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Head-on infall of two compact objects with arbitrary mass ratio is investigated using the multipolar

post-Minkowskian approximation method. At the third post-Newtonian order the energy flux, in addition

to the instantaneous contributions, also includes hereditary contributions consisting of the gravitational-

wave tails, tails-of-tails, and the tail-squared terms. The results are given both for infall from infinity and

also for infall from a finite distance. These analytical expressions should be useful for the comparison with

the high accuracy numerical relativity results within the limit in which post-Newtonian approximations

are valid.
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I. INTRODUCTION

The spiraling coalescence of two compact objects (black
holes or neutron stars) moving about one another in an
orbit, forms a prominent class of sources of gravitational
radiation [1]. Such sources of gravitational waves (GW),
especially in their late stages of evolution are prime targets
for gravitational wave detectors such as LIGO [2] and
Virgo [3]. The evolution of the binary systems composed
of two compact objects involves three stages of evolution;
the early inspiral, late inspiral and merger, and the final
ringdown. Detection of gravitational radiation from such
systems by the gravitational wave detectors depends
strongly on the theoretical inputs, which will involve com-
putation of the waveform of the signal for all the three
phases to very high post-Newtonian (PN) order to detect
and infer the characteristics of the sources of GWs, using
matched filtering techniques [4]. Even though head-on
collision of two black holes has only a small astrophysical
possibility, it provides the simplest possible situation to
study the two-body problem of general relativity and has
been studied since it provides an excellent theoretical plat-
form for comparing the validity of various analytical and
numerical approaches towards solving Einstein’s equations
in dynamical situations.

One of the earliest attempts to solve the problem of
head-on collision using a complete general relativistic
approach was due to Davis et al. [5]. They discussed the
emission of gravitational radiation due to the radial infall
of a test particle in Schwarzschild spacetime from infinity,
using Zerilli’s equation for black-hole perturbations [6].
Because of the axial symmetry of the system, the problem
simplifies considerably and yet retains the features of
astrophysical interest such as emission of gravitational
radiation at infinity. In addition to this, head-on collision
can be considered as an approximation to the last stage of

the inspiralling coalescence when two objects merge to-
gether to form a single object. The first attempt to solve the
head-on collision of two equal mass black holes numeri-
cally was due to Smarr and Eppley [7–9]. This program has
undergone substantial improvement in accuracy and relia-
bility with advances in the understanding of numerical
issues in the treatment of Einstein’s equations and avail-
ability of better computing [10]. The head-on collision of
two black holes with arbitrary mass ratio has been inves-
tigated numerically in [11,12] and semi-analytically [13].
In a recent work [14], head-on collision of two equal mass,
nonrotating black holes with ultrarelativistic speeds have
been studied using numerical methods. The main result of
this analysis is that in such a process (where the initial
energy of the system is dominated by kinetic energy of
black holes) the total amount of energy converted to gravi-
tational waves is about 14% of the initial mass energy for
the system and corresponds to large luminosities of the
order of 10�2c5=G. Another study related to the collision
of two equal mass, nonrotating black holes moving at
ultrarelativistic speeds and with generic impact parameter
[15] suggests that such collisions can produce black holes
rotating close to the Kerr limit and the energy radiated in
such a process would be roughly 35% of the center-of-mass
(CM) energy.
Another approach which may be used to study the head-

on collision of two compact objects is the PN approxima-
tion approach. Though PN methods are valid for arbitrary
mass ratios, they eventually break down under situations
like strong gravitational fields and high speeds. Simone,
Poisson, and Will (SPW) [16] investigated the problem of
head-on infall and compared the PN approach with black-
hole perturbation (BHP) theory. They provided 2PN accu-
rate expression for the far-zone GW energy flux and
showed, in particular, that the energy radiated during the
infall is well estimated by the quadrupole approximation
combined with the exact test-body equations of motion
(EOM) in Schwarzschild background. Also in a recent
study [17], a hybrid method using both PN approximations
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and BHP theories has been used to study the head-on
collision of two black holes and found that PN and BHP
theories can explain the main features of gravitational
radiation for head-on mergers.

