Chapter 3

Tall effectsin the 3PN gravitational wave
energy flux of inspiralling compact
binaries

3.1 Introduction

The GW energy flux from a system of two point masses in eliptic motion in the lead-
ing quadrupolar approximation (Newtonian order) was first discussed by Peters and Math-
ews [138, 112]. Using the Damour-Deruelle [147] 1PN quasi-Keplerian representation,
Blanchet and Schafer [143] computed the 1PN corrections to the above result. Using the
generalized quasi-Keplerian representation of Damour, Schafer and Wex [148, 149, 150],
Gopakumar and lyer extended these results to 2PN order [46]. Recently, Damour, Gopaku-
mar and lyer [47] proposed an analytic method based on an improved "' method of variation
of constants™ to construct high accuracy templatesfor the GW signalsfrom the inspiral phase
of compact binaries moving in quasi-elliptical orbits. The three time scalesrelated to orbital
motion, precession and radiation reaction are handled without the usual approximation of
assuming adiabaticity relative to the radiation reaction time scale. The above results re-
late to 2.5PN GW phasing. More recently they have been extended by Koenigsdoerffer and
Gopakumar [163] to 3.5PN order. All these works above relate only to the instantaneous
termsin the gravitational waves (GW).

The multipole moments describing gravitational waves emitted by an isolated system
cannot evolve independently. They couple to each other and with themselves, giving rise
to non-linear physical effects. Consequently, the above instantaneous termsin the flux must
be supplemented by the contributions arising from these non-linear multipole interactions.
The leading multipole interaction is between the mass quadrupole moment M;; and the mass
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monopole M or ADM mass. It isassociated with the non-linear effect of tailsat order 1.5PN.
Physically it is due to the backscatter of linear waves from the space-time curvature gener-
ated by the mass monopole M. Tailsimply anon-locality in time since they are described as
integrals depending on the history of the source from the remote past to the current retarded
time. They are thus appropriately referred to as hereditary contributions by Blanchet and
Damour [63, 76]: terms nonlocal in time depending on the dynamics of the system in its
entire past [76]. The most detailed study of tailsis due to Blanchet [158, 157] based on the
multipolar post-Minkowskian formalism of Blanchet and Damour [62, 64]. He showed that
up to 3PN these comprise the dominant quadratic order tails, the cubic-order tails or tails
of tails and the non-linear memory integral  [164, 165, 166, 110]. The cubic “monopole-
monopole-quadrupole” interaction represents the scattering of the linear quadrupole waves
from the second-order (M?) potential barrier of the Schwarzschild metric, and also the scat-
tering of the quadratic tails off thefirst-order (M) potential barrier. The latter effectiscalled
"tails of tails" of gravitational waves. See [158, 157] for earlier references to the general
topic of tailsand in particular to tailsin the test-masslimit. In thischapter we set up ageneral
theoretical framework to compute the hereditary contributions for binaries moving in ellipti-
cal orbitsand apply it to evaluate all the tail contributions contained in the 3PN accurate GW
energy flux.

For theinstantaneous termsin the energy flux, explicit closed form analytical expressions
can be given in terms of dynamical variables related to relative speed v and relative separa-
tion r. Consequently, these expressions can be conveniently averaged in the time domain
over an orbit using its quasi-Keplerian representation. For the hereditary contribution on the
other hand one can only write down formal analytical expressions asintegrals over the past.
More explicit expressions in terms of the dynamical variables require in addition a model
of the binary's orbit to implement the integration over the past history. In the circular orbit
case, with a smplified model of binary inspiral one can work directly in the time domain.
For instance, Blanchet computed the hereditary terms in the flux upto 3.5PN [158, 157]
while Arun, Blanchet, lyer and Qusailah [110] evaluated the GW polarisations upto 2.5PN.
The tail integrals are evaluated using standard integrals for a fixed non-decaying circular
orbit. 'Remote-past’ contribution to thetail integrals can be proved to be negligible and er-
rors due to inspiral by gravitation radiation reaction to be at least 4PN. In the elliptic orbit
case on the other hand the situation is more involved. Even after using the quasi-Keplerian
parametrization, one cannot perform the integrals in the time domain (asfor the circular or-
bit case), since the multipole moments have a more complicated dependence on time so that
theintegrals are not analytically solvable in simple closed forms. By working in the Fourier
domain to explicitly evaluate the hereditary integrals, Blanchet and Schafer [145] computed
the hereditary tail termsat 1.5PN for elliptical orbits using the lowest order Newtonian Kep-
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lerian representation.

In the present investigation to tackle the terms at 2.5PN and 3PN we need to go beyond
the (Newtonian) Keplerian representation to a 1PN quasi-Keplerian representation of the
orbit. Here we encounter two further complications. Firstly, the 1PN parametrization of
the binary involves three kinds of eccentricities (e, e, and e;) which makes the agebra
more involved. More serioudly at 1PN order, the periastron precession effect appears in
the problem and one has to contend with two times scales. the orbital time scale and the
periastron precession timescale. These two new features should be properly accounted for in
the calculations to extend the Fourier methodsin [145]. Thisstrategy hasbeen proposed and
used earlier in computing the instantantaneous terms in the GW polarizations from binaries
onelliptical orbits[83, 115, 47]. We shall adapt thesefeatureshere to treat the moreinvolved
hereditary contribution to the total energy flux.

Following [145], we express al the multipole moments needed for the hereditary com-
putation at Newtonian order as discrete Fourier seriesin I. However, for moments needed
beyond the lowest Newtonian order the double periodicity needs to be crucially incorporated.
The evaluation of the Fourier coefficientsis done either numerically or in termsof an infinite
sum of combinations of Bessel functions. All tail terms at 2.5PN and 3PN are completely
computed to provide the 'enhancement factors for binaries in elliptical orbits at the 2.5PN
and 3PN orders, extending the classic work of Peters and Mathews [138]. The present work
extends the circular orbit results at 2.5PN [156] and 3PN [95] to the elliptical orbit case. It
also extends resultsfor hereditary contributionsat 1.5PN [145] for elliptical orbitsto2.5PN
order and 3PN. The 3PN hereditary contributions comprise the tail-of-tails and tail-squared
terms and are extensions of {157, 158] for circular orbits to the elliptical case. Combining
the hereditary contributions computed in this chapter with the instantaneous contributions
computed in the previous chapter yields the complete 3PN energy flux. Thefinal expressions
represent gravitational wavesfrom abinary evolving negligibly under gravitational radiation
reaction, including precisely upto 3PN order the effects of eccentricity and periastron pre-
cession during epochs of inspiral when the orbital parameters are essentially constant over
afew orbital revolutions. It thus represents the first input to go towards the quasi-elliptical
case; the evolution of the binary in a€lliptical orbit under gravitational radiation reaction.
Tailsare not just mathematical curiositiesin general relativity but facets that should show up
in the gravitational -wave signals of inspiraling compact binaries and subsequently decoded
by the GW detectors like VIRGO, LIGO and LISA [167, 168, 169, 170].
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3.2 Tail termsin the 3PN energy flux

Threekindsof hereditary terms appear in the computation presented here. The 'tailS coming
from the multipole interaction of the mass quadrupole with the ADM mass (M X I;;), the
'tails of tails due to the cubic nonlinear interaction M x M X I;; and the tail-squared term
arising from quadrupole-quadrupole interaction I;; X I;. In the equations to follow, we list
the expressions for the hereditary terms constituting the fluxes. The hereditary terms in the
energy flux can be written as

d& d d d& 3.1
(E)hered = ({f)tdl + (-g)tail(tail) + (-:it')(tail)2
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The constant scaling the logarithm has been chosen to be r, to match with the choice made
in the computation of tails-of-tailsin [158]. It isafreely specifiable constant, entering the
relation between theretarded time U = T - R/c in radiative coordinates and the correspond-
ing timet — p/c in harmonic coordinates (wherep is the distance of the source in harmonic
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coordinates). More precisely we have

U=t—3—ZGM1n(L). (3.3)

c 3 cry

In this chapter, in what follows, wesetc =1 and G = 1.

3.3 Solution of theequationsof motion of compact binaries

In this chapter asin the the previous one, we shall often need to use the explicit solution for
the motion of compact binary systemsin the post-Newtonian approximation. Wereview here
the relevant material we need, which includes the general doubly-periodic structure of the
post-Newtonian solution, and the quasi-Keplerian representation of the 1PN binary motion
by means of different typesof eccentricities. Weclosely follow the works of Damour [65, 83]
and Damour & Deruelle [147, 171].

3.3.1 Doubly-periodicstructureadf the solution

The equations of motion of a compact binary system up to the 3PN order admit, when ne-
glecting the radiation reaction term at the 2.5PN order, ten first integrals of the motion cor-
responding to the conservation of energy, angular and linear momenta, and center-of-mass
position [160]. When restricted to the frame of the center of mass, the equations admit four
first integrals associated with the energy E and angular momentum J, given at 3PN order by
Egs. (4.8)-(4.9) of Ref. [159].

