
Chapter 3 

Tail effects in the 3PN gravitational wave 
energy flux of inspiralling compact 
binaries 

3.1 Introduction 

The GW energy flux from a system of two point masses in elliptic motion in the lead- 

ing quadrupolar approximation (Newtonian order) was first discussed by Peters and Math- 

ews [ l  38, 1 121. Using the Damour-Deruelle [I471 1PN quasi-Keplerian representation, 

Blanchet and Schafer [I431 computed the 1PN corrections to the above result. Using the 

generalized quasi-Keplerian representation of Darnour, Schafer and Wex [148, 149, 1501, 

Gopakumar and Iyer extended these results to 2PN order [46]. Recently, Damour, Gopaku- 

mar and Iyer [47] proposed an analytic method based on an improved "method of variation 

of constants" to construct high accuracy templates for the GW signals from the inspiral phase 

of compact binaries moving in quasi-elliptical orbits. The three time scales related to orbital 

motion, precession and radiation reaction are handled without the usual approximation of 

assuming adiabaticity relative to the radiation reaction time scale. The above results re- 

late to 2.5PN GW phasing. More recently they have been extended by Koenigsdoerffer and 

Gopakumar [I631 to 3.5PN order. All these works above relate only to the instantaneous 

terms in the gravitational waves (GW). 

The multipole moments describing gravitational waves emitted by an isolated system 

cannot evolve independently. They couple to each other and with themselves, giving rise 

to non-linear physical effects. Consequently, the above instantaneous terms in the flux must 

be supplemented by the contributions arising from these non-linear multipole interactions. 

The leading multipole interaction is between the mass quadrupole moment Mij and the mass 
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monopole M or ADM mass. It is associated with the non-linear effect of tails at order 1.5PN. 

Physically it is due to the backscatter of linear waves from the space-time curvature gener- 

ated by the mass monopole M. Tails imply a non-locality in time since they are described as 

integrals depending on the history of the source from the remote past to the current retarded 

time. They are thus appropriately referred to as hereditary contributions by Blanchet and 

Damour [63, 761: terms nonlocal in time depending on the dynamics of the system in its 

entire past [76]. The most detailed study of tails is due to Blanchet [158, 1571 based on the 

multipolar post-Minkowskian formalism of Blanchet and Damour [62,64]. He showed that 

up to 3PN these comprise the dominant quadratic order tails, the cubic-order tails or tails 

of tails and the non-linear memory integral [164, 165, 166, 1101. The cubic "monopole- 

monopole-quadrupole" interaction represents the scattering of the linear quadrupole waves 

from the second-order (w) potential barrier of the Schwarzschild metric, and also the scat- 

tering of the quadratic tails off the first-order (M) potential barrier. The latter effect is called 

"tails of tails" of gravitational waves. See [158, 1571 for earlier references to the general 

topic of tails and in particular to tails in the test-mass limit. In this chapter we set up a general 

theoretical framework to compute the hereditary contributions for binaries moving in ellipti- 

cal orbits and apply it to evaluate all the tail contributions contained in the 3PN accurate GW 
energy flux. 

For the instantaneous terms in the energy flux, explicit closed form analytical expressions 

can be given in terms of dynamical variables related to relative speed v and relative separa- 

tion r. Consequently, these expressions can be conveniently averaged in the time domain 

over an orbit using its quasi-Keplerian representation. For the hereditary contribution on the 

other hand one can only write down formal analytical expressions as integrals over the past. 

More explicit expressions in terms of the dynamical variables require in addition a model 

of the binary's orbit to implement the integration over the past history. In the circular orbit 

case, with a simplified model of binary inspiral one can work directly in the time domain. 

For instance, Blanchet computed the hereditary terms in the flux upto 3.5PN [158, 1571 

while Arun, Blanchet, Iyer and Qusailah [I 101 evaluated the GW polarisations upto 2.5PN. 

The tail integrals are evaluated using standard integrals for a Jixed non-decaying circular 

orbit. 'Remote-past' contribution to the tail integrals can be proved to be negligible and er- 

rors due to inspiral by gravitation radiation reaction to be at least 4PN. In the elliptic orbit 

case on the other hand the situation is more involved. Even after using the quasi-Keplerian 

parametrization, one cannot perform the integrals in the time domain (as for the circular or- 

bit case), since the multipole moments have a more complicated dependence on time so that 

the integrals are not analytically solvable in simple closed forms. By working in the Fourier 

domain to explicitly evaluate the hereditary integrals, Blanchet and Schafer [I451 computed 

the hereditary tail terms at 1.5PN for elliptical orbits using the lowest order Newtonian Kep- 
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lerian representation. 

In the present investigation to tackle the terms at 2.5PN and 3PN we need to go beyond 

the (Newtonian) Keplerian representation to a IPN quasi-Keplerian representation of the 

orbit. Here we encounter two further complications. Firstly, the IPN parametrization of 

the binary involves three kinds of eccentricities (e,, e, and e@) which makes the algebra 

more involved. More seriously at IPN order, the periastron precession effect appears in 

the problem and one has to contend with two times scales: the orbital time scale and the 

periastron precession time scale. These two new features should be properly accounted for in 

the calculations to extend the Fourier methods in [145]. This strategy has been proposed and 

used earlier in computing the instantantaneous terms in the GW polarizations from binaries 

on elliptical orbits [83, 115,471. We shall adapt these features here to treat the more involved 

hereditary contribution to the total energy flux. 

Following [145], we express all the multipole moments needed for the hereditary com- 

putation at Newtonian order as discrete Fourier series in 1. However, for moments needed 

beyond the lowest Newtonian order the double periodicity needs to be crucially incorporated. 

The evaluation of the Fourier coefficients is done either numerically or in terms of an infinite 

sum of combinations of Bessel functions. All tail terms at 2.5PN and 3PN are completely 

computed to provide the 'enhancement factors' for binaries in elliptical orbits at the 2.5PN 

and 3PN orders, extending the classic work of Peters and Mathews [138]. The present work 

extends the circular orbit results at 2.5PN [I561 and 3PN [95] to the elliptical orbit case. It 

also extends results for hereditary contributions at 1.5PN [I451 for elliptical orbits to 2.5PN 

order and 3PN. The 3PN hereditary contributions comprise the tail-of-tails and tail-squared 

terms and are extensions of 1157, 1581 for circular orbits to the elliptical case. Combining 

the hereditary contributions computed in this chapter with the instantaneous contributions 

computed in the previous chapter yields the complete 3PN energy flux. The final expressions 

represent gravitational waves from a binary evolving negligibly under gravitational radiation 

reaction, including precisely upto 3PN order the effects of eccentricity and periastron pre- 

cession during epochs of inspiral when the orbital parameters are essentially constant over 

a few orbital revolutions. It thus represents the first input to go towards the quasi-elliptical 

case; the evolution of the binary in a elliptical orbit under gravitational radiation reaction. 