In this paper we investigate the problem of head-on
infall using the multipolar post-Minkowskian (MPM) ap-
proach [18–23] and provide the complete 3PN accurate
expression for the GWenergy flux emitted during the radial
infall of two compact objects towards each other. In addi-
tion to the simpler instantaneous part of the energy flux we
also compute the more complex hereditary contributions
up to 3PN order which involves the contributions due to
tails, tails-of-tails, and tail-squared terms. We discuss the
head-on problem both for infall starting from rest at an
initial finite separation (denoted case I) and similarly for
infall starting from rest at infinite separation (denoted by
case II). Instantaneous contributions at 2.5PN order and at
3PN order, computation of tails at 2.5PN, tail-of-tail and
tail-squared terms at 3PN order are the new results of this
paper. Our computations suggest that the total energy
radiated in the process of head-on infall of two compact
objects with equal masses is roughly about 0.0074% of the
Arnowitt, Deser, and Misner (ADM) mass of the binary
and the peak luminosities are typically less than of the
order 5� 10�6c5=G. Comparing our PN estimates with
the numerical relativity results [10] we can see that the PN
estimates are smaller than the numerical results typically
by a factor of 27 consistent with the expectation that a
larger fraction of energy radiated indeed comes from the
merger phase of the infall rather than from the early
inspiral.

This paper is organized in the following way. In Sec. II
we begin by providing the structure of the far-zone GW
energy flux at 3PN order, relations connecting radiative
multipole moments to source multipole moments and the
decomposition of the expression for energy flux into in-
stantaneous and hereditary contributions. Section III lists
the 3PN EOM as well as the 3PN accurate expression for
the center-of-mass energy in standard harmonic coordi-
nates for the head-on case. In Sec. IV we give the expres-
sions for the desired multipole moments at the PN order
required for the computation of 3PN energy flux for head-
on infall case. In Sec. V we first exhibit the instantaneous
part of energy flux up to 3PN order in standard harmonic
coordinates followed by the corresponding expressions in
two alternative coordinates for possible comparison with
numerical relativity results: modified harmonic (MH) and
ADM. Section VI describes the computation of the heredi-
tary part of the energy flux. Finally, in Sec. VII, we bring
together the complete 3PN accurate expression for energy
flux in ADM coordinates and the energy radiated during
infall to some fixed radial coordinate. Section VIII contains
a graphical display of the salient features and our conclu-
sions. These results should be useful to compare and match
to simulations using numerical methods in regimes where

both treatments are expected to be the valid. The paper
ends with a short appendix relating the expression for
conserved energy in standard harmonic (SH) coordinates
to that in ADM coordinates.

II. THE FAR-ZONE GW ENERGY FLUX

We start the discussion by writing the 3PN expression
for far-zone GW energy flux in terms of the symmetric
trace-free radiative multipole moments [24,25]. The PN
structure for GW energy flux reads as
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In the above expression UL and VL(where L ¼ i1i2 � � � il
represents a multi-index composed of l spatial indices) are
the mass-type and current-type radiative multipole mo-

ments, respectively, and UðnÞ
L and VðnÞ

L denote their nth
time derivatives. The moments appearing in the formula
are functions of retarded time U � T � R=c in radiative
coordinates.
Equation (2.1) is the general formula for the computa-

tion of 3PN accurate energy flux for any general isolated
source. In a recent paper [25] the complete third post-
Newtonian energy flux has been computed for inspiralling
compact binaries moving in quasi-elliptical orbits. In the
present work we specialize to the case of head-on infall and
compute the 3PN accurate far-zone GW energy flux emit-
ted due to head-on infall of two compact objects with
arbitrary mass ratio using the MPM approximation meth-
od. The radiative current-type moments (VL) are related to
the source current moments JL whose expansion at each
PN order contains the orbital angular momentum J which
vanishes in the head-on case. Thus the current-type mo-
ments VL will not contribute to GWenergy flux and for the
head-on case, Eq. (2.1) reduces to the following form:
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In the MPM formalism, the radiative moments UL

and VL are related to canonical moments ML and SL
respectively and these canonical moments are in
turn expressed in terms of source moments
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fIL; JL;WL; XL; YL; ZLg. Since in the present work we only
deal with head-on situation we would exclude terms in-
volving current-type multipole moments from all our ex-
pressions for the reason stated above. It should be evident
from the Eq. (2.2) that for the computation of 3PN accurate
energy flux Uij is needed at 3PN order, Uijk is needed at

2PN order, Uijkl with 1PN accuracy and Uijklm to leading

Newtonian accuracy. General expressions connecting UL

to source moments have been listed in [25], and we shall
simply recall those expressions. For the 3PN accurate mass
quadrupole we have

