Chapter 4

Gravitational recoil of compact binary
systemsto second post-Newtonian or der

4.1 Introduction

Recoil isan important physical phenomena observed in classical €l ectromagnetism where it
is possible for a material system to recoil in reaction to electromagnetic wave emission. The
reason for therecoil istheinterference between the electric dipole and the el ectric quadrupole
or the magnetic dipole radiation fields. The analogous situation in general relativity was
discussed by Peres [172], who showed that the emission of gravitational radiation can also
give rise to the recoil of the emitting system using a near zone computation of linearized
gravity. The effect in this case is due to the interference between the mass quadrupole and
the mass octupole.

There have been other earlier theoretical works investigating the application of gravita-
tional wave (GW) recail in astrophysical systems. For instance , Bekenstein [173] roughly
estimated the possible recoil velocity of collapse of a stellar core to a black hole to be
—-300 Km s~} using the linearized theory of gravitational waves extended to octupole or-
der. Breakup of a binary upon collapse of one of its components, runaway binaries with
a black-hole component, escape of black holes from globular clusters and galaxies were
noted as being some consequences of black hole recoil. Using perturbation techniques of
Cunningham, Moncrief and Price [174], Moncrief [175, 176] found that a collapsing star
would give rise to a typical recoil velocity of =25 Km s~! for small non-spherical pertur-
bations and indicated that the velocities up to —300 Km s™! could be attained for a rapidly
rotating collapse model. Fitchett [127] calculated the linear momentum flux carried by the
gravitational waves from a binary system of two point masses in Keplerian orbit using the
guasi-Newtonian approach and the resultant motion of center of mass with significant values
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of the order of tens of Km s™! for neutron stars and hundreds of Km s~! for a binary black
hole systems. The quasi-Newtonian approach gives reasonably large recoil velocitiesin the
regime in which it is no longer applicable. Oohara and Nakarnura[177] computed the net
change in the linear momentum for a test particle of mass m plunging into a Schwarzschild
black hole of mass M and found it be |AP| = 9 x 107%(4L2 + 5L, + 10)*(m/M)mc. Fitchett
and Detweller - [178] used perturbation theory to calculate the linear momentum flux carried
by gravitational waves from a test particle moving on a circular orbit in the Schwarzschild
geometry. They found that if theradius of the test particle orbit islarger than 6M, where M is
the mass of a Schwarzschild black hole, the perturbation and quasi-Newtonian approach are
in agood agreement. Other works include flux computations of the recoil as an interaction
between the quadrupole and octupole moments [59, 179], a general multipole expansion for
the linear momentum flux [54], and a radiation-reaction computation of the leading-order
post-Newtonian recoil [180].

The gravitational recoil of a system in response to the anisotropic emission of gravita-
tional wavesisa phenomenon with potentially important astrophysical consequences [129].
Specifically, in models for massive black hole formation involving successive mergers from
smaller black hole seeds, arecoil with a velocity sufficient to eject the system from the host
galaxy or mini-halo would effectively terminate the process. Recoils could eject coalescing
black holesfrom dwarf galaxies or globular clusters. Even in galaxies whose potential wells
are deep enough to confine the recoiling system, displacement of the system from the center
could have important dynamical consequences for the galactic core. Consequently, itisim-
portant to have arobust estimate for the recoil velocity from inspiralling black hole binaries.
The " gravitational rocket™ may

1. produce off-nuclear quasars, including unusual radio morphologies during the recoil
of aradio-loud source;

2. deplete massive black holes (MBHs) from late-type spiral galaxies, dwarf galaxies,
and stellar clusters; and,

3. giveriseto apopulation of interstellar and intergalactic MBHSs.

Recently, [181] estimated the kick velocity for inspirals of both non-spinning and spin-
ning black holes. For example, for non-spinning holes, with a mass ratio of 1:8, they esti-
mated kick velocities between 20 and 200 Kms™!. The result was obtained by (i) making
an estimate of the kick velocity accumulated during the adiabatic inspiral of the system up
to itsinnermost stable circular orbit (1SCO), calculated using black-hole perturbation theory
(vaidin the small massratio limit), extended to finite massratios using scaling resultsfrom
the quadrupol e approximation, and (ii) combining that with a crude estimate of the kick ve-
locity accumulated during the plunge phase (from the innermost stable circular orbit (1SCO)
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up to the horizon). The plunge contribution generally dominates the recoil, and is the most
uncertain.

The physical picture of the recoil can be explained as the following : Since we consider
the system in circular orbit, where m; < m, (see Fig. [4.1]), the smaller mass, m;, will be
moving faster than the heavier one m,, i.e. v; > v, , hence the m; will be more effectivein
forward beaming its gravitational wave. This givesanet momentum ejection in the direction
of motion of the m;, thus causing arecoil of the system in the opposite direction [182].

In this chapter we compute more precisely the gravitational recoil velocity during the
inspiral phase up to the ISCO, and to attempt to narrow the uncertainty in the plunge contri-
bution for non-spinning inspiralling black holes moving in aquasi-circular orbit.

Using the post-Minkowskian and matching approach [62, 97, 98] for calculating equa-
tions of motion and gravitational radiation from compact binary systemsin apost-Newtonian
(PN) sequence, [95, 109] have derived the gravitational energy loss and phase to O[(v/c)’]
beyond the lowest-order quadrupole approximation, corresponding to 3.5PN order, and the
gravitational wave amplitude to 2.5PN order [110]. Using results from this program, the
linear momentum flux is derived from compact binary inspiral to O[(v/c)*], or 2PN order,
beyond the lowest-order result. The leading, "*Newtonian™ contribution for binaries wasfirst
derived by [127], and was extended to 1PN order by [182]. These results are extended by
including both the 1.5PN order contributions caused by gravitational-wave tail effects, and
the next 2PN order terms. In the usua terminology, the leading-order contribution to the re-
coil isdenoted as ' Newtonian™, although it really corresponds to a 3.5PN radiation-reaction
effect in the local equationsof motion.

