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The angular-momentum flux from an inspiralling binary system of compact objects moving in quasi-
elliptical orbits is computed at the third post-Newtonian (3PN) order using the multipolar post-
Minkowskian wave generation formalism. The 3PN angular-momentum flux involves the instantaneous,
tail, and tail-of-tails contributions as for the 3PN energy flux, and in addition a contribution due to
nonlinear memory. We average the angular-momentum flux over the binary’s orbit using the 3PN quasi-
Keplerian representation of elliptical orbits. The averaged angular-momentum flux provides the final input
needed for gravitational-wave phasing of binaries moving in quasi-elliptical orbits. We obtain the
evolution of orbital elements under 3PN gravitational radiation reaction in the quasi-elliptic case. For
small eccentricities, we give simpler limiting expressions relevant for phasing up to order e2. This work is
important for the construction of templates for quasi-eccentric binaries, and for the comparison of post-
Newtonian results with the numerical relativity simulations of the plunge and merger of eccentric binaries.

DOI: 10.1103/PhysRevD.80.124018

L. INTRODUCTION

The generation problem of gravitational waves (GWs)
for inspiralling compact binaries has been completed at the
third post-Newtonian (3PN) order both for the equation of
motion of the binary and for its far-zone radiation field.
The computations of the 3PN accurate equations of motion
(EOM) and mass-quadrupole moment were technically
more involved than the corresponding 2PN cases due to
the issues related to the ambiguities of self-field regulari-
zation using Riesz or Hadamard regularizations [1-5]. A
deeper understanding of the cause of these ambiguities and
the use of the efficient dimensional regularization scheme
was crucial to the resolution of this problem [3,6-8]. The
3.5PN phasing of inspiralling compact binaries (ICBs)
moving in quasicircular orbits is now complete and avail-
able for use in GW data analysis [7-9]. This is timely since
prototype binary GW sources for laser interferometer de-
tectors are neutron star or black-hole binaries close to their
merger phase and consequently moving in quasicircular
orbits. However, astrophysical paradigms do exist that
result in binaries with nonzero eccentricity in the sensitive
bandwidth of both terrestrial and space-based GW detec-
tors [10-15].

More precisely, there currently exists a variety of astro-
physical scenarios that can produce binaries that have
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residual ( ~ 0.01), moderate ( ~ 0.5), or even very high
(~0.9) eccentricities close to merger—contrary to
garden-variety ICBs mentioned earlier. For instance, the
Kozai mechanism is one important scenario that produces
eccentric binaries and involves the interaction between a
pair of binaries in the dense cores of globular clusters [11].
If the mutual inclination angle of the inner binary is
strongly tilted with respect to the outer black hole (BH),
then secular Kozai resonance [10] can increase the eccen-
tricity of the inner binary to large values. Numerical inves-
tigations [14,15] have shown that intermediate mass BH
binaries can have eccentricity of order 0.9 when they are
visible in the Laser Interferometric Space Antenna band.
Even for the case of stellar mass BHs, the eccentricity may
be about 0.1 at 10 Hz making them possible important
sources for future ground-based GW detectors such as the
Einstein telescope, which optimistically would attempt to
achieve a seismic cutoff frequency around 1 Hz. In the
context of the ““final parsec problem” for galaxy mergers,
Ref. [16] pointed out that angular-momentum loss to the
circumbinary gas, which can provide a mechanism for
overcoming this problem, can produce small but nonzero
eccentricity via interaction of the binary with the gas disk.
The resultant eccentricity can range from 0.01-0.1 one
week prior to merger depending on the binary’s mass ratio
and will have observable effects on the Laser
Interferometric Space Antenna signal. A more recent study
of the scattering of stellar mass BHs in the galactic centers
[17] has found that more massive BHs dominate the scat-
tering rate close to the central supermassive BH. These
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scatterings could give rise to bound binaries, which will
have a high eccentricity ( ~ 0.9) when they enter the LIGO
band. More importantly, due to higher harmonics present in
the GW signals from eccentric binaries, these sources can
be observed to larger distances and with larger masses ( <
700M,) than for circular orbits, depending on the eccen-
tricity [17,18]. This will have implications for sources in
Advanced LIGO/Virgo and Einstein telescope detectors
due to their very good proposed low frequency sensitivity
[18]. For a detailed discussion about various astrophysical
mechanisms related to the eccentric-orbit binaries see the
introduction of Ref. [19] and Appendix A of [18].

The complete (ambiguity-free and fully determined)
3PN accurate EOM and mass-quadrupole moment for
compact binaries enable one to compute the 3PN energy
and angular-momentum fluxes for inspiralling compact
binaries moving in general noncircular orbits. Recently,
in two related papers [20,21], we laid out the formalism
and implemented the computation of the GW energy flux
for noncircular orbits up to 3PN order. For noncircular
orbits, to determine the orbital phasing, and the secular
evolution of the orbital elements, the GW angular-
momentum flux needs to be known in addition to the
energy flux. Of course, we also need the conserved
center-of-mass energy and angular momentum of the orbit
as deduced from the EOM.

In this paper, we compute the angular-momentum flux of
inspiralling compact binaries up to 3PN order generalizing
earlier work by Peters [22] at Newtonian order, extended in
Ref. [23] at 1PN order, in [24] at 1.5PN (tails), and in [25]
at 2PN. The 3PN contributions to energy and angular-
momentum fluxes come not only from instantaneous terms
but also (nonlinear) hereditary contributions [26,27]. We
shall find that for the angular-momentum flux, the heredi-
tary contributions comprise not only the tails, tails-of-tails
and tail-square terms as for the energy flux but also for-
mally an interesting memory contribution at 2.5PN order.
One can then average the 3PN energy and angular-
momentum fluxes over an orbit thanks to the 3PN gener-
alized quasi-Keplerian parametrization of the binary’s or-
bital motion [28]. Finally, we compute the secular
evolution of orbital elements under 3PN gravitational ra-
diation reaction (i.e. corresponding formally to 5.5PN
terms in the EOM). This generalizes the works of Peters
and Mathews [29] at 2.5PN, Blanchet and Schéfer at 3.5PN
[30] and 4PN [24,31] orders, and Gopakumar and Iyer [25]
at 4.5PN. While [23,24] require the 1PN accurate orbital
description [32], Ref. [25] crucially employs the general-
ized 2PN quasi-Keplerian parametrization of the binary’s
orbital motion in Arnowitt, Deser, and Misner (ADM)
coordinates as given in [33-35]. In the present case the
averaging of the instantaneous terms will require the full
3PN generalized quasi-Keplerian representation. However,
the hereditary terms being relatively of higher PN orders,
only require the 1PN parametrization of the motion.
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The secular evolution of orbital elements under gravita-
tional radiation reaction provides the starting point for
constructing templates for eccentric orbits. One of the first
works in this direction was Ref. [36], which investigated
the efficiency with which circular-orbit based templates
would be able to detect an eccentric-orbit signal. To go
beyond the secular evolution in the gravitational-wave
phasing one needs to include besides the averaged contri-
bution the oscillatory terms in the evolution of orbital
elements. Damour, Gopakumar, and Iyer [37] discussed
an analytic method for dealing with this issue at the leading
radiation-reaction order of 2.5PN, making possible the
construction of high accuracy templates for the GW signals
from ICBs in quasielliptical orbits. This was extended to
3.5PN order in Ref. [19], and the problem was revisited in a
more elaborate way in [38], including the computation of
the noise-weighted overlaps for different astrophysical
situations. Further investigations would be necessary to
tackle the data-analysis issues especially if the signals
have moderate or high eccentricities. Including PN correc-
tions to higher order in the evolution of orbital elements is
a crucial step towards this.

With the recent advances in numerical relativity (NR)
has emerged the possibility of comparing the NR wave-
forms to the PN results and exploring the regime of validity
of the PN approximation [39-42]. These comparisons have
been done for different source configurations such as non-
precessing spinning binaries [43], precessing spins [44]
and, very recently, eccentric binaries [45]. It is obviously
crucial to have a very accurate PN expression for the
evolution of the GW phase while comparing with the
high accuracy NR simulations. For the circular-orbit case
we have 3.5PN accurate expressions in phasing [7,9,46,47]
and 3PN accurate ones in amplitude [48-52]. Notably
Ref. [45] presented the first comparison between NR simu-
lations of an eccentric binary black-hole system with the
corresponding current best PN results. The simulations
relate to equal-mass, nonspinning binaries but with an
eccentricity e ~ 0.1 for about 20 GW cycles before
merger, and comparison to a currently available 2PN ec-
centric binary. The work [45] explores the parametrization
most suited for such a comparison and stands to improve
with the 3PN model that our present paper will now
provide.

The organization of this paper is as follows: In Sec. I,
we start with the basic expression of the far-zone flux of
angular momentum, employ expressions relating the radia-
tive moments to the source moments and decompose the
angular-momentum flux into its instantaneous and heredi-
tary parts. Section III discusses the computation of the
instantaneous terms in both standard harmonic coordinates
and ADM coordinates. Using the 3PN quasi-Keplerian
representation, Sec. IV computes the orbital average of
the instantaneous part of the angular-momentum flux in
ADM coordinates. Section V deals with the computation of
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the hereditary contributions in the averaged angular-
momentum flux using a Fourier domain decomposition.
The evolution of the orbital elements, in ADM coordinates,
including both instantaneous and hereditary terms, is pre-
sented in Sec. VL. In the final Sec. VII we provide simpler
explicit expressions of various inputs up to first order in e>
needed to deal with phasing in the small eccentricity limit
e — 0. The paper concludes with three appendices.
Appendix A presents an analysis of nonlinear memory
leading to a DC term arising from the dependence over
the binary’s (remote) past history. Appendix B includes
tables of numerical values of the various ‘“‘enhancement
functions” appearing in the paper to facilitate comparisons
with numerical relativity runs and use in data-analysis
applications. The paper concludes with Appendix C, where
the important equations are also presented in the modified
harmonic coordinates for the convenience of the user.

II. THE FAR-ZONE ANGULAR-MOMENTUM
FLUX

In this section, we start from the angular-momentum
flux expressed in terms of the radiative multipole moments,
use the relations connecting those radiative moments to the
source moments, and rewrite the flux as a sum of the
instantaneous terms, which are functions of the retarded
time, and hereditary terms that depend on the dynamics of
the system in its entire past. The 3PN accurate angular-
momentum flux in the source’s far zone, denoted for
convenience

G, = (dji 2.1

dt

)GW

is expressed in terms of the mass and current-type radiative
multipole moments in radiative coordinates [53] as
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In the above U; and V; (with L = ii, - - - i; a multi-index
composed of / indices) are the symmetric-trace-free (STF)
mass and current-type radiative multipole moments, re-
spectively, and U and V{?) denote their p™ time deriva-
tives. The moments are functions of retarded time
Tr =T — R/c in the radiative coordinates (7, X), with
R = |X]| the distance of the source; &,,, is the usual
Levi-Civita symbol such that &;,3 = +1; the shorthand
O(n) denotes a PN remainder of order of O(c™").

A. Radiative moments in terms of source moments

Using the multipolar post-Minkowskian formalism
[54,55], the radiative moments in Eq. (2.2) can be com-
puted in terms of the source moments to an accuracy
sufficient for the computation of the angular-momentum
flux up to 3PN. One must compute the mass-type radiative
quadrupole U;; to 3PN accuracy, mass octupole U, and
current quadrupole V;; to 2PN, mass hexadecupole Uy,
and current octupole V;j to 1PN, and finally U,j,,, and
Vijkm to Newtonian order only. The relations connecting
the radiative moments U; and V; to the corresponding
source moments /; and J; (and also to the so-called gauge
moments W;, X;, Y;, and Z;) are now given
[26,27,54,55]. For mass-type moments we have (the brack-
ets () denoting the STF projection)

2GM (T Tp —V\ 11 G[ 2 (T 1
Uij(Te) = 12(Tg) + =5 dV[l ( i )+ —]I(f‘) V) + —{——/ aviQ i vy + 1041,
lj( R) l]( R) C3 Cw n 27_0 12 ’J( ) C5 7 o a<1( )]>a( ) 7 a<i'j>a
5 2 1
- 7151‘21.1;2“ - 5152,.1520 + gsabql}ﬁajb + AW, — WO 1§;>]<z>}
GM\2 (Tx . 5 [ (TR - V) 57 <TR - v> 124627]
+2( == avidw)| m2 (-2 —=) + =21 + + O(7), 2.3
(c3> jfoo i (V)] In 27, 70 "\ 27, 44100 @ (2.32)
2GM (T Tp — V\ 97
Uy(Tg) = 13(Tg) + = /700 dV[ln< Rzro ) + @]Igjm + 005), (2.3b)
Uyja(Ty) = I, (Tg) + O(3), (2.3¢)
Uijiin(Tr) = 15, (Tg) + OQ3). (2.3d)

The I;’s and J;’s are the STF mass and current-type source moments; M = [ is the total mass monopole, which is
conserved; W is the monopole corresponding to one type of the gauge moments, i.e. W; . For the current-type moments we

find
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2GM
Vi(Tp) = I3 (Ty) + —5—

Viu(Tg) = T\ (Tp) + @(3),

Viiu(Tr) = J,(‘,‘;ZI(TR) + 0Q).

The radiative moments have two distinct contributions:
“instantaneous,” which is a snapshot function of the re-
tarded instant Ty only; and ‘“‘hereditary,” which depends
on the dynamics of the system in its entire past V = T.
The parameter 7, appearing in the logarithms of Egs. (2.3)
and (2.4) is a freely specifiable constant time scale, enter-
ing the relation between the retarded time T = T — R/c
in radiative coordinates and the corresponding time ty —
ri/ ¢ in harmonic coordinates (where ry is the distance of
the source in harmonic coordinates). Posing rq = c7 we
have

ryg 2GM ryg
-= ln(—). 2.5)

c c ro
|

- G 2 2,6
G}"St = _58iab{_lt(1j)ll(aj)

5 63 ook T 5

Tr =V 7@
» dV[ln( o ) + 6]J,,- (V) + 065),

1Tl 2 1
_[_ 914 132 50 J<3>] [
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(2.4a)

(2.4b)
(2.4¢)

We choose the constant r, scaling the logarithm to match
with the choice made in the computation of tails of tails in
[26].