UijðUÞ ¼ Ið2Þij ðUÞ þ 2GM
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where the bracket hi surrounding indices denotes the sym-
metric trace-free projection. The IL’s are the mass-type
source moments (and IðnÞL denote their nth time deriva-
tives), and W is the monopole corresponding to the gauge
moment WL which for our purpose needs to be known
Newtonian accuracy. The quantity M appearing in the
above expression is the ADM mass of the source. It should
be evident from Eq. (2.3) that radiative moments have two
distinct contributions. The first referred to as the instanta-
neous contribution requires the knowledge of source multi-
pole moments only at a given retarded time, U ¼
T � R=c; where R is the distance of the source in radiative
coordinates. The second one, referred to as the hereditary
contribution, which is given by integrals over retarded time
from 0 to 1, depends on the dynamics of the system in its
entire past history and requires the knowledge of source
moments at all times before U. A closer look at the
hereditary terms reveals two types of contributions, some
with and some without the log factors. The integrals (with
log factors) appearing at 1.5PN and 3PN order are
called tail and tail-of-tail integrals, respectively. The inte-
gral (without log factor) appearing at 2.5PN order is
called the nonlinear memory integral. It is a time antider-
ivative and hence leads to an instantaneous term in the
energy flux.

The mass-type octupole momentUijk which is needed at

2PN is related to the associated source moment as

UijkðUÞ ¼ Ið3ÞijkðUÞ þ 2GM
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(2.4)

For other radiative moments, Uijkl and Uijklm, only the

leading order accuracy in the relation between radiative
and source moments is needed, so that

ULðUÞ ¼ IðlÞL ðUÞ þOð3Þ: (2.5)

The constant r0 which provides a scale for the logarithmic
term in the above expressions is an arbitrary constant. It
enters the relation connecting retarded time U ¼ T � R=c
in radiative coordinates to retarded time u ¼ t� r=c in
harmonic coordinates (where r is the distance of the source
in harmonic coordinates). The relation between retarded
time in radiative coordinates, and the one in harmonic
coordinates reads as

U ¼ t� r

c
� 2GM

c3
log

�
r

r0

�
þOð5Þ: (2.6)

Later in this paper we shall show that the presence of this
constant r0 will not influence any physical result like far-
zone GW energy flux.
We can now use the expressions for the radiative mo-

ments given by Eqs. (2.3), (2.4), and (2.5) in Eq. (2.2) to
obtain the 3PN energy flux formula in terms of source
moments. As discussed above, the presence of two distinct
contributions (instantaneous and hereditary) leads to a
natural decomposition of the 3PN energy flux into two
pieces and the complete flux can be written as a sum of
the two distinct types of contributions as

F ¼ F inst þF hered; (2.7)

where the instantaneous contribution1 to energy flux is
given by

1There is a typographical error in Eq. (2.7) of [25] which has
been corrected while writing Eq. (2.8) of the present work. At
2.5PN order the coefficient of Ið3Þij I

ð3Þ
ij should be � 4

7 and not � 2
7 .

However, the results in [25] are computed using the correct
coefficient.
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F instðUÞ ¼ G
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The hereditary contribution comprises of three parts,

F hered ¼ F tail þF tailðtailÞ þF ðtailÞ2 ; (2.9)

where the quadratic-order (proportional to G2) tails are
given by

F tailðUÞ ¼ 4G2M

5c8
Ið3Þij ðUÞ

Z þ1

0
d�Ið5Þij ðU� �Þ

�
log

�
c�

2r0

�

þ 11

12

�
þ 4G2M

189c10
Ið4ÞijkðUÞ

Z þ1

0
d�Ið6ÞijkðU� �Þ

�
�
log

�
c�

2r0

�
þ 97

60

�
; (2.10)

and the cubic-order tails (proportional to G3) by

F tailðtailÞðUÞ¼4G3M2

5c11
Ið3Þij ðUÞ

Z þ1

0
d�Ið6Þij ðU��Þ

�
log2

�
c�

2r0

�

þ57

70
log

�
c�

2r0

�
þ124627

44100

�
; (2.11a)

F ðtailÞ2ðUÞ¼4G3M2

5c11

�Z þ1

0
d�Ið5Þij ðU��Þ

�
�
log

�
c�

2r0

�
þ11

12

��
2
: (2.11b)