The remainder of this chapter provides details. In Sec. 4.2, the 2PN accurate linear
momentum flux is derived using a multipole decomposition, together with 2PN expressions
for the multipole momentsin terms of source variables. In Sec. 4.3 we specialize to binary
systems, and to circular orbits. In Sec. 4.4, These results are used to estimate the recoil
velocity and discuss various checks of our estimates. Sec. 4.5 makes concluding remarks.

4.2 General formulaefor linear momentum flux

Theflux of linear momentum P, carried away from general isolated sources, isfirst expressed
in terms of symmetric and trace-free (STF) radiative multipole moments, which constitute
very convenient sets of observables parametrizing the asymptotic wave form at the lead-
ing order |X|! in the distance to the source, in an appropriate radiative coordinate system
X+ = (T,X) [54]. Denoting by U,,...,(T) and V;,..;,(T) the mass-type and current-type ra-
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Figure 4.1: Recoil of the center of mass (C.M.)is a sequence of linear momentum ejected
by the binary system where m; < m, and [v3] < |vy|. f; and A; are two normal unit vectors,
respectively along the binary's separation r and along the relative velocity. ¢ is the phase
angle
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diative moments at radiative coordinate time T (where ¢ is the multipolar order), the linear
momentum flux reads
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where the superscript (n) refers to the time-derivatives, and ¢;x is Levi-Civita’s antisymmet-
ric symbol, such that ;53 = +1. Taking into account all terms up to relative 2PN order (in
the case of slowly moving, PN sources), we obtain
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The first two terms represent the leading order in the linear momentum flux, which corre-
sponds to radiation reaction effectsin the source's equations of motion occuring at the 3.5PN
order with respect to the Newtonianforce law. Indeed, recall that although the dominant ra-
diation reaction force is at 2.5PN order, the total integrated radiation reaction force on the
system (which gives the linear momentum loss or recoil) starts only at the next 3.5PN order
[172, 59, 179]. Radiation reaction terms at the 3.5PN level for compact binaries in genera
orbits have been computed by [183], [91], [104], [184] and [107]. InEq. (4.2) all theterms
up to 2PN order relative to the leading linear momentum flux are included. This precision
corresponds formally to radiation reaction effects up to 5.5PN order.

The mass and current radiative multipole moments, seen at (Minkowskian) future null
infinity, U,,..., and V;,..;, respectively, are now related to the source mass and current multi-
pole moments, say I;,..;, and J;,...,, following the post-Minkowskian and matching approach
of [62) and [97, 98]. The radiative moments differ from the source moments by non-
linear multipole interactions. At the relative 2PN order considered in the present work, the
difference is only due to interactions of the mass monopole M of the source with higher
moments; the gravitational-wave tail effects. For the source moments I;..;, and J;;...,, the
expressions obtained in [97, 98], valid for a general extended isolated PN source are used.
These moments are the analogues of the multipole moments originally introduced by [70]
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and generalized by [54], and which congtitute the building blocks of the direct integration
of the retarded Einstein equations (DIRE) formalism [151, 103]. The radiative moments
appearingin Eq. (4.2) aregiven in termsof the source momentshy (see Egs. (4.35) in [97])

UAT) = 1P(T)+2M f dTI(4)(T)[ln TQ;T)+%}, (4.32)
Ugp(T) = INT)+2M f drlfjg(r)[ln TZ;T)+2—(7)], (4.3b)
VAT) = JOT)+2M f dT](4)(T)[ln(T2bT)+%], (43¢)

where M | denotes the constant mass monopole or total ADM mass of the source. The
relative order of the tail integralsin Egs. (4.3a) is 1.5PN. The constant b entering the loga-
rithmic kernel of the tail integralsrepresentsan arbitrary scale which is defined by

T:tH—’ﬂ—zG—Mln(@), (4.4)
C

wherety and py correspond to a harmonic coordinatechart covering the local isolated source
(oy 1s the distance of the source in harmonic coordinates). Insert Egs. (4.3a) into the linear
momentumflux (4.2) and naturally decomposeit into

= (Tli)inst + (ﬂ)tail ’ (45)

where the "'ingtantaneous” piece, which dependson the state of the sourceonly at time T, is
given by
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and the"tall"" piece, formally depending on the entire integrated past of the source, reads
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The four termsin Eq. (4.7) correspond to the tail parts of the moments parametrizing the
"Newtonian approximation to the flux given by the first line of Eq. (4.2). All of them will
contribute at 1.5PN order.

4.3 Applicationto compact binary systems

Specialize the expressions given in Sec. 4.2, which are valid for general PN sources, to
the case of compact binary systems modelled by two point masses m; and m,. For this
application, all therequired source multipole moments up to 2PN order admit known explicit
expressions, computedin [77, 95] and [110] for circular binary orbits. Here the results are
only quoted . Mass parameters are m = m; * ms,, dm = m; — m, and the symmetric massratio
v = mimy/m*. Wedefinex x; - x, and r o |x| to be the relative position vector and the
relative separation between the particlesin harmonic coordinates respectively, and v = dx/dt
to be their relative velocity (t = r iSsthe harmonic coordinate time). For mass-type moments,
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while, for current-type moments,
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Recall weindicate the symmetric-trace-free projection using caretssurrounding indices. The
STF product of ¢ spatial vectors, say xt# = x ... x*, is thus denoted x> = STF[xil"'i’].
Similarly, x1kyi1-i) = ST [x,-l...ikv,-m...,-f]

The total mass M in front of the tail integrals in Eq. (4.3a) is the ADM mass which
simply reduces, at the approximation considered here, to the sum of the masses, i.e. M =
m = m; t my. To compute the tail contributions (4.7), we simply need the Newtonian
approximation for al the moments.