The motion takes place in the plane orthogonal to J. Dencting by r the binary's orbital
Separation in that plane, and by v = v, — v, therelative velocity, we find that E together with
the norm J = |J| are functions of r, # and v> (we are employing the harmonic coordinate
system of [159]). They depend aso on the total mass m = m; + m, and reduced mass
u = mumy/m. We adopt polar coordinates r, ¢ in the orbital plane, and express E and J,
thanksto V2 = i + r2¢?, as some explicit functions of r, # and ¢. Thelatter functions can be
inverted (by means of straightforward post-Newtonian iteration) to give #* and ¢ in terms of
r and the constants of motion E and J. Hence,

2
¢

R[r; E,J], (3.4a)
Glr; E, U, (3.4b)

where the functions R and G denote certain polynomialsin 1/r, the degree of which depends
on the post-Newtonian approximation in question (it is seventh degree for both R and G at
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3PN order [155]). The variouscoefficientsof the powersof 1/r are themselves polynomials
in E and J, and also of course depend on m and the mass ratio v = p/m. In the case of
bounded elliptic-like motion, one can prove [83] that the function R admits two real roots,
rp < ra, which admit some non-zero finite Newtonian limits when ¢ — oo, and represent
respectively theradii of the orbit's periastron and apastron. The other roots tend to zero when
C — 00,

We are considering a fixed binary's orbital configuration, fully specified by some given
values of theintegrals of motion E and J. We no longer indicate the dependence on E and J
which isalwaysimplicit in what follows. The binary's orbital period, or timeof return to the
periastron, is obtained by integrating the radial motion as

™ dr
P=2 . (3.5)
rn VRIr]
We introduce the fractional angle (i.e. divided by 2x) of the advance of the periastron per
orbital revolution, 1
1 f A r
K=- dr . 3.6)
T Jm VRIr]

which issuch that the precession of the periastron per period isA¢ = 2n(K — 1). As K tends
to onein thelimit c — o (asiseasily checked from the Newtonian limits), it is convenient
topose k = K - 1, which will then entirely describe the relativistic precession.

L et us define the mean anomaly £ and the mean motion n by

¢ = n(t-1tp), (3.7a)
n = z?ﬂ. (3.7b)

tp denotes the instant of passage to the periastron. For a given value of the mean anomaly ¢
the orbital separation r is obtained by inversion of theintegral equation

eznf' do (3.8)

which defines the function r(£) whichisa periodic function in € with period 2z. The orbital
phase ¢ isobtained in terms of the mean anomaly ¢ by integrating the angular motion as

¢=¢p+ % fd/l' G[r()], (3.9)
0

where ¢p denotes the value of the phase at the instant . In the particular case of acircular
orbit, r = const, the phase evolveslinearly withtime, ¢ = G[r] = w, where w isthe orbital
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frequency of thecircular orbit given by
w=Kn=0+kn. (3.10)

In the general case of anon-circular orbit it isconvenient to explicitly introduce the linearly
growing part of the orbital phase 3.9 by writing it in theform

¢=¢p+twit—1tp)+ W (3.11)

Here W denotes a certain function which is periodic in time with period P. Hence we can
write the phase as
d=¢p+ KL+ W, (3.12)

where according to 3.9 the function Wisgiven in terms of the mean anomaly ¢ by

w=l f dx |G [r()] - w)]. (3.13)
nJo

Thefunction W(¢) isaperiodic function in €. Finally the decomposition 3.12 exhibits clearly

the doubly periodic nature of the binary motion, in terms of the mean anomaly ¢ with period

2r, and in terms of the periastron advance Kt with period 27K. It may be noted that in

Refs. [115, 47] the notation A is used. It corresponds to A = K t here.

3.3.2 Quag-Keplerian representation of the motion

In the following we shall also use the explicit solution of the motion at 1PN order, in the
form due to Damour and Deruelle [147, 171]. Then r and £ are expressed in terms of the
eccentric anomaly u as

r = a1 -e cosu), (3.14a)
{ = u-esinu. (3.14b)

The phase angle ¢ isgiven by
¢ =KV, (3.15)

where as mentioned in the last chapter the true anomaly V is defined by,

V=2 arctan[(i al Z¢)1/2tan g] (3.16)
— €

In the above, K isthe periastron advance given in general termsin Eq. 3.6. The possible
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Figure3.1: Plot showing a closed but non-precessing( k = 0) orbit and an orbit that isclosed
but precessing(k = 0.2). Each orbit has an eccentricity of e = 0.9.
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Figure 3.2 The plot illustrates the double periodicity. r(), r(1), #(!) and ¢(2) are plotted
respectively for an orbit with semimajor a = 10 and eccentricity ¢ = 0.5. Here ris the
length of the position vector measured f romthe focus. a(l te) = 15 anda(l - ¢) = 5
are the maximum and minimum values of 7. It is clear from the figure that (/) and ¢(!) are
2n-periodic functions where as #(2) and ¢(1) are 2aK = 3n-periodic functions. It this case
the orbit isclosed. The angular variable ¢ repeats after two periods of the radial variable.
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additive constant in the equation for ¢ is set equal to zero. As mentioned in the last chapter,
thereare at 1PN order three kinds of eccentricitiese,, ¢, and e, (Iabelled after the coordinates
r, t and ¢ repectively) which differ from one another by 1PN terms. The advance of the
periastron per orbital revolution appears starting at the 1PN order. Due to these features
this representation is referred to as the " quasi-Keplerian™ (QK) parametrization for the 1PN
orbital motion of the binary. The periodic function W(¢) of Eq. 3.13 now reads

W=K{V-90. (3.17)

Theexplicit dependence of the orbital elementsin terms of the 1PN conserved orbital energy
E and angular momentum Jisgivenin [147].

11 (<2E)
L - 7+

* c;m(-zv::){1 2 (T} G.182)

e = 1+2ER+ 2 Cz){24—-4v+5 (-3 +9)(-2ER), (3.18b)

n = (—2E)3/2{1+-(:2—52(—15+v)), (3.18¢)
8¢

et = 102BR+ 2848y (IT+TN2ER), (180
4¢
2

e = 1+2Eh2+(4C2){24+(—15+v)(—2Eh2)}. (3.18¢)

In Figure 3.3.2 we plot the orbits for different values of e and k to give a schematic and
physical feel for the double periodicity.

3.4 Fourier decomposition of the binary's multipole
moments

The multipole moments of the compact binary system will be denoted by I.(f) (mass-type
moment) and J;(r) (current-type), where the multi-index L = i, --. 4, with I being the
multipolarity. We are adopting the same definitions of the post-Newtonian source moments
as [98]. The general structure of these mass and current moments, I, and say J.-1 (where
L - 1istakenrather than L for convenience), at any post-Newtonian order for a binary system
moving on a general non-circular orbit isof the type

L) = 3 Folr A x>, (3.192)
p=0
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Figure33: Rd showing the variety of closed orbits generated for different combinations
of eccentricity e and periastron shift kK The angular variable ¢ repeats after N periods of
theradial variable (thenumber of unclosed orbitsbefore connng back to the starting point).
Note N = 1/k for k0.
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1_2 . . . . .
Ja® =) Gylr A0 x ey -iagirab (3.19b)
p=0

where x' and v' are the relative position and velocity of the two bodies, and the coefficients
¥, and G, depend on r, #* and v2 = #* + r2¢*. For quasi-€lliptic motion in a plane, inserting
X = rcose, y = rsing, and v, = COS¢ — ré Sing, v, = 7 sing * ré cosé, we can explicitly
factorize out the dependence on the orbital phase ¢. Furthermore, using the explicit solution
of the motion (Sec. 3.3) we can express r, i and 2, and hence the F,’s and G,’s, as periodic
function of the mean anomaly ¢ = n(t - %), where n = 2x/P. We then find the general
structure can be expressed in terms of the phase angle ¢, as the following finite sum over an
index m ranging from —/ to +1,

L@ = (ﬂ)L(t’) e, (3.20a)
m=-1 m
l .
J-i(f) = Br-1(6) ™, (3.20b)

(m)

m=—|

with some complex coefficients A and ()BL-1. The important point for our purpose is
that the functions ¢, AL(f) and Br-1(£) are now 2r-periodic functions of £. As we can
see, the structure of the mass and current momentsis the same, but of course the coefficients
AL and B, have adifferent parity, because of the Levi-Civitasymbol & entering the
current moment.