B. Structure of the 3PN angular-momentum flux
One can schematically split the total contribution to the
angular-momentum flux as the sum of the instantaneous
and hereditary terms,
Gi — g‘}nst + g?ered’ (26)

where the instantaneous terms are given by [not specifying
the obvious O(n)]

@6 16 @
2268 Ia]kllh)kl + ﬁ‘la/k‘lbjk:l

2G
572 4)7(2) 7(1) 2)7(2);3) _ 1) 7(2) 7(4) 4 (3) 3) (1) 73) _ 1)73) 73)
= [4W< Ly + 8WWLI L) — 12WR D) — AW LD + awWI 1) + 4w L) — awO L
5 2 1 1 4 4
3 4 S0 3) 42 5 4 4 50 3) 43
(10, = IO+ 1 et e ) + 1SS0, 10 18,12 211,
7 7 7 3 7 7
1 1 1 1 16
(©) 5) 46 @ 406
+ 7I¢<b11>L + 3 Ecd<b ,>¢Jd>:| [118800 ajkimbjkim T 12175 " aiki bjkl]} (2.7)
Using (2.3) and (2.4) in Eq. (2.2) the hereditary part can be further decomposed as
g?ered _ g}aﬂ + ggail(tail) + ggtail)2 + g;nemory’ (2.8)

where the quadratic tail integrals are given by'

Gl — GCQSM ,ub{s i [ dV[( V) “]1(5>(V)

27y

S [ () T

et [ av () + Dl

g [ o) i

+—I(ﬂ<(TR)[ dV[ ( 2 ov)+2(7):| /k(V) —I(Jk(TR)[ dV[ ( 2 ov)+%:ll(“5’)k(v)}’

and the cubic-order tail integrals are

(2.9)

"Reference [24] contains a typographical mistake at 1.5PN in Eq. (83). The first term in Eq. (2.9) below containing “I@ (T)I®) (V)
is missing. This has been independently pointed out recently in [56]. However, the results in [24] are correct and do take this term into
account. Reference [25], which only quotes [24], also contains this typo.
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e 4 GIMP Tq Te —V\ 57 (Te—V\ 124627
tail(tail) __ (2) 2f £ R R (6)
: =277 ¢ 11T dvl1 +201 + 19
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Glei? =—Tsiab< f ! dV[l ( R ) ]1(4)(V))( f ! dV[ln( R ) ]1(5)(1/)) (2.10b)
5 C 27'0 12 —00 27'0

These tail and tail-of-tail integrals are similar to those
occurring in the energy flux [21]. However, we have also
the nonlinear memory integral

memor 4G TR
G = 2 oo T [ v, WL )

Q2.11)

Recall that the memory contributes to the radiative quad-
rupole moment U;; simply by an antiderivative of source
moments. It therefore becomes instantaneous when we
consider the time derivative Uf.}) of the radiative quadru-
pole moment. Hence, we have incorporated in the instan-
taneous part of the angular-momentum flux [Eq. (2.7)] a
term coming from the time derivative of the memory
integral. The presence of the nonlinear memory contribu-
tion (2.11) remaining in the angular-momentum flux is to
be noticed. This is in contrast with the case of the energy
flux, where there is no memory contribution because the
memory is time differentiated therein and therefore be-
comes instantaneous (see Ref. [21]).

II1. INSTANTANEOUS TERMS IN THE 3PN
ANGULAR-MOMENTUM FLUX

The relevant source multipole moments needed for the
computation of the angular-momentum flux up to 3PN
order are the same as for the energy flux. Hence, we
redirect the reader to Secs. III and IV of Ref. [20] for a
detailed discussion of these moments as well as for the
equation of motion up to 3PN order (see Ref. [57]), which
is required when differentiating the source moments.
Notice that the mass-quadrupole moment /;; was available
in [5] and was used in [21]. Using all these source mo-
ments, and the EOM at 3PN order, it is possible to compute
the different PN contributions to the instantaneous part
(2.7) of the angular-momentum flux.

The prominent application of the present computation
will be discussed in Sec. VI, where the evolution of the
orbital elements under gravitational radiation reaction will
be investigated to 3PN order. This will be based on the
solution of the motion in the form of the quasi-Keplerian
representation of the orbit. The latter can be written up to
3PN order in ADM coordinates (and also in “modified”
harmonic coordinates [20]) but not in the standard har-
monic coordinate system, due to the presence of gauge-
dependent logarithms arising at 3PN order. We shall there-
fore present our results in the (standard) harmonic coor-

[

dinate system and also in ADM coordinates, in which we
give the evolution of the orbital elements (see Sec. VI).

A. Instantaneous flux in standard harmonic coordinates

The standard harmonic (SH) coordinate system is the
one in which the original computations of the 3PN center-
of-mass equations of motion [57] and 3PN source quadru-
pole moment [5] were given. It is known that the standard
harmonic coordinate system develops some gauge-
dependent logarithmic terms at 3PN order. This particular
coordinate system is referred to as standard in order to
distinguish it from the modified harmonic (MH) coordinate
system, where the logarithms at 3PN order have been
gauged away. Both the MH coordinates and the ADM
coordinates are suitable for a 3PN quasi-Keplerian parame-
trization of the motion; they were reviewed and used in the
computation of the energy flux in Ref. [20].

The angular-momentum flux will be orthogonal to the
orbital plane, and aligned with the orbital angular momen-
tum. We introduce the unit direction along the orbital
angular momentum,

vk
[,=20Y 3.1)
re
where x/ and v* = dx*/dt are the relative separation and
velocity of the two particles. Here, ¢ = d¢/dt, where ¢
denotes the orbital phase,2 and is linked to the orbital
velocity by v> = i + r?¢* where i = dr/dt. Posing

G™ = LiGin (3.2)
we look for the 3PN expansion

Gint = GN T Gipn T Gopn + Gaspy T Gapn + O(7),
3.3)

where as usual the Newtonian piece really corresponds to

the dominant radiation reaction at 2.5PN order in the

equations of motion. The results in SH coordinates then
3

read

*Note that for noncircular orbits ¢ differs from the mean (-
orbit-averaged’”) angular frequency w = Kn we define below,
namely, ¢ = w + ndW/d{f, where W({) is periodic in € =
n(t — tp) with period 277, hence periodic in time with period P
(see e.g. Sec. II.LA in [21]). We can call ¢ the instantaneous
an§ular frequency.

Mass parameters are the total mass m = m; + m,, the re-
duced mass u = m;m,/m and the symmetric mass ratio v =
u/m, which is such that 0 < » = 1/4.
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We reproduce the terms computed earlier [22,23,25] in the angular-momentum flux up to 2PN order. As can be seen from
above, the 3PN terms contain two kinds of logarithms, In(r/ry) and In(r/r{). The logarithms In(r/r{) are specific to the
standard harmonic coordinate system. We discuss later in more detail these different kinds of logarithmic terms.
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B. Instantaneous flux in ADM coordinates

Since many related numerical relativity studies are in
ADM-type coordinates, we shall present the applications in
later sections of this paper in ADM coordinates. Going
from SH to ADM coordinates removes the gauge-
dependent logarithms In(r/r{), which are not very conve-
nient to handle in numerical calculations. We shall thus re-
express the instantaneous flux (3.3) and (2.4) in terms of the
variables in ADM coordinates. This requires the use of the
so-called contact transformation of these variables (x/, v’
and 7), linking the standard harmonic coordinates to the
ADM ones. We refer to [20] (see Sec. VIB) for the details
of that transformation. The contact transformation equa-
tion will depend on some In(r/r{)’s and that dependence
will be such that the flux in ADM coordinates becomes
independent of those logarithms In(r/r(), revealing the
gauge nature of the constant r{,. However, as we shall
J
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comment below, the other logarithms of type In(r/ry)
will remain in the instantaneous part of the flux but will
be cancelled by related contributions coming from the tail
integrals (and more precisely the tails of tails); indeed, see
the constant 7, = ry/c in Egs. (2.9) and (2.10).

The angular-momentum flux in ADM coordinates ad-
mits the same type of PN expansion as (3.3). Since the
transformation between the SH and ADM coordinate sys-
tems starts at the 2PN order, only the 2PN and 3PN terms in
the flux get modified and we now list these two terms,
labeled by “ADM” to remember that all variables therein
correspond to ADM coordinates. Let us recall that the
transformation formulas between the standard harmonic
and ADM coordinates, which were given in [20] concerned
only the conservative part of the dynamics. We thus give
here only the 2PN and 3PN terms in the angular-
momentum flux following these transformations,

G2m3V2 533 353 614 2246 12653 15637
ADM _ . 4227 042 4[_ _ 2]
2PN ‘P{ [63 9 "5 V] "Y1 105 105 Y 105
(Gm) 4[ ] 1333 | 4022 2]+ . 2[715 3361 448 2]+<Gm),2 2[21853+2942 , 2551 2]
— — — )
)V 121 TR A TR TR ) VL35 105 Y T 315
<7m)2 [ 4210 2962 6856 2]+,6[_g+@ 388 2]+(G7m)'4[_22312+1999 277 2]
r )Y R TR YT I R S P )L 315 a5 VT 9 Y
L (Cm 2r2|:5666 6938 3058 2:|+(G_m)3|:336188+11878 L4 2]} 50
105 105~ r 2835 315 © 45" || '
on GPm 2_ 145919 110423 1079083 , 30229 .7 , [ 2473 763409 2155249 ,
BN @ v - v |t i — + V-
i 13860 1260 4620 165 70 2310 2310
543171 [483007 17429 693331 , 91 1., 18695 632111 1552525 ,
v+ — v vi+— |+ —
770 13860 154 4620 165 231 924 924
61970 3] Gm L, J[205817 22549 6112567 , 9979 .7 . (Gm\2 ,[10477393 6848 (r
+( — v— ve— vi+l—) v — In| —
p 13860 105 13860 66 r 57750 175 \rg
(1801028 369 2) 994673 , . 154421 3] y 2[ 451 59870 14841 , 32342 3]
V- % v+ irv| ——F - + %
3465 40 3465 1155 6 99 11 99
Gm\ o o[ 100999 6446971 512285 , 738973 |1 (Gm\:, . 14457734 1712 (7
+< [ + - v v]—k(— rv[— + ln(—
1980 6930 2772 3465 p 5775 5 N\,
18425707 369 \ 3826709 , 869048 .1 (Gm\3 ,[1229915081 37664 (r
+( 7T)1/+ — v]+(—)v|: — 1n<—)
6930 4 3465 3465 p 1559250 525 ‘\rg
827081 31 ) 886279 , 155339 .] 93 4035 4294 , 410
( )v—i— v — v: |+ 7 [ —v+t——v ——v]
2835 6930 3465 | DY) 11 11
+( ) [1932907 40997 955543 , 50525 3:|+<Gm> _4[93865829 1712]n<r)
| 12 — | r - —
69300 70 2772 1386 p 34650 5 "\
924466 861 ), 210811 , 85543 .1 (Gm\ @ 153361069, 5136 (r
+( )V— v 1% +(—) 7 I:— ln(—)
385 462 3465 © | \F 103950 35 "\r
7294789 | ,\ 2376287 , 267188 .7, (Gm\f 317864383 3424 (r
+< )V— + V“il-i-(—) [— + 1n<—)
10395 6930 3465 p 779625 525 \rg
7120061 , 947 3748 . 1780
n 2), 2200 1 TOY 3]} 3.5b
( 10395 40" )V 3150 693" (3.56)
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C. 2.5PN terms in the fluxes in ADM coordinates

In the previous section, we have taken into account the
contact transformation involving “‘conservative’ orders up
to 3PN required to go from the standard harmonic coor-
dinates to the ADM coordinates. However, there still re-
mains the possible change of gauge in the radiation-
reaction (dissipative) terms at order 2.5PN. We discuss
these terms here since the corresponding transformation
law was not given in Ref. [20].* We recall that in the SH
coordinate system the lowest-order dissipative part of the
equations of motion, i.e. the 2.5PN acceleration term, is
given by (with boldface letters indicating ordinary three-
dimensional vectors)

8 G*m2v 17 Gm17.
SN T3 53 ([3”2 T3 T]”‘

o[-0 =32

However, one may choose to work in alternative radiation
gauges and a convenient characterization at 2.5PN has
been investigated earlier in [58,59] (see also [60]).
Following this work the most general form of the relative
acceleration is specified by the two-parameter family writ-
ten as,

(3.6)

8 G’m’v )
aspn = 5 W(Az.sme + B, 5pnV), (3.7a)

1 G
Ayspn =3(1 + B)v? + §(23 + 6a — 9,5')Tm — 5872,
(3.7b)

Byspn=—2+ a)v>—(2— a)GTm +3(1 + a)i?. (3.7¢)

The general 2.5PN gauge is parametrized by the two
numerical constants « and 8. The SH gauge in which the
acceleration is given by (3.6) corresponds to setting @ =
—1 and B = 0; the ADM gauge is obtained by using @ =
5/3 and B = 3, in which case the 2.5PN acceleration
becomes [61]

G m*v

Gm
— ([12112 +2—— - 15#2]m
Cr r

11 1G
+ [_?Uz _ng‘i‘ 8}’2]V)

ADM
a5 5PN

8
5
(3.8)

To obtain the energy and angular-momentum fluxes in a
general 2.5PN gauge parametrized by « and 8 we apply
upon the SH particle’s worldlines the (a, B8)-dependent
shift [58,59]

*Actually the dissipative terms at 2.5PN order in the fluxes are
not very important for the present purpose because they will
average to zero and thus will not contribute to the balance
equations. The present discussion is for completeness and future
use.
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8 G2 2
€ :_7211 V(—,Bin + (3 +3a —2B)v),
cr

5 (3.9

such that the relative position of the bodies in a general
gauge is given by x2(r) = x°H(¢) + €(t). The relative
velocity and acceleration of the bodies are then v&"(r) =
vSH(1) + de/dt and a&"(¢r) = aS"(¢) + d*€/dr*. However,
the effect of this shift on the acceleration is more subtle.
Indeed, for the acceleration, one must remember that it is a
functional of the position and velocity coming from the
equation of motion and consequently the acceleration must
consistently be expressed in terms of the position and
velocity in the corresponding frame. Thus, a&(r) =
aSt(¢) + d%>e/dr* is correct, but here our too condensed
notation for the acceleration means in fact that a€"(s) =
a"[x2" (1), v ()] in the general frame and aS(r) =
aSH[x3H(7), vSH(7)] in the SH frame. Re-expressing the
latter relation in terms of “dummy” variables x(7) and
v(r) we then get the functional relation a®"[x(r), v(r)] =
aSH[x (1), v(r)] + 8.a(r), where the change in the accelera-
tion is given by

d26 i BaN

d.a=——¢€ A
€ dr? ax!