Here one should note that the general formulae for energy
flux include some contributions from current-type mo-
ments as well (see [25,26]) but these vanish for the head-
on case. Further, it should be noted that Eqs. (2.3) and (2.4)
and thus Eqs. (2.10) and (2.11) show an intermediate de-
pendence on the arbitrary length scale r0 which should
eventually cancel from all physical quantities. Such a can-
cellation of the scale r0 from all physical quantities occurs
naturally in the MPM formalism and has been explicitly
shown for sources such as binary systems moving in circu-
lar [20] and elliptical orbits [26,27]. This is facilitated
because an explicit computation of the hereditary integrals
is possible since the integral over the complete past in the
adiabatic approximation reduces to an integral over the
current (noninspiralling) orbit which can then be computed
making explicit use of the periodicity features in the mo-
tion. For a head-on situation, on the other hand, the absence
of periodicity prevents the straightforward extension of the
above method. Amore first-principle treatment is called for
based on the observation that since most of the r0 depen-
dence comes from our definition [Eq. (2.6)] of a radiative
coordinate system, it can be tracked and isolated by insert-
ing U as given by Eq. (2.6) back in Eqs. (2.3) and (2.4).
Upon doing so we get expressions for radiative moments in
harmonic coordinates ðt; rÞ, which read
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In the 1.5PN term, the r0 dependence is more trivial and
disappears with the change from radiative to harmonic
coordinates. At 3PN order, however, there still remains a
nontrivial r0 dependent term. However, the quadrupole
mass moment Iij also depends on the constant r0 at 3PN
order [see Eq. (4.2)] and when one takes those dependences
into account we will check that the 3PN radiative moment
Uij is indeed independent of r0. Using the expressions for
radiative moments given by Eqs. (2.12) and (2.13) we can

rewrite explicitly the different hereditary contributions
given by Eqs. (2.9), (2.10), and (2.11). One finds the
quadratic-order (proportional to G2) tails are given by

F tailðuÞ¼4G2M
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and the cubic-order tails (proportional to G3) by
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F tailðtailÞðuÞ ¼ 4G3M2
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We shall come back to the discussion of the hereditary
terms in detail in Sec. VI where we shall compute their
contributions to far-zone energy flux.

III. THE EQUATIONS OF MOTION AND
THE CONSERVED ENERGY FOR

HEAD-ON COLLISION

A. Standard harmonic coordinate system

By standard harmonic coordinates we refer to the coor-
dinate system that has been used in previous works [18,28].
Since the head-on collision problem has only one direction
of motion one can write relevant equations for the head-on
case by imposing the restrictions

x ¼ zn̂; v ¼ _z n̂; r ¼ z; v ¼ _r ¼ _z; (3.1)

on the corresponding expression for general orbits in terms
of z and _z, where z is the separation between the two
objects at a given time and _z is the first time derivative of
z, giving (coordinate) speed with which they are moving
with respect to each other at that instant.

The computation of the energy flux involves time de-
rivatives of source multipole moments which in turn will
require the knowledge of equations of motion at appropri-
ate PN order. Computing the 3PN accurate energy flux
requires the 3PN accurate equations of motion [28]. 3PN
accurate equations of motion in the CM frame associated
with standard harmonic coordinate system, for compact
objects moving in generic orbits, are given in [25,28].

Since we will discuss the results in other coordinate
systems like the modified harmonic coordinates and the
ADM coordinates in the subsequent sections, we will
provide for a more general discussion of the 2.5PN terms

along the lines of [29] based on [30,31] (see also [32]). In
addition to the contact transformation involving ‘‘conser-
vative’’ orders up to 3PN required to go from the standard
harmonic coordinates to the modified harmonic and ADM
coordinates (involving even order 2PN and 3PN terms)
there still remains the possible change of gauge in the
radiation reaction (dissipative) terms at order 2.5PN.
Recall, that in the SH coordinate system the lowest-order
dissipative part of the equations of motion, i.e. the 2.5PN
acceleration term, is given by (with boldface letters indi-
cating ordinary three-dimensional vectors)
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One may however prefer to employ alternative radiation
gauges and a convenient characterization at 2.5PN order
has been investigated earlier in [30,31]. Following this
work, the most general form of the 2.5PN term in the
relative acceleration is specified by the two-parameter
family written as
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The general 2.5PN gauge is parametrized by the two
numerical constants � and �. The SH (and modified
harmonic) gauge in which the acceleration is given by
(3.2) corresponds to the choice � ¼ �1 and � ¼ 0; the
ADM gauge corresponds to � ¼ 5=3 and � ¼ 3, in which
case the 2.5PN acceleration becomes [33]
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By imposing the restrictions given by Eq. (3.1) we can
write the equations of motion (or acceleration) in terms of
the variables z and _z for head-on situation as ai ¼ ani,
where
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���
þOð7Þ: (3.5)