In the above expressions, the variable ¢ is not a periodic function of €. To proceed further,
we need to exploit the double periodicity of the dynamicsin the two variablesA = Ktand ¢
by writing, ¢ = Kt+ W(£), where W(£) isperiodic in ¢; see Sec. 3.3. Actualy it will be more
convenient to single out in theexpression of the phase the purely relativistic precession of the
periastron kt, wherek = K — 1. Thisyields many factors which will modify the coefficients
in 3.20a, but in such away that they remain periodicin €. Hence we can write

L(n = (J)L(é’)e"'""", (3.21a)
m=it ™ )
l .
i@ = ) Tia@e™ (3.21b)
m=-1 m

Finally this makesit possible to use aFourier series expansion in the interval [0, 2] for each
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of thefunctionsin 3.21, leading then to the following discrete Fourier decompositions,

+00 1
It = I P, (3.22a)
L) ,,Z; 2 L
+00 1 .
Ja) = D D, T, (3.22b)
p=—c0 m=—1 (P
Since the moments I, and J;-;, are rea we have obviousy (pml] = (p-mdL and

emI i1 = pemTL-1-

At the Newtonian order (hencein thelimit wherek — 0),we recover the usua periodic
Fourier decomposition of the moments, with only one discrete Fourier summation index p,
by writing

+00

L@ = Tpe", (3.23a)
pm—oo ¥

@ = ), Jire™ (3.23b)
p=-co ‘P

These Fourier coefficients are smply equal to the sums over m of the doubly-periodic
Fourier coefficientsin Egs. 3.22, when taken in this Newtonian limit,

I = I, 3.24a)
(p)L ";l (p,M)L (

!
Ji-1 = J - (3.24b)
(p)L : Z (p,M)L '

3.5 Tail contributionsin theflux of compact binaries

In the present Section we compute all the taill and tail-of-tail terms in the averaged
gravitational-wave energy flux

{48\ as \°v
= ‘(217) = —<( f d m)), (3.25)

up to the 3PN order. The relevant expressions are given in Eq. 3.1. Together with the
instantaneous terms Eq. 2.7 in the previous chapter one obtains complete expressions of the
3PN energy flux.
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351 Thequadrupolar tail at Newtonian order

The mass-type quadrupolar tail term in the energy flux is made of a non-linear interaction
between the quadrupole and the mass monopole, and is given by !

4
¢mssquad=<—44—1<”(t> f dr It - 1) 1“(1) 2]% (3.26)
5 To 12

where [;; is the source's mass-type quadrupole moment, and M its ADM mass. The brackets
() denote the average over ¢, where the superscript (n) refers to time differentiations, and
where To is aconstant time scale (related to the length scale ry appearing in the general mul-
tipolar formalism [98] by 1o = 2ry/c). Theterm was aready computed using aFourier series
at Newtonian order in [145]; note that the method of [145] is applicable only at Newtonian
order since it isvalid only for periodic motion. Here we first recover the Newtonian result
of [145]. The Fourier decomposition of the Newtonian quadrupole moment reads

+00
0= ), Iye”, (3.27)

p=—00

and al the Fourier coefficientsare at Newtonian order. Weinsert that decomposition into the
flux 3.26. The average on ¢ iseasily performed with the formula

. T
(e = f Ee"’"=6p,o, (3.28)
0

and we have used the fact that if £(z) corresponds to the current time t, then it is clear that
£t - ) = £(¢) — nT corresponds to theretarded timet — 7. Theresult is

F mass quad = T Z (Pn)8 |Ilj|2 f

Finaly the last factor in 3.29, namely the tail integral in the Fourier domain, is computed
using the formula

o0

dTei”"T[ln i E] (3.29)
To 12

fo " dreé™In (Tlo) = —% [%Sign(a) + i(In(lertro) + c)] , (3.30)

where o = pn, sign(o) = =1 and C = 0.577--- isEuler's constant. Inserting then the tail
integral 3.30, we check that theimaginary parts cancel out, and the result reduces to the one

'For simplicity we do not indicatethe neglected PN terms, e.g. O(c™2). This sometimesyields some slight
inconsistency in the notation, but the meaning of each equation should be clear from the context.
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of [145], namely
4nM S
F rmass quad = —‘5_ Z(p n)7 |&ij|2- (3.31)
p=1

Unfortunately, the latter result hasto beleft in the form of an infinite series of Fourier com-
ponents, since no analytic closed-form expression for it can be found.

We stressfinally that theresult 3.31 (and this applied as well to al resultsin this Section)
is not exact. Indeed we have formally replaced inside the tail integral the motion of the
binary at any earlier timet — = by its motion at the current t, thereby neglecting the binary's
evolution by radiation reaction. Asaresult there should be aremainder term in 3.34, given
by the order of magnitude of the adiabatic parameter &.,4 Of the inspiral, which isrelated to
the radiation reaction time scale, and is given by therate of decrease of the orbital frequency
due to gravitational radiation emission, say £, = @/w?. Intermsof a PN expansion &4 isa
correction of relative2.5PN order ~ ¢>. Indeed, weknow (e.g. [145]) that the replacement of
the current motion inside the tail integral is valid only in the adiabatic limit, modulo O (£..4)
terms.

3.5.2 Thequadrupolar tail at 1PN order

Let us now tackle the same computation but at the 1PN order. At this order, as we have
seen, we must exploit the doubly-periodic structure of the motion, and use a more general
expression for the Fourier decomposition of the moments. The post-Newtonian quadrupole
moment admits a structure of the type described in Sec. 3.4, namely

+00 2

o= ), ), Iye”m™, (3.32)

p.m)

p=—00 m=-2 v

but with now doubly-indexed Fourier coefficients,,mJ;; which now involve post-Newtonian
corrections. We can even be more precise and notice that the harmonicsfor whichm = 1 and
m = -1 arein fact zero (at the 1PN order), so that

+00
I(t) = Z { Iy e T y SO L T y ez(p-zk)f}_ (3.33)
p=—oo ».0) (p.2) (p—2)

However, itismore convenient in thefollowing to work with the general decomposition 3.27,
keeping in mind that the terms with m = 1 or —1 are absent. As before we insert the dou-
ble Fourier series 3.27 into the expression of the flux 3.26. Thisreadily yields, till in the
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adiabatic limit, i.e. neglecting O (&:,4) Corrections,

4M
Tmass quad ?P»;Z 8(p mk) (p +m k)s | )I] (plm )I]

X (/PP HimemOREy f s e"'@’*’""‘)"f[ln( . ) + E] (3.34)
0 12
The summations range from —oo to +o0 for p and p', and from -2 to 2for mand m. The
first two factors after the summation signs evidently come from the time-derivativesof the
guadrupole moment. We have explicitly left as they are the last two factors which are the
average over ¢ of an elementary doubly-periodic complex exponential, and the tail integral
in the Fourier domain.

We want now to work out the expression 3.34 at the specific 1PN order. Since therel-
ativistic advance of the periastron k is already a small quantity of order 1PN, the first thing
to do is to evaluate 3.34 at first order in k [i.e., neglecting O(k?)]. Later we shall have to
insert some explicit expression for the 1PN expansion of the components of the quadrupole
moment itself. We provide here the necessary formulas for performing the expansion in k of
the last two factorsin 3.34. For the E-average, which is defined by

2

(ei(p+mk)€) = f dt t(p+mk)t’ (335)
0 27T

we readily find the following result, using thefact that since we arein thelimit wherek — 0

we shall always have mk < 1 (hence p + mk is never an integer except when p = 0):

iy if p#0
(ei(p+mk)f> — P + O(kz) (336)
1+immk ifp=0

We notice that this result depends only on whether p is zero or not, and is true for any
integer m, with the small exception that when m = 0 the result 3.36is"exact™ asthereis no
remainder term O(k?). Concerning the tail integral in 3.34, we expand it at first order in k,
obtaining

f +mdre"v’*"”‘)'"1n(:) (1——-) f dre“""ln( ) z—+0(k2) (3.37)
0

and then apply for the remaining integral the formula 3.48. With the formulas 3.36 and
3.37 in hand we can explicitly work out the tail expression 3.34 at first order in k (and the
extension at higher order in k would in principle be straightforward). The result will be left
in the form of some infinite series, directly obtained by replacing 3.36 and 3.48 into 3.34,
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that we shall compute numerically below as afunction of the eccentricity.

3.5.3 Higher-order multipolar tails

In our calculation of the binary's fluxes a 3PN order, the only tail integral which has to
be computed at relative 1PN order is the quadratic tail integral discussed in the previous
subsection. All other tails, and tails-of-tails, can be computed at the (relative) Newtonian
order. We compute here the relevant multipolar tails. Their definitionsare [95]

Frnass ot = fgﬂg I f drl“’(t—r)[ln(:o) 2(7)]> (3.39)
59
Fows . = (e 1550 [ ari-ofn(Z)+ B} @39

in the case of mass-type multipolar tails, and

Famans = (gt 150 [ arsPa-nfin(Z)+ 1), (3.40)
Famoa = (37 ij,g(t) f dr I 1) ln(T0)+§]), (3.41)

for the current-type ones. The computation proceeds exactly as for the Newtonian
quadrupoletail in Sec. 3.5.1, and we give only the results:

47M 0 »
mass ot — oo ijkl s 3.
Foass ot = s Z(pn) |2l (3.42)
— 11 2
Fouss dotec = 5 Z(p MLl (3:43)
64nM
qad = Z( 1T, (3.44)
Fame = 5 oy 1Tl (3.45)
curr oct  — 21 pé;,(p n) (p)l_]k . .