(3.10)

Here, neglecting higher-order terms, ay denotes the ordi-
nary Newtonian acceleration, which depends on x but not
onv.

Consider now the effect of the shift on the components
of the quadrupole moment (the generalization to higher
moments is trivial). Under this shift the mass-quadrupole
moment /5 in SH coordinates will be changed into 75"
such that I77"[x2e", veer] = IPH[x5H, vS1]. Hence, introduc-
ing dummy variables x, v we readily obtain /5;"[x, v] =
Ifjh[x, v] + 8.1;; where the change can be expressed in
terms of the Newtonian quadrupole moment / 8\0 asd.l;; =

—ekalg\l) /dx* (neglecting higher-order PN terms). Using
Ig.\]) = mvx‘x” (which depends only on x) we get,’

8.1, = —2myxiel. (3.11)
Next, we compute the successive time derivatives of this
quadrupole moment, being careful that when reducing the
result by means of the equation of motion the acceleration
is modified by the amount (3.10). This order reduction
starts from the second time derivative. We readily obtain
IS, v]/dr* = (agen[x, VIO, vI/0xk + ) +

d*8.1,;/dr*, where we have explicitly replaced the accel-
eration by the general-frame one (since we are evaluating
in the left-hand side the time derivative of the general-
frame moment), and where the dots indicate other terms

SSome signs should be corrected in Ref. [20], namely, Eq. (6.4)
should have a minus sign, Eqgs. (6.5) and (6.7) have plus signs,
and the second term of Eq. (6.6) should have a plus sign. The
results in Ref. [20], notably Eq. (6.8), are unchanged.
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that do not need any replacement of accelerations. Hence,
using the modification of the acceleration as given by
(3.10), we can connect the right-hand side (RHS) to what
we would get for the time derivatives of the SH moment
using the SH acceleration. This yields Igen[x v] =
IPA[x, v] + 8.1;;, where the total change is now given by
661 = akalN/ax + d*8.1;;/di? (the dots mean the
time der1vat1ves) The results, which proceed in the same
way for the third time derivative, read

8. =2mvxYis al + —(5 L), (3.12a)

ds.a’ &
5.0 = 2mv|:3v<’5 alh + x( 224 - ]+ﬁ(561ﬁ,.)(3.12b)

Beware that the total change in the time derivative of
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Finally, we obtain the shifts of the energy and angular-
momentum fluxes. Since they are given in first approxima-
tion by the quadrupole formulas, for instance, F&"[x, v] =
% Tffn[x, v]7§f“ [x, v], we can immediately use the previous
link 75"[x, v] = 7P1'[x, v] + 8.1;; to conclude that the as-

sociated changes in the fluxes, say JF&[x,v]=
FSH[x, v] + 8. F, are
5. F = —1‘N>5 I, (3.13a)
2G "
6EGi = _58iab[1uc 6elbc - .(N)‘s Ibc] (313b)

Evidently the factors of the gauge modified multipole mo-
ments are Newtonian at this order and straightforwardly
computed. Explicit results for the 2.5PN terms in the

moments 8./;; is different from the time derivative of the  energy and  angular-momentum fluxes in the
change of the moments d?§.1; j /dr>. (a, B)-dependent gauge are then.®
|
gen 3R2GM VR 12349 , Gm( 5869 188 28 4524 985 ,
55PN — 1035 - v+|————t —a—— — i v -
5¢r 210 r 630 15 3 35 14
Gm (6589 176 128 sz2 83 4 4
— = — —+—a——B]t 3.14
r <630 15 ¢ ﬁ) 7 (315 159 15 '8)} (5-192)
, Gm*v i 27744 Gm( 92752 1152 768 19144 ,
25N = 5 M0, {_ 3 Ut [T<_ 105 5 ‘5 ) " ,,z]vz - 19607
m (34128 1536 1088 G*m?( 12112 512 384
- + 2+ -+ Za-"—"3)t 3.14b
r<35 5 ¢ sﬁ)r r2( 105 5 sﬁ)} (3.145)

These expressions could be of use in the discussion of nonquasicircular effects required to match high accuracy PN
waveforms to those of numerical relativity in the effective-one-body formalism [62,63]. By setting « = —1 and 8 = O one
recovers the SH coordinates results of Eq. (5.2d) of Ref. [20] and (3.4d) of this paper. On the other hand, for « = 5/3 and

B = 3 we get the ADM results given by

R2G*mP Y[ 12349 10349 Gm 4524 985 10397 Gm 29 G*m?

ADM _ _ 44| = + ‘2]2__'4+——’2———}, 3.15
25PN 5¢10,5 { 210 [ 630 r 35 |V "1a" T e | 315 R~ (3.152)
Gm*riei[ 27744 100816 Gm 19 144 39056 Gm 6128 G*m?

ADM = - Y- — —r2 — 1960/ + —'2———}
25PN 50102 { 35 Y [ 105 r ] d r 35

From now on our calculations will be in ADM-coordinates,
so we henceforth suppress all indications regarding the
ADM coordinate system.

IV. ORBITAL AVERAGE OF THE INSTANTANEOUS
ANGULAR-MOMENTUM FLUX IN ADM
COORDINATES

At this juncture let us remind where we are eventually
headed. We are interested in the phasing of the binaries
moving in quasi-eccentric orbits and in the first instance, as
for quasicircular orbits, we work in the adiabatic approxi-
mation. In this limit the radiation time scale would be much
longer than the orbital time scale and consequently we
would require an averaged description of the radiation

(3.15b)

reaction over an orbital period; so we average the flux
over one orbit. To deal with 3PN radiation reaction (cor-
responding formally to 5.5PN terms in the equation of
motion) we require the description of the motion to be
3PN accurate. Such a description is available from the

The results can also be derived directly in the general radia-
tion gauge by explicit use of the mass-quadrupole expression in
the general radiation gauge Eq. (3.11) and the 2.5PN equation of
motion terms in the general radiation gauge Eq. (3.7).
Alternatively, it can also be obtained by a direct transformation
of the flux expressions in SH gauge to general gauge using the
shift (3.9) and Egs. (6.1)—(6.3) from [20] for the changes in r, 7
and v2, together with a similar relation for ¢. We have verified
that these various methods lead to the same results.
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work of Memmesheimer, Gopakumar, and Schifer [28]
based on the known 3PN equations of motion [1-3,6],
and we shall use this generalized 3PN quasi-Keplerian
(QK) representation of the motion in ADM coordinates
to average our angular-momentum flux. The details of the
expressions we use are available in Ref. [28], and we have
recast these into forms better suited for the present context
in Ref. [20] (see Sec. 7 there).

Since the quasi-Keplerian orbit is planar, to quantify the
evolution of the orbital elements under radiation reaction
we only need to average the magnitude of the angular-
momentum flux over an orbit. The computation thus be-
comes a generalization of our earlier computation of the
average of the energy flux in [20] and requires similar
intermediates. Using the QK representation of the orbit
in ADM coordinates and the instantaneous angular-
momentum flux in ADM coordinates obtained in Sec. III,
one transforms the expression for the norm of the angular-
momentum flux G, (r, 7, ¢) into another expression
Gins(E, h, e, u) depending on the 3PN conserved orbital
energy E, on the norm of the 3PN conserved angular
momentum J = |J/| as rescaled by Gm (thus h =
J/Gm), on that particular choice of eccentricity e,, which
parametrizes the (3PN-generalized) Kepler equation, and
on the eccentric anomaly u; see Eqgs. (7.1)—(7.4) in [20].
Like for the case of the energy flux we find that the general
structure of the angular-momentum flux in terms of these
variables reads up to 3PN order,

du & ay(E, h)
=ty aviB Yy g (B
gmst de N_zl:(l —e, COSM)N ﬁN( )
sinu In(1 — e, cosu)
——+ Eh)—|
(1 — e, cosu)V v (E h) (1-— e,cosu)N:I
“4.1)

For later convenience we have factored out du/d{, where
€ = n(r — tp) denotes the mean anomaly, with 7, the in-
stant of passage to the periastron, and n = 277/P is the
mean motion, with P the orbital period. The coefficients
ay, By, and yy are explicit functions of the invariants £
and h,” and are straightforwardly deduced from the QK
parametrization in the form of a PN series—see Eq. (4.12)
of [25] for instance—but too long to be listed here.
Rewriting the angular-momentum flux using the general-
ized QK representation, the flux can be averaged over an
orbit to order 3PN extending the results of [25] at 2PN. The
orbital average is (setting t, = 0 for definiteness)

"Notice that the structure of Eq. (4.1) requires ey and By to be
functions of E and h. The angular-momentum flux could be
averaged without reducing it to this form, though in alternative
forms the average of the equivalent of the y, term may require
another standard integral different from that given in Eq. (4.6).

PHYSICAL REVIEW D 80, 124018 (2009)

L(r 1 [ dt
G =5 [ Gt =~ [ Gl -
“4.2)

To compute it we use some integration formulas. First it is
clear that the second term in (4.1) will not contribute,

1 27 sinudu

[T smedw 43
20 Jo (1 —ecosu)V (4.3)

Note that this term corresponds to the 2.5PN contribution
in the angular-momentum flux, which is therefore seen not
to contribute to the average. To get the first term we have
the useful formula

| (o du _ (V-1 <d1v—1
20 Jo (1 —ecosu)¥ (N —1)!\dyN~!

V : ])

X | — , (44
[ V=)=

where the RHS is to be evaluated at the value y = 1 after

the N — 1 differentiations. We have also an alternative
formulation in terms of the Legendre polynomial Py_,

1 '[277 du B 1 P ( 1 )
20 Jo (1—ecosu)V (1 —e)V2 NI\ UT =2/
4.5)

Furthermore, we dispose of the more complicated formula
[20]

1 f2mIn(l —ecosu) . (—=)N7! (dN_lY(y, 6))
y:1,

27 o (T=ccos) " T (N=1I\ @V
(4.6)
where
| JT—2+1
Y(y, e) = {ln[ :I
e 2
/1 _ 2 _
+ 21n[1 + ﬁ]} (4.7)
y+Whr =&

These formulas, and notably the third one (4.6) and (4.7),
permit one to display the result in a completely closed
form, and give

< (5N (le [aN(E, h)

<Ginst> = NZZ (N _ 1)' dyN—l y2 — 62

£ lE DY, 0)) 48)

y=1

The results can be expressed in terms of different
choices of variables as for the energy flux in [20]. For
reasons discussed there, we choose the pair consisting of
(e,, x) with
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. (Gmw)2/ 3 4.9) flux can be finally written (in ADM coordinates) as
X = 3 , )
C
=14 2 H + xH jpy + 2 H.
where the mean orbital frequency is w = (¢) = Kn, equal (Gins) = c X! (Ho o xH e+ Hop
to the mean motion 7 times the periastron precession K = + X3 H 3py), (4.10)
1 + k (with k denoting the relativistic precession). The
expression for the orbital averaged angular-momentum  where the individual PN terms read as
|
8+ 7e?
Hy= =, 4.11
N — (1 _ e )2 ( a)
1 1247 70 3019 335 8399 275
Hipn = {— - +( >2+( )4} 4.11b
PNT a2l a2 37 U 3 M) k36 12 (4.110)
FT 1 { 135431 n 11287 N 260 , . ( 607129 6925 n 1546 2) 2
== - —V - - 14 17 (4
N Q- 1134 63 9 756 84 3 !
28759 116377 30505 2201 1519
- + 569 2) p +< - + 2) 6
( 432168 ) 2016 56 U 36 )
1 —e?[80 — 32v + (335 — 134v)e? + (35 — 141/)(3?]}, 4.11¢)
A 1 {2017023341 4340155 167483 1550 , n 2(153766369+ [15157061 +647 2:|
= - I vV — T 14
N1 =25 1247400 6804 378 81 "\ 44550 1701 8
116335 , 96973 3) n 4( 6561101941 [163935 875 6817 2] 3541255 , 438907 3)
- v- — 14 e - - ar -
54 81 ! 1663200 18144 256 1008 108
6< 10123087 [ 326603 615 2:| 2224003 , 283205 3) 8( 10305073 417923
+ e}l — - ——7 |V v — v’ |+ e;
19800 2268 128 1008 162 709 632 12096
95413 , 146671 379223 48907 41 580
- + \/1 — el — + +— 2] +—?
8064 =~ 2592 ) e’[ 630 [ 6 6 1" 37
309083 456250 2747 13147661 2267795 287 2703
2 +| - + 2] + 1902 2)+ 4( +[ 2] +—2)
e’( 315 [ 63 96 )" ")\ s040 s4 o6 [T
203 77 13696 98012 23326 2461 x 1+41—e
+e8(70 - v+ — 2>]+< + 2+ 4+ 6)1 [— ’]} 4.11d
e’( 3 V737 105 105 7 35 770 ) 21— &) (4.11d)

This ADM-coordinates expression, similar to the energy
flux case, does not contain the logarithmic terms In(r/r(),
consistent with these being pure gauge-dependent terms
arising specifically in the SH coordinate system. However,
we notice that there are still some other logarithmic terms
involving the constant ry, in the instantaneous part of the
flux, even in ADM coordinates. Actually, these terms are
parametrized by x, in (4.11d), where

Gm

2

—-. (4.12)
Cc 1y

Xg =
Recall that ry = c7( is an arbitrary length scale introduced
in the general multipolar post-Minkowskian formalism (to
regularize ultraviolet divergences), which then appears in
the definition of the source multipole moments starting
explicitly at the 3PN order. This is what leads to the Inr,
dependence of the instantaneous terms in the angular-
momentum flux. It is known [26,55] that the Inr, terms
will be cancelled by similar terms when we add up all the
nonlinear multipole interactions (mainly tails) constituting
the radiative multipole moments observable at infinity.