Tails are not just mathematical curiosities in general relativity but facets that should show up 

in the gravitational-wave signals of inspiraling compact binaries and subsequently decoded 

by the GW detectors like VIRGO, LIGO and LISA [167, 168, 169, 1701. 



Chapter 3 

3.2 Tail terms in the 3PN energy flux 

Three kinds of hereditary terms appear in the computation presented here. The 'tails' coming 

from the multipole interaction of the mass quadrupole with the ADM mass (M x Iij), the 

'tails of tails' due to the cubic nonlinear interaction M x M x Iij and the tail-squared term 

arising from quadrupole-quadrupole interaction Iij x 41. In the equations to follow, we list 

the expressions for the hereditary terms constituting the fluxes. The hereditary terms in the 

energy flux can be written as 

( )  hered = (") +(") +($) dt tail dt tail(tai1) (tail)2 

where 

The constant scaling the logarithm has been chosen to be ro to match with the choice made 

in the computation of tails-of-tails in [158]. It is a freely specifiable constant, entering the 

relation between the retarded time U = T - Rlc  in radiative coordinates and the correspond- 

ing time t - plc  in harmonic coordinates (where p is the distance of the source in harmonic 
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coordinates). More precisely we have 

In this chapter, in what follows, we set c = 1 and G = 1. 

3.3 Solution of the equations of motion of compact binaries 

In this chapter as in the the previous one, we shall often need to use the explicit solution for 

the motion of compact binary systems in the post-Newtonian approximation. We review here 

the relevant material we need, which includes the general doubly-periodic structure of the 

post-Newtonian solution, and the quasi-Keplerian representation of the 1PN binary motion 

by means of different types of eccentricities. We closely follow the works of Damour [65,83] 

and Damour & Deruelle [147, 1711. 

3.3.1 Doubly-periodic structure of the solution 

The equations of motion of a compact binary system up to the 3PN order admit, when ne- 

glecting the radiation reaction term at the 2.5PN order, ten first integrals of the motion cor- 

responding to the conservation of energy, angular and linear momenta, and center-of-mass 

position [160]. When restricted to the frame of the center of mass, the equations admit four 

first integrals associated with the energy E and angular momentum J, given at 3PN order by 

Eqs. (4.8)-(4.9) of Ref. [159]. 

The motion takes place in the plane orthogonal to J. Denoting by r the binary's orbital 

separation in that plane, and by v = vl - v2 the relative velocity, we find that E together with 

the norm J = I J/ are functions of r, i'2 and v2 (we are employing the harmonic coordinate 

system of [159]). They depend also on the total mass m = m ,  + m2 and reduced mass 

,u = mlm2/m.  We adopt polar coordinates r, 4 in the orbital plane, and express E and J ,  

thanks to v2 = i'2 + ?4', as some explicit functions of r, ie2 and 4. The latter functions can be 

inverted (by means of straightforward post-Newtonian iteration) to give i.2 and 4 in terms of 

r and the constants of motion E and J. Hence, 

? = R[r; E, J], 

4 = G[r;E, Jl, 

where the functions R and 6 denote certain polynomials in 1 l r ,  the degree of which depends 

on the post-Newtonian approximation in question (it is seventh degree for both R and 6 at 
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3PN order [ IS ] ) .  The various coefficients of the powers of 1  l r  are themselves polynomials 

in E and J ,  and also of course depend on m and the mass ratio v = plm. In the case of 

bounded elliptic-like motion, one can prove [83] that the function R admits two real roots, 

rp < r ~ ,  which admit some non-zero finite Newtonian limits when c + m, and represent 

respectively the radii of the orbit's periastron and apastron. The other roots tend to zero when 

C 3 00. 

We are considering a fixed binary's orbital configuration, fully specified by some given 

values of the integrals of motion E and J. We no longer indicate the dependence on E and J 

which is always implicit in what follows. The binary's orbital period, or time of return to the 

periastron, is obtained by integrating the radial motion as 

We introduce the fractional angle (i.e. divided by 2n) of the advance of the periastron per 

orbital revolution, 

which is such that the precession of the periastron per period is A 9  = 2n(K - 1). As K tends 

to one in the limit c + oo (as is easily checked from the Newtonian limits), it is convenient 

to pose k = K - 1, which will then entirely describe the relativistic precession. 

Let us define the mean anomaly t and the mean motion n by 

tp denotes the instant of passage to the periastron. For a given value of the mean anomaly t 
the orbital separation r is obtained by inversion of the integral equation 

which defines the function r ( t )  which is a periodic function in C with period 2n. The orbital 

phase 9 is obtained in terms of the mean anomaly t by integrating the angular motion as 

where q5p denotes the value of the phase at the instant tp.  In the particular case of a circular 

orbit, r = const, the phase evolves linearly with time, $J = 6 [r] = w, where w is the orbital 
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frequency of the circular orbit given by 

In the general case of a non-circular orbit it is convenient to explicitly introduce the linearly 

growing part of the orbital phase 3.9 by writing it in the form 

Here W denotes a certain function which is periodic in time with period P. Hence we can 

write the phase as 

@ = & + K & + W ,  (3.12) 

where according to 3.9 the function W is given in terms of the mean anomaly t? by 

The function W(t) is a periodic function in t. Finally the decomposition 3.12 exhibits clearly 

the doubly periodic nature of the binary motion, in terms of the mean anomaly t? with period 

2n, and in terms of the periastron advance K t  with period 2nK. It may be noted that in 

Refs. [115,47] the notation R is used. It corresponds to R = K t  here. 

3.3.2 Quasi-Keplerian representation of the motion 

In the following we shall also use the explicit solution of the motion at IPN order, in the 

form due to Damour and Deruelle [147, 1711. Then r and t are expressed in terms of the 

eccentric anomaly u as 

r = a,(l - e, cos u), 

t? = u-e,sinu. 

The phase angle 4 is given by 

q5=KV, 

where as mentioned in the last chapter the true anomaly V is defined by, 

In the above, K is the periastron advance given in general terms in Eq. 3.6. The possible 
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Figure 3.1: Plot showing a closed but non-precessing (k = 0) orbit and an orbit that is closed 
but precessing(k = 0.2 j. Each orbit has an eccentricity of e = 0.9. 

P i p  3.2: The plot WWs the double periodicity. r@, r(A), 4 0  and &A) am flottd 
respectively for an orbit with semimajar a = 10 and eccentricity e = 05. EWe r is the 
length of the position vector d from the focus. 41 + e) = 15 and a(l - e) = 5 
m t b e m ~ u m m d m t n l m l l m  6 ,  vdua of r. It is ~ l m  f r m  the Qgtm that P3(1) md Hl) are 
% - p a i d  fmcti~ns where as r(A) and #(A} me k K  = 37r-p&dic fuxtiom. Irr &is a% 
the orbit is cIW.  The angular variable 4 repeata after two pmhh of the rdd variable. 