As seen in Eqgs. (4.6)— (4.7) one needs to perform repeated time-differentiations of the
moments. These are consistently computed using for the replacement of accelerations the
binary's 2PN equations of motion in harmonic coordinates for circular 2PN orbits

% = -w’x, (4.10)
where w denotes the angular frequency of the circular motion, which is related to the orbital
separatiop r by the generalized Kepler law

2 Gmfy, Gm Gmy' (s, 41
=2 {1+ bl 3+v)+( - ) 6+ 4v+v2}. 4.11)
Theinverseof thislaw yields[using x O (mw)*?]
Gm % 65
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The tail integrals of Eq. (4.7) are computed in the adiabatic approximation by substitut-
ing into the integrands the components of the moments calculated for exactly circular orbits,
with the current value of the orbital frequency w (at time T), but with different phases cor-
responding to whether the moment isevaluated at the current time T or at the retarded time
7 < T. For exactly circular orbits the phase differenceis smply A¢ = (T - 7). All the
contractions of indices are performed, and theresult isobtained in theform of asum of terms
which can all be analytically computed by means of the mathematical formula

\/0\+°° dr In (2ib) eineT = L {g. + i[]n (Rnwb) + C]} , (4.13)

nw



Chapter 4 153

where w is the orbital frequency, n the number labeling the relevant harmonic of the signal
(n=1, 2or 3 at the present 2PN order) and C = 0.577... the Euler’s constant. Asshownin
[145] (seedso [77, 110]), thisprocedure to compute the tailsiscorrect in the adiabatic limit,
i.e. modulo the neglect of 2.5PN radiation reaction terms Of(v/c)’] which do not contribute
at the present order.

Asit will turn out, the effect of tailsin the linear momentum flux comes only from the
first termin theright side of Eq. (4.13), proportional to #. All the contributions due to the
second termin Eq. (4.13), whichinvolvesthelogarithm of frequency, can bere-absorbed into
a convenient definition of the phase variable, and then shown to correspond to a very small
phase modulation whichisnegligible at the present PN order. This possibility of introducing
a new phase variable containing al the logarithms of frequency was usefully applied in
previous computations of the binary's polarization waveforms [43, 110]. We introduce the
phase variabley differing from the actual orbital phase angle ¢, whose time derivativeequals
the orbital frequency (¢ = w), by

*/’:¢—2G—;nwln(g), 4.14)
C w

where w denotes a certain constant frequency scale that isrelated to the constant b which was
introduced into the tail integrals Eq. (4.3a), and parametrizes the coordinate transformation
Eq. (4.4) between harmonic and radiative coordinates. The constants w and b are in fact
devoid of any physical meaning and can be chosen at will [43, 110]. To check thislet ususe
the time dependence of the orbital phase ¢ due to radiation-reaction inspiral in the adiabatic
limit, given at the lowest quadrupolar order by (seee.g. [43])

3
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where T, and ¢. denote the instant of coalescence and the value of the phase at that instant.
It is then easy to verify that an arbitrary rescaling of the constant @ by w — 2@ simply
corresponds to a constant shift in the value of the instant of coalescence, namely 7, —
T.+2(Gm /) InR. Thus, any choice for @ isin fact irrelevant since it is equivalent to a
choice of theorigin of timein the wave zone. The relation between @ and bis given herefor

compl eteness,

~ 1 5921 48 405
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Theirrelevance of w and bisalso clear from Eq. (4.4) where one sees that they correspond
to an adjustment of the time origin of radiative coordinates with respect to that of the source-
rooted harmonic coordinates.
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Let us next point out that the phase modulation of thelog-term in Eq. (4.14) represents
infact avery small effect, whichisformally of order 4PN relative to the dominant radiation-
reaction expression of the phase asafunction of time, given by Eq. (4.15). Thisisclear from
the fact that Eq. (4.15) is of the order of the inverse of radiation-reaction effects, which
can be said to correspond to —2.5PN order, and that, in comparison, the tail term is of order
+1.5PN, which means 4PN relative order. In the present work we shall neglect such 4PN
effectsand will therefore identify the phase ¢ with the actual orbital phase of the binary.

We introduce two unit vectors# and A, respectively along the binary's separation, i.e. in
the direction of the phase angle ¥, and along the relative velocity, in the direction of y + Z,
namely

cosy -siny
A =| sing | and A'=| cosy |. (4.17)
0 0

Using the source moments Egs. (4.8a)- (4.9¢), the final result for instantaneous and tail
contributions in the linear momentum flux are
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The total linear momentum flux for compact binariesis
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The first term is the ""Newtonian™ one which, as we noted above, really corresponds to a
3.5PN radiation reaction effect. It isfollowed by the 1PN relative correction, then the 1.5PN
correction, proportiona to 7 and which is exclusively due to tails, and finally the 2PN cor-
rection term. We find that the 1PN term isin agreement with the previous result by [182].
The tail term at order 1.5PN and the 2PN term are new in the present work. Alternatively
we can aso express the flux in terms of the orbital frequency w, with the help of the PN
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parameter defined by x = (mw)*3. Using Eq. (4.12) we obtain
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The latter form isinteresting because it remains invariant under alarge class of gauge trans-
formations.
Next, in order to obtain the local loss of linear momentum by the source, we apply the

momentum balance equation _
dP .
— = _F 4.2

which yields
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Upon integration, thisyields the net change of linear momentum, say
. T .
AP = - f dt Fp(t). (4.24)