I
This has been checked at the 3PN order for compact
binaries in the circular-orbit case [4], where the contribu-
tion due to tails of tails effectively removes these unphys-
ical Inr( terms. In Ref. [20], this cancellation was proved in
the case of the 3PN energy flux for general noncircular
orbits. We shall also recover this necessary cancellation
below for the angular-momentum flux for general orbits.
As a check of the algebra, we take the circular-orbit limit
of the averaged instantaneous angular-momentum flux, say

(Ginsido» as given by (4.10) and (4.11) with ¢, = 0, and get
1247 35
<GmSt>O = _C mV2X7/2{1 + <_ ﬁ - EV)X
( 44711 9271 65 2) ,
T o T VT X
9072 ' 504 18
[1266161 801 1712 (x> ( 134 543
+ In[—)+(—
9979200 105 X0 7776
41 94403 775
+ — 772 B V] § .
8" )V 3004 7 324" ]x } (“.13)

This is in perfect agreement with the averaged instanta-
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neous energy flux for circular orbits, say { Fins)o. in the
sense that

<.7:inst>o = w<§inst>o’

where the proportionality factor is the binary’s mean orbi-
tal frequency w = ¢>x*2/Gm. For the reader’s conve-
nience we recall the 3PN energy flux ( F;.) in Egs. (6.6)
and (6.7) below.

We emphasize again that the expressions we provide for
the orbital average of the angular-momentum flux and later
the evolution of orbital elements are in the ADM coordi-
nates; we can easily obtain the corresponding expressions
in another coordinate system like the MH one [20,28] by
transforming the eccentricity e, = ¢*PM used here to an-
other eccentricity such as eM". There is no need to trans-
form the parameter x, which is a gauge invariant. The
relation linking e2PM and eMH reads (see Eq. (8.21) in [20])

2 /117
e?DM=e?AH{1+1_e%<Z+ZV)
N x3 [1+(16739_21 2)
(1—e222 1680 g

(4.14)

16"
83 1 249 241
—— v+l +—v—-""0)|t
24”7 e’(z 16~ 24”)]}

Since the transformation begins at 2PN order, the eccen-
tricity in the brackets of the RHS of (4.15) can equivalently
be replaced by e2PM or ¢MH. Furthermore, only the instan-
taneous part needs to be transformed. The hereditary con-
tributions retain the same form up to the 3PN order to
which we are concerned at present. For the explicit form of
the angular-momentum flux in MH coordinates, see
Appendix C.

Note also that the x parametrization that we use can
easily be changed to the alternative parametrization by the
variable

(4.15)

Gmn
3 b

gE

(4.16)
c

which is often used in the literature and is also gauge

invariant. In ADM coordinates we have (with e, = ¢APM)
2 1 14
— #2/3 1+ 2/3+ [12__
r=< { l—e,zg (1—e?)? 37
17 13 1 250 255
+ e ——— 4/3+7[—+(——
¢ (2 3 ”)]{ (1—e)L 3 2
41 14 473 41
+ sz)v + ?yz + e%<137 + <_T + @WQ)D

+?v2) + e?(l?) —Sgsv+%1/2> +4/1 —€?(10 — 4v

4220 — 8v))]§2}. 4.17)
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V. HEREDITARY CONTRIBUTIONS TO THE 3PN
ANGULAR-MOMENTUM FLUX

Having obtained all the instantaneous terms in the 3PN
angular-momentum flux (in averaged form), one must now
turn attention to the hereditary contributions. As for the
energy flux [21] it is not feasible to obtain closed-form
results in the time domain for these contributions, and we
adapt the strategy set out there by using a (discrete) Fourier
decomposition. The details and notation are similar to
those in [21] so we avoid repeating them and only quote
the final results with a few intermediate steps. We however
find a new aspect that arises in the case of the angular-
momentum flux with respect to the energy flux, namely, the
presence of a contribution due to the memory integral in
the angular-momentum flux for general systems. We shall
prove that this memory contribution yields an interesting
zero-frequency effect depending on the past history of the
system (see Appendix A).

A. Tail and tail-of-tail integrals at Newtonian order

Most of the hereditary contributions will require only
relative Newtonian precision. At Newtonian order we can
use the Fourier decomposition of the Newtonian (N) source

multipole moments I(LN) and JEN_)I given by

+o00
0 =3 I,

p=—o00

(5.1a)

+00
N) () — N) ipt
0= pJL-1¢""

p=—o00

(5.1b)

with discrete Fourier coefficients () I (LN) and (p)j (LN—)1 in-
dexed by the integer p. Since the moments are real we
have, e.g. =) I(LN) =) I(LN)*, where * is the complex con-
jugation. Here, we denote the mean anomaly by € = n(z —
tp), with n=27/P being the mean motion and P the
orbital period (we can choose the origin of time so that
tp =0). The latter Fourier decompositions are simple be-
cause the motion is periodic at Newtonian order since there
is no relativistic precession, K =1+ O(c~?).

We follow exactly the same method as in Ref. [21], and
express the tail, tail of tail, and tail squared terms (2.9) and
(2.10), i.e. up to the 3PN order, and averaged over the mean
anomaly €, in terms of the Fourier coefficients of the
multipole moments. All these terms are Newtonian except
the mass-type quadrupolar tail term given by the first term
in (2.9) and which must be evaluated at 1PN. For the
Newtonian part of the mass-quadrupole tail—a quadratic
interaction o G* between the mass-quadrupole moment /;;
and the mass monopole M—we get

N 8T GM & 70N

il _ 6 (N)=
<G§'al >mass quad 1 5 ClO ei.fk Zl(pn) (p)*Jja (P)I
p=

ka

(5.2)
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where the range of p’s is set to correspond to positive
frequencies only. We add a label (N) to make the distinc-
tion with the mass-quadrupole tail we compute below at
IPN order. The remaining tail integrals involve the
Newtonian mass octupole and current quadrupole mo-
ments and read

47TG2M i

(G mason =~z T ’JkZ(”")8<p>-’5§37<p>1§<§2*,
(5.3a)
- 1287TG2M to *
R Z Pn () T30 0T (e
(5.3b)

In Sec. VE we shall provide the plots, computed numeri-
cally, for the relevant ‘“enhancement” eccentricity-
dependent factors associated with Egs. (5.3), since they
do not admit a closed-form expression.

In addition to the previous quadratic-order tails, we have
also at the 3PN order the first cubic nonlinear interactions
between /;; and two mass monopole factors M, namely, the
so-called ta11 of-tail integral and the tail squared one, both
being evaluated at Newtonian order. For the tail-of-tail
part, averaged over an orbit, we get

8GM2 >

tail(tail) (N) (N)=
<ga ! > ljk Z(pn)7(p)‘rja (p)I ka
)
% {F — 2(In(2pny) + C)?
57 124 627
+ —(In(2 +C)— . 5.4
nepnmy) + 0 -k s
Here, C = 0.577 ... denotes the Euler constant. Note that

in contrast to the quadratic tails this expression involves
some logarithms, and even some squares of logarithms.
However, some more logarithms are contained in the re-
lated contribution of tail squared, namely,

+o00
( g<m11) y = 8 G%M 2 Jiy

<N>y
€ijk Z(P") »Lija !

X {% + 2<ln(2pn7'0) +C— E) } (5.5)

12
and we can check that in fact the squares of logarithms
cancel each other when we add together the two contribu-
tions (5.4) and (5.5). Such cancellation is known to occur
for general sources [26]. Hence, we get for the sum

8GM2 i

tail (tail) +(tail)®\ __ (N) (N)
(g = iz ukZ ()’ () Lia’ o L
272 214
x == == +
{ T s nCpnry) + 0)
116761
29400 } (>6)
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This result still depends on the arbitrary time scale 7. It
will be important to trace out the fate of this constant and
check that the complete angular-momentum flux we obtain
at the end is independent of 7, = ry/c.

It is worth recalling that the reduction of the above
expressions to their simple form is made possible thanks
to the following closed-form formulas, which are applied
to each of the Fourier components of the flux when per-
forming the time average. For any o denoting the product
pn (which at the initial stage can be positive or negative),
we have

Tk ) To — —ioTyg
j dVeﬂ"Vln< R V) = ¢ [zsign((r)
—o0 27 o 2
+i(nlolr) + c)], (5.72)
Tk ) To—V —ioTg 2
[_oo dVe_“’Vlnz( RZTO ) =i - {% - I:gsign(a')

2
+i(In(2|o|7y) + C)] },
(5.7b)

where sign(o) and |o| denote the sign * and the absolute
value of o, and where C is the Euler constant. The rational
fractions such as 11/12 present in the tail integrals are
easily taken into account by redefining the constant 7 in
these formulas as 7oe ~'!/12, for instance. For dealing with
higher nonlinear tails (occurring at 4PN order for instance),
we would need further integration formulas involving
higher powers of the logarithms.

B. The mass-quadrupole tail at 1PN order

One hereditary contribution will require the relative 1PN
order, namely, the leading quadratic-order mass-
quadrupole tail. In this case, the Fourier decomposition is
more complicated, and one must exploit the “doubly peri-
odic” nature of the 1PN dynamics in the two variables ¢
and A = K¢, where K =1+ k is the advance of the
periastron per revolution. We can then write the following
doubly periodic Fourier decomposition of the mass-
quadrupole moment at the 1PN order [21],

+ o0 2
i(p+mk)t
Z Z (]7,m)Iijel(p mk)t

p=—0 m=-—2

1;(1) = (5.8)

The discrete Fourier coefficients I;
two integers: p € Z and the ‘“magnetic” number m € Z
such that |m| =/=2. We have (_p,_m)] - m)I*
These Fourier coefficients are valid through 1PN order.
Actually, one can check that those for which m = %1 are
zero in the case of the mass-quadrupole moment at the 1PN
order.

We insert the Fourier decomposition (5.8) into the 1PN
mass-quadrupole tail [first term in Eq. (2.9)] and perform
the average. The result in terms of the doubly-periodic

depend now on
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Fourier coefficients at 1PN order reads

4 G’M
>tai1 = _lg Tsijk Z
p,psmm’

X (p + mky*Lp = p + (m' — m)k]

. I (4 me

X pmy Ljap i TP TP mI0E)

X fTR dvefi(p’wLm’k)n(TR*V)

X [ln(TR _ V) + E].
27'0 12

The summations range from —oo to +oco for p and p’, and
from —2 to 2 for m and m’'. The last two factors in (5.9), i.e.
the average over ¢ of an elementary complex exponential,
and the Fourier transform of the tail integral, are both
evaluated following [21] at first order in the relativistic
advance of the periastron k, which is a small 1PN quantity,

Q. d
<G;nass quas n7(p + mk)2

(5.9

k = O(c™?). The {-average factor reads
<ei(p+mk)€> = [277- dt 1(p+mk)€
0 277

if p # 0} (5.10)

mk

- {1 +immk if p =0,
where we neglect some 2PN terms O(c™*), and we have
used the fact that mk << 1 since we are in the limit where
k — 0 (hence p + mk is never an integer unless k = 0).
This result depends on whether p is zero or not, and is true
for any integer m, except that when m = 0 it becomes
exact as there is no remainder term O(c~*) in this case.
The tail integral expanded to first order in k [i.e. up to some
remainder O(c™*)] reads

[TR dVei(p+mk)n(TR—V) IH(TR — V)
— 27'0

<1 — m_k)[ dVeirIr=V) 1n< V) — im_k
27 p’n

(5.11)

For the remaining integral in the RHS of (5.11) we apply
the formula (5.7a).

In this paper we do not give a more explicit form for the
Fourier decomposition (5.9), which together with the two
results (5.10) and (5.11) is well defined. Indeed, (5.9) is
given by a very complicated expression, which can only be
handled using an algebraic computer program. Still it will
remain to insert in that expression the explicit 1PN results
for the mass-quadrupole moment and the total mass M for
eccentric binary orbits, and to re-express the series in terms
of some elementary eccentricity-dependent enhancement
functions, which we shall evaluate numerically.

C. The nonlinear memory integral

The memory contribution is defined, from Eq. (2.11), by

memor g
G* Oy_ﬁc_ ijilj )(TR),/,R avIg(VIHV). (5.12)
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In principle we should put brackets to indicate a STF
projection acting on the indices k and a in the RHS;
however, the expression is manifestly symmetric with re-
spect to those indices, and automatically trace free thanks
to the presence of ;.. The orbital average reads

memor 4 G2 PdTR 3)

(") = 35 m%k/o lea (Tg)
T,

X f LavIDWIB (). (5.13)

We invert the two integration signs to rewrite the latter
expression as

memor 4 Gz
(G™™) = 35 e [ avid i)
dTR (3) 4
X I Tr) + —
P o (Tk) 35

G? P
X "o € f dvid WIS (v)

dr
f u 1(3)(TR)

The contribution extendlng over the entire past (i.e. over
—oo = V = 0) involves the orbital average of the third
time derivative of the moment, i.e.

dT

B\ — R 73)

1Y) = — 1 (T
< ij > L P ( )

Since the quadrupole moment is Newtonian at this level of
accuracy, the motion is periodic, and the quadrupole aver-
ages to zero. However, one is not allowed to replace
<I§;)) = 0 into the first term in the RHS of (5.14) because
the argument neglects the evolution in the remote past of
the Keplerian orbital elements by radiation reaction. In
Appendix A we shall study the dependence over the bina-
ry’s past history and find that it gives a contribution on the
current dynamics in the form of a zero frequency or DC
effect.

On the other hand, the memory due to the recent past of
the source [second term in the RHS of (5.14)] is easily seen
to be zero on average. Indeed, we evaluate the integral in
the same way as was done to compute the orbital average of
the instantaneous contributions in Sec. IV, and find that it is
made of a sum of elementary integrals only of the type
(4.3) that are zero. Therefore, we conclude that the memory
contribution to the averaged angular-momentum flux re-
duces to the DC term due to the influence of the remote
past of the source,

(G = (GPO).