Chapter 3 110 

additive constant in the equation for 4 is set equal to zero. As mentioned in the last chapter, 

there are at 1PN order three kinds of eccentricities e,, e, and eg (labelled after the coordinates 

r, t and 4 repectively) which differ from one another by 1PN terms. The advance of the 

periastron per orbital revolution appears starting at the 1PN order. Due to these features 

this representation is referred to as the "quasi-Keplerian" (QK) parametrization for the 1PN 

orbital motion of the binary. The periodic function W ( t )  of Eq. 3.13 now reads 

The explicit dependence of the orbital elements in terms of the 1PN conserved orbital energy 

E and angular momentum J is given in [147]. 

a, = 
1 1  

--(I + - 
Gm (-2 E) 

(-2 E, (-7 + v)), 
4 c2 

er
2 = 1 + 2 E h 2 +  ( -2E) (24 -4~+5  4 c2 (3.18b) 

n = (-2 ~ ) ~ / ' { l  + (-2E) (-15 + v)), (3.18~) 
8 c2 

e; = 1 -8+8v- ( -17+7v) ( -2Eh2)  , 
4 c2 

) (3.18d) 

In Figure 3.3.2 we plot the orbits for different values of e and k to give a schematic and 

physical feel for the double periodicity. 

3.4 Fourier decomposition of the binary's multipole 

moments 

The multipole moments of the compact binary system will be denoted by IL(~)  (mass-type 

moment) and JL(t) (current-type), where the multi-index L = ili2 .. . il, with 1 being the 

multipolarity. We are adopting the same definitions of the post-Newtonian source moments 

as [98]. The general structure of these mass and current moments, IL and say JL-1 (where 

L- 1 is taken rather than L for convenience), at any post-Newtonian order for a binary system 

moving on a general non-circular orbit is of the type 
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Figure 3.3: Plot showing the variety of closed orbits generated for different combinations 
of eccentricity e and pefiastron shift k. The angular variable @ repeats after N periods of 
the radial variable (the n u m k  of unclosed orbits before coming back to the starting point). 
Note N = 1 /k for k#O. 
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where xi and v i are the relative position and velocity of the two bodies, and the coefficients 

7, and GP depend on r, 9 and v2 = 9 + r242. For quasi-elliptic motion in a plane, inserting 

x = r cos 4, y = r sin 4, and v, = i- cos 4 - rd, sin 4, v, = i- sin 4 + rd, cos 4, we can explicitly 

factorize out the dependence on the orbital phase 4. Furthermore, using the explicit solution 

of the motion (Sec. 3.3) we can express r, 9 and v2, and hence the 7,'s and Gp's, as periodic 

function of the mean anomaly t = n(t - to), where n = 27rlP. We then find the general 

structure can be expressed in terms of the phase angle 4, as the following finite sum over an 

index m ranging from -1 to +1, 

with some complex coefficients ( , ) f iL and (m,BL-l .  The important point for our purpose is 

that the functions (,)fiL(l) and (m)BL-l(&) are now 2n-periodic functions of t .  As we can 

see, the structure of the mass and current moments is the same, but of course the coefficients 

(,)3lL and (m)BL-l have a different parity, because of the Levi-Civita symbol siab entering the 

current moment. 

In the above expressions, the variable 4 is not a periodic function of t .  To proceed further, 

we need to exploit the double periodicity of the dynamics in the two variables R = K t  and t 
by writing, 4 = K t +  W ( t ) ,  where W ( t )  is periodic in t; see Sec. 3.3. Actually it will be more 

convenient to single out in the expression of the phase the purely relativistic precession of the 

periastron k t ,  where k = K - 1. This yields many factors which will modify the coefficients 

in 3.20a, but in such a way that they remain periodic in 8. Hence we can write 

Finally this makes it possible to use a Fourier series expansion in the interval [O, 2x1 for each 
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of the functions in 3.21, leading then to the following discrete Fourier decompositions, 

JL-1 ( t )  = x 3 L-l e i ( ~ +  mk)t. 

P=-CO m=-i (p ,m)  

Since the moments IL and J L - 1  are real we have obviously ( p , m , I L  = ( - p , - m ) Z L  and 

( P , m ) 3 L - l  = ( - p , - m ) T L - 1  

At the Newtonian order (hence in the limit where k + 0), we recover the usual periodic 

Fourier decomposition of the moments, with only one discrete Fourier summation index p, 

by writing 

i p t  J L - ~ ( t )  = 7, T L - I ~  . 

These Fourier coefficients are simply equal to the sums over m of the doubly-periodic 

Fourier coefficients in Eqs. 3.22, when taken in this Newtonian limit, 

3.5 Tail contributions in the flux of compact binaries 

In the present Section we compute all the tail and tail-of-tail terms in the averaged 

gravitational-wave energy flux 

up to the 3PN order. The relevant expressions are given in Eq. 3.1. Together with the 

instantaneous terms Eq. 2.7 in the previous chapter one obtains complete expressions of the 

3PN energy flux. 
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3.5.1 The quadrupolar tail at Newtonian order 

The mass-type quadrupolar tail term in the energy flux is made of a non-linear interaction 

between the quadrupole and the mass monopole, and is given by ' 

where Iij is the source's mass-type quadrupole moment, and M its ADM mass. The brackets 

() denote the average over 8, where the superscript (n) refers to time differentiations, and 

where TO is a constant time scale (related to the length scale ro appearing in the general mul- 

tipolar formalism [98] by TO = 2ro/c). The term was already computed using a Fourier series 

at Newtonian order in [145]; note that the method of [I451 is applicable only at Newtonian 

order since it is valid only for periodic motion. Here we first recover the Newtonian result 

of [145]. The Fourier decomposition of the Newtonian quadrupole moment reads 

and all the Fourier coefficients are at Newtonian order. We insert that decomposition into the 

flux 3.26. The average on 8 is easily performed with the formula 

and we have used the fact that if 8(t) corresponds to the current time t, then it is clear that 

t(t - r )  = t(t) - n r  corresponds to the retarded time t - r. The result is 

Finally the last factor in 3.29, namely the tail integral in the Fourier domain, is computed 

using the formula 

where u = pn ,  sign(c7) = +I  and C = 0.577 is Euler's constant. Inserting then the tail 

integral 3.30, we check that the imaginary parts cancel out, and the result reduces to the one 

'For simplicity we do not indicate the neglected PN terms, e.g. O(C-'). This sometimes yields some slight 
inconsistency in the notation, but the meaning of each equation should be clear from the context. 
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of [145], namely 

Unfortunately, the latter result has to be left in the form of an infinite series of Fourier com- 

ponents, since no analytic closed-form expression for it can be found. 