HEAD-ON INFALL OF TWO COMPACT OBJECTS: THIRD . . . PHYSICAL REVIEW D 82, 104005 (2010)

104005-5



The general expression for center of mass energy E associated with standard harmonic coordinate system is given in [28]
and the corresponding expression for head-on situation can be obtained by imposing restrictions given by Eq. (3.1). Thus,
we have

ESHðz; _zÞ
�

¼�Gm

z
þ _z2

2
þ 1
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�
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�

��
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�
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�
35
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64
�2 � 2261
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�
þGm

z
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�
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16
� 15�þ 25

4
�2 þ 35�3

�

þG2m2

z2
_z4
�
147

16
� 569

48
�� 245

16
�2 � 21�3

�
þG3m3

z3
_z2
�
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4
þ

�
�9719

420
� 41

32
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3
log

�
z
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þ
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��
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��
þOð8Þ: (3.6)

To study the head-on infall we consider two different
situations, following [16]. In the first case (we will call it
case I) we assume that the radial infall proceeds from rest
at a finite initial separation whereas in the second case
(case II), we assume the objects start falling towards each
other from rest at infinite separation.

1. Case I: Infall from a finite distance

Let us suppose the two objects initially separated by the
distance zi start falling radially towards each other from the

rest, i.e. _zðziÞ ¼ 0. Hence, the center-of-mass energy E in
standard harmonic coordinates at zi will be

ESHðzi; 0Þ ¼ ��c2�i

�
1� 1

2
�i þ

�
1

2
þ 15

4
�

�
�2
i

þ
�
� 3

8
þ

�
� 18 469

840
þ 22

3
log

�
zi
z00

��
�

�
�3
i

�
; (3.7)

where �i ¼ Gm=zic
2. Equating, Eqs. (3.6) and (3.7), the

resultant expression can be inverted for _z.

_zðz; ziÞ ¼ � ffiffiffi
2

p
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ffiffiffiffi
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�
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�
z

z00

��
�� 945

64
�2 þ 237
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�3 þ s

�
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log
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�
þ s3

�
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4
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�
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3360
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3
log

�
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��
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64
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128
�3

��
�3

�
; (3.8)

where � ¼ Gm=zc2 is the PN parameter and s ¼
z=zi < 1.

2. Case II: Infall from infinity

We can view case II as a limiting case of case I and the
expression for _z can be obtained by inserting s ¼ z=zi back
in Eq. (3.8) and taking the limit when zi ! 1. For _z in SH
coordinates, we have

_zðzÞ¼� ffiffiffi
2

p
c

ffiffiffiffi
�

p �
1þ

�
�5

2
þ5

4
�
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þ41

32
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�
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�
: (3.9)
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As expected, for � ¼ 0 the above relation is consistent
with the radial geodesics of Schwarzschild in standard
harmonic coordinates [16].

B. Modified harmonic coordinate system

The SH coordinates are useful for analytical algebraic
checks but also contain some gauge-dependent logarithms
which are less suitable for numerical computations. It has
been shown in [25] that such dependences can be trans-
formed away by using suitable gauge transformations. The
expression for the shift ‘‘�ðSH!MHÞE’’ for general orbit case
has been given by Eq. (4.12) of [25], and we have used
Eq. (3.1) to obtain the corresponding expression for head-
on situation. We can write the center-of-mass energy in
MH coordinates using the relation

EMH ¼ ESH þ �ðSH!MHÞE; (3.10)

where ESH represents the energy E in SH coordinates and
is given by Eq. (3.6). ‘‘�ðMH!SHÞE’’ for head-on case reads

�ðSH!MHÞE ¼ 22

3

G3m4�2

c6z3

��
Gm

z
� 2 _z2

�

� log

�
z

z00

�
þ _z2

�
þOð8Þ: (3.11)