The DC term has the structure of a Newtonian term and is
obtained from a model of past orbital evolution for eccen-
tric orbits in Eq. (A12) of Appendix Al

(5.14)

(5.15)

(5.16)

8Recently, the DC nonlinear memory terms in the
gravitational-wave polarizations have been computed to post-
Newtonian order in the case of quasicircular binary orbits [64].

124018-14



THIRD POST-NEWTONIAN ANGULAR MOMENTUM FLUX ...

However, in this paper we have mostly in view the
comparison with numerical simulations such as those in
[45]. Numerical simulations start from initial conditions,
which are for the moment always set at some very recent
instant. This means that the initial eccentricity e; is com-
parable to the current one e, (using the notation of
Appendix A). In this case, one can neglect the DC con-
tribution so that

<gmemory = 0.

1

(5.17)

In the present paper we adopt the result (5.17) appropriate
for short-lived binary systems, but keep in mind the pos-
sible influence from the past of the nonlinear memory DC
term computed in Appendix A.

D. Definition of the eccentricity enhancement factors

We shall now closely follow the numerical calculation of
the hereditary terms in the energy flux [21]. We shall
present here only the definitions we use and directly the
results we obtain from those definitions. We refer to [21]
for more details. The source multipole moments (in the
center-of-mass frame) at Newtonian order read

N = (5.182)

(5.18b)

ws (v)xE),
J(L )l = s, (V)X<L_28i”1>abxal}b,

and involve the following function of the symmetric mass
ratio v = u/m,’

s1(v) (5.19)
where X = %(1 + 1 —4v) and X, = %(1 — 1 —4v).

Next, we rescale the source moments in an appropriate

way and introduce the dimensionless moments /; and J;
by

— Xé_l + (_)IX{_I,

1IN = pals,(v)i,, (5.20a)
TN = palns/(v)J,_, (5.20b)

where a is the semimajor axis and n = 277/ P is the mean
motion (such that Kepler’s law n’a®> = Gm holds at
Newtonian order).

We now define a set of enhancement functions of the
eccentricity e of the orbit (at Newtonian order) by means of
the Fourier components of the rescaled moments. Such
enhancement functions will exactly parallel similar func-
tions valid in the case of the energy flux [21], and we shall
adopt for these exactly the same notation as in [21] except
that we add a tilde on these functions to distinguish them
from the functions parametrizing the energy flux. We thus
pose

Alternative forms for this function can be found in
Refs. [51,52].

PHYSICAL REVIEW D 80, 124018 (2009)

f(e) ljkL Z P (p)Ija (p)Ig:)*, (5.213)
¢le) = —4 6 el Z P L ja(p) T (5.21b)
~ 20i L= A A
B(e) = _m«gl’jkLipgl pg(p)fjah(p)lkab, (5.21¢)
R + o0 . .

y(e) = —8iejiL; Z p6(p)jja(p)j>];ay (5.21d)
~ o +o00
F(e) = 32 leL Z p (p)J/a(p)Ikw (5.21e)
Vo) = — = els S p' (L)) Tian Tie (5210
xte 3 ik iZlP M5 )+ iap)* ka: :

=

Like for the definitions adopted in [21] all the latter tilde
functions but one are chosen in such a way that they fend to
one in the circular-orbit limit, when ¢ — 0. The notable
exception is y(e), which vanishes in this limit. This is
easily checked since in the circular-orbit limit (and at
Newtonian order) the quadrupole moment possesses only
the harmonic for which p = 2, and consequently the log
term in y(e)— Eq. (5.21f)— becomes zero. Most of these
functions will not admit any algebraic closed-form expres-
sion, and we shall leave them in the form of Fourier series
to be evaluated numerically. However, as we shall now see,
two functions can be computed algebraically, namely, f(e)
and F(e)."°

The first function parametrizes the Newtonian part of the
averaged angular-momentum flux,

(GN) = 222mx"2 f (e), (5.22)

where x is defined by (4.9) and reduces at Newtonian order
to Gm/(ac?). Thus, f(e) is the Peters and Mathews [22,29]
function, which admits an algebraically closed-form ex-
pression which is used in the timing of the binary pulsar
PSR 1913 + 16 [65], and given by

l-i-ze2

(1= e
in agreement with the Newtonian part of our earlier result
(4.10) and (4.11).

On the other hand, the function F(e) is the analogue of
the function F(e) in [21] and will partly parametrize the
tails of tails, where it will have in factor a contribution
depending on the arbitrary constant scale ry. That depen-
dence on r( is the same as in the instantaneous part of the
flux, as given by Egs. (4.10) and (4.11). Such a specific
dependence of the hereditary terms on ry will just be

fle) = (5.23)

19We reserve Latin names for algebraic closed-form functions,
and Greek names for numerically generated ones.
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appropriate to exactly cancel out the Inr, in the total
angular-momentum flux. The function F(e) is given by

1+229 2+327 4+69 6

7 — 256 ¢
F(e) - (1 _ 82)5

(5.24)

The analogous function F(e) in the energy flux is recalled
in Eq. (6.9) below.

From the previous definitions we can express the qua-
dratic tails at Newtonian order as

ily(N) —
<gta1 >mass quad ~

32
?cz 2mx"2[47x3/2p(e)], (5.252)

_ 32 16403 5
<gtaﬂ>mass oct ?CZ Vzmx7/2|: 2016 (1 4V)XS/23(6) :I’
(5.25b)
. 32
<gtaﬂ>curr quad = ? 2 Vzmx7/2|:% (1 - 47/))(35/2'7(6) ]
(5.25¢)

In the Newtonian mass-quadrupole tail (5.25a) we recog-
nize, in particular, the coefficient 47 computed analyti-
cally in Ref. [24] (recall that ¢(0) = 1). The function @(e)
has already been computed numerically from its Fourier
series (5.21b) in Ref. [24]. Notice that these formulas and
similar formulas below take exactly the same form (i.e.
with the same coefficients) as the corresponding formulas
valid in the case of the energy flux [21]. The reason of
course is that in the circular-orbit limit e — O the energy
and angular-momentum fluxes are proportional, and re-
lated by Eq. (4.14). However, for nonzero eccentricities,
the enhancement functions will differ from the correspond-
ing functions in the energy flux, and this is why we add a
tilde on them.

In a similar way, with the above definitions we get the
sum of contributions from tails of tails and squared tails as

s 2 32 116761 16
tail(tail) + (tail)>\y — ~< 2.2 13/2)] _ + 2
(G )= evim {[ 3675 3
1712 1712
- WC - 10 1n(4wr0)]F(e)
1712
o5 1@} (5.26)

The circular-orbit limit of this result is immediately read
off and seen to agree with the previous result in
Refs. [4,26].

Finally, we provide the mass-quadrupole tail at relative
1PN order. Its computation is much more involved because
the Fourier series (5.9) contains several summations, and
depends on intermediate results (5.9) and (5.11). The com-
putation is based on the known 1PN relativistic corrections
in the mass-quadrupole moment /;; and the total mass M,
which are given in Eqgs. (5.16)—(5.17) in [21]. The result is
of the type

PHYSICAL REVIEW D 80, 124018 (2009)
. 32 428
(G s auas = 5 vmstfam(e) + mf = Rate)

21
178
+ ﬁ Vﬁ(e,)]}

which defines two new enhancement functions @ and 6,
which are the analogues of the functions a and 6 in the
energy flux [21]. Since @ and # are given by some very
complicated Fourier series (handled with MATHE-
MATICA)—instead of relatively simple ones like in (5.21)
—we shall directly compute them numerically using the
same method as in [21]. Notice that since we are at the 1PN
order we must be specific about which definition of eccen-
tricity we use; here we adopt the time eccentricity denoted
e;, which enters the generalized Kepler equation at 1PN
order [32]. On the other hand, the 1PN corrections arising
from the parameter x [see (4.9)] are evidently crucial in the
result (they include the 1PN periastron advance k).

For the final presentation it is convenient to redefine in a
minor way our elementary enhancement functions. Let us
choose (still paralleling Ref. [21])

(5.27)

- 13696 16403 112 _

yle) = 8191 ale )_ﬁﬁ( e) — 24573 y(e), (5.28a)
= . 1424 16403 . 16 _

le) = = 4o 0le) + o5 Ble) + 15 ¥e), (5280)
PN 59920

k(e) = F(e) + Tl6 761 X(e). (5.28¢)

Considering thus the 1.5PN and 2.5PN terms, composed of
tails, and the 3PN terms, composed of the tails of tails and
the squared tails, we get the final form of the total heredi-
tary contribution to the averaged angular-momentum flux

(2.8): (@) = L{Gherea) With

32
(Grened) = gczzﬂmx”Z{W/Z@(et) S

8191 583
X[_67—2¢( )= = V{(e,)]
116761 L2
x[ 3675 Kle) T [ 105
1712 N
~ 105 ln(4wr0)]F(et)]}. (5.29)

For circular orbits this angular-momentum flux is in agree-
ment with the energy flux (Fperea)o computed in [20],
since we have <.,Fhered>o = a)<Ghered>O-

E. Computation of the enhancement functions

The eccentricity-dependent enhancement functions we
use in (5.29), computed numerically, are now provided in
the form of plots. The numerical computation has been
described in the case of the energy flux [21], and we adapt
the same for the angular-momentum flux.

Essentially, the fitting procedure to obtain the Fourier
coefficients of the Newtonian source moments (or their
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FIG. 1 (color online). Enhancement function ¢@(e) in the
angular-momentum flux at 1.5PN order.

periodic part in the mean anomaly € for 1PN accurate
moments) in terms of € can be implemented either starting
with the basic multipole moments themselves or the lead-
ing time derivatives appearing in each of the terms in the
angular-momentum flux. The latter method is known to

PHYSICAL REVIEW D 80, 124018 (2009)

improve the numerical convergence of the final sum be-
cause one deals with lower order time-derivatives of the
basic functions. However, here we have followed the for-
mer method, which has the advantage that the fitting
function is much more simple for the basic source mo-
ments than for their multi-time derivatives and thus takes
less time and is also less prone to errors. Proceeding in this
way also provides another check on the energy flux calcu-
lation as we have reproduced the results of Ref. [21] using
this alternative choice. At the Newtonian order it is in fact
more efficient to make use of the well-known Fourier
decomposition of the Keplerian motion to compute the
Fourier coefficients. Using this we can derive the compo-
nents of the multipole moments (at Newtonian order) as
series of combinations of Bessel functions. It is then simple
to compute numerically the associated Newtonian en-
hancement functions [namely, the functions &(e), B(e),
¥(e) and y(e)]. On the other hand, for the Newtonian tail
terms, we could proceed exactly in the same way as for the
IPN term, following the various steps and evaluating nu-
merically the functions. We have verified that both meth-
ods agree well. The above procedure is quite general, and
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FIG. 2 (color online). Enhancement functions #(e) and {(e) in the angular-momentum flux at 2.5PN order.
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FIG. 3 (color online).

Enhancement functions ¥(e) and F(e) in the angular-momentum flux at 3PN order.
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provides a method that could be extended to higher PN
orders.

We present in Figs. 1-3 the functions that permit to
define the hereditary part of the angular-momentum flux
(5.29). We recall that these functions are such that they
reduce to one in the circular-orbit limit e — 0.

To facilitate the comparison with the results of numeri-
cal relativity [45] or use in data-analysis applications, we
provide also some numerical tables for these functions in
Appendix B.

VL. EVOLUTION OF ORBITAL ELEMENTS UNDER
3PN RADIATION REACTION

The most important application of the 3PN angular-
momentum flux is to calculate, using also the energy flux
[20], how the binary’s orbital elements evolve under 3PN
gravitational radiation reaction. We shall compute the time
evolution of the mean motion n, the periastron precession
k, the mean orbital frequency w = nK, the semimajor axis
a,, and the time eccentricity e;.

a3 32 € 2
= 1+=(=15+v)+
n € { 8( 5+v)

+ 1351% — —(10080 + (—13952 + 1237%)v + 144022) +

e

2 3

PHYSICAL REVIEW D 80, 124018 (2009)
A. General method

We start with the 3PN expressions for n, k, w, a,, and e,
in terms of the conserved energy E and conserved angular
momentum J of the orbit [28]. In an attempt to simplify
some expressions we often employ, in place of the energy
E and angular momentum J, the dimensionless variables
[20]

2F
e = _?, (613)
. 2EJ?

Since & = O(c~?) this energy variable can be viewed as a
bookkeeping parameter labeling the successive PN orders.
Recall that the semimajor axis a, and the eccentricity e,
depend on the coordinate system, but that the mean motion
n and periastron precession k are gauge invariant, i.e. take
the same expressions in ADM and, say, modified harmonic
coordinates. Of course, this is also true of the mean orbital
frequency w and hence of the parameter x. The expressions
we give for e, and a, are valid in ADM coordinates. We
have

3

192
%[555+30v+11v2 19/2( 5+2,,)]+_[ 29385 — 49951 — 3152

3072

5760
i (17 —=9v + 21/2)]},

(6.2a)

k=33+%[—_(—5+2v)+ (7 — 21/)]-%—[—(5 51/+41/2)—f(10080+(—13952+1237T2)V+1440V2)
j

Jj 128

5
+ (7392 + (—8000 + 12372) v + 3361/2)], (6.2b)
;
3 24 2 480
w=c—s3/2{[1+f(—15+v+—,)]+8—[555+3ov+11v +120 54, )+—( 5+ )——( 742w )]
Gm 8 j 128 JJ
& 5 5, 5760 5 5
3072 45(—653 — 111y — v +30°%) + 7 (17—91/+21/)+7(895—150v+51v)+J3/2( 230400
1 1
— 16(—15680 + 1237%) v — 230402?) + — (—393120 — 24(— 16172 + 1237)v — 374401%) + — (887040
72 7
+ 120(—8000 + 1237%)v + 40320V2)]} (6.2¢)
Gm1{1+ (=7 +v)+ 2|:1+10 b2t ( 68 + 44 )]+ 3|:3 9y — 602 + 3
a 14 -— 14 14 14 — Vv — V V
e 16 192
+ —,(864 +(—2212 — 372)v + 4321%) + _—2(—6432 + (13488 — 24072)v — 768v2)]}, (6.2d)

[1—]+ Crog+8y—j(— 17+7V)}+8{8+4v+201/ — (112 = 47v + 1612) — 24j1/2(=5 + 20)
7= 11w - 1/2(5 2y)}+ﬁ{z4( 24 50)(—23 + 100 + 40%) — 15j(—528 + 2000 — 7702 + 242%)
J

—72j1/2(265 — 193 + 4612) — —,(6732 +(—12508 + 11772)v + 200422) + —— (16380 + (— 19964 + 12372)v

L /2

/2
+ 32407°) — (10080 + (—13952 + 1237%)v + 14402?) + —(134 + (=281 +57%)v + 161/2)}] (6.2¢)

]3/2

124018-18



THIRD POST-NEWTONIAN ANGULAR MOMENTUM FLUX ...