We stress finally that the result 3.3 1 (and this applied as well to all results in this Section) 

is not exact. Indeed we have formally replaced inside the tail integral the motion of the 

binary at any earlier time t - T by its motion at the current t ,  thereby neglecting the binary's 

evolution by radiation reaction. As a result there should be a remainder term in 3.34, given 

by the order of magnitude of the adiabatic parameter Cmd of the inspiral, which is related to 

the radiation reaction time scale, and is given by the rate of decrease of the orbital frequency 

due to gravitational radiation emission, say tmd = cj/w2. In terms of a PN expansion end is a 

correction of relative 2.5PN order - c - ~ .  Indeed, we know (e.g. [145]) that the replacement of 

the current motion inside the tail integral is valid only in the adiabatic limit, modulo O (Cmd) 

terms. 

3.5.2 The quadrupolar tail at 1PN order 

Let us now tackle the same computation but at the 1PN order. At this order, as we have 

seen, we must exploit the doubly-periodic structure of the motion, and use a more general 

expression for the Fourier decomposition of the moments. The post-Newtonian quadrupole 

moment admits a structure of the type described in Sec. 3.4, namely 

but with now doubly-indexed Fourier coefficients ( , , )I i j  which now involve post-Newtonian 

corrections. We can even be more precise and notice that the harmonics for which m = 1 and 

m = - 1 are in fact zero (at the IPN order), so that 

However, it is more convenient in the following to work with the general decomposition 3.27, 

keeping in mind that the terms with m = 1 or -1 are absent. As before we insert the dou- 

ble Fourier series 3.27 into the expression of the flux 3.26. This readily yields, still in the 
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adiabatic limit, i.e. neglecting O (sfrad) corrections, 

Fmass quad = C n8(P + w ~ k ) ~ ( ~ '  + n ~ ' k ) ~  I ij I ij 
5 p,p';m,ml (p.rn) (p'.m') 

The summations range from -co to +m for p and p', and from -2 to 2 for m and rn'. The 

first two factors after the summation signs evidently come from the time-derivatives of the 

quadrupole moment. We have explicitly left as they are the last two factors which are the 

average over E of an elementary doubly-periodic complex exponential, and the tail integral 

in the Fourier domain. 

We want now to work out the expression 3.34 at the specific 1PN order. Since the rel- 

ativistic advance of the periastron k is already a small quantity of order IPN, the first thing 

to do is to evaluate 3.34 at first order in k [i.e., neglecting O(k2)]. Later we shall have to 

insert some explicit expression for the IPN expansion of the components of the quadrupole 

moment itself. We provide here the necessary formulas for performing the expansion in k of 

the last two factors in 3.34. For the E-average, which is defined by 

we readily find the following result, using the fact that since we are in the limit where k + 0 
we shall always have rnk << 1 (hence p + rnk is never an integer except when p = 0): 

We notice that this result depends only on whether p is zero or not, and is true for any 

integer rn, with the small exception that when rn = 0 the result 3.36 is "exact" as there is no 

remainder term O(k2). Concerning the tail integral in 3.34, we expand it at first order in k, 

obtaining 

and then apply for the remaining integral the formula 3.48. With the formulas 3.36 and 

3.37 in hand we can explicitly work out the tail expression 3.34 at first order in k (and the 

extension at higher order in k would in principle be straightforward). The result will be left 

in the form of some infinite series, directly obtained by replacing 3.36 and 3.48 into 3.34, 



Chapter 3 

that we shall compute numerically below as a function of the eccentricity. 

3.5.3 Higher-order multipolar tails 

In our calculation of the binary's fluxes at 3PN order, the only tail integral which has to 

be computed at relative 1PN order is the quadratic tail integral discussed in the previous 

subsection. All other tails, and tails-of-tails, can be computed at the (relative) Newtonian 

order. We compute here the relevant multipolar tails. Their definitions are [95] 

4M + w 
(3.38) 

M + w 
%ss dodec = (2268 (3.39) 

in the case of mass-type multipolar tails, and 

for the current-type ones. The computation proceeds exactly as for the Newtonian 

quadrupole tail in Sec. 3.5.1, and we give only the results: 

- 47rM 
F m s s  oct - 189 

p= 1 

nM 
+w 

F m s s  dodec = 2268 
p= 1 

- 64nM +w 
quad - 45 

p= 1 

- nM +w 
Kurn oct - 

( P )  

As we see, these results can be expressed in terms of rather simple Fourier series, unlike 

in the case of the 1PN quadrupole tail 3.34 which is substantially more intricate when the 

summations are fully explicated. As in [I451 we shall provide some numerical plots for these 

results, since the infinite sums 3.42 cannot be computed analytically. 
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3.5.4 Quadrupolar tail-of-tail and tail squared 

At the 3PN order (i.e. 1.5PN beyond the dominant tail) appear the first tail-of-tail as well as 

a term composed of the square of the tail, both of them being made of interactions between 

the quadrupole and the mass [158]. The tail-of-tail contribution admits the expression 

while the tail squared one is 

q u a d  (tail)' = 

As before we insert into these the Fourier decomposition of the quadrupole moment 3.27. 

The new feature with respect to previous computations is of course the occurence of a term 

with a logarithm squared in the tail-of-tail integral 3.46. The corresponding formula neces- 

sary to compute this logarithm squared is [compare with Eq. 3.481 

With this formula together with 3.48 we obtain for the tail-of-tail 

(3.49) 

and also, for the tail squared, 

4M2 +" 
q u a d  (tail)' = - ~ ( p  n18 I I ~ ~ I ~  + 2(ln(p n TO) + c - -) 1 1 2 )  a (3.50) 

p_l (P ) 12 

As we can see the contribution from logarithms squared cancel each other between 3.49 

and 3.50, see [158], and we finally get 

4M2 
+" 116761 2n2 214 214 

q u a d  tail(tail)+(tai~)~ = -Z(P n)8 11 i j l 2  { --+---C-- 5 ( P )  29400 3 105 105 
o=l 
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3.6 Definition of the eccentricity enhancement factors 

We define here some functions of the eccentricity by certain Fourier series of the components 

of the Newtonian moments IL = p ~ < ~ '  and JL-i = p ~ < ~ - ~ ~ ~ ~ - l > ~ ~ ~ a v ~  for a Keplerian ellipse 

with semi-major axis a, eccentricity e and frequency n = 2nlP. We rescale the moments to 

adimensionalize them by defining 

Then we define the some dimensionless Fourier series, which are functions only of the (Ke- 

plerian) eccentricity e. First of all the function 

is nothing but the Peters & Mathews "enhancement" function [138], which enters the energy 

flux at the Newtonian order (given by the Einstein quadrupole formula), i.e. 

when computed using Fourier series. Remarkably f (e) admits an algebraically closed-form 

expression, crucial for the timing of the binary pulsar PSR 1913+ 16, and given by 

The enhancement function f(e) is called that way because in the case of the binary pulsar, 

which has eccentricity e = 0.617.. . it enhances the effect of the orbital P by a factor - 
11.843. 