As we see, these results can be expressed in terms of rather smple Fourier series, unlike
in the case of the 1PN quadrupole tail 3.34 which is substantially more intricate when the
summationsarefully explicated. Asin [145] we shall provide some numerical plotsfor these
results, since the infinite sums 3.42 cannot be computed analytically.
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3.5.4 Quadrupolar tail-of-tail and tail squared

At the 3PN order (i.e. 1.5PN beyond the dominant tail) appear the first tail-of-tail aswell as
aterm composed of the square of the tail, both of them being made of interactionsbetween
the quadrupoleand the mass [158]. The tail-of-tail contribution admitsthe expression

4M? +oo 124627
Fa sy = (—— 1) f a1 - o)’ (T)+§zl (T)+ EXT
0

70 44100

whilethe tail squared oneis

aM? T\ 11
ﬂuad(ml)z:(—s-—( fo d‘rl(s)(t—‘r)[ln( ) 12])) (3.47)

As before we insert into these the Fourier decomposition of the quadrupole moment 3.27.
The new feature with respect to previous computationsis of course the occurenceof aterm
with alogarithm squared in the tail-of-tail integral 3.46. The correspondingformulaneces-
sary to compute thislogarithm squared is [compare with Eq. 3.481

f "~ dr " In? ( T ) _ L {”—2 - [gsign(o) + i(ln(lalro) + C)]z} . (3.48)
0

To ol 6

With thisformulatogether with 3.48 we obtain for the tail-of-tail

AMEES . , (7 2 57 124627
g:quad tail(tail) = T;(p n) I(g-)ijl {g - 2(1n(pnT0) + C) + g(ln(PnTO) + C) — 22050 } »
(3.49)

and also, for the tail squared,

2+oo

quad (til? = —Z(P )8 |<I) |2{ + 2(ln(pn‘ro) +C- 1%) } (350)

As we can see the contribution from logarithms squared cancel each other between 3.49
and 3.50, see[158], and wefindly get

M2 {116761 22 214 214

4
quad til(aily+(ail? = T;(pn)glf,,l o460 + -3 — 165C — msln(PnTo)}

3.51)
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3.6 Definition of the eccentricity enhancement factors

We define here some functions of theeccentricity by certain Fourier seriesof the components
of the Newtonian moments I, = ux<t> and J;_; = ux<L-2gi-1>2bxab for a Keplerian ellipse
with semi-major axis a, eccentricity e and frequency n = 2n/P. We rescale the moments to
adimensionalize them by defining

~ lL

IL = Bt (3523.)
ua

Jia = JL;‘. (3.52b)
pa'n

Then we define the some dimensionless Fourier series, which are functionsonly of the (Ke-
plerian) eccentricity e. First of all the function

1 & s
f@ =3¢ ), P\Tub, (3.53)
p=1

is nothing but the Peters & Mathews " enhancement" function [138], which enters the energy
flux at the Newtonian order (given by the Einstein quadrupole formula), i.e.

Fx = 3?2 VX f(e), (3.54)

when computed using Fourier series. Remarkably T (€) admits an algebraically closed-form
expression, crucia for the timing of the binary pulsar PSR 1913+16, and given by

732, 3 4
1+24e + 5¢€

(1- e2)7/2 (3'55)

f(e) =
The enhancement function f(e) is called that way because in the case of the binary pulsar,
which has eccentricity e = 0.617... it enhances the effect of the orbital P by a factor ~
11.843.
Next we define several other eccentricity ** enhancement" functions which constitute use-
ful ingredients when parametrizing the tail termsat Newtonian order. We pose

1 +00 .
o) = ==y plL;P (3.56)
32; (»
20 « 9 7 2
= rYYeYs Il" ’ 3-57
B = 19200 ;p 12 (3-57)
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Ye) = 4 Zp T f (3.58)
p=1

Likefor f (€) thesefunctions are defined in such away that they tend to onein thecircular or-
bit limit, when e + 0. However, unlikefor f (€), they do not admit closed-form expressions,
and must be left in the form of Fourier series. The function ¢(e) has already been computed
numerically in [145] 2. With their help the Newtonian tail terms computed in Sec. 3.5 read

32

Fonsss quad = 6—V2x13/2{47r<p(e)} (3.59)
32 164

Tmassoct = V2 15/2 3.60
; {%016 mple )} — 4 (3:60)

Fomaus = 2 VX" eyl -4v), 3.61)

where we have factorized out a coefficient appropriate to the Newtonian expression of the
flux for circular orbits; compare with Eq. 3.54.

Next we introduce two other enhancement functions which are helpful when parametriz-
ing the tail-of-tail and tail squared integrals (which werecall are Newtonian with the present
approximation). Namely

Flo) = o Zp P, (3.62)

Z piin(Z )II ol (3.63)

It iseasily checked, by a straightforward calculation a la Peters & Mathews [138], that the
function F(e) admits an analytic form similar to the one of f (€) and given by

x(e)

1+85 2+5171e4+1751 6+ 297 8

192 192 1024 (364)

Fe) = (1= )b

On the other hand, y(e) does not admit any analytic form, but iseasily seen to tend to zero
when e — 0. Indeed, a Newtonian order and in the circular orbit limit, the quadrupole
moment admits only one harmonic, which is the one for which p = 2. But, because of the
logarithmic term in y(e), we see that the function is zero when e = O.

Now, in terms of F(e) and y(e), the sum of tail-of-tail and tail squared contributions

2Note that our notation here is different from the one in [145]; the function ¢®5(e) thereis related to our
definition by ¢BS(e) = @(e)/T (€). In the present work it is better to not rescale the variousfunctions using the
Peters & Mathews " enhancement™ function f (e).



Chapter 3

4x10°

3x10°-

x(e)

2x10°

1%x10° -

1.2x10%

8.0x104

F(e)

4.0x104

0.0

0.2

0.4

0.6

0.8

1.0

121

Figure 3.4: Thisfigureshowsthevariation of x(e;) (top panel) and F(e;) (bottom panel) with
the eccentricity ¢;. The plot indgde the graph is the zooming for the functions which look
as straight horizontal linesin main graph. In the top pand the dot points are the numerical
computationfor y(e;) at ¢, =0,0.5, 1, 1.5,.... Thesolid linesare the fittingfor the numerica
points. | n the bottom pand, the exact functiond F(e;) isused. At the drcular limit, ¢, =0,

() =0, F©0) = |.
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computed in Sec. 3.5 reads

32, 8{[ 116761 16 , 1712 1712 (4wr0)]
- - - In

7:taﬂ(taﬂ)ﬂtail)l = '75“’ =

1712
3675 3" 105 = 105 Fey= X(e)}'

105
(3.65)

Finaly let us give the result in the case of the 1PN quadrupole tail. As we have seen
in Sec. 3.5.2, the calculation in this case is much more complicated, as the Fourier seriesin
Eqg. 3.34 involve several summations. In addition the computation must takeinto account the
1PN relativistic correction in the quadrupole moment (and ADM mass). There is no simple
way to express the new " enhancement™ functions of eccentricity which appear at the 1PN
order. However one can check beforehand that the 1PN terms are a linear function of the
symmetric mass ratio v, hence we must introduce two enhancement functions, denoted a
and 8, and as previously we define themin such away that they are equal to one for circular
orbits. We shall therefore give here only the definition of these functions, and resort to a
numerical calculation of them in the next Section. We have [extending Eq. 3.9 at the 1PN
order]

32 178
Frassquad = 5 v2x‘3/2{4mp(e,) +rx [-%-28 ole)) + —2—1—v0(e,)]}. (3.66)

Note that since we are at 1PN order we must use a specific definition for the eccentricity,
and we adopted the eccentricity e, defined in Sec. 3.3.2. On the other hand, the variable
X = (mw)*3 crucialy incorporates the 1PN relativistic correction coming from the periastron
advance K = 1t k, through the definition w = nK; see Sec. 3.3.1.

3.7 Numerical evaluation of the Fourier coefficients

We shall now describe the numerical implementation of the procedure for computation of
the Fourier coefficientsof the multipole moments, notably the (. Z;;’s at 1PN order which
are the more difficult to obtain. The mass quadrupole moment to 1PN accuracy isgiven by:

1[,(29 29v\ Gm [ 5 8
I,'j = Vm{1+— rl—m—J|+—\\——=+=v XXy

c? 42 14 r 7 7
11 11\ 2 2 6\rr
+ ('2—1 - 7) ? Vv + 2(—-7 + 7) -67 X<,'Uj)}. (3.67)

We a'so will need the ADM mass M to 1PN accuracy:

M=m

1+ (f _ G_’”) . 0(4)] | (3.68)
c2\2 r
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Using the quasi-Keplerian representation, the dependence of I;; on xi, v;, r, v and i- can be
parametrised in terms of of th eccentric anomaly u. However, as explained previously we
require I;;(£) in the time domain to proceed

The steps of our numerical implementation scheme can be now summarised asfollows.