The procedure to compute the evolution of the orbital
elements under gravitational radiation reaction is straight-
forward but lengthy. Differentiating the orbital elements
with respect to time, and using the heuristic balance equa-
tions, we equate the decreases of energy and angular
momentum to the corresponding averaged fluxes, and ob-
tain the (secular) rate of change of the orbital elements.
This extends earlier analyses at previous PN orders:
Newtonian [22], 1PN order [23,30], 1.5PN order [24,31],
and 2PN [25,37]. Taking the example of the mean motion
we have

on dE

oF dt

on dJ
aJ dt’

dn
dt
The usual (heuristically derived) balance equations for
energy u{dE/dt)y = —(F) and angular momentum

uldJ/dty = —(G), where the fluxes are known up to
J

(6.3)
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3PN order, give the 3PN evolution equation averaged
over one orbit,

(5 - —i[g—gﬂ + 6]

For eccentric orbits we recall that this gives only the slow
secular evolution under gravitational radiation reaction.
The complete evolution includes superimposed on this a
fast but smaller periodic oscillation on the orbital time
scale, which can be conveniently computed using a two-
scale decomposition following [19,37].

To express the final result of (6.4) in terms of x and e,,
the variables in terms of which we have represented the
energy and angular-momentum fluxes, we will require the
expressions for € and j in terms of x and e,. We have,

(6.4)

= {1+ X I:_é_i_g_ 2<_§+1):|+ x? [ 6l E _i 2 4 2( 1794_271 +i 2)
S R -] R R DI WAV RMTY I ) ) R B R U U RIS T A
5 5 1 e 835 (18319 41 169 35
+ “v—— )+ (1 —e2)P2(5-2 ]+7[——+< — 2) - pp
e’(s 8" 24" ) (=G =2 |+ a5 " "oz 167 ) 2 sima”
2( 3703 (21235 41 2) 7733 5, 35 3) (103 547 1355 , 35 z)
e;l ——— _— vV— —— ——v’|+e -
" o4 192 64 288 1728 64 1927 288" 1728
185 75 25 35 5 641 , 41 1 394 41
+ vt v+ ) 41 - 2<—+(— — 2) + =12+ ( +( — 2)
(192 64" " 288" 5184V) “\2 18 Toem Jrr a3 g ™)
1 5 23 10
-3+ or57) ) (030
—( ){1+ [9+1 . ( 17,7 )]+ 2 [27 1L 2( 1,535 2)
=(1-e v+e —v | ==+t —=vte| -t —=v——v
/ 1—e2l4 4 44 1-e)2ls 87 24 i 12" g
75 277 29 x3 747 5797 41 167 1
12 )+ 41— 1546 ]+7[—_+< Al 2) - 43
e’(s 247" ) erei(= DNt o=l & T2 TRT) T 1
v (5281 (_ 8955 , 39 z),, LSt 67 V3)+64<1023_3701V 947 2_&}}3)
64 64 32 96 192 es 64327 12
757 7381 1207 , 65 45 13 1 505 | (2227 41 47
I _ 24 22 3) . Y (i R BN | (sl a2y — 20
e’( 64 1927 96 192”) ! e<4 47 27 et( 4 ( 2 32" )” 2”)
+e4(55 — 40w + 31/2))]}. (6.5b)

B. Recalls for the energy flux

To proceed further we also need the energy flux and so we recapitulate here the results from [20,21]. The instantaneous

part of the energy flux reads
32

(Fi) = = = v X°(Iy + xIipy + x* Iopy + 23 Iypy),

5G

where the coefficients (in ADM coordinates) are

(6.6)
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1 73,3
Iyv=— i+ 2a24 , 6.7
N7 —e2)7/2{ 24 966'} (6.72)
1 1247 35 10475 1081 10043 311 2179 851
Tipn = - -= + 4(——— )+ ( )} 6.7b
PN (1—63)9/2{ 336 12 ( 672 36 V) ‘N8 127 1792 576 (6.70)
1 203471 12799 65 , .0 3866543 4691 5935 )\ . . 369751 3039083
Isz: - v+ el + v+ V +e, - -
1—e2] 9072 504 © 18”7 18144 2016~ 54 24192 8064
247805 2)Jreﬁ<1302443 215077 185305 2)+ (86567 9769 . 21275 2)
vV - 14 14 14
864 16128 1344 1728 64512 4608~ 6912
35 6425 1285 5065 1013 185 37
+yfl =& = =7+ 2(——— )+ ( )+ ( )]} 6.7
e’[z SR TR Vi 64 32 96 48 6.7¢)
1 2193295679 , [8009293 41 ;7 209063 , 775 . (2912411147  [249108317
Typn = + — v— ——v +e; +
(1— )32 9979200 54432 64" 3024 324 2851200 108864
31255 2] 3525469 , 53696 3) 4< 4520777971 [473750339 7459 2] 697997
— 7 v — — v' | +e| — + v+ v
1536 6048 243 13305600 108864 1024 576
10816087 3>+ (3630046753+[ 8775247 78285 2] 31147213 , 983251 3>
-V e\————— 14 - 14
7776 "\ 726611200 145152 4096 12096 648
4(21293656301 36646949 4059727 . 85830865 , 4586539 .\ . o/ 8977637
+ e} + | — — v+ v — vi)te\————=
141926400 129024 4096 193536 15552 11354112
9287 8977 567617 14047 483 165761 287 455
+ v? — v +\/1— 2[— +[— — 2] +—=1?
483847 " 55206°  124416" ) ‘| " 151200 1008 1927 " 12"
36863231 14935421 52685 ,7 , 43559 ,\ . (759524951 31082483 , 41533
+e,< +[— 77]1/—1- V)+et( +[ ]V
100800 6048 4608 72 403200 8064 6144
303985 ,\ . (1399661203 40922933 | 1517 ;7 73357 ;). (185 1073 407
+ vo)+e; +| - Tt —v)tel 5 =5
283 2419200 43384 9216 288 48 288 " 288"
1712 14552 , 553297 , 187357 . 10593 1+J1—&
+ ( e? et e® e?)ln[i ¢ ]} (6.7d)
105 63 1260 1260 2240 X 21— &)

The hereditary part of the energy flux is given by

32 ¢
<.Thered> = ? E V X {47Tx3/2¢(et)
8191
+ 7Tx5/2[ 67—2¢( e;) — VZ(e,)]
N x3[_ 116761 ce) + [1_6772 1712
3675 ! 3 105
1712 dwr,
ST ln( ; 0)]F(e,)]}. (6.8)

With the exception of F that can be given in a closed
analytic form,

85,2 4 5171 ,4 4 1751 ,6 4 297 8
I+ e +95¢" + 55 ¢" + 55

Fle) = o .69
the untilded enhancement functions ¢, #, ... (differing for
nonzero eccentricities from the tilded ones &, ¢, ... in the

angular-momentum flux) are computed numerically in
[21]; in the Appendix B below we provide the numerical
tables of these functions.

C. Instantaneous contributions

It is clear that since the evolution of the orbital elements
is linear in (F) and (G) one can separate out the contribu-
tions due to the instantaneous and hereditary components
in the fluxes.

Starting with the instantaneous terms, we find for the
evolution of the orbital elements {n, k, w, a,, ¢,}'' a PN
structure with coefficients depending on E and J or, alter-
natively, on the frequency-related parameter x and the time
eccentricity e,. Choosing an eccentricity parameter like e,
as one of the basic independent variables has the advantage
of yielding more usual-looking formulas, e.g. by recover-
ing at the lowest order the Peters-Mathews enhancement
function. However, it has the disadvantage of depending on
the employed gauge. For some purposes it is better to use a
pair of gauge invariant variables like (E, J) or its variant
(&, j). Another interesting choice for a pair of gauge-
independent variables is (x, k) or alternatively (x, ¢) with
v = 3x/k as was used in [20]. Here, we present the results
in terms of the pair of parameters (x, ¢,); if necessary it is

""Of course this is a redundant set of orbital elements; for
instance w = n(1 + k).
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straightforward to transform the results into a different set
of parameters like (x, k) or (g, j).

We start with the time evolution of the mean motion n =
27/ P. Since n depends on the angular momentum J only
from the 2PN level [see (6.2a)], the angular-momentum
flux (G) will only be needed in this case up to 1PN order
(while the energy flux is needed with full 3PN accuracy).

1 9 292 , 37,
Ny = (1—e2)7/2{ 5 ef+?ef}’
1 { 4846 264 (5001
- - 7V
(1—e2)%2 35 5
1 {_1159 15265
—2)11/2] 945

N]PN:

944

NZPN = 1

570v
35 )

21 V+FV2+612(_

PHYSICAL REVIEW D 80, 124018 (2009)

We present the result in the form

<dn> _ Oy
dt inst G2 2

+ PN 3PN],

XN+ xN 1py + 2 N ogpy

(6.10)

where the PN coefficients explicitly read

(6.11a)

(2489 5061 ) <11 717 148
v)+tel———
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30 7 175

Next, the evolution of the periastron precession is

C3V

dk

dt/; Gm

(notice that the expansion starts at 1PN order), where

2)] (54 784 465 664

<—> = ——x*[xKpy + ¥ Kopy + 2° Kipn]
1nst

€;

31779 8)

105 525 & 525 917350 @

(6.11d)

(6.12)
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1 192 168¢?
Kipy = ————— 14— ’}, 6.13
PN — e,2)7/2{ 5 5 (6.132)
1 9124 1424 28512 3804 10314 1017
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PN e3)9/2{ 35 5 0 \73s 5 7))\ 35 5 7 (6.130)
X 1 {232082 [ 131366 738 2] PREEICIPN 2(2842199 +[ 1659934 , 1271 2]
= - — T |V —V e - a- |V
PN —e)12] 189 21 5 15 "\ 630 105 10
29879 ,\ , (1640713 1304524 5371 54133 ,\ , (1850407 388799
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Note that there is no dependence on the scale x, in this expression; the reason is that the 3PN coefficient is actually 2PN
relatively to the dominant term. From these above results we immediately deduce the time evolution of the mean orbital
frequency w = Kn as

dw Oy
<E>inst = G2m2 x”/z[@N + X@le + XZOQPN + X3O3PN], (614)
where
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For the semimajor axis a,, again we need the 3PN energy flux but only the 1PN angular-momentum flux, and get
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d
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(6.17d)

The evolution of the eccentricity e, is the only one to require both the energy flux (F) and angular-momentum flux (G)
with full 3PN accuracy. We obtain

d 3
<ﬁ> - C—ez”x4[5N + xEipn T X EpN t+ X Epn], (6.18)
dt inst Gm

where
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The leading-order Newtonian term is in agreement with the
work of Peters [22]. The match to earlier results for the
evolution of orbital elements includes also 1PN [30] and
2PN [25] orders. The explicit expressions for the evolution
of the orbital elements in modified harmonic coordinates
are provided in Appendix C.

D. Hereditary contributions

The hereditary contribution to the flux begins at relative
1.5PN order and consequently the 1PN quasi-Keplerian
representation, given by the truncation of Egs. (6.2) at
the 1PN order, suffices for this analysis. Namely,

= e[ 14 8 (-5 ] :
n=o€ _1 8( 15+7v) |, (6.20a)
K=1+3% (6.20b)
J
S 24
w=——g3 1+f(—15+v+—,>], (6.20¢)
Gm | 8 J
e, =T —j[l +ﬁ(—8+8v+j(17—7v)):|, (6.20d)
—J
1
a, =G—'2"7{1 +8(=7+ u)}. (6.20¢)
c° € 4

[
We also need the 1PN accurate expressions for € and j,
which we express in terms of e, and x:

[l
e=x xXf-———=-—
4 12 1-¢/1

j=(1—e,2)|:1+;—c(17—7v—8

(6.21a)

1—v
)

1 et)]. (6.21b)

The results for the hereditary parts { Fpereq) and {Grered)
depended on some numerically computed enhancements
functions of the eccentricity ¢, ¢, £, ... in the energy flux,
and &, lz Z ... in the angular-momentum flux. Obviously
the evolution of orbital elements will involve some linear
combinations of ¢, i, ... and their tilde analogues [see e.g.
(6.4)]. We thus have to introduce some new enhancement
functions to parametrize the time evolutions of the various
orbital elements {n, k, ®, a,, e,}. We pose12

2To avoid heavy notation and since we deal with only the time
eccentricity e,, the corresponding enhancement functions ¢,,
Y., L., k,, and F, are labeled by e rather than e,.
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All these new functions of eccentricity reduce to one in the circular-orbit limit e — 0.