Next we define several other eccentricity "enhancement" functions which constitute use- 

ful ingredients when parametrizing the tail terms at Newtonian order. We pose 
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Like for f (e) these functions are defined in such a way that they tend to one in the circular or- 

bit limit, when e + 0. However, unlike for f (e), they do not admit closed-form expressions, 

and must be left in the form of Fourier series. The function q(e) has already been computed 

numerically in [145] 2. With their help the Newtonian tail terms computed in Sec. 3.5 read 

32 
%SS quad = - 5 v2 x13n(4n q(e)), 

- 3 2 
Fmass oct - - 5 v2 

x15~2{% Irp(e))(l - 4 v), 

- 
E u r r  quad - - v x -n y(e) (1 - 4 v), 32 5 ;8 I 

where we have factorized out a coefficient appropriate to the Newtonian expression of the 

flux for circular orbits; compare with Eq. 3.54. 

Next we introduce two other enhancement functions which are helpful when parametriz- 

ing the tail-of-tail and tail squared integrals (which we recall are Newtonian with the present 

approximation). Namely 

It is easily checked, by a straightforward calculation h la Peters & Mathews [138], that the 

function F(e) admits an analytic form similar to the one of f  (e) and given by 

On the other hand, ~ ( e )  does not admit any analytic form, but is easily seen to tend to zero 

when e -, 0. Indeed, at Newtonian order and in the circular orbit limit, the quadrupole 

moment admits only one harmonic, which is the one for which p = 2. But, because of the 

logarithmic term in ~ ( e ) ,  we see that the function is zero when e = 0. 

Now, in terms of F(e) and ~ ( e ) ,  the sum of tail-of-tail and tail squared contributions 

' ~ o t e  that our notation here is different from the one in [145]; the function cpBS(e) there is related to our 
definition by cpBS(e) = cp(e)/ f (e). In the present work it is better to not rescale the various functions using the 
Peters & Mathews "enhancement" function f (e). 



Chapter 3 

Figure 3.4: This figure shows the variation of ~ ( e , )  (top panel) and F(e,) (bottom panel) with 
the eccentricity e,, The plot inside the graph is the zooming for the functions which look 
as straight horizontal lines in main graph. In the top panel the dot points are the numerical 
computation for ~ ( e , )  at e, =0, 0.5, 1, 1.5, .... The solid lines are the fitting for the numerical 
points. In the bottom panel, the exact function of F(e,) is used. At the circular limit, et = 0, 
~ ( 0 )  = 0, F(0) = I .  
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computed in Sec. 3.5 reads 

Finally let us give the result in the case of the IPN quadrupole tail. As we have seen 

in Sec. 3.5.2, the calculation in this case is much more complicated, as the Fourier series in 

Eq. 3.34 involve several summations. In addition the computation must take into account the 

IPN relativistic correction in the quadrupole moment (and ADM mass). There is no simple 

way to express the new "enhancement" functions of eccentricity which appear at the 1PN 

order. However one can check beforehand that the IPN terms are a linear function of the 

symmetric mass ratio v, hence we must introduce two enhancement functions, denoted a 

and 8, and as previously we define them in such a way that they are equal to one for circular 

orbits. We shall therefore give here only the definition of these functions, and resort to a 

numerical calculation of them in the next Section. We have [extending Eq. 3.9 at the 1PN 

order] 

- 32 428 178 
Fmass quad - - 5 v2 xx'312{4nv(e,) + n x [-- 21 a(e3 + -v 2 1 ~(e,)]}. (3.66) 

Note that since we are at IPN order we must use a specific definition for the eccentricity, 

and we adopted the eccentricity e, defined in Sec. 3.3.2. On the other hand, the variable 

x = (mo),I3 crucially incorporates the 1PN relativistic correction coming from the periastron 

advance K = 1 + k, through the definition w = nK; see Sec. 3.3.1. 

3.7 Numerical evaluation of the Fourier coefficients 

We shall now describe the numerical implementation of the procedure for computation of 

the Fourier coefficients of the multipole moments, notably the (,,,Iij's at IPN order which 

are the more difficult to obtain. The mass quadrupole moment to IPN accuracy is given by: 

We also will need the ADM mass M to 1PN accuracy: 
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Using the quasi-Keplerian representation, the dependence of Iij on xi, vi, r, v and i. can be 

parametrised in terms of of th eccentric anomaly u. However, as explained previously we 

require I,,([) in the time domain to proceed 

The steps of our numerical implementation scheme can be now surnmarised as follows. 

1. We first invert the equation for the mean anomaly C = u - e, sin u to obtain u(t). This 

can be done 

By using 

Or mumerically by finding the root o f t  = u - e, sin u to obtain u(t). 

The latter is a more efficient and more accurate method and we employ it in this work. 

We used the FindRoot routine in Mathematica. In this case we generated a table of 

20000 points of u and l between 0 and 27r. The above inversion enables us to re- 

express all functions of the eccentric anomaly u as functions of the mean anomaly l. 

One needs to be careful in dealing with the u dependence of V in Eq. 3.16 to avoid the 

discontinuity there. To this end it is best to use: 

V(u) = u + 2 tanv1 (1 ~ p ~ ~ ~ s u ) ~  

1- @q 
where& = 7 . With these choices, we thus have on hand, (,)Iij(e) [defined in 

Eq. 3.211 as explicit functions of C to implement the Fourier decomposition. 

2. Recall that these functions also have dependence on v and x, where the former is the 

symmetric mass ratio and the latter the PN parameter given by x = (m w)213 with 

w = n K. To avoid assuming numerical values for v and x and hence to preserve the 

full generality of the result, we split the function (,)Iij as 

I,([, e,, V ,  X) = I?([, e,) + x ~iY(t', e,) + v 1:; (8, e,) . 
(m) (m) [(m) (m) I 

Notice that we have neglected the terms higher than IPN in writing down the above 

expression. Now the various are only function of l and e,. We evaluate the 

Fourier coefficients of these terms separately in the next step of the procedure. 

3. For a fixed value of e,, we can straightforwardly get the plot of (,)IF versus C. Equiv- 
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alently, one can also write the Fourier decomposition of (,)I?(t) as 

Now we seek a numerical fit to Eq. (3.71), in powers of eipe, to extract out the coeffi- 
11 cients (,,,)IF. Do the same for different values of e, and for (p,,)Iiy and (,,,)Iij . 