1. Wefirstinvert the equation for the mean anomaly € = u — e, Sinu to obtain u(£). This
can be done

e By using
u="£6+2 Z %Js(se) sin s, (3.69)
1

e Or mumerically by finding theroot of £ = u — e, Sinu to obtain u(¢).

The latter isa more efficientand more accurate method and we employ it in thiswork.
We used the FindRoot routine in Mathematica. In this case we generated a table of
20000 points of « and ¢ between 0 and 2z, The above inversion enables us to re-
express all functions of the eccentric anomaly « as functions of the mean anomaly ¢.
One needs to be careful in dealing with the » dependence of V in Eq. 3.16 to avoid the
discontinuity there. To thisend it is best to use:

By sinu )

V) =ut2 tan"l(i—— By cosu (3.70)

where 8, = —Y—%_ Wijth these choices, we thus have on hand, (. Z:;(¢ inedin
, = — Y1 \With these ch hus h hand, o 3(£) [defined

€9
Eq. 3211 asexplicit functions of ¢ to implement the Fourier decomposition.

2. Recall that these functions also have dependence on v and x, where the former is the
symmetric mass ratio and the latter the PN parameter given by x = (mw)?? with
w = nK. To avoid assuming numerical valuesfor v and x and hence to preserve the
full generality of the result, we split the function ,,,7;; as

m)

Iij(fa €, x) = (I)?jo([7 et) +x I)ll?(fa et) +v Ii}(f, et) . (371)
(m) m (m (

Notice that we have neglected the terms higher than 1PN in writing down the above
expression. Now the various onZ ,.‘;.” are only function of £ and . We evaluate the
Fourier coefficientsof these terms separately in the next step of the procedure.

3. For afixed valueof e,, wecan straightforwardly get the plot of ¢, 3.0 versusC. Equiv-
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alently, one can also write the Fourier decomposition of (7 ;; %) as

L5 = Z 7%, (3.72)

o (Pm)

Now we seek a numerical fit to Eq. (3.71), in powers of €%, to extract out the coeffi-
cients I . Do the same for different valuesof e, and for (,,m 7.} and ¢pmI 5"

4. Substituting these valuesinto Eq. 3.34 one can generate the numerical values of the
averaged energy flux Fu; for the different values of ¢,, and hence get the numerical
values of the enhancement functions, and most importantly of the 1PN ones a(e,) and
6(e;). The plots of the functions as given in Eq. 3.92 readily follow.

We have just described the procedure for the most difficult 1PN quadrupole tail. This
procedure is quite general, and could be extended to higher post-Newtonian orders. On the
other hand, for the other tail terms, which are Newtonian, we could proceed exactly in the
same way. However, at the Newtonian order it isin fact much more efficient to make use of
the well-known Fourier decomposition of the Keplerian motion. Using this we can derive
the components of the multipole moments (at Newtonian order) as series of combinations
of Bessel functions. Then it is a very simple matter to compute numerically the associated
"Newtonian™ enhancement functions [namely ¢(e), B(e), y(e) and y(e)]. Thisisthe method
which was used in [145]. The relevant expressions of the components of the Newtonian
multipole moments, as series of Bessel functions, that we have used to compute numerically
the functions ¢(e), B(e), v(e) and y(e) arelisted in thefollowing subsection.

3.7.1 Fourier coefficientsof the multipole moments

In this Section we provide the expressions of the Fourier coefficientsof the Newtonian mul-
tipole moments in terms of combinations of Bessel functions. Following what we discuss
above and [145] we decompose the components of the moments as a Fourier series

+o00

L = I e™, (3.73)
pe—oo P

Jin@® = Z Ji-1€” (3.74)
p=—oo (P)

The Fourier coefficientscan been obtained by evaluating the following integrals

2

I, = 1 de 1 () e, 3.75)
® 2 Jo
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1 2

Ji1 = 7 df]L—l(f)e_ipf-
1)) T Jo

For the mass quadrupole moment at Newtonian order we have

»)

»

»)

®»

3

1
= (6 +§ ?)Jp (pe))

7 3

—39 - 563)(11;-1 (per) + Tps1 (per)

e/) (Jp—Z (pef) + Jp+2 (pet))

——e?) (V53 (Pe) + Jpu3 (pey)),
5

i\1-¢€ {get ("Jp—l (pe) + Jpu1 Pet))

1 1
v (_Z B Zetz) (Jpv2 (PED) = T2 (per)

[a—y

+'§e[ (Jp+3 (pel) - JP"3 (pet))}’

1
(6 - e[Z) Jp (pet)

3 1
+ (get + 26,3) (Jp—l (pe;) + Jpiy (pe,))

_Al_l (Jp—Z (pe;) + Jps2 (Pet))

1 1
+ (get - ﬁef) (Jp—3 (pe) + Jpi3 (Pet)),

11
_ (_§ _ 5ef) J, (pe,)

1 1
+ (56, + §€,3) (Jp_l (per) + Jp+1 (pet))

1
=3 (752 (pe)) + T pua (pey)

1
+ﬁe,3 (Jp_3 (per) + Jps3 (pet))-

125

(3.76)

3.77)

(3.78)

(3.79)

(3.80)
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For the mass octupole moment we find

3 11
Txx = ('S'et + _8_63) Jp (Pet)

(3 21, 11

NNy e,)(],,_1 (pe)) + Jput (pe) +

11 3
(556; + 566’3) (Jp_z (per) + Jp42 (pet))
1 3, 3,
(_ 2Q “ 4 40 )(Jp-3 (per) + Jp+3 (Pet))

1 3
+ (-1—6€t - '8"6‘9:3) (Jp—4 (pe) + i (Pet)),

. 3 57
({)xxy = i4l-¢€ {(4—0 + %e,)(JPH (per) - Jp-1 (pe,))

11 19
+ (_Z_Oet _ %e?) (Jp+2 (pe)) — Jp-2 (Pet))

17
= (é + §8‘ff2) (Jps3 (per) — Jp=3 (pes))
1
+ (_%et + ﬁef) (Jp+4 (per) — Jp-4 (Pez))},

3 13
Ixyy = ('S'et 16et)J (pet)
NEENEIFYS:
40 80 80
3 3,

)(Jp_l (pe) + Jpi1 (Pet))

+\=Ze + 286 | (Jp-2 (pe) + Jpu2 (pe)
1 3 9
+ 3 1 %62 - %6?) (Jp—3 (pe) + Jps3 (Per))

- 9
+\-Ze + ?88"?) (Jp_4 (pe) + Jpea (pet)),

. 3 3
(fp)yyy = | {(Zd - ge,z) (—Jp_l (per) + Jpi (pe,))
13 1
+{ g5+ 50 | (=702 (e + Jpua (pe)
1 1

5 - 19% | (=73 e + pus (pe)

16 40

+(—1—e, - ief)( Jo-s(pe) + Jpua (PeD)|

1 3
Tox = (__et—_ )Jp(Pet)

(3.81)

(3.82)

(3.83)

(3.84)
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1
+ (2‘ )(Jp—l (Per) + Jpu1 (per))
3
+ (_._et ) p-2 (pe,) + Jp+2 (pet))
3
+ (__ef +— ) -3 (pe) + Jpi3 (Pet))

1
~T60¢ (J -4 (pe) + Jpia (Pez)),

_ 13
T = iql=-€ {(—% ~ 50¢ )(_Jp—l (per) + Jpn (Pet))

3 1
+ (Zae' + @ef) (~Jp-2 (ped) + Jpi2 (pey)

3
256 (o3 (Pe) + Tpu3 (per)

1
+1—6—Oe? (_Jp—4 (pet) + Jp+4 (pet))}
Finaly, for the current quadrupole moment,

T =

1

— /1 - e*{3e,J, (pe
» 2 t{ tp(pt)

+

(_1 _ el)( -1 (pe,) + Jp+] (pet))
+%€t (Jp—z (ped) + Jps2 (pe,))},
Tye = i(1-&){(Jon (per) = Jpm1 (per)

)

_%et (Jp+2 (per) = Jpa (pe,))}-

3.8 Final expressonof thetail integrals

(3.85)

(3.86)

(3.87)

(3.88)

Based on the treatment outlined above of a numerical scheme for the computation of the
orbital average of the hereditary part of the energy flux up to 3PN, we findly provide the
completeresultsfor the dimensionless enhancement factors and their numerica plots. Itis
convenient for the final presentation to redefine in a minor way some of the enhancement
functions of Sec. 3.6, which were directly given by simple Fourier decomposition. Let us

choose
13696 16403 112
v = Zio7 @~ 5557350 ~ 33573 7@
1424 16403 16
0@ = ~2081 %9+ Tz PO+ 1729 7

(3.89)

(3.90)
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59920

Ke) = FO+ el

X (e). (3.91)

Considering thus the 1.5PN and 2.5PN terms, composed of tails, and the 3PN terms, com-
posed of tailsof tailsand tail squared, the total hereditary contribution to the average of the
energy flux, normalized to the Newtonian valuefor circular orbits finally reads

8191 583

32 !
ﬁng = 3 v x5{477 X wle) + nx’? ["% yle) - 2_4V9 (et)}

11 1712 (4
+x3[ 6761 K(e,)+[5n2— 2. ln( “;’0)] F(e,)]}. (3.92)

3675 3 105 105

All the enhancement functions in Eq. 3.42 are defined in such a way that they reduce to one
in thecircular case, e, = 0, so that the circular-limit of theformulaisimmediately seen from
inspection of Eq. 3.42, and is seen to be in complete agreement with Refs. [158, 95].