In the adiabatic limit, i.e. at any instant before the passage at the 1SCO, the closed form of
AP' can be simply obtained (for circular orbits) from thefact that

di' n;
A =wd, 4.25
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and the constancy of the orbital frequency w. Thisisof coursecorrect modulofractional error
terms O[(v/c)*] which are negligible here. So, integrating the balance equation (4.22) in the
adiabatic approximation simply amounts to replacing the unit vector A by 7' and dividing by
the orbital frequency w. In thisway we obtain the recoil velocity

AV = A(-P_') , 4.26)
m
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or, aternatively, in terms of the x-parameter,
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Therecoail could also be defined from the special-relativistic relation
; AP
A (4.29)
Vm? + AP2

but since AP’ isof order 3.5PN thelatter ""relativistic™ definition yields the same 2PN results,
and in fact differsfrom our own definition by extremely small corrections, at the 7PN order.
Fig. [4.2], shows the behavior of the kick velocity at the ISCO and the cartesian compo-
nents. The maximum kick is 22 Km s~! appearsat v =0.2.
Egs. (4.21) and (4.28) will be the basisfor our numerical estimatesof therecoil velocity,
to be carried out in the next Section.

4.4 Edgimatingtherecoil velocity

4.4.1 Badcassumptionsand analyticformulae

We now wish to use Egs. (4.23) and (4.28) to estimate the recoil velocity that results from
the inspiral and merger of two black holes. It is clear that the PN approximation becomes
less reliable inside the innermost stable circular orbit (1SCO). Nevertheless, we have an
expression that is accurate to 2PN order beyond the leading effect, which will therefore be
very accurate over al theinspiral phase all the way down to the I SCO, so we have some hope
that, if the higher-order terms can be seen to be small corrections throughout the process, we
can make arobust estimate of the overall kick.

In Eq. (4.28) we have re-expressed the recoil velocity in termsof the orbital angular ve-
locity w, Eq. (4.11), consistently to 2PN order. One advantage of this change of variablesis
that the momentum lossis now expressed in terms of a somewhat less coordinate dependent
guantity, namely the orbital angular velocity asseen from infinity. A second advantage isthat
the convergence of the PN series is significantly improved. In terms of the variablem/r, the
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Figure 4.2: Recoil velocity of the center of mass of a binary and itsx and y componentsat
the ISCO as a function of symmetric massratio v. Thedashed curveis the x-component, the
dotted curveis the y-component and the solid curve the absolute value of the kick veocity.
Themaximumis = 22 Km s~! and occurs at v = 0.2
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coefficientsof the 1PN and 2PN terms are of order —10 and 33 - 41, respectively, depending
on thevalue of v, whereasin termsof X, they are of order -5 and —3 - +1.4, respectively.

We assume that the system undergoes an adiabatic inspiral along a sequence of circular
orbits up to the ISCO. For the present discussion the ISCO is taken to be the one for point-
mass motion around a Schwarzschild black hole of mass m = m; + m,, namely m wisco =
6732 or xisco = 1/6. Therecoil velocity at the ISCO is thus given by
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In order to determine the kick velocity accumulated during the plunge, we make a num-
ber of simplifying assumptions. We first assume that the plunge can be viewed as that of
a"'test” particle of massu moving in the fixed Schwarzschild geometry of a body of mass
m, following the " effective one-body" approach of [24] and [185]. We also assume that
the effect on the plunge orbit of the radiation of energy and angular momentum may be ig-
nored. Over the small number of orbits that make up the plunge, this seems like areasonable
approximation ( [181] makes the same assumption).

We therefore adopt the geodesic equations for the Schwarzschild geometry,

dt E
At 1-26m/isc®)’ (4.312)
d L
?1% =1 @.31b)
N
drS 2 _ ~ _ 2Gm E
(E) - E —(1 rSCZ)[“rg , @231c)

where 7 is proper time along the geodesic, £ = E/uc? is the energy per unit mass (u in this
case), and L = -5 = 4 Lis theangular momentum per unit mass. Then, from Egs. (4.31b)
and (4.31c), we obtain the phase angle of the orbit  as afunction of y = Gm/rs c? by

Y Ez 1/2
= — — dy, 4.32
=, (E2 “(-2p+ W)) / (4:32)

where we choose y = 0 at the beginning of the plunge orbit defined by y = yo.
The kick velocity accumulated during the plunge is then given by

. 1 ‘Horizon dPl
AV;JIunge = ; ﬁ —(—it—dt 4.33)
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The radiative time T in the linear momentum loss law EQ. (4.22) can be viewed as a
dummy variable, and we henceforth replace it by the Schwarzschild coordinate timet.

However, the coordinate timet is singular at the event horizon, so we must find a non-
singular variable to carry out the integration. We choose the " proper angular frequency,
@ = dy//dt. In addition to being monotonically increasing, this variable has the following
useful properties along the plunge geodesic:

mi;, = Ly, (4.34a)
_1-2y L 2
m = mw—— ==y (l1-2y), 4.34b
w @ F Ey( Y) ( )
do 2 =2 72 2\]1/2
- = Ewy[E ——(1—2y)(1+Ly)] . (4.34c)
Then
. 1 (dP do
AVimge = = | =
plunge m drt do/dt
_ Horizon l dPl d
T
w MW dt]F2 (1 - 2y)(1 + [2)]

where y, is defined by the matching to a circular orbit at the ISCO that we shall discuss
below.