1. Case I: Infall from a finite distance

It is evident from the above that using Eqs. (3.6) and
(3.11) in Eq. (3.10) we can write the expression for
conserved energy E in MH coordinates. At the initial
separation zi energy in MH coordinates reads

EMHðz ¼ ziÞ ¼ ��c2�i

�
1� 1

2
�i þ

�
1

2
þ 15

4
�

�
�2
i

þ
�
� 3

8
� 18 469

840
�

�
�3
i

�
: (3.12)

By equating Eq. (3.12) and the expression for center-of-
mass energy in MH coordinates and then inverting the
resultant expression, one can obtain the expression for _z
in MH coordinates. For brevity in presentation, in what
follows, we will list only the differences in various expres-
sions in a particular coordinate system from their SH
values. By adding the difference to the SH expression the
corresponding expression in the relevant coordinate can be
computed. In particular in this case, for _z we have

_zMH ¼ _zSH þ �ðSH!MHÞ _z; (3.13)

where

�ðSH!MHÞ _z¼� ffiffiffi
2

p
c

�7=2ffiffiffiffiffiffiffiffiffiffiffi
1� s

p
��

�22

3
þ11log

�
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z00

��
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þ s

�
22

3
�44

3
log

�
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�þ s4

�
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3
log

�
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z00

��
�

�
:

(3.14)

Though to avoid heavy notation we write z and _z, beware
that in this subsection they correspond to zMH and _zMH,
respectively and in the next subsection to zADM and _zADM,
respectively.

2. Case II: Infall from infinity

Once again, by inserting s ¼ z=zi back in Eq. (3.14) and
taking the limit when zi ! 1, we obtain the expression for
‘‘�ðSH!MHÞ _z’’ as

�ðSH!MHÞ _z ¼ � ffiffiffi
2

p
c�7=2

�
� 22

3
þ 11 log

�
z

z00

��
�: (3.15)

C. ADM coordinate system

Finally, in this section we provide the expressions for the
conserved energy in ADM coordinates. Like MH coordi-
nate systems the ADM coordinate system is also free from
logarithms appearing in 3PN expressions of EOM or
source multipole moments when standard harmonic coor-
dinate system is used. We can write the center-of-mass
energy in ADM coordinates using the relation

EADM ¼ ESH þ �ðSH!ADMÞE; (3.16)

where ESH is given by Eq. (3.6) and for ‘‘�ðSH!ADMÞE’’ in
head-on situation (see Appendix for its computation) we
have

�ðSH!ADMÞE¼G2m3�
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��
: (3.17)

1. Case I: Infall from a finite distance

EADMðz ¼ ziÞ ¼ ��c2�i

�
1� 1

2
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�
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4
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�
�2
i
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�
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�
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�
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�
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i

�
:

(3.18)

For _z in ADM coordinate we have

_z ADM ¼ _zSH þ �ðSH!ADMÞ _z; (3.19)

where
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�ðSH!ADMÞ _z ¼ � ffiffiffi
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log
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��
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�
: (3.20)

2. Case II: Infall from infinity

The expression for ‘‘�ðSH!ADMÞ _z’’ can be written by

inserting s ¼ z=zi back in Eq. (3.20) and taking the limit
when zi ! 1 as

�ðSH!ADMÞ _z ¼
ffiffiffi
2

p
c

ffiffiffiffi
�

p ��
1

8
� �

4

�
�2 þ

��
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16
þ
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� 101 959
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�2 þ 11 log
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��
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16
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��
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�
:

(3.21)

D. Inputs for the computation of the hereditary part

It is evident from Eqs. (2.14) and (2.15) that all integrals
need to be evaluated with just Newtonian order accuracy
except the one in the first term of Eq. (2.14) which needs to
be computed with 1PN accuracy and hence in this section
we provide 1PN accurate inputs which will be required for
the computation of hereditary part of the energy flux. Since
at 1PN order the expressions for all desired inputs [e.g.
source moments, trajectory of the problem and relation
connecting ADM mass to total mass (m ¼ m1 þm2)] are
the same in all the three coordinate systems we need not
give these inputs in different coordinate systems.