4. Substituting these values into Eq. 3.34 one can generate the numerical values of the 

averaged energy flux FUil for the different values of el, and hence get the numerical 
values of the enhancement functions, and most importantly of the IPN ones a(e,) and 

O(e,). The plots of the functions as given in Eq. 3.92 readily follow. 

We have just described the procedure for the most difficult IPN quadrupole tail. This 

procedure is quite general, and could be extended to higher post-Newtonian orders. On the 

other hand, for the other tail terms, which are Newtonian, we could proceed exactly in the 

same way. However, at the Newtonian order it is in fact much more efficient to make use of 

the well-known Fourier decomposition of the Keplerian motion. Using this we can derive 

the components of the multipole moments (at Newtonian order) as series of combinations 

of Bessel functions. Then it is a very simple matter to compute numerically the associated 

"Newtonian1' enhancement functions [namely cp(e), P(e), y(e) andx(e)]. This is the method 

which was used in [145]. The relevant expressions of the components of the Newtonian 

multipole moments, as series of Bessel functions, that we have used to compute numerically 

the functions cp(e),P(e), y(e) andx(e) are listed in the following subsection. 

3.7.1 Fourier coefficients of the multipole moments 

In this Section we provide the expressions of the Fourier coefficients of the Newtonian mul- 

tipole moments in terms of combinations of Bessel functions. Following what we discuss 

above and [I451 we decompose the components of the moments as a Fourier series 

ipt JL-~(t) = C TL-I~ . 
p=-, (P) 

The Fourier coefficients can been obtained by evaluating the following integrals 
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For the mass quadrupole moment at Newtonian order we have 

rxx = (i + i e : )  J~ (pet )  
(P) 

+ ( - :PI  - i e : )  ( ~ ~ - 1  (pet) + J ~ +  I (pet)) 

+ Jp+2 (per)) 

+ Jp+3 (pet)) ,  

I x ,  - 
(P) 

- i JG {i et (- J ~ -  1 (pet) + J ~ +  I (pet)) 

1 1  

1 

I -- (JP-2 (pet) + Jp+2 (pet)) 4 

(JP-3 (pet) + Jp+3 (pet)), 

1 1  rz = (-i - 5e:) J~ (pet)  
(P) 

(JP-I (pet) + Jp+l (pet)) 

1 
--e: (JP-2 (pet) + Jp+2 (pet)) 

4 
1 

+ -e: (JP-3 (pet) + Jp+3 (pet)). 24 
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For the mass octupole moment we find 

1 1  
I ,  = (:el + Fe:) J~ (pel)  
( P I  

( g e t  + i e : )  ( J ~ - 2  (pet) + ~ ~ + 2  (pet)) 

+ ( -- - -et , a2  + --el :04) (J,-3 (pet) + Jp+3 (pet)) 

3 
+ (&el - &e;) (JP-4 (pet) + Jp+4 (pet)), 

I x ,  
( P )  

= i dG {(A + z e t )  ( J ~ + I  (pet) - JP-I  (pet)) 
40 80 

1 1  19 
--el - -e:) (JP+2 (pet) - Jp-2 (pet)) 

20 80 
1 17 

+ (- 8 + -e:) 80 ( ~ ~ + 3  (pet)  - ~ ~ - 3  (pet)) 

1 
+ --el + - 3 ,  (Jp+4 (pet) - Jp-a (pet)) , ( , b  l6oe1 1 

( J p - 1  (pet) + Jp+l (pet)) 

+ ( s  --el + -el i 0 3 )  (JP-2 (pet) + JP+z (pet)) 

(JP-3 (pel)  + Jp+3 (pet)) 

9 
+ ( I k  --el + -e:) 160 (JP-4 (pet) + Jp+4 (pet)), 

IYYY = 
( P )  

i {(A - 2e:) ( - J ~ - I  (pet) + J ~ + I  (pet)) 
40 5 

+ ( g e t  + i e : )  (- Jp-2 (pet)  + Jp+2 (pet)) 

+ ( ---- ; ;oe:) (- ~ p - ~  (pet) + Jp+3 (pet)) 

(- Jp-4 (pet) + Jp+r (pet)) , 

3 
--el - -el J p  (pet) I z n = ( t  1 6 ) )  

I 
( P )  
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Finally, for the current quadrupole moment, 

z = I J G ( 3 e t J p ( p e t )  
( P )  2 

+ ( - 1  - e:) ( J , - I  (pet) + Jp+l  (pet)) 

1 
+-el (Jp-2 (per) + Jp+2 (pet)) , 2 

( P )  

1 
3 y z  = i ( 1  - e:) ( ( J P + l  (pet) - Jp-1 (pet)) 

1 
--el (JP+2 (pet) - Jp-2 (pet)) 2 

3.8 Final expression of the tail integrals 

Based on the treatment outlined above of a numerical scheme for the computation of the 

orbital average of the hereditary part of the energy flux up to 3PN, we finally provide the 

complete results for the dimensionless enhancement factors and their numerical plots. It is 

convenient for the final presentation to redefine in a minor way some of the enhancement 

functions of Sec. 3.6, which were directly given by simple Fourier decomposition. Let us 

choose 
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Considering thus the 1.5PN and 2.5PN terms, composed of tails, and the 3PN terms, com- 

posed of tails of tails and tail squared, the total hereditary contribution to the average of the 

energy flux, normalized to the Newtonian value for circular orbits finally reads 

All the enhancement functions in Eq. 3.42 are defined in such a way that they reduce to one 

in the circular case, el = 0, so that the circular-limit of the formula is immediately seen from 

inspection of Eq. 3.42, and is seen to be in complete agreement with Refs. [158,95]. 

In Eq. 3.42 there are four enhancement functions which probably do not admit any ana- 

lytic closed-form expressions: these are cp(e,), +(e,), @(el) and ~ ( e , ) .  However, F(e,) is known 

analytically, and we recall here its expression, 

We now present the numerical plots of the four enhancement functions cp(ef), +(el), 8(et) and 

~ ( e ~ ) .  We have explained the details of the numerical calculation in Sec. 3.7. The figures 

display the plots of all these enhancement functions as functions of eccentricity e,. 

3.8.1 The Log terms in the total energy flux 

As seen from Eq. 3.92 the result depends finally on the constant ro = ro/2 at the 3PN order. 