Fig. [4.3], shows the behavior of the kick velocity at the plunge and the cartesian com-
ponents. The maximum kick of = 265 Km s~! appearsat v = 0.2,

Noticethat, because dPi/dt o« x1'/? « (m w)''/3, the quantity in parenthesesin Eq. (4.35)
iswell behaved at the horizon; in fact it vanishes at the horizon because w = 0 there[cf. Eq.
(4.34b)]. Thus, we find that the integrand of Eq. (4.35) behaveslike (m w)3/3 « (1 - 2y)8/3
at the horizon, and the integral is perfectly convergent. Furthermore, since the expansion
of dP'/dt isin powers of mw, the convergence of the PN seriesis actually improved as the |
particle approaches the horizon. Tocarry out theintegral, then, we substitute for x = (m w)?/?
indP'/dt using Eq. (4.34b), and integrate over y.

We regard this approach as robust, because it uses invariant quantities such as angular
frequencies, and uses the nature of the flux formula itself to obtain an integral that is auto-
matically convergent. [181] tried to control the singular behavior of thet integration with an
ad hoc regularization scheme.

We then combine Egs. (4.30) and (4.35) vectorially to obtain the net kick velocity,

AVi = VIiSCO + AVlilunge ’

(4.36)
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in which V., isgiven by Eq. (4.30) above with filg, = (1,0,0).

Fig. [4.4], showsthe behavior of the net kick velocity and its cartesian components. The
maximumkick is = 243 Km s~! appearsat v=0.2.

There are many ways to match a circular orbit at the ISCO to a suitable plunge orbit;
we use two different methods. In one, we give the particle an energy £ such that, at the
ISCO, and for an 1SCO angular momentum Lisco = V12 m, the particlehasaradia velocity
given by the standard quadrupole energy-lossformulafor acircular orbit, namely dry/dt =
—(64/5)v(m/ry)?, wherery istheorbital separationin harmonic coordinates. At theISCO for
atest body, ry = 5m, SO we have (dry/dthisco = —(8/25)*v. Thismeans also (drs/dthsco =
—(8/25)*v in the Schwarzschild coordinate rs = ry + m (recall that s = 7y = 1). Itis
straightforwardto show that the required energy for such an orbitis given by

1

., 8 9/(drs\> 1
EZ:—[l-—(-i) ] . (4.37)
9 4\ dt 1SCO

We therefore integrate Eq.  (4.35) with that energy, together with Lisco = V12 and the
initial condition yo = yisco = 1/6 (from Eq. (4.34b) we note that, with thischoice of initial
condition, mw, # 673/?). We choose also to terminate the integration when rs = 2(m + u)
henceyz! ... = 2(1 1 v).

With this initia condition, the number of orbits ranges from 1.2 for v = 1/4 to 1.8
for v = 1/10 to 4.3 for v = 1/100. It is aso useful to note that the radial velocity re-
mains small compared to the tangential velocity throughout most of the plunge; the ratio
(drs/dt)/(rsdy/dt) = rg'drs/dy reaches 0.14 a rs¢ = 4m, 03 & rs = 3m, and 0.5 at
rs = 2m, roughly independently of the value of v. Thisjustifiesour use of the circular orbit
formulaefor the momentum flux as a reasonabl e approximation.

In a second method, we evolve an orbit at the ISCO piecewise to a new orbit inside the
ISCO, asfollows: using the energy and angular momentum balance equationsfor circular
orbitsin the adiabatic limit at the ISCO, we have

dE 32 v

i S X5co > (4.38a)
dL o dE _ 32
P Wisco 5 Y Xidco (4.38b)

We approximate these relations by "discretizing” the variations of the energy and angular
momentum on theleft hand sidesaround the ISCO values Eisco = V879 and Lisco = V12 m.
Hence, we write dE/dt = (E - Eisco)/(aP) and dL/dt = (L - Lisco)/(@P), where aP
denotes a fraction of the orbital period P of the circular motion at the ISCO. Using then
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wisco = 21/ P = m' )2, this givesthe following valuesfor the plunge orbit

- . 64r
E = E[sco - T a Vst/(Z:o , (4393)
- - 64n
L = L[SCO - ? ay xIZSCO . (439b)

Then, in this second model we integrate Eq. (4.35) with the latter values, and using the
initial inverseradius yo = (m/rs)iial Of this new orbit which is given by the solution of the
equation

_ L
mwisco = 6772 = 7 ya(1 - 2yo) (4.40)

For thefinal value we simply take the horizon at rs = 2m (hence yyorizon = 1/2), in the spirit
of the effective one-body approach [24, 185] where the binary's total mass mis identified
with the black-hole mass and where 4 is the test particle's mass. For the fraction a of the
period, we choose values between 1 and 0.01, and check the dependence of the result on this
choice (see below).

4.4.2 Numerical resultsand checks

First, we display the recoil velocities at the ISCO given by Eq. (4.30) for each PN order
and various values of vin Table [4.1]. The 2PN values of the velocity at the ISCO are also
plotted as a function of v in Fig. [4.6] (dot-dash curve). On should note, from Table [4.1],
the somewhat strange behavior of the 1PN order, which nearly cancels out the Newtonian
approximation (as aready pointed out by [182]). The maximum velocity accumulated in
the inspiral phase isaround 22Kms™.

In Fig. [4.5], the kick velocity at ISCO for Newtonian Order=0PN, up to 1PN, 1.5PN
and 2 PN respectively are plotted. The maxima almost occur at v = 0.2. The effect of the
1PN term is to decreases the maximum of the leading term by approximately 6 times. The
difference between 1.5PN and 2PN is negligible.