In Eq. 3.42 there are four enhancement functions which probably do not admit any ana-
lytic closed-form expressions: these are ¢(e;), ¥(e;), 6(e;) and «(e,). However, F(e,) isknown
analyticaly, and werecall hereits expression,

1+ SGTSetZ_’_ 51716;1+ 17516?4‘ 297 68

192 192 1024 ¢
= (3.93)

F(e) =

We now present the numerical plots of the four enhancement functions ¢(e;), ¥ (e;), 8(e,) and
k(e;). We have explained the details of the numerical calculation in Sec. 3.7. The figures
display the plots of dl these enhancement functions asfunctions of eccentricity e,

3.8.1 ThelLogtermsin thetotal energy fl

As seen from Eq. 3.92 the result depends finally on the constant rq = 74/2 at the 3PN order.
We are now in a position to discuss in detail the structure of the Log term in the complete
energy flux, the cancellation of the Inry term and the circular orbit limit of this term for
one last fina check of this complicated calculation. From EQ. (3.101f), the log termsin the
instantaneous contribution to the average flux is given by

2 _ 2
2o {1712F(e,)ln x(c r")“ VI-& ]} (3.94)

5 105 Gm| 2 (1 - etZ)
Similarly, from Eq. (3.92) thelog termsin the tail contribution to the average flux is

%% e {—EF(e,)ln [4)9/2 (C;—;“)]} (3.95)

105
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Figure 3.5 This figure shows the variation of a(e,) and 8(e,) with the eccentricity e;. The
plot ingdethe graph isthe zooming for thefunctionswhich look as straight horizontal lines
in main graph. The dot pointsare thenumerical computation for a(e,) (top pand) and B(e;)
(bottompand) & e, =0, 0.5, 1, 15, .... Thesolid| i nes arethefitting for the numerical points.
At thedrcular limit, e; =0, a(0) = B(0) = 1



Chapter 3 130

1.5x10° : e
1.0x10°
v(e,)

5.0x10"

0.0

2.0x10*

1.5x10" -

o(e)
1.0x10"

5.0x10°

0.0

0.6 0.8 1.0

o
e
=
3]
o

Figure36: Thisfigureshowsthevariationdf y{e,} (top pane) and 8(e;) (bottom panel) with
the eccentricity e,. The plot inside the graph is the zooming for the functions which look
as draight horizontal linesin main graph. The dot points are the numerical computation for
v(e,) and 8(e,) at ¢, =0, 05, 1, 15, .... Thesolid linesare thefitting for thenumerical, points.
At thedrcular limit, e; =0, y(0) = 8(0) = 1
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Figure3.7: Thisfigureshowsthevariation of ¢(e;) (top panel) and ¥(e;) (bottom pand) with
the eccentricity ¢, The plot inside the graph is the zooming for the functions which look
as straight horizontd linesin main graph. Thedot pointsare the numerica computationfor
o(e;) and yr(e,) at e, =0, 0.5, 1, 1.5,.... Thesolid linesare thefittingfor the numerical points.
At thedrcular limit, &, =0, ¢(0) = ¥(0) = 1.
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Figure 3.8: Thisfigureshowsthevariation of &'(e,) (top panel) and «(e;) (bottom pane) with
the eccentricity e;. The plot inside the graph is the zooming for the functions which look
as draight horizontal linesin main graph. Thedot points are the numerical computationfor
¢ (e,) and x(e,) at e; =0, 0.5, 1, 1.5,.... Thesolid linesarethe fitting for the numerica points.
At thecircular limit, e, =0, &(0) = «(0) = 1.



Table 3.1: The tablelisted the numerical variation of all enhancement functions with eccentricity e,

,.
("

¢ 1o1dey,

€ ale) Ble) y(er) B(e;) é(e,) & (er) Yler) F(e) x(e) K(er)
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0 1.000
005 1.015 1.047 1.076 1.032 1031 1.052 0.9925 1.053 0.02673 1.066
0.1 1.058 1.197 1.324 1133 1.127 1.221 0.9646 1.222 0.1172 1.282
0.15 1133 1481 1.803 1.319 1.304 1.540 0.8971 1.545 0.3071 1.702
0.2 1.237 1.959 2637 1.623 1.588 2.082 0.7492 2.100 0.6738 2445
0.25 1.370 2.745 4.059 2.104 2027 2981 0.4401 3.032 1.376 3.737
03 1519 4.045 6.510 2.865 2.702 4.480 -0.1907 4615 2.738 6.020
035 1.647 6251 10.84 4.094 3.757 7.045 -1468 7.380 5.451 10.18
04 1.656 10.12 18.75 6.146 5.447 11.59 -4.073 12.40 11.04 18.07
045 1.290 17.23 33.85 9.724 8.254 20.00 -9.499 2198 23.08 33.82
05 -0.1238 3100 64.19 16.31 1313 36.44 -21.20 41.32 5043 67.20
0.55 -4.423 59.49 129.2 29.23 2207 70.69 -47.70 83.24 116.9 143.2
0.6 -16.94 1234 279.7 56.76 39.63 148.0 -1120 182.3 292.6 3324
0.65 —54.65 281.8 664.6 121.7 77.23 341.2 -282.5 443.1 810.1 858.8
0.7 -178.7 729.5 1785. 296.2 167.3 890.4 —-794.0 1233. 2567. 2551.
0.75 —652.1 2239, 5665. 856.3 417.9 2753. -2611. 4127. 9805. 9159.
0.8 —2928. 8789. 2.294 x 10* 3172. 1282. 1.088 x 10* | —1.087 x 10* | 1.802 x 10% | 4.921 x 10* | 4.328 x 10*
0.85 || —1.887 x 10* | 5.084 x 10* | 1.366 x 10° | 1.734 x 10* 5440. 6.332 x 10* | —-6.612x 10* | 1.198 x 10° | 3.811 x 10° | 3.153 x 10°
09 || -2.421 x10° { 5.960 x 10° | 1.647 x 10¢ | 1.926 x 10° | 4.163 x 10* | 7.464 x 10° | —8.102x 10° | 1.712 x 10° | 6.519 x 10° | 5.058 x 10°

eel
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Summing up, we havefor the log termsin the total 3PN energy flux

8\/3?(1 —e,z)
1+ 41-¢

The dependence on ry cancels as expected from general considerations providing a check on
our algebra. Moreover, in the circular limit, F(0) = 1 and the net result for the log term in
the averageflux is —%g- In 16X, in perfect agreement with [95].

After the aboveexplicit check of our computation, let us understand in bit more detail the
occurence of this constant. We first remind from [158] that the dependence of the radiative-
type quadrupole moment at infinity, say U;;, in terms of the constant r, arises at 3PN order,
exclusively from the tails of tails(i.e. the multipoleinteraction o« M? X I;;), and isexplicitly

given by

32v2x° 1712
- B en]
5105 [ @)in

. (3.96)

+ 214
105

where weindicate that at the lowest Newtonian order U;; reducesto the second time deriva-
tive of I;;, and where the dots indicate all the terms which do not depend on 7. From thisit
is then trivial to deduce that the corresponding dependence of the tail part of the energy flux

U =I5 t... M2 IO Inrg + ..., (3.97)

on ry is given by

428
ﬁail=---—§5—M2<I§}”I§f)> Inrg+---, (3.98)

where we have taken advantage of thefact that inside the time average operation () one can
freely operate by partsthe time derivatives. Hence, we wrote (I12)) = I L) to arrive
at the result 3.98. Thus, the effect 3.98 looks like a " quadrupole formula” but where the
third time derivative of the moment is replaced by the fourth one. Notice that the far zone
total energy flux in Eq. (2.1) is true for any post-Newtonian source, and in particular for a
binary system moving on eccentric orbit. From thisone readily infersthat the dependence on
eccentricity e, of the coefficientof Inry in EQ. 3.89 must necessarily be given by thefunction
8 +00

Fle)) = % dPLPy = é ; P Lt (3.99)
in which we made use of the reduced quadrupole moment defined by Eq. 3.52a. Theresult is
thus perfectly in agreement with our finding of thefunction F(e) in Eq. 3.62. Thedependence
of thetail part of the averaged energy flux on the constant r, issuch that it cancels out, for any
vaueof the eccentricity, with asimilar term coming from the instantaneous part of the flux.
Of course such cancellation must be truefor any source, and can be shown based on genera
arguments in [158], but for the present case it gives an interesting check of our calculations.