We are now in a position to discuss in detail the structure of the Log term in the complete 

energy flux, the cancellation of the lnro term and the circular orbit limit of this term for 

one last final check of this complicated calculation. From Eq. (3.101f), the log terms in the 

instantaneous contribution to the average flux is given by 

Similarly, from Eq. (3.92) the log terms in the tail contribution to the average flux is 
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Figure 3.5: This figure shows the variation of a(e,) and P(e,) with the eccentricity e,. The 
plot inside the graph is the zooming for the functions which look as straight horizontal lines 
in main graph. The dot points are the numerical computation for a(e,) (top panel) and fi(et) 
(bottom panel) at e, =0,0.S, 1, 1.5, .... The solid lines are the fitting for the numerical points. 
At the circular limit, e, = 0, a(0) = p(0) = 1. I 
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Figure 3.6: This figure shows the variation of y(e,) (top panel) and O(e,) (bottom panel) with 
the eccentricity et.  The plot inside the graph is the zooming for the functions which look 
as straight horizontal lines in main graph. The dot points are the numerical computation for 
y(e,) and 6(et) at e, =0, 0.5, 1, 1.5, .... The solid lines are the fitting for the numerical, points. 
At the circular limit, e, = 0, y(0) = e(0) = 1. 
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ri- 

O ~ O  0.2 0.4 0.6 0.8 1.0 
"t 

Figure 3.7: This figure shows the variation of #(e,) (top panel) and #(e,) (bottom panel) with 
the eccentricity e,. The plot h i &  the graph is the zooming for the functions which look 
as straight horizontal lines in main graph. The dot points are the numerical computation for 
#(e,) and t,b(et) at e, =0,0.5, 1, 1 -5,. . . . The solid lines are the fitting for the numerical points. 
At the circular limit, e, = 0, #(0) = +(0) = 1. 
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I O ~ O  0.2 0.4 0.6 / I 

Figure 3.8: This figure shows the variation of @'(e,) (top panel) and ~(e,) (bottom panel) with 
the eccentricity e,. The plot inside the graph is the zooming for the functions which look 
as straight horizontal lines in main graph. The dot points are the numerical computation for 
O'(et) and ~ ( e , )  at e, =0,0.5, 1, 1.5, .... The solid lines are the fitting for the numerical points. 
At the circular limit, e, = 0, #(O) = K(0) = 1. 



Table 3.1: The table listed the numerical variation of all enhancement functions with eccentricity e,. 

e, 
0 

0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 
0.6 

det) 
1 .ooo 
1.015 
1.058 
1.133 
1.237 
1.370 
1.519 
1 647 
1.656 
1.290 

-0.1238 
-4.423 
- 16.94 

P(et> 
1 .ooo 
1.047 
1.197 
1.48 1 
1.959 
2.745 
4.045 
6.25 1 
10.12 
17.23 
3 1 .OO 
59.49 
123.4 

r(et) 
1.000 
1.076 
1.324 
1.803 
2.637 
4.059 
6.510 
10.84 
18.75 
33.85 
64.19 
129.2 
279.7 

e(et) 
1.000 
1.032 
1.133 
1.319 
1.623 
2.104 
2.865 
4.094 
6.146 
9.724 
16.31 
29.23 
56.76 

4(et) 
1 .om 
1.03 1 
1.127 
1.304 
1.588 
2.027 
2.702 
3.757 
5.447 
8.254 
13.13 
22.07 
39.63 

e'(e,> 
1 .ooo 
1.052 
1.221 
1.540 
2.082 
2.98 1 
4.480 
7.045 
11.59 
20.00 
36.44 
70.69 
148.0 

cG/(et> 
1 .ooo 
0.9925 
0.9646 
0.897 1 
0.7492 
0.440 1 
-0.1907 
- 1.468 
-4.073 
-9.499 
-2 1.20 
-47.70 
-1 12.0 

F(eJ 
1.000 
1.053 
1.222 
1.545 
2.100 
3.032 
4.6 15 
7.380 
12.40 
2 1.98 
41.32 
83.24 
182.3 

x(et) 
0 

0.02673 
0.1 172 
0.3071 
0.6738 
1.376 
2.738 
5.451 
11.04 
23.08 
50.43 
116.9 
292.6 

4et)  

1 .ooo 
1.066 
1.282 
1.702 
2.445 
3.737 
6.020 
10.18 
18.07 
33.82 
67.20 
143.2 
332.4 
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Summing up, we have for the log terms in the total 3PN energyflux 

The dependence on ro cancels as expected from general considerations providing a check on 

our algebra. Moreover, in the circular limit, F(0) = 1 and the net result for the log term in 

the average flux is -% In 16 x, in perfect agreement with [95]. 

After the above explicit check of our computation, let us understand in bit more detail the 

occurence of this constant. We first remind from [I581 that the dependence of the radiative- 

type quadrupole moment at infinity, say Uij, in terms of the constant ro arises at 3PN order, 

exclusively from the tails of tails (i.e. the multipole interaction K M~ x Iij), and is explicitly 

given by 
(3) 214 2 (4) Uij(t) = Iij (t) + . . . + - M Iij (t) In ro + . . . , 

105 
(3.97) 

where we indicate that at the lowest Newtonian order Uij reduces to the second time deriva- 

tive of Iij, and where the dots indicate all the terms which do not depend on ro. From this it 

is then trivial to deduce that the corresponding dependence of the tail part of the energy flux 

where we have taken advantage of the fact that inside the time average operation () one can 
4) 4) freely operate by parts the time derivatives. Hence, we wrote (I;;)$;)) = -($, $, ) to arrive 

at the result 3.98. Thus, the effect 3.98 looks like a "quadrupole formula" but where the 

third time derivative of the moment is replaced by the fourth one. Notice that the far zone 

total energy flux in Eq. (2.1) is true for any post-Newtonian source, and in particular for a 

binary system moving on eccentric orbit. From this one readily infers that the dependence on 

eccentricity e, of the coefficient of In ro in Eq. 3.89 must necessarily be given by the function 

in which we made use of the reduced quadrupole moment defined by Eq. 3.52a. The result is 

thus perfectly in agreement with our finding of the function F(e) in Eq. 3.62. The dependence 

of the tail part of the averaged energy flux on the constant ro is such that it cancels out, for any 

value of the eccentricity, with a similar term coming from the instantaneous part of the flux. 

Of course such cancellation must be true for any source, and can be shown based on general 

arguments in [158], but for the present case it gives an interesting check of our calculations. 
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3.9 The complete 3PN energy flux 

At long last, we are now in a position to write down the complete 3PN GW energy flux 

averaged over an orbit for an ICB moving in an elliptical orbit. Summing up the averaged 

instantaneous contribution of Eq. 3.100 and the tail contribution Eq. 3.92 the orbital average 

of the energy flux in the modified harmonic coordinates is: 
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\ 

Recall that the el above denotes ey". Similarly, the total orbital average of the energy flux 
\ , \ 

in the ADM coordinates is given by: 
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Beware that the el above denotes efDM. 
,\ 

The circular orbit limit of the above expressions is obtained by setting e, = 0 and 

As expected both from Eqs. 3.100 and 3.102 one obtains, 

The above expression is in exact agreement with Eq. (12.9) of [95]. 