Next, we evauate the kick velocity from the plunge phase, and carry out a number of
tests of the result. In our first model, where the plunge energy is given by Eq. (4.37), we
choose rg = 6masthe1SCO, and rs = 2(m+ u) = 2m(l + v) asthe final merger point. The
latter value corresponds to the sum of the event horizons of black holes of massmand u, and
isan effort to estimate theend of the merger when acommon event horizon envel ops the two
black holes, and any momentum radiation shuts off.

The resulting total kick velocity as a function of v is plotted as the solid (red) curve
in Fig. [4.6]. We also consider the kick velocity generated when we take only the leading
"Newtonian™ contribution (dashed [black] curve), and when weinclude the 1PN terms (short
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Table4.1: Recoil velocity (Kms™') at the ISCO defined by xisco = 1/6. The second column
is the recoil velocity taking only the leader term(Newtonian order), the next column is the
recoil velocity up to 1PN order, and so on.

v N | N+IPN | N+1PN+1.5PN | N+1PN+1.5PN+2PN |
0. 0 0 0 0
0.01 || 0.100134 | 0.0130638 |  0.127098 0.118948
0.02 || 0.392103 | 0.049729 0.496263 0.466274
0.03 | 0.86284 | 0.106293 1.08891 1.02716
0.04 || 1.49867 | 0.179171 1.88588 1.78603
0.05 | 2.28524 | 0.264897 2.86736 2.7264
0.06 | 3.20742 | 0.360128 4.01279 3.83084
0.07 || 4.24922 | 0.461648 5.30072 5.08078
0.08 | 5.39363 | 0.566365 6.70872 6.45639
0.09| 6.6225 | 0.671321 8.21312 7.93637
0.1 | 79163 | 0.773684 9.78889 9.49767
0.11 ) 9.25393 | 0.870761 11.4093 11.1153
012 | 10.6123 | 0.959989 13.0455 127616
013 || 11.9661 | 1.03894 14.6662 14.4064
0.14 || 132871 | 1.1053 16.2368 16.0155
0.15| 14.5432 | 1.15691 17.7189 17.5503
0.16 || 15.6978 | 1.19167 19.0685 18.9662
0.17 || 167078 | 1.20758 20.2347 20.2108
0.18 | 17.5215 | 1.20267 21.1564 21.2206
019 | 18.0742 | 1.17488 21.7581 21.9167
0.2 | 182819 | 1.1219 21.9416 22.1957
0.21 | 18.0279 | 1.04075 21.5712 21.9143
022 | 17.1349 | 0.926884 | - 20.4404 20.8547
0.23 || 15.2914 | 0.771552 18.1856 18.6342
0.24 | 117733 | 0.551226 13.9589 14.3651
0.25 0 0 0 0
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Table4.2: Net Recoil velocity(Kns™). The net recoil velocity is the vectorial summation
of velocity at | SCO and the velocity during the plunge.

v N N+1PN | N+1PN+1.5PN | N+1PN+1.5PN+2PN

0. 0 0 0 0

0.01 || 0.710953 | 0.416319 1.36631 2.0471
0.02 || 2.78393 | 1.63196 5.33482 5.83461
0.03 | 6.12617 | 3.59507 11.7058 11.951
0.04 | 10.6406 | 6.25109 20.2732 20.2262
0.05 || 16.2252 | 9.5424 30.8242 30.4807
0.06 | 22.7727 | 13.4079 43.1375 42,5244
0.07 | 30.1694 | 17.7827 56.9828 56.1547
0.08 | 38.2948 | 225974 72.1187 71.1554
0.09 | 47.0197 | 27.7773 88.2911 87.2942
0.1 | 56.2057 | 33.2419 105.231 104.32
0.11 | 65.7029 | 38.9034 122.65 121.959
0.12 | 75.3476 | 44.6658 140.239 139.913
0.13 || 84.9596 | 50.4225 157.661 157.849
0.14 | 94.3382 | 56.0543 174.546 175.395
0.15 || 103.257 | 61.426 190.478 192.132
0.16 | 111.454 | 66.3817 204.987 207572
0.17 | 118625 | 70.7376 217523 221.143
0.18 | 124.402 | 74.2722 227431 232.156
0.19 | 128.327 | 76.7084 233.899 239.746
0.2 | 129.802 | 77.6849 235.873 242.789
0.21 | 127.998 76.7 231.891 239.72
0.22 | 121.658 | 72.9914 219.735 228.165
0.23 | 108569 | 65.2197 195.496 203.951
0.24 | 835906 | 50.2778 150.058 157.398
0.25 0 0 0 0




Chapter 4 167

dashed [green] curve) and the 1PN + 1.5PN terms (dotted [blu€] curve). Notice that, because
the 1PN term has a negative coefficient, the net kick velocity at 1PN order is smaller than
at Newtonian order. On the other hand, because the 2PN coefficient is so small, the 1.5PN
correct value and the 2PN correct value are very close to each other.

In order to test the sensitivity of the result to the PN expansion, we have considered
terms of 2.5PN, 3PN and 3.5PN order, by adding to the expression (4.42) termsof theform
ayspnx>’? T asppnx® T azspnx’’?, and varying each coefficient between +10 and -10. For
example, varying a, spy and aspy, leadsto a maximum variation in the velocity of + 30% [i.e.
between the values (-10,-10) and (10,10)] for a range of v. Assuming that the probability
of occurrence of a specific value of each coefficientis uniform within theinterval [-10,10],
we estimate an rms error in the kick velocity, shown as"error bars™ in Fig. [4.6]. Varying
a3 spn between —10 and 10 has only a 10% effect on the final velocity. These considerations
lead usto crudely estimate that our results are probably good to +20%.