1. Case I: Infall from a finite distance

Equation (3.8) gives the expression for _z which in the
1PN limit can be expressed as

_z ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2Gm

z

s ffiffiffiffiffiffiffiffiffiffiffiffi
1� s

p �
1þGm

c2z

�
� 5

2
þ 5

4
�þ s

�
1

2
� 9

4
�

���
:

(3.22)

Solving Eq. (3.22) we get the 1PN trajectory as

t¼ z3=2iffiffiffiffiffiffiffiffiffiffiffi
2Gm

p
�
gðsÞ�1

2

Gm

c2zi
h0ðsÞ��

1

2

Gm

c2zi
h1ðsÞ

�
; (3.23)

where gðsÞ, h0ðsÞ and h1ðsÞ are the following simple linear

combinations of the elementary functions f1ðsÞ ¼ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� s

p
and f2ðsÞ ¼ arcsin

ffiffiffi
s

p
,

gðsÞ ¼ f1ðsÞ � f2ðsÞ; (3.24a)

h0ðsÞ ¼ f1ðsÞ þ 9f2ðsÞ; (3.24b)

h1ðsÞ ¼ �1
2ð9f1ðsÞ þ f2ðsÞÞ: (3.24c)

2. Case II: Infall from infinity

In the 1PN limit Eq. (3.9) gives

_z ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2Gm

z

s �
1� 5

2

Gm

c2z

�
1� �

2

��
: (3.25)

By integrating Eq. (3.25), we get the 1PN trajectory of the
problem which reads

t ¼ �
ffiffiffi
2

p
z3=2

3
ffiffiffiffi
G

p ffiffiffiffi
m

p
�
1þ 15

2

Gm

c2z

�
1� �

2

��
: (3.26)

IV. THE MULTIPOLE MOMENTS OF
COMPACT BINARY SYSTEMS

In this section we shall provide the expressions for
source multipole moments with an accuracy sufficient for
the computation of the 3PN accurate energy flux in stan-
dard harmonic coordinates. General expressions for these
moments have been given in [25] for inspiralling compact
objects moving in generic orbits in standard harmonic
coordinates. Since the head-on collision problem has
only one direction of motion one can write the expressions
for source moments for head-on case by imposing the
restrictions, Eq. (3.1) on the corresponding expression for
general orbits in terms of z and _z. Further, as discussed in
[29], the 2.5PN term for general orbits in SH coordinates
(see Eq. (3.1) of [25]) is modified by

�	Iij ¼ � 16

15

G2m3�2

c5

� ½�� _rnhinji þ ð3þ 3�� 2�Þnhivji�; (4.1)

which for the head-on case reduces to � 16
5

G2m3�2

c5
_zð1þ

�� �Þnhinji. Thus, the 3PN mass quadrupole Iij for head-

on case reads as
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Iij ¼ mz2�
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���
nhinji þOð7Þ: (4.2)

Note that the quantity z0 appearing in above expression is,
in our present head-on notation, the constant length scale
r0 appearing in Eq. (2.6) and in the relations connecting
radiative multipole moments and source multipole mo-
ments. The presence of the other constant z00 through
some logarithms logðz=z00Þ at 3PN order is due to the use
of standard harmonic coordinates and corresponds to r00 in
the earlier papers. Later in this paper we shall show that
alternatively one can use other coordinate systems such as
the MH or ADM coordinate system which do not involve
such logarithms. The 2PN mass octupole Iijk for head-on
case is given by

Iijk ¼ �mz3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�
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���
� nhinjnki þOð5Þ: (4.3)

The 1PN mass moment, Iijkl reads as

Iijkl ¼ mz4�

�
1� 3�þ 1

c2

�
_z2
�
23

22
� 159

22
�þ 291

22
�2

�

þGm

z

�
� 10

11
þ 61

11
�� 105

11
�2

���
nhinjnknli þOð4Þ:

(4.4)

The moment, Iijklm which will be needed with Newtonian
accuracy is

Iijklm ¼ �mz5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p ð1� 2�Þ�nhinjnknlnmi þOð2Þ:
(4.5)

Finally, we give the monopole moment W, which is

W ¼ 1
3�mz _zþOð2Þ: (4.6)

V. INSTANTANEOUS CONTRIBUTIONS IN THE
ENERGY FLUX FOR HEAD-ON INFALL

A. The 3PN instantaneous energy flux in
standard harmonic coordinates

Having source multipole moments given by Eqs. (4.2),
(4.3), (4.4), (4.5), and (4.6) and equations of motion given
by Eq. (3.5) with the desired PN accuracies one can com-
pute the required time derivatives of source moments to get
instantaneous contribution to the far-zone GW energy flux
using Eq. (2.8). Since the instantaneous contribution to
3PN far-zone energy flux for compact binaries moving in
general orbits has already been listed in [25] in terms of SH
variables r, _r and v, we can also directly write down the
corresponding expression for instantaneous energy flux in
terms of the variables z and _z for the head-on situation
using Eq. (3.1). The form of the 2.5PN terms in the flux for
a general 2.5PN gauge is discussed in [29] [see Eq. (3.14a)
there], and we adapt it for the head-on case. We write the
result as

