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Preface

The extreme weakness of the gravitational interaction implies that in genera gravita-
tional waves (GWs) are extremely weak. Only in astrophysical situations involving strong
concentrations of mass-energy (strong gravity) or those involving relativistic velocities can
one hope to find sources of strong GWs. Inspiraling compact binaries (ICBs) consisting
of neutron stars (NSs) or black holes (BHs) are one of the most promising of such sources.
However, even such sources represent a weak signal buried in the strong noise of the detec-
tor and is optimally treated by methods such as matched filtering (MF). The success of MF
depends crucially on the availability of accurate templates which in turn require an accurate
computation of GW phasing for ICBs.

Though the general prototypical ICBswould bein circular orbits towardstheir late inspi-
ral, there do exist astrophysical scenarios producing binaries with eccentricities when they
enter the sensitivity bandwidths of the laser interferometric GW detectors. The construction
of templates for eccentric binaries is more involved than that for binaries in circular orbits.
One of the theoretical inputs required to compute GW phasing of eccentric binaries is the
energy flux from such ICBs moving in general (non-circular) orbits. In this thesis we first
compute the total energy flux from ICBsmoving in general orbits at the third post-Newtonian
order beyond the leading quadrupolar approximation.

In addition to energy and angular momentum, GWs also carry away linear momentum
from the binary system leading to the possibility of GW recoil of the center-of-mass. The
second set of problemsin this thesisis the computation of the second post-Newtonian order
linear momentum flux for ICBs moving in quasi circular orbits. Employing this linear mo-
mentum flux the resultant recoil is first computed for inspiral up to the last stable circular
orbit (ISCO). A more physical estimate including the plunge from the ISCO to the horizon
isfinally provided.

Though thefirst mandate of the GW detectorsisthedirect detection of GWs, the ultimate
goa of these GW experiments is to inaugurate GW astronomy. The ultimate excitement is
to unravel new astrophysics and also probe the fundamental physics of gravitation. The test
of genera relativity using gravitational wave phasing in ground-based GW interferometric
detectors and more importantly, space-based LISA is the third and final theme investigated
in this thesis. In what follows we provide a brief summary of each chapter.

In chapter 2 the instantaneous contributions to the 3PN gravitational wave luminosity
from the inspiral phase of a binary system of compact objects moving in general orbits is
computed using the Multipolar post-Minkowskian wave generation formalism. The new in-
putsfor thiscalculation include the mass octupole and current quadrupole at 2PN for genera
orbits and the 3PN accurate mass quadrupole. Using the 3PN quasi-K eplerian representation
of elliptical orbits obtained recently the flux is averaged over the binary's orbit. The ex-
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pression for the instantaneous contributions averaged over an orbit is presented in different
coordinate systems: Standard harmonic coordinates (with logs), modified harmonic coordi-
nates (without logs) and ADM coordinates. Alternative gauge i nvari ant expressions of the
energy flux are also provided.

The far-zone flux of energy contains hereditary contributions that depend on the entire
past history of the source. In chapter 3, using the Multipolar post-Minkowskian wave gener-
ation formalism, we have proposed and implemented a semi-analytical method to compute
the hereditary contributions from the inspiral phase of a binary system of compact objects
moving in quasi-elliptical orbits up to 3PN order. The method explicitly uses the 1PN quasi-
Keplerian representation of elliptical orbits and crucially exploits theimplicit double period-
icity of the motion to average the fluxes over the binary's orbit up to 3PN order. Together
with the instantaneous contributions evaluated in the previous chapter, it provides crucia
inputs for the construction of ready-to-use templates for binaries moving on quasi-elliptic
orbits, an interesting class of sources for the ground based gravitational wave detectors and
especialy space based detectorslike LISA.

In chapter 4, the gravitational recoil of hon-spinning black-hole binaries (in quasi-circular
orbits) is calculated at the second post-Newtonian order (2PN) beyond the dominant effect,
obtaining, for thefirst time, the 1.5PN correction term due to tailsof wavesand the next 2PN
term. The maximum value of the net recoil experienced by the binary due to the inspiral
phase up to the innermost stable circular orbit (1ISCO) is of the order of 22kms™. The
kick velocity accumulated during the plunge from the ISCO up to the horizon is estimated
by integrating the momentum flux using the 2PN formula along a plunge geodesic of the
Schwarzschild metric. The contribution of the plunge dominates over that of theinspiral. For
amass ratio my/m, = 1/8, atotal recoil velocity (due to both adiabatic and plunge phases)
of 100 + 20kms™! isestimated. For aratio 0.38, the recoil is maximum and estimated to be
250 + 50kms~!. In the limit of small massratio, V/c ~ 0.043 (1 £ 20%) (m,/m;)*. These
estimates are consistent with, but span a substantially narrower range than, those of Favata
et al (2004).

Observations of the supermassive binary black hole mergers in the Laser Interferometer
Space Antenna (LISA) and stellar mass binary black holes in the European Gravitational-
Wave Observatory (EGO) offer an unique opportunity to test the non-linear structure of
genera relativity since they will observe events with amplitude signal-to-noise ratio of sev-
eral thousands and hundreds respectively. For abinary composed of two non-spinning black
holes, the non-linear general relativistic effectsdepend only on the masses of the constituents.
In chapter 5, we investigate the extent to which such observations afford high-precision tests
of Einstein's gravity by exploring the possibility of atest to determine all the post-Newtonian
coefficients in the gravitational wave-phasing. We show that LISA provides a unique op-



portunity to probe the non-linear structure of post-Newtonian theory both in the context of
genera relativity and its alternatives. However, mutual covariances between the various PN
coefficientsdilute the effectivenessof such atest.

In chapter 6, we propose a more powerful test in which the various post-Newtonian co-
efficientsin the gravitational wave phasing are systematically measured by treating three
of them as independent parameters and demanding their mutual consistency. LISA (EGO)
will observe BBHs inspirals with a signal-to-noiseratio of more than 1000 (100) and thereby
test the self-consistency of each of the nine post-Newtonian coefficientsthat have so-far been
computed, by measuring thelower order coefficientsto arelative accuracy of ~ 107> (respec-
tively, ~ 107*) and the higher order coefficientsto arelative accuracy in the range 1074-0.1
(respectively, 1073-1).
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