In the limit of small v, our numerical results give an estimate for the kick velocity:

‘—; ~ 0.043*V1 -4y when v -0, (4.41)
with the coefficient probably good to about 20 %.

We also test the sensitivity of the results to theend point: carrying out the integration all
the way to rs = 2m, asin our second model, Egs. (4.38a)- (4.40), has only a one percent
effect on the velocity for v = 0.2, and hasessentially negligibleeffect for smaller valuesof v.
We aso vary the value of the radius where we match the adiabatic part of the velocity with
the beginning of the plunge integration. For matching radii between 5.3 m and 6 m, the final
kick velocity varies by at most seven percent for v = 0.2 and five percent for v = 0.1.

In establishing the initial energy for the plunge orbit, we used the quadrupole approxi-
mation for dry/dt in harmonic coordinates. We have repeated the computation using a 2PN
expression for dry/dt expressed in terms of m w; the effect of the changeis negligible.

Our second method for matching to the plunge orbit, Egs. (4.38a)- (4.40), givesvirtually
identical results. For the 2PN correct values, and for values of the parameter a below 0.1,
this method gives velocities that are in close agreement with those shown in Fig. [4.6]. For
instance, with a = 0.1 and v = 0.2, the kick velocity is equal to 245Kms™!, compared to
243Km ™! with thefirstmethod. Small valuesof a correspond to asmoother match between
the circular orbit at the ISCO and the plunge orbit. For a = 1, implying a cruder match, the
kick velocities are lower than those shown in Fig. [4.6]: 4 % lower for v = 0.1, 10 % lower
for v=0.2, and 14 % lower for v = 0.24. These differences are still within our overal error
estimate of about 20 % indicated in Fig. [ 4.61.
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45 Resultsand summary

The linear momentum loss for binary systemsin circular orbitsis given by

- ax?

‘ 4 1139 09
dp ﬂf‘ﬂvzxn/z[1+(_ 52 3 )x+3—

105 m 87 522 7)F T s
71345 36761 147101 N
+(—22968 " 2088 " " 68904 Vz)"z 4 (4.42)

wherem = my + my, 6m = my — my, v = mymy/m* (we have 0 < v < 1/4, with v = 1/4 for
equal masses), and where x = (mw)*? isthe PN parameter of the order of O[(v/c)?}], where
w = d¢/dt isthe orbital angular velocity. The quantity A is a unit tangential vector directed
in the same sense as the orbital velocity v = v; — v,. The term at order x32 = O[(v/c)’]
comes from gravitational-wave tails. Notice that, as expected for non-spinning systems, the
flux vanishesfor equal-mass systems (6m = 0 or v = 1/4).

To calculate the net recoil velocity, thisflux isintegrated along a sequence of adiabatic
quasi-circular inspiral orbits up to the ISCO. That orbit is then connected to an unstable in-
spiral orbit of atest particle with massu = vmin the geometry of a Schwarzschild black hole
of massm, withinitial conditions that include the effects of gravitational radiation damping.
Using an integration variablethat isregular al the way to the event horizon of the black hole,
the momentum flux vector is integrated over the plunge orbit. Combining the adiabatic and
plunge contributions, calculating the magnitude, and dividing by m gives the net recoil ve-
locity. Fig. [ 4.6] showstheresults. Plotted asafunction of the reduced mass parameter v are
curves showing the results correct to Newtonian order, to 1PN order, to 1.5PN order and to
2PN order. Also shown isthe contribution of the adiabatic part corresponding to the inspiral
up to the ISCO (calculated to 2PN order). The "error bars" shown are an attempt to assess
the accuracy of theresult by including 2.5PN and 3PN terms with numerical coefficientsthat
are alowed to range over values between —10 and 10.

The 1PN result is smaller than the Newtonian result due to the rather large negative
coefficient seen in Eq.  (4.42). On the other hand, the tail term at 1.5PN order plays a
crucia role in increasing the magnitude of the effect (both for the adiabatic and plunge
phases). The small 2PN coefficientin Eq. (4.42) leadsto the very small difference between
the 1.5PN and 2PN curves in Fig. [4.6]. In our opinion this constitutes a good indication
of the ""convergence” of the result. The momentum flux vanishes for the equal-mass case,
v = 1/4, and reaches a maximum around v = 0.2 (amass ratio of 0.38), which corresponds
to the maximum of the overall factor v26m/m = V2 V1 — 4v, reflecting the relatively weak
dependence on vin the PN corrections. We proposein Eq. (4.43) below a phenomenol ogical
analytic formula which embodies thisweak v dependence, and fitsour 2PN curve remarkably
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Figure 4.6: Recoil velocity as a function of v by taking only the leading “Newtonian” con-
tribution (dashed|[ bl ack] curve), and when we includethe 1PN terms (short dashed [green]

curve) and the 1PN + 1.5PN terms (dotted [blue] curve). Noticethat, because the 1PN term
hasa negative coefficient, the net kick velocity at 1PN order issmaller than at Newtonian or-
der. On theather hand, because the 2PN coefficient is so small, the 1.5PN correct value and
the 2PN correct value are very close to each other. Theerror bar at the point is theestimate
of the rmserror in thekick velocity at that point.
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well.