Chapter 3 135
3.9 Thecomplete3PN energy flux

At long last, we are now in a position to write down the complete 3PN GW energy flux
averaged over an orbit for an ICB moving in an elliptical orbit. Summing up the averaged
instantaneouscontribution of Eq. 3.100and the tail contribution Eq. 3.92the orbital average
of the energy flux in the modified harmonic coordinatesis:

327¢ 1

<E>vHar = 3 (1 . )7/2 (< EN >MHar +X < E1pN >MHar
t
+x7? < 83/21>N >MHar +x* < 82PN >MHar
+x°72 < Espapy >wbtar +X° < E3py >witar) (3.100)
. 73,37
< EN >Mhar = 1+e§ﬁ+e;‘ %’ (3.101a)
. ]
< E1PN >Mhar =
(1 - e,z)
124735 v 10475 _ 1081
36 12 672 36
10043 311 2179 851
=2 2 3.101b
( 84 12 )+ (1792 576 )} (3.101b)
< EiseN >Mhar = 4moley), (3.101¢)
. 1
< 82PN >Mhar = 2
(1 - e,z)
203471 12799 65, ,( 3807197 116789 5935 ,
5072 T 504 "t 18" T\ 1814 T 2016 54
oo 268447 _ 2465027 247805
“\" 24192 ~ " 8064 864
Loo(1307105 _ 416945 185305
'\716128 2688 1728
,,3(86367 _ 9769 21275
“\6a512  2608° " 6912
35 6425 1285
_ 21 = _ - =
+w/1 e; [(2 7v) ( 13 7 ) .
5065 1013 185 37 \
_ Loi3 o 3 3.101d)
(64 32 )+ (96 48 )]} ( )
. 8191 583
< E25PN >Mhar = ﬂ[ 7 Yle) — V9'(€r)} (3.101e)
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1

(1 - ef)3

{1266161801 (8009293 41 2) 94403 7751/3

< E3pN SMbar =

9979200 54432 64" )V 3024 ' T 324

(27805251167 654126203 4879 5| 1179281 , 5369 ,
+e + —~ V- v

719958400 272160 1536 3024 243
Lot 670405291 (763187017 29971 ;] 142865 , 10816087 ,
¢\ 415800 136080 1024 " 192 7776

o [1121282527 [1147175951 ~ 84501”2]V+ 100111945 , _ 983251V3)
1478400 1451520 4096 48384 648

5 (22052148101 [ 32334863 4059 80211601 , 4586539 3\
"\ 141926400 +[“ 120024~ 4096 ]” 193536 15552

10( 8077637 9287 8977 , 567617 )

“ \"11354112 ' 48384° * 55206" ~ 124416"

165761 287 14935421 52685
1 _ 2 _ 2 _ 2
N T [( 1008 192" )V te ( 6048 | 4608 " )V

4( 31082483 41533 ) 6( 40922933 1517 )
v+e |-

“\" 8064 6144 " '\ 48384 ' 9216

ret (2073, +(1 - eHB? 1—6712 - 1712ln 8\&(1 —e’)
‘\ 288 ’ 3 105 |1+ Jioe
1712 116761

- - 3.101
105 C)F(er) 3675 K(et)]} ( Ot)|

f
Recall that the e, above denoteseM™. Similarly, the total orbital average of the energy flux

in the ADM coordinatesis given by:

: 32v2x° 1 . .
<& >apm ; 72 (< En >apm +X < Epy >aDM
(1 e,)
+x*% < E3ppn >apm +X° < Epn >ADM
+x5/2 < 85/2pN > ADM +x3 < 83PN >ADM) (3102)
: 73 37
<Eyv>am = 1+ e%24 +et— 56 (3.103a’)&
6oL 1247 35\ | (10475 1081
< CIPN ZApM = (1) 336 " 12 612 36

10043 311 2179 851 .
_3u 21m 851 3.103b)
( 384 12 )+ (1792 576 ))} (3.103b;
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<Eisen >apm = 4dmole), (3.103¢c)
. 1 o
< &pN >aDM = 3
(l - e?)
{_203471 12799 65 , (_3866543 , 461 5935V2)
9072~ 504 18 '\ 18144 ' 2016 = 54
4( 369751 3039083 247805 2)
e |- - v+ 1%
24192 ~ 8064 864
e (1302443 _ 215077 185305 )
‘\"16128 ~ 1344 1728
(86567 9769 21275 Vz)
64512 4608 " 6912
35 6425 1285
+4/1 —ef{7—7v+e (-4§___ZT )
+e;‘(5225 12;3v)+ (%-i—; )]} (3.103@‘
<&r 5o >aom [ e - Sﬁve'(e,)] (3.103¢)
<&Ewn >apm = 1 3
(1 - e,z)
1266161801 [8009293 41 ,| 94403 , 775
{ 9979200 [54432 ‘a”]”‘m T 324
(27685797767 [250838045 , 31255 ] 133487 , _ 53696V3)
19958400 108864 1536 6048 243
(5135886353 [479870915 7459 ] 1305967 , 10816087V3)
3326400 108864 1024 576 7776 |-
352339259 [ 4938799 78285 34228207 , 983251 ,
( 492800 [ 145152~ 4096 ]” 12096 = ~ 648 ") |
21840664301 [ 36513893 4059 86104369 , 4586539 .
(141926400 [— 129024 4096 ]” 193536 15552 )
o(_ 8977637 9287 8977 , S67617
’( 11354112 * 48384° ' 55206° 124416 )
Lo [(_165761 L 287, )v+e2 (_14935421 , 52685 , )V
“I\" 1008 T 192" ‘\"T 6048 4608
+e4( 31082483 41533 )v+e6(—40922933+1517 )
‘\"7 8062 ' 6144 r\" 748384 9216
e (" 10731/)] +(1 - e)P? [[lgﬂz iz, 8\/}(1 _ e,)]
288 3 105 |14 yI-e
—ﬂc) F(e,) - 1;221 K(e,)]}. (3.103f)
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Beware that the e, above denotes eAPM,
Thecircular orbit limit of the aboveexpressionsis obtained by setting e, = 0 and

Fle,=0)= ¢(e,=0)=¢'(e,=0)= 0'(e,=0) = «(e, =0) = 1. (3.104)

Asexpected both from Egs. 3.100 and 3.102 one obtains,

<E>p = 3,:’_—2x5v2{1+x(——%—§\/)+4ﬂx3/2

336 12

4711 9271 8191 583
29 702" e el _ 5212277 et
( 0072 ' 504" " 18 Vz) g (672 Y V)

3(6643739519 16 , 1712 . 856

69854400 T 3" 105 C 105 16X

[_14930989 41 , ﬁé)]v 94403 775 )} (3.105)

272160 48" 3

- =V

052" 324

The above expression isin exact agreement with Eq. (12.9) of [95].

3.10 Theted particlelimit of the 3PN energy fl

In the previouschapter we obtained the contributionof the instantaneoustermsin the energy
flux in the test particle limit to order 2. It isgiven by:

gy = 2o
1247 4711 1266161801 2r
a4l 1266161801 1742 ¥
{1 336" 072 ”( 9979200 [Gm ])
2157187 84547 , (22718275589 1702 [cry
"\22 ~ 168" 756 9979200 105 | Gm
+0(e). (3.106)

In what follows we shall consider the test particlelimit of the tail contributionsin our com-
putation. From Eq. 3.92 it is given by:

8191

&% = gvzxs {4zrx3’2<p(e,) 57 T W (e
116761 59920
0 [' 3675 (F )+ o764 ’))+

3 105 =~ 105
+0(e?). 3107

(1—6—7r2 - 1712C— 1712 In [46 r0x3/2])F(e,)]}
Gm
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To proceed further, the enhancement function should be expanded up to power e2. Let us
assume that they are expanded as:

F(e) = l+apet2+0(e;‘)’ (3.108a)
ple) = | +aet+0(el), (3.108b)
Yle) = l+aye +0(), (3.108¢c)
X(e) = aef+0(eH, (3.108d)

wherear, a,, a, and a, are pure numbers.
After substituting Eqgs. (3.108a)-(3.108d) the tail part in the test particle limit becomes:

. 32 8191 116761 1712C 1672
8Ta11 - Z£.2.5 4r00? — 512 4 3 - —
I A M P 3675 105 | 3
1712 ctry
el 032
105 n[4Gmx D
8191 1712
2 2, _ /2 3)_
+e |dma, X + - =) ma, X + x { o5 &

+aF( 116761 1712C 167r2_1712ln[4c2rox3/2])}

3675 105 T 3 105 | Cm

} +0(£43.109)

Summing up the instantaneous and tail parts then givesthe following result for the complete
3PN energy flux in the test particle limit. We have,

_ M7 8191,

EMMM - _ 3,5—2V2x5{1 - 1247 x + 4nx3?