We now list the relevant 1PN accurate expressions for the hereditary part of the evolution of the orbital elements, as
computed from the hereditary energy and angular-momentum fluxes (5.29) and (6.8). However, we notice that, for what
concerns the hereditary part, the evolutions of n and a, depend only of the energy flux (6.8) up to the accuracy we need
(which is 1.5PN relative order); similarly the evolution of k depends only on the angular-momentum flux. We find

()= om0 W)

+ x3(_ 1;2 7756 L (e) + [ ? JEN 1170152 c_ 1170152 1n(4aér0>]F(et))}’ 6200
<%>hered B % C_cj %x5{477x3/2¢k(el)}, (6.24b)
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" X3<_ 11323? ) + [? ™ 1170152 €= 1170152 1n(4a;r0>:|F(e,))}, (6.24¢)
<d;t,>hered - % ch3{—477x3/2§0(€t) + wa/z[% e, + % yga(e,)]

i x3<1 ;27756 ke - [13_6 (. 1170152 €~ l170152 1“(4?0)]’7 W)}- (6.24d)
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Enhancement functions ¢ ,(e) and £, (e) in the evolution of e, at 2.5PN order. Note the similarity of ¢, (e) with
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FIG. 9 (color online). Enhancement functions ¢;(e) and #,(e) in the evolution of k and @ at 1.5PN and 2.5PN orders. Note the
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Similarly at 3PN order it involves the same functions k(e) and
F(e) as for n. Note the similarity of #,(e) with ¢ (e) in Fig. 2.

The hereditary part of the evolution of ¢, depends on both
the energy and angular-momentum fluxes at 1.5PN order,
and we find

32 ¢3

de, ﬂ 4{_ﬁ 3/2
<dr >hmd SGOmt e e
55691 19067
+7TXS/2|:W(// ( t) V{e(et)]
89789209 87419 78003
3 - In2 + 13]
([ 352800 630 0 560
e 769[16 , 1712, 1712
————C———1In
el ™96 13" T 105 105
4
><< er)]Fe(et))}. (6.25)
C

All the numerical functions of eccentricity are provided in
Figs. 4-10. Numerical tables are given in Appendix B (see
Tables I, II, III, and IV).

VII. LIMITING FORMS FOR SMALL
ECCENTRICITY

In some cases one may have prior information about the
smallness of the eccentricity and in this case one may only
need the leading corrections when the eccentricity parame-
ter e, — 0. The main problem we face is to treat the
hereditary parts because we could compute them only

PHYSICAL REVIEW D 80, 124018 (2009)

numerically for general eccentricities. However, it was
shown in [21] how to obtain analytically the leading cor-
rections [neglecting O(e?)] for the enhancement factors in
the case of the energy flux. However, here we need to push
the accuracy of these results to the next order [neglecting
0(e%)] in order to evaluate the leading-order correction in
the enhancements functions present in the evolution of the
orbital eccentricity, Eq. (6.25); this can be checked from
the explicit expressions of these functions as given in
(6.22). We find

2335 , , 42955
=1+"—¢ et + O(eb :
ple) = 1422202 + 23938 4 0(e0) @an
22088 , 36508643 ,
— — + 6 .
VO =1-3051 ¢ " Tsaa003 ¢ TO) (1)
1011565 , 106573021
=1+ 24 4+ 0(0), (7.1
¢e) 18972 ¢ T am3ssy ¢ T O (o
62 4613840 24570945
— (2220 ZEOT078 1132
«(e) (3 350283 1868176 n3)
(91774_271636085 __4668479551n3) \
64 | 1401132 7472704
+ 0(e5), (7.1d)
2 177
Fle)=1+ % 24+ 964 4+ O(eY). (7.1e)

Similar results are obtained in the case of the angular-
momentum flux, i.e. for the tilded enhancement factors,
which read

209 2415

=1+=—F=e+—=-¢*+ 0 .
ole)=1 2 58 0O(e%), (7.2a)
i 17416 , 14199197
—1- 44 0@, (12b
wle) 8101 ¢ s2a204 ¢ T O (720)
i 102371 , 14250725
=1+ 2 4+ O(e® 2
40 si62 ¢ " agriss ¢ T O (20
389 2056005 8190315
— + + 2
R(e) =1 (32 233522 ™t 535088 1“3)
(3577*_50149295 155615985 3) )
64 | 467044 3736352
+ O(eb), (7.2d)
389 3577
=1+=——=e+——¢*+ 0 .
Fe) =1 2 2 O(e®). (7.2e)

Using (7.1) and (7.2) we then get the leading-order correc-
tions in the functions parametrizing the evolution of orbital
elements and defined by Egs. (6.22) and (6.23),
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Pole) =1+ ?3 ;;g e? + 0(e?), (7.3a)
Lile) =1+ %ez + 0(eY), (7.3b)
ole) = 14202+ O (1.30)
Pole)=1- %ez + O(e*), (7.3d)
L&) = 1+ 126 + 0, (7.3¢)
ple) = 142202 + O, 730
pole)=1-— %ez + 0(e?), (7.32)
L) =1+ 20 220 1 0, 7.3h)
et (S s s o,
Fle)=1+ 1145(;? & + 0et) (7.3i)
Pale) =1— %ez + 0(e), (7.3k)
Lle) =1+ %ez + O(e). (7.31)

To finish, we provide the complete results (composed of both instantaneous and hereditary contributions) valid up to first
order in e?. The total fluxes of energy and angular momentum read"?

326, . 1247 35 44711 9271 65 8191 583
== l—(——+=v)x+4 3/2+(——+— +—2>2+<————) 5/2
(Fr=5 G”{ (336 12 ”)x ™ 9072 504”187 ) 672 24 )™
6643739519 16 1712 856 134543 41 94403 . 775
20 PO L 0 e e e 90 e + (— 2 2) ——2—_3)3
( 69854400 37 105 € 105 MU0V ( 7776 487 )Y T 3024 U 3247 )
. 2[157+( 187 3107 > L2335, ( 348079 , 35923 14015 2) ,
e —_— - — 128 b1 TrX" - 1% VX
" 24 168 72 43 3024 | 672 108

2

(82177 101156577')5/2 (112742385071 992 , ( 1918465 84295 2) 11189
- - H——————+ =7+ (- -

_l’_
24 2016 69 854400 9 7 9072 | 2304 56
459793 , 106144 18832 234009 53072
- _ n In2 — In3 — In(1 3]}+ 4y, 74
o4z VT35 ¢tz s60 M3 35 6x)>x Ole?) (7.42)
2, 7/2{ (1247 35 ) X ( 44711 9271 65 ) ( 8191 583 )
== l— (ot v +4m 2+ ([ + v+ )P+ 7|~ — v X2
(G) =5 comrx 336 2 )T 90072 504”18 ) T 62 24 )

69854400 3 " 105 7776 48 3024 © 3247 105
123 361 545 200 5, 1510015 13975 . 2839 .\ , 311102371 .,
+ —+ | — — X + —7Tx*/ +1|— + ve|xc + — v |x /

6643739519 16 , 1712 134543 4172 94403 , 775 , 856 3
+ — 7 — + (- + v — — —— Inl6x |x°

g 168 24 18 144 288 © 7 36 12 336
59524389803 19581 78003 38916, 1712 9285217 | 13463
< + In2 — 1n3+—(—7r — ) ( + 77)1/
69 854 400 70 280 2 \3 105 54432 768
75493 , 104723 , 41623
- - - In16x )3 | + O 7.4b
378 7 648~ 420 " 6x)x ]} Ole?) (7.4b)

We have compared the e? terms of the angular-momentum flux expression above with the result of black-hole perturbation

BConsistent with the accuracy that was needed in Eqgs. (7.1) and (7.2), we recall that the evolution of the orbital eccentricity to the
level €7 [as given by (7.6e) below] requires these expressions to be accurate up to e?.

124018-29



ARUN et al. PHYSICAL REVIEW D 80, 124018 (2009)

theory given in Eq. (181) of Ref. [66]. Similar to the case of the energy flux [20], we find that our result in the test-mass
limit » — 0 matches with the perturbation result with a transformation of eccentricity given by

e? =¢e*(1 —6x+2 3x* — 10x3). (7.5)

Here, the eccentricity e, is the one appearing in (7.4b), i.e. in ADM coordinates, while e is the eccentricity used in
perturbation theory. The relation (7.5) is the same as the one we found for the case of the energy flux, as it must surely be:
indeed see Eq. (9.6) in [20], where we must take into account the change between the MH coordinates used there and the
ADM coordinates used here.

The evolution of orbital elements is

dn\ 96 & 2423 11 44201 74309 59 17599 189
/2 1+<———— ) +4 3/2+< + v+ 2) 2+ (———— )5/2
<dt> st { 336 a4 )™ 18144 2016~ 187 )Y T\ 672~ 8 N

(12720014063 16 , 1712 [13392731 205 2] 658843 , 5605 A 856
——t =7 = ——7 V= v —
139708800 3 105 217728 96 8064 2592”105

ln16x)x3

[157 ( 2801 673 ) 2335, ( 1761523 1094473 213539 2) ,
+e +1| - X+ ——mx/ T+ — + v+ Ve x
24 112 16 12096 4032 1728
In3 +
96 56 46569600 45 M7 560 P33T T 105
- - Inl6 3]}+(9 4, 7.6
24192 576 " 336~ 31104 © 315 x)" (e7) (7.6a)
dt/ 5 Gm 336 12 18144 2016 32 9
8 24 16 8 72576 4032 384 " 576
+ O(e}), (7.6b)

n ( 13445 276451/) 5/2_'_<82283570939 188321 2_234009 Q[& 2_1712C]
[23736079 7103 2] 391117 , 6874115 , 53072
v —
dk 192 ¢3 5 2281 89 32y 897725 342527 12372 20812
= vx°{1 + x| —— + 47rx3/2 4 42 +1 - + v+
2|:35 (11595 851 ) 257 32 2<32245547 [ 5515931 9389 2] 162853 2)]}
+ei| —+ t——mx XN e - vVt————v
6 4 11 41 1 1 41 1
<d_w>=%_c 2wc“/z{l—i—(—E——1/>x-i-477'x3/2-i-(?, 03+—366 V+5—9V2)x2+77<——59—ﬁv)x5/2

dit] 5 G?m 336 4 18144 2016 ~ ' 18 672 8
16447322263 16 , 56198689 451 ,\ 541 , 5605 . 1712 . 856
( 139708800 3 ( 217728 48 " )V 896" 2592”105 105 ln(16x))
157 (713673 2335 519523 143771 213539 ,\ , . (7885 27645 \ s,
+e [ +( ) < v+ V)x +7T( V)x/
24 \112 16 12096 4032 1728 9% 56

139708800 315 24192 2304 " 4032 31104
| 18832 234009 53072

15 In2 — =60 In3 — In(16x) )x ]} + O(e?), (7.6¢)

<da,> 64 . {1+( 743 11 ) o 3/2+(38639+11393 19 2>2+ ( 4159 189 )5/2
=——cx’v ———— —vt+t—v —— v
dt 5 336 4 JFTT™ 18144 2016~ 6" ) "™ 612 8 )
16439941813 16 , 1712 3635195, 245 L\ | 167971 , 61 . 85
L MR VAR L1 e W R T W
139708800 3 105 15552 32 241920 327 T 105
. 2[157 (4267 673 ) 2335 3/2+< 19423 93607 23587 2) ) (11825 27645 )5/2
—_— — — —V X — 77X VT |X T\ ————— V)X
24 "\ 336 16 48 1728 1008 192 96 56
(144392349571+18832 234009 62[16 , 1712 ]+|:_67044655+11971 2]

In2 — In3 + 2=
69854400 5 27560 M 3™ 105 24192 128

(276032869667_106144 992 5 ( 59984699 227795 2) 966019 , 6874115

3943769 , 83195 3 53072
- — In16x )x* [+ O(e}), 7.6d
8064 384~ 315 x)x ]} (e?) (7.6d)
"“From Eq. (4.15) we have eMH = ¢APM[] — 1x* = 1% + O(v)] in the test-mass limit for small eccentricity O(e7).
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<%>=_ﬁc_ ) {1+(_2817_1021 ) , 985 3/2+(—120293 33559 | 141 2) ,
dr 15 Gm 7" 2128 228 ') 152 ™ 38304 4256~ 190 )
55691 19067 \ ., . (245840579209 4601 234009 769116 _, 1712
77'(—— —V)x/ +( L 400t 1n3 + & [ —c]
4256 399 884822400 105 5320 3043 105
[31417 , 125449717] 42311 , 305005 , 82283 ) - 2[881 +<40115 51847 )
a- — el — -
3648 459648 510727~ 49248 3990 1304 " 4256 1824
20729, 1538725 1252109 274515 ,\ , . (286789 7810371 \ .,
+ —7x 24 (- — v ve |xc + — VX /
608 51072 17024 2432 3584 17024
(1306972981451 3813587 6318243 [1571323 , 202888331] 14915155
- a7~ — 14
589881600 3990 21280 29184 131328 38304
100330729 ,  14023[16 , 1712 ] 1500461 >3]} )
- : S N _ In(1 n . .
393984 608 [3 T 05 7050 (16%) Jx Ole?) (7.6e)

We find that in the limit when e, — 0, the evolution of the
orbital frequency, i.e. {dw/drt)q, reproduces the known
result for circular orbits at 3PN order as given in [8,9].
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APPENDIX A: THE NONLINEAR MEMORY DC
TERM

Our aim is to compute the zero-frequency part (or DC
part) of the nonlinear memory integral found in Sec. V C,
namely,

ginemory(to) - —8-- (t())[ dl[(3)(l‘)li3b)(t).
(A1)

For convenience in this Appendix we denote the current
time of the observer by #, (formerly denoted T) and the
earlier time over which the memory is integrated by ¢
(formerly V). In Eq. (A1) we shall suppose that the system
was formed at some initial instant #; on some very eccen-
tric orbit with initial eccentricity e; close to 1, but strictly
less than 1. Then the system will evolve by radiation
reaction until reaching the current eccentricity e, such
that e) <K 7 < 1.