In contrast to the range 20 — 200 Kms™! for v = 0.1 estimated by [181], we obtain
arecoil velocity of 100 + 20Kms™! for this mass ratio. For v = 0.2 the estimated recoil
is between 200 and 300Km s™!, with a "' best guess” of 250Kms™! (the maximum velocity
shown in Fig. [4.6] is 243Kms™!). The present computation of the recoil in the adiabatic
inspiral phase (up to the ISCO)may be regarded as rather solid thanks to the accurate 2PN
formula used, and the fact that the 1.5SPN and 2PN results are so close to each other. How-
ever, obvioudly, using PN methods to study binary inspiral inside the ISCO is not without
risks, and so it would be very desirable to see acheck of our estimates using either black hole
perturbation theory (along thelinesof [177], [186] or [178]) or full numerical relativity. It
isrelevant to point out that our estimates agree well with those obtained using numerical rel-
ativity in the “Lazarus approach™, or close-limit approximation, which treats thefinal merger
of comparable-mass black holes using a hybrid method combining numerical relativity with
perturbation theory [187]. In the small mass-ratio limit, they also agree well with a calcu-
lation of the recoil from the head-on plunge from infinity using perturbation theory [188].
Therefore, it is hoped that these estimates will enable a more focussed discussion of the
astrophysical consequences of gravitational radiation recoil.

Our results are consistent with, but substantially sharper than the estimates for kick ve-
locity for non-spinning binary black holes given by [181]. They are also consistent with
estimates given by [187] obtained from the Lazarus program for studying binary black hole
inspiral using a mixture of perturbation theory and numerical relativity. A recent improved
analysis [187] gives 240 + 140Kms™' at v = 0.22 and 190 + 100Kms™ at v = 0.23; as
compared with our estimates of 211 + 40 and 183 + 37, respectively. In the limit of small
mass ratio, Eq. (4.41) agrees very well with the result V/c = 0.045v? obtained by [188]
using black hole perturbation theory for a head-on collision from infinity. Since, as we have
seen, the contribution of the inspiral phase is small and the recoil is dominated by the final
plunge, one might expect acalculation of therecoil from a head-on plunge to be roughly con-
sistent with that from a plunge following an inspiral, despite the different initial conditions;
accordingly the agreement we find with [188] for therecoil valuesis satisfying.

Finally, we remark on the curious fact that our 2PN result shown in Fig. [4.6] can be fit
to better than one percent accuracy over the entire range of v by the simple formula

V. 0.043v2V1 -4y (1t 2) (phenomenological) . (4.43)
C
While we ascribe no specia physica significance to this formulain view of the uncertain-

tiesin our PN expansion, it illustrates that, beyond the overall v2 V1 — 4v dependence, the
post-Newtonian corrections and the plunge orbit generate relatively weak dependence on the
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mass ratio. Such an analytic formula may be useful in astrophysical modeling involving
populations of binary black hole systems.

Beyond our work a similar analysis to estimate the recoil velocity of a binary due to
linear momentum ejection was carried out by Damour and Gopakumar [189]. Using the
effective one body approach which includes nonperturbative resurnrned estimates for the
damping and conservative parts of the compact binary dynamics, they computed the recoil
during the late inspiral and the subsequent plunge of non-spinning black holes of compa-
rable masses moving in quasi-circular orbits. They also used a prescription that smoothly
connects the plunge phase to a perturbed single black hole, and obtain an estimate for the
total recoil associated with the binary black hole coalescence. They showed that the crucial
physical feature which determines the magnitude of the terminal recoil is the presence of a
burst of linear momentum flux emitted slightly before coalescence. They estimated that the
maximum recoil velocity for non-spinning coalescing black holes is of order 50-70 Km s~!
significantly smaller than ours. They also found that away from v = 0.2, the recoil decreases
approximately proportional to V2 V1 — 4v(1.0912 — 1.04v + 2.29).

Numerical simulations of binary black hole coalescence will, hopefully, in the near future
get estimates for the kick velocity due to linear momentum loss by GWs. Presently the
simulations by Baker et.al. [190] estimated the kick to be 105 Km s~! with an error of less
than 10%. Their result is intermediate between our result and the result of [189].

4.6 Conclusonand futuredirections

Thelossof linear momentum by gravitational radiation and the resulting gravitational recoil
of black-hole binary systems may play animportant role in the growth of massive black holes
in early galaxies.

We calculate the gravitational recoil of non-spinning black-hole binaries at the second
post-Newtonian order (2PN) beyond the dominant effect, obtaining, for the first time, the
1.5PN correction term due to tails of waves and the next 2PN term.

We find that the maximum value of the net recoil experienced by the binary due to the
inspiral phase up to theinnermost stable circular orbit (ISCO) isof the order of 22 kmys.

We estimate the kick velocity accumulated during the plunge from the ISCO up to the
horizon by integrating the momentum flux using the 2PN formula along a plunge geodesic
of the Schwarzschild metric.

We find that the contribution of the plunge dominates over that of the inspiral.

For amassratio my/m; = 1/8, we estimate a total recoil velocity (due to both adiabatic
and plunge phases) of 100+20 km/s. For aratio 0.38, therecoil is maximum and weestimate
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it to be 250 + 50 kmy/s. In thelimit of small massratio, we estimate v/c to be approximately
0.043 (1 + 20%)(my /my ).

Our estimates are consistent with, but span a substantially narrower range than, those of
Favataet a. (2004).

Inclusion of the effects of spin will alter the result in several ways. First, it will allow
a net kick velocity even for equal mass black holes. Second, it will significantly change
the plunge orbits, depending on whether the smaller particle orbits the rotating black hole
in a prograde or retrograde sense. In future work, we plan to treat this problem using our
2PN formulae for linear momentum flux, augmented by the 1.5PN spin orbit flux terms of
[191], combined with asimilar treatment of plunge orbitsin the equatorial plane of the Kerr
geometry.





