent with, but span a substantially narrower range than, those of 

Favata et al. (2004). 

Inclusion of the effects of spin will alter the result in several ways. First, it will allow 

a net kick velocity even for equal mass black holes. Second, it will significantly change 

the plunge orbits, depending on whether the smaller particle orbits the rotating black hole 

in a prograde or retrograde sense. In future work, we plan to treat this problem using our 

2PN formulae for linear momentum flux, augmented by the 1.5PN spin orbit flux terms of 

[191], combined with a similar treatment of plunge orbits in the equatorial plane of the Kerr 

geometry. 