3.10 The test particle limit of the 3PN energy flux 

In the previous chapter we obtained the contribution of the instantaneous terms in the energy 

flux in the test particle limit to order e;. It is given by: 

1247 44711 
x - 2 + x  

1266161801 1712 
9072 9979200 

+ - 105 ln [g XI) + 

In what follows we shall consider the test particle limit of the tail contributions in our com- 

putation. From Eq. 3.92 it is given by: 

[ 2 1) 1) 
105 

In 4-$I2 F (e,) 
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To proceed further, the enhancement function should be expanded up to power e;. Let us 

assume that they are expanded as: 

F (e,) = 1 + e; + o (e:) , 

IP (el)  = I + a,e: + o (e f )  , 

@ (et) = 1 + a,e: + ~ ( e : ) ,  

x (el> = axe; + O(e:), 

where a ~ ,  a,, a* and ax are pure numbers. 

After substituting Eqs. (3.108a)-(3.108d) the tail part in the test particle limit becomes: 

Summing up the instantaneous and tail parts then gives the following result for the complete 

3PN energy flux in the test particle limit. We have, 

The above expression is in terms of our chosen eccentricity el. One should beware that 

the eccentricity appearing in [I621 could in general be different and hence the MPM and 

perturbation results can only compared modulo a transformation of these eccentricities. Lets 
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assume that the two eccentricities are connected by: 

In terms of the new Schwarzschild eccentricity the total energy flux thus becomes: 

On the other hand, from the perturbation treatment of Sasaki and Tagoshi [162], the energy 

flux (in our notation) is given by: 
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A direct comparison between the MPM result Eq. 3.1 12 and the black hole perturbation 

result Eq. 3.1 13 then yields: 

Terms independent of e i.e the circular orbit contributions are in full agreement. 

The e2 term: Comparing the coefficients at N, lPN, 2PN and 3PN yields eo = 1, 

el = -6, e2 = 4, and finally a~ = respectively. The value of at. obtained from 

x3 In x is consistent with the fact that the coefficient of x3 ln(Gm/ro) must be zero, as 

also from an expansion of the function F(e,). 

Substituting the above values and comparing the two results, one finally finds: 

2335 22988 a'P = 192' a* = -8191, 

a, = -7 ln[2] + ln[3] and e3 = -8. 

To summarise: 

Using the above expressions in the test particle limit, let's calculate the relative error between 

the numerical values and the values of the enhancement functions found by comparing the 

energy flux results above. We find, 

1. F(et) 
at e ,  = 0.001 the relative error is 1.43 x 

at e, = 0.01 the relative error is 0.000143154%. 

at e ,  = 0.1 the relative error is 1.22433%. 

2. cp(e0 
at e ,  = 0.001 the relative error is 3.416 x 

at e, = 0.01 the relative error is 2.117 x 
at e,  = 0.1 the relative error is 0.508%. 

3 .  $(et) 
at e,  = 0.05 the relative error is 0.044%. 

at e, = 0.1 the relative error is 0.761 %. 
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4. x(et) 
at e, = 0.005 the relative error is 0.0425%. 

at e, = 0.01 the relative error is 0.135 1 %. 

at e, = 0.05 the relative error is 3.0496%. 

at e, = 0.1 the relative error is 1 1.5796%. 

Note that we take small values for e,, because the expansion is up to e2 only. 

3.1 0.1 Analytical comparison 

The comparison with the perturbation results can also be attempted analytically by imple- 

menting from the start the calculation of the tails in the test particle limit and to order e;. For 

the function F which is given by: 

we get 

62 
F (e,) = 1 + - e: + 0 (ef). 

3 
(3.1 17) 

For the enhancement function X, the summation of ln(p/2)x(Bessel functions(e,)) needs to 

be evaluated, i.e. 

Considering the expansion of lf (p,ij12 in terms of e, up to e: x is evaluated. One gets, 

6561 
ln[2] + - ln[3]) e: + 0 (ef ), 

256 

in complete agreement with Eq. (3.1 14e) of the previous section. 

Similar calculations for the tail terms yields the following results: 
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Summing up the contributions, we have: 

From the result above, we obtain: 

2335 
cp (e,) = 1 + - 

192 e? + 0 (e:), 

Eqs. (3.1 14c) and (3.122a) are in agreement, but Eqs. (3.1 14d) and (3.122b) are in disagree- 

ment. 

To diagnose this disagreement in the 9 function, let us numerically compare the values of 

the enhancement function computed in three different ways: Our full original MPM calcu- 

lation, the numerical comparison in the test particle limit of the previous section and finally 

the analytical test particle limit calculation in this section. We have: 

ment but the third column is different. Most probably there is some algebraic error in the 

analytical coefficients computed here and we hope to recalculate the tail terms analytically 

and sort out the discrepancy in the function and compare it with Eq. (3.1 14c), which we 

feel is correct. 

3.11 Conclusion and future directions 

e, 

0.05 

0.1 

The far-zone flux of energy contains hereditary contributions that depend on the entire past 

history of the source. Using the Multipolar post-Minkowskian wave generation formalism, 

we have proposed and implemented a semi-analytical method to compute the hereditary 

contributions from the inspiral phase of a binary system of compact objects moving in quasi- 

elliptical orbits up to 3PN order. The method explicitly uses the 1PN quasi-Keplerian rep- 

resentation of elliptical orbits and crucially exploits the implicit double periodicity of the 

An examination of this table shows that the first and second column are in adequate agree- 

Analytically 

0.957716396044439 

0.830865584177756 . 

From the Numerical Calculation 

0.99254419914981 14 

0.9645969066891098 

By comparing 

0.9929837626663411 

0.9719350506653645 
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motion to average the fluxes over the binary's orbit up to 3PN order. Together with the 

instantaneous contributions evaluated in the previous chapter, it provides crucial inputs for 

the construction of ready-to-use templates for binaries moving on quasi-elliptic orbits, an 

interesting class of sources for the ground based gravitational wave detectors and especially 

space based detectors like LISA. 

The extension of these methods to compute the hereditary terms in the 3PN angular 

momentum flux and 2PN linear momentum flux is the next step required toward the above 

goal. These are presently under study. 

The extension of our methods to compute the 3.5PN terms for elliptical orbits is currently 

not possible due to the incompleteness of the generation formalism at this order for general 

orbits. It would also require the use of the 2PN generalised quasi-Keplerian representation 

for some of the leading multipoles and thus be more algebraically involved than the present 

analysis. 