=0 336 9072 672
(6643739519 1712C 16n* 3424 In(2] - 856 n(x]
69854400 105 3 105 105 *
157 187x 84547 , 8191
21227 /2 _ _ 5/2
+¢; [ 7 168 + dagnx’ 756 x c75 Qmx
5(22718275589 (116761 1712C\ 1712
9979200 3675 105 )7 105 ¥
L[ los144 1712 1\ [Gm] 167 3424 ni21)a
315 105 °© 7o 3 105 F
106144 856
- ah 3.1
+( 315 35 ap) n(x))]}, (3.110)

The above expression is in terms of our chosen eccentricity e,. One should beware that
the eccentricity appearing in [162] could in general be different and hence the MPM and
perturbation results can only compared modulo atransformation of these eccentricities. Lets
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assume that the two eccentricities are connected by:
e,zzez(e0+elx+ezx2+e3x3). (3.111)

In terms of the new Schwarzschild eccentricity the total energy flux thus becomes:

. 1247 44711 , 8191
EMPM) g 4 And? — _ /2
v-0 36t Tt T et
(6643739519 _ 1712C 16n° 3424 2] 856 -
69854400 105 3 105 105 "%
157 187 157
+62 ﬂeo + (—ﬁeo + Eel)x + 47rx3/2a¢ €y
(84547 187 157 ),
756 0 168 ' 24 *
8191
+x°1? (47m¢ €1~ =5 "y eo)
o[ 84547 187 157
756 ' T 16827 g &

22718275589 1712
( 9979200 105 “*) €
+(_116761 _Imac 16n2)aF .
3675 105 3

3424 106144 856
- 105 ln(2)ape0+ln(x)( 315 —E'ap) €
Gm\( 106144 1712
+1n(r—0)(— 35t 105 ap)eo }}+0(e;‘. (3.112)

On the other hand, from the perturbation treatment of Sasaki and Tagoshi [162], the energy
flux (in our notation) is given by:

& = 2

v—0

{1 - 1323467 x+4nc? - % X - %nxs/2+
; (6643739519 e 16 4, 856 ln[x])
69854400 105 =~ 3 105 105
157 6781 2335 14929 2 773
z[ﬁ‘l—ag‘x AN T a
; (156066596771 _106144C 992" _80464In[2] _2340091n[3] _
69854400 315 9 315 560

5372 .
o ln[x])]} +0(e) (3.113)
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A direct comparison between the MPM result Eg. 3.112 and the black hole perturbation
result Eq. 3.113 then yields:

e Termsindependent of e i.e the circular orbit contributionsare in full agreement.

e The €? term: Comparing the coefficients at N, 1PN, 2PN and 3PN yidlds ¢y = 1,
e1 = -6, e, = 4, and findly ar = & respectively. The value of ar obtained from
x*In x is consistent with the fact that the coefficient of x> In(Gm/r;) must be zero, as
also from an expansion of the function F(e,).

e Substituting the above values and comparing the two results, one finaly finds:

a. — 2335 22988
¢ = 7192 ¥ = " B191°

a, =-ZIn[2]+ %8 In[3] ande; = -8.

e TOo sSUMMmMarise:

F(e) = 1+ % e+ o(e;‘), (3.114a)

e - € (1-6x+4x -8x), (3.114b)
ele) = 1+ 2139325 e +0(ef), (3.114c)
yle) = 1- %Zf%ef +0(ef), (3.114d)
x(e) = (—g In[2) + %66—1- ln[3])e,2 +0(e})- (3.114e)

Using the above expressionsin the test particlelimit, let's calcul ate the relative error between
the numerica vaues and the values of the enhancement functionsfound by comparing the
energy flux resultsabove. We find,

1. F(e)
at e, = 0.001 therdative error is1.43 x 1078%.
a e, = 0.01 the relativeerror is0.000143154%.
at e, = 0.1 therdative error is 1.22433%.

2. p(er)
at e, = 0.001 therdative error is 3.416 x 1077 %.
at e, = 0.01 therelativeerror is2.117 X 1075%.
a e, = 0.1 therdative error is 0.508%.

3. (//(et)
at e, = 0.05 therdative error is 0.044%.
at e, = 0.1therdativeerror is0.761%.
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4. x(e)
at e, = 0.005 therdative error is0.0425%.
at e, = 0.01 therelative error is 0.1351%.
a e, = 0.05 therelativeerror is 3.0496%.
a e, = 0.1 therdative error is 11.5796%.

Note that we take smal valuesfor e, because the expansionis up to €? only.

3.10.1 Analytical comparison

The comparison with the perturbation results can aso be attempted anayticaly by imple-
menting from the start the calculation of the tailsin the test particlelimit and to order 2. For
thefunction F whichis given by:

_ _1__ S 8 "_'2
Fle) = o ;p 2 (3.115)
(3.116)
we get
F(e)=1+ %26,2 +0 (e:‘). (3.117)

For the enhancement function y, the summation of In(p/2)x(Bessel functions(e,)) needs to
be evaluated, i.e.

1 +00 g p R
= = > (B0 11
x(@) 64;;7 n(5)\Z (3.118)

Considering the expansion of |7,;,1? in terms of €, up to e?  is evaluated. One gets,

77 6561 4
x (&) = (——3' In[2] + 556 1n[3]) e+ 0(€t), (3.119)
in complete agreement with Eq. (3.114€) of the previous section.

Similar calculationsfor the tail terms yieldsthe following results:

32 , 5 2335 ,\ 5, 428 119275 ,\ s,
= 4r(l + == / ——— e —— 23, (3.120
Fuo va{n( + o7 % +n TR x° ( a)

32, 5 (16403 25283 ,\ 5,
Fuo = va{n(2016 TR ©* Y, (3.120b)
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32 1
Feo = —5—V2x5 {n(ﬁ + %etz) xs/z}. (3.120c)

Summing up the contributions, we have:

Frai = Fumo+ Fuo+ Feg (3.121a)
32 2335 ,\ 5, 8191 138538 ,\ 5
Fra = 5v2x5 {47r(1+ 5 e,)x 5\~ <per ¢ | ¥ - (3-121b)
From the result above, we obtain:
2335
= 1+ :
¢ (e,) 1 192e,2+0(e;‘), (3.122a)
138538 , 4
Yle) = 1-—— e +0(ef). (3.122b)

Egs. (3.114¢) and (3.122a) arein agreement, but Eqgs. (3.114d) and (3.122b) arein disagree-
ment.

To diagnosethisdisagreementin the function, let us numerically compare the valuesof
the enhancement function computed in three different ways. Our full origina MPM calcu-
lation, the numerical comparisonin the test particlelimit of the previous section and finally
the analytical test particlelimit calculation in this section. We have:

e, | Fromthe Numerical Calculation By comparing Andyticaly
0.05 0.9925441991498114 0.9929837626663411 | 0.957716396044439
0.1 0.9645969066891098 0.9719350506653645 | 0.830865584177756

An examination of this table shows that the first and second column are in adequate agree-
ment but the third column is different. Most probably there is some algebraic error in the
anaytical coefficients computed here and we hope to recalculate the tail terms anaytically
and sort out the discrepancy in the ¢ function and compare it with Eq. (3.114c), which we
fedl iscorrect.

3.11 Concluson and futuredirections

The far-zoneflux of energy contains hereditary contributionsthat depend on the entire past
history of the source. Using the Multipolar post-Minkowskian wave generation formalism,
we have proposed and implemented a semi-analytical method to compute the hereditary
contributionsfrom the inspiral phase of abinary system of compact objectsmoving in quasi-
eliptica orbits up to 3PN order. The method explicitly uses the 1PN quasi-Keplerian rep-
resentation of elliptical orbits and crucially exploits the implicit double periodicity of the
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motion to average the fluxes over the binary's orbit up to 3PN order. Together with the
instantaneous contributions evaluated in the previous chapter, it provides crucial inputs for
the construction of ready-to-use templates for binaries moving on quasi-elliptic orbits, an
interesting class of sources for the ground based gravitational wave detectors and especially
space based detectors like LISA.

The extension of these methods to compute the hereditary terms in the 3PN angular
momentum flux and 2PN linear momentum flux is the next step required toward the above
goa. These are presently under study.

Theextension of our methods to compute the 3.5PN termsfor elliptical orbitsiscurrently
not possible due to the incompleteness of the generation formalism at this order for general
orbits. It would also require the use of the 2PN generalised quasi-Keplerian representation
for some of the leading multipoles and thus be more algebraically involved than the present
analysis.