At this order of approximation we can replace in (Al)
the quadrupole moment and its time derivatives by

|
Newtonian values. We express the result in terms of the
current orbital separation r, = r(f,), radial velocity iy and
instantaneous orbital frequency ¢,. The result will be an
integral extending on the corresponding variables r, 7 and
¢ for the orbit at any instant in the past [recall our notation
after Eq. (3.1); here e.g. r = r(r)]. For convenience we set
the origin of the orbital phase ¢ (or true anomaly) at the
current binary’s separation, i.e. we pose ¢y =0. A
straightforward calculation gives the norm of the memory
integral as

64 GOm®? [fo dt[(' i
105 ¢ J, “L\FOA
(p}"

( 4§00

We then replace r, 7, and ¢ in this integral by the explicit
solution for Keplerian motion,

Gmemory ro q; )cosZgo
0

(A2)

a(l — €?)
=—— A
" 1+ ecose’ (A32)
. Gm .
r = me smeo, (A3b)
Gm

(1 + ecose)?. (A3c)

e a’(1 — e?)?
The resulting integral is composed of many terms corre-
sponding to different harmonics of the Keplerian motion.
Thus, we find that the structure of the memory term is of
the type

1 .
Gmemey =3 f " dif,(a, e)e"?, (A4)
n A

where the f,’s depend on the semimajor axis a(r) and
eccentricity e(z) of the orbit in the past (and depend also
on the current values ry, 7y, ¢,). Here, (1) is the orbital
phase, which is oscillating at the orbital period. In contrast,
a(t) and e(f) remain approximately constant during one
period, but slowly evolve by radiation reaction during all
the binary’s past evolution. Now we expect that the oscil-
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lations of the orbital phase, due to the sequence of many
orbital cycles in the entire life of the system, will more or
less cancel each other in the memory integral, so that the
true post-Newtonian order of the oscillating terms will be
simply given by the power of 1/c they carry. The oscillat-
ing terms, having n # 0, are thus expected to have their
normal 2.5PN order,'® and we have shown in Sec. V C that
these terms do not contribute to the averaged angular-
momentum flux.

With this, now there remains the purely zero frequency
or DC component of the memory, corresponding to n = 0,
which is given by

GoC = f " dtfola ). (AS)
h
This DC integral is cumulative because it extends over
some steadily increasing kernel and a priori exhibits a
strong dependence on the past (i.e. when #; — —o0). The
explicit calculation gives

GoC — _1_6 Gom’v? @ f , e?
5 IS W a1 — ey

20 19
X[14+ e+ — 4].
[ 21¢ " 336°

We now evaluate the DC term by inserting the secular
evolution of orbital elements to Newtonian order consis-
tently. We first convert the time integration into an inte-
gration over eccentricity by using the Peters [22] formula

304 G’m’ve 121 ,
R Gimive (1 2, )
15 c5a4(1 _ 62)5/2 304

This is the dominant term in Egs. (6.18) and (6.19); for
simplicity we ignore the averaging procedure. Calling e;

the initial eccentricity at the instant of formation of the
binary system (e; > e;), we obtain from Eq. (A6)

gDC _ _i G3m4V2 @

19 C5 ro e
1+ 2062 + 19 L4
336 ) (A8)

121 2
I+ 304 €

(A6)

(AT)

P
a(l — e?)5/2

We discover here the memory effect: indeed, the real post-
Newtonian order of the DC term (AS8) is found to be 1/¢°
instead of the formal order 1/c'® exhibited in Egs. (Al)
and (A2), which means that it occurs at Newtonian level in
the angular-momentum flux instead of the 2.5PN order.
This increase by a factor O(c>), which corresponds to the
inverse of the dominant order of radiation reaction, is
clearly due to the cumulative integration over the past of
the zero-frequency mode.

We can simplify the result by using the relation for a(e)
deduced from the evolution equations for e(r) and af(r).

This expectation could be justified in more details using
calculations similar to the ones in Sec. 4 of [49].

PHYSICAL REVIEW D 80, 124018 (2009)

Although the exact expression is known, we rather employ
for simplicity an approximate relation given in Ref. [22],

namely,
a 1— 5(2) e \12/19
e (e_o) . (A9)
This finally yields
GDC _ 3 G3m*v? go 6(1)2/19
19 & ryap(l — e?)
20 19
y j‘el e MO 1+ Re? + 6 € et (A10)
o (=€) 1+3Fe

We can see the importance of the dependence over the past
by the fact that the integral diverges when the initial
eccentricity e; of the orbit approaches one [this would
also be true had we used a more exact relation for a(e)].
For a binary system born on a very elongated elliptic orbit
close to a parabolic one, the DC term is dominated by the
initial evolution when e; — 1 and reads approximately

be 21 GPm*? g e

e;—1 110 3
! 119 ¢ ro ao(l —e}) [

(All)

Finally, we are interested in this paper in the averaged
angular-momentum flux. The formula (A10), averaged
over the current orbit, gives immediately

12/19
2.2.7/2 eo
)2

/ J 7/19 1+§?€2+%64
e 3:
G- 1+

(G°) = -

(A12)

This indeed appears, comparing with (4.10) and (4.11), as a
Newtonian-like term. This term will modify the enhance-
ment factor at Newtonian order, namely, (1 + £e3)/(1 —
e3)?, by an extra contribution coming from the binary’s
earlier evolution. However, we expect that this could be
important only for very long-lived binary systems having
started on a nearly parabolic orbit. For such systems the
memory-induced modification of the Newtonian enhance-
ment factor could be used to obtain an improved model of
evolution of the orbital elements.

APPENDIX B: TABLES OF NUMERICAL RESULTS

To facilitate the quantitative comparison of the PN
results with high precision numerical computations of the
inspiral and merger of eccentric binaries [45], we provide
the numerical tables of all relevant enhancement functions
in this Appendix.
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TABLE I. Tables for the numerical enhancement functions TABLE III. Tables for the numerical enhancement functions
appearing in the expression of the 3PN hereditary energy flux appearing in the 3PN hereditary part of the evolution of orbital
in Eq. (6.8). elements n, k and @ in Egs. (24). Recall that £, (e) = £,(e).
e e(e) i (e) {(e) «(e) e P a(e) dule) @ile) ()
0.00 1 1 1 1 0.00 1 1 1 1
0.05 1.031 0.9926 1.052 1.066 0.05 1.013 1.053 1.020 0.9657
0.10 1.127 0.9646 1.221 1.282 0.10 1.053 1.223 1.083 0.8488
0.15 1.304 0.8971 1.540 1.703 0.15 1.119 1.546 1.197 0.6018
0.20 1.588 0.7492 2.082 2.446 0.20 1.207 2.096 1.375 0.1246
0.25 2.027 0.4401 2.981 3.738 0.25 1.308 3.007 1.644 —0.7787
0.30 2.702 —0.1907 4.480 6.020 0.30 1.396 4.530 2.044 —2.490
0.35 3.757 —1.468 7.045 10.18 0.35 1.405 7.137 2.646 —5.776
0.40 5.447 —4.073 11.589 18.07 0.40 1.174 11.76 3.574 —-12.22
0.45 8.254 —9.499 20.00 33.82 0.45 0.311 20.33 5.051 —25.27
0.50 13.13 —21.20 36.44 67.20 0.50 —-2.179 37.09 7.508 —52.86
0.55 22.07 —47.70 70.69 1432 0.55 —8.942 72.06 11.82 —114.4
0.60 39.63 —112.0 148.0 3324 0.60 —27.51 151.1 19.93 —262.2
0.65 77.23 —282.5 341.2 858.8 0.65 —81.56 348.6 36.56 —651.7
0.70 167.3 —794.0 890.4 2550 0.70 —255.5 910.8 74.68 —1813
0.75 417.9 —2611 2753 9159 0.75 —909.7 2819 176.2 —5929
0.80 1282 —10867 10879 43276 0.80 —4023 11149 512.0 —24595
0.85 5440 —66117 63317 315331 0.85 —25701 64950 2059  —1.49 X 10°
0.90 41628 —810188 746378 5.058 X 10° 090 —3.28 X 10° 7.66 X 10° 14961 —1.83 X 10°
TABLE IV. Tables for the numerical enhancement functions
TABLE II. Tables for the numerical enhancement functions appearing in the 3PN hereditary part of the evolution of orbital

appearing in the expression of the 3PN hereditary angular-

elements a, and e, in Egs. (24) and (6.25). Recall that {,(e) =

momentum flux in Eq. (5.29). £, (e).

e o(e) i (e) {(e) i(e) e Pale) p.le)  Ple)  Lle) K.(e)
0.00 1 1 1 1 0 1 1 1 1 1
0.05 1.016 0.9945 1.032 1.040 0.05 0.9488 1.013 0.9845 1.024 1.027
0.10 1.067 0.9759 1.131 1.166 0.10 0.7773 1.056 0.9338 1.099 1.114
0.15 1.157 0.9373 1.312 1.399 0.15 0.4250 1.132 0.8352 1.237 1.273
0.20 1.294 0.8646 1.599 1.783 0.20 —0.2348 1.248 0.6629 1.456 1.532
0.25 1.493 0.7328 2.040 2.393 0.25 —1.447 1.417 0.3708 1.790 1.938
0.30 1.775 0.4971 2.710 3.363 0.30 —3.686 1.658 —0.1233 2.297 2.573
0.35 2.176 0.0770 3.737 4.933 0.35 —7.889 2.002 —0.9688  3.076 3.590
0.40 2.752 —0.6770 5.351 7.552 0.40 —15.98 2502 —2.444 4.304 5.266
0.45 3.597 —2.051 7.964 12.09 0.45 —32.12 3243 —5.092 6.307 8.152
0.50 4.877 —4.622 12.37 20.32 0.50 —65.77 4382 —10.01 9.726 13.38
0.55 6.887 —-9.610 20.18 36.18 0.55 —140.0 6210 —19.63 15.89 23.50
0.60 10.21 —19.79 34.92 68.94 0.60 —316.5 9.310 —39.58 27.81 44.67
0.65 16.05 —42.09 64.96 142.9 0.65 —=771.3 1495 —84.39 52.93 93.54
0.70 27.20 —95.67 132.8 330.9 0.70 —2141 26.20 —196.2 112.1 221.6
0.75 51.01 —242.7 308.4 888.8 0.75 —6936 51.66 —519.4 274.7 620.2
0.80 110.6 —733.1 861.4 2957 0.80 —28538 1203 —1670 827.6 2201
0.85 301.0 —2961 3218 13790 0.85 —1.72 X 10° 3644 —7363 3451 11332
0.90 1239 —21327 20453 1.19 X 10° 0.90 —2.09 X 10° 1773 —58039 25971 1.14 X 10°
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APPENDIX C: ANGULAR-MOMENTUM FLUX
AND EVOLUTION OF ORBITAL ELEMENTS IN
MODIFIED HARMONIC COORDINATES

In this paper we have first obtained the angular-
momentum flux in the standard harmonic coordinates
[Eq. (3.4)]—in terms of r, 7, ¢—and transformed it to
expressions in the ADM coordinates [Eq. (3.5)]. All sub-
sequent formulas of the averaged flux and evolution of the
orbital elements under gravitational radiation reaction refer
only to ADM coordinates. Recent studies of binaries mov-
ing in elliptical orbits also employ the modified harmonic
coordinates and for the convenience of such investigations
we provide in this appendix explicit forms of the important
equations in modified harmonic coordinates.

Following the prescription outlined in Sec. VI A of
Ref. [20] [see Egs. (6.2) and (6.3) there], one can compute
the angular-momentum flux in MH coordinates starting
from the corresponding expression in the SH coordinates
in Eq. (3.4). The difference between the standard harmonic
and modified harmonic coordinate is a 3PN term. The final
result in MH coordinates may be written as Gy = Ggy +
0¢G, where

704 G’mbv?
667 5 T ®

2 v2 32 Gm r
X+ (=22 +Z5)m(=) |
[2 ( 2 4 r)ln(r'o)] €1

As expected, in the expression for the angular-momentum
flux in MH coordinates the In(r/r() terms will be gauged
away.

We next provide the expressions for the angular-
momentum flux averaged over an orbit and the secular
|
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evolution of various orbital elements in the modified har-
monic coordinates. Notice that, in the 3PN accurate ex-
pressions, only the instantaneous terms at 2PN and 3PN
will be different from the corresponding ADM expressions
given earlier since the difference between the ADM and
MH coordinates are at order 2PN and higher. Thus, all the
hereditary terms (which start at 1.5PN) will be the same in
the ADM and MH coordinates up to 3PN. Starting from the
ADM expressions, one can obtain the corresponding re-
sults for various quantities by the sole transformation of the
eccentricity parameter e, as given in Eq. (4.15). Listed
below are the corresponding expressions at 2PN and 3PN
orders in which e, now stands for eM". As is obvious, in the
equation for evolution of K, only the 3PN term will be
different.

M 1 { 135431 11287 260
= — + —v
PN (] — e2) 1134 63
+_(__598435 L9497 1546 2) 5
756 g4 V)
30271 106381
_ + 21\ 4
( 1 168 v + 569v )e,

(30505 2201 1519 2) .
- 14 V- )e
2016 56 36 !

+ \/l — e2[80 — 32v + €2(335 — 134v)

+4@5—mmﬂ, )

1 (2017023341 4340155 167483 1550 540428354 [621344957 4172
MH — { v — — V3+e,2< [ + :IV
N (1 —e2)5 | 1247400 6804 378 81 155925 68040 2
416621 , 96973 6350078491 [1034477929 11521727 720619 , 438907
— 2 — 3 et — — v 2 — 1/3>
108 81 1663200 90720 256 1008 108
6( 272636461 [4987541 615w2] 1885945 , 283205 3>
- - I 2 14
¢ 554400 18144 128 1008 162
10305073 417923 95413 146671 379223 48907 4172
H 2 - 3 +\/1— 2[— +[— + ]
e’( 709632 12096 | 8064~ 2592 l') ¢ 630 63 6 |”
580 5, «xw%3+[ %6%0+2M%ﬂ]+1ng)+4C3M7%1+[ 2%7m5+2mwj
—V - e \————— - 14
"\ 315 63 96 |” g "\ 5040 504 9%

23326 ,

N 27203 ,,2) n el6<70 B 2;21/ n EVZ):I n (13696 n 98012€t2 n

3 105

. %mlé)meI+Jl_eq}
105 35 " 70 ! xo 2(1—¢?) 1J

(C3)
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N == e;)llﬂ{ 945 | 21 15 ( oa5 33 g
4< 203957 764357 396443 2) 6(4760 347 993011 192943 2)
+ ef| — — v+ ve )+ e} — v+ v
90 140 72 1680 240 90
391457 6037 2923 - % 4268
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We conclude this appendix with two useful relations, the analogues of Egs. (4.15) and (4.17) but expressed in MH
coordinates. We have
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