F inst ¼ F N
inst þF 1PN

inst þF 2PN
inst þF 2:5PN

inst þF 3PN
inst þOð7Þ;

(5.1)

and find that the various PN pieces for the head-on case are
given by
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F N
inst ¼
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_z2; (5.2a)
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log
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99
�2 � 3464
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�3

��
: (5.2e)

The dependence of the result (5.1) and (5.2) on z00 is

due to our use of the SH coordinate system. We will
transform away this dependence by making use of a
different coordinate system such as MH coordinate sys-
tem. The presence of constant z0 is not surprising as it
was present in the expression of the mass quadrupole
moment and hence appears in the final expression for
the instantaneous part of the 3PN energy flux. This de-
pendence of the instantaneous terms on the constant z0
should exactly cancel a similar contribution coming from
the tail terms. We explicitly show this cancellation in the
next section.

The general expression for the energy flux above for the
head-on case takes a simpler form for radial infall from
rest. In this case the velocity _z can be expressed solely in
terms of the coordinate z and the initial coordinate sepa-
ration where it is at rest as shown in Sec. III. However,
since we are working up to 3PN there is one last element
to be taken into account before we can proceed. This
relates to the infall velocity due to leading gravitational
radiation reaction that induces a _zRR at 2.5PN, i.e. _z2:5PN.
To evaluate this we can adapt the treatment in [34] to the
head-on case. It requires only the leading term in E and
the GW energy flux F and the infall due to radiation
reaction for the finite separation case is given by

_z RR¼ dE=dt

dE=dz
¼� F

dE=dz
¼�16

15

G3m3

c5z3
�ð1�sÞ: (5.3)

Adding _zRR to the _z given by Eq. (3.8) yields the complete
3PN accurate _z that will be employed in the next sub-
section to rewrite the energy flux solely in terms of the
variable z. It should be obvious that the form of _zRR is the
same in all the three coordinate systems that we use in this
paper.
We now have all basic ingredients for the computation of

the 3PN GW energy flux from compact objects with arbi-
trary mass ratios falling radially towards each other and
can proceed to compute the instantaneous part of the
energy flux for the head-on infall case.

1. Case I: Infall from a finite distance

Starting from the 3PN instantaneous contribution to
energy flux in SH coordinates [Eqs. (5.1) and (5.2)] in
terms of variables z and _z and substituting the expression
for _z given by Eq. (3.8) supplemented by _zRR given by
Eq. (5.3) we get the final expression for energy flux in
terms of just one variable z. The final expression for the
instantaneous part of energy flux in standard harmonic
coordinate reads as
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: (5.4)

The standard harmonic gauge at 2.5PN corresponds to � ¼ �1 and � ¼ 0.

2. Case II: Infall from infinity

As discussed in the previous section, we can see case II as a special case of case I and the expression dE=dt can be
obtained by inserting s ¼ z=zi in Eq. (5.4) and taking the limit when zi ! 1. The instantaneous part of energy flux in SH
coordinates reads

�
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2079
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�
:

(5.5)

The standard harmonic gauge at 2.5PN corresponds to
� ¼ �1 and � ¼ 0.

B. The 3PN instantaneous energy flux in
modified harmonic coordinates

As we have pointed out in Sec. III B that one needs to use
an alternative coordinate system such as MH coordinate
system, which is more suitable for numerical computa-
tions. In this section we provide the 3PN energy flux
expressions in MH coordinates. We can write the energy
flux F in the MH coordinates by using the relation

F MH ¼ F SH þ �ðSH!MHÞF ; (5.6)

where F SH is the energy flux in SH coordinates for head-
on situation given by Eqs. (5.1) and (5.2). The general
expression for the shift ‘‘�ðSH!MHÞF ’’ is given by

Eq. (6.8) of [25], which in the head-on situation reduces
to the following form when we use the restrictions given by
Eq. (3.1),

�ðSH!MHÞF ¼ � 1408

15

G6m7�3

c11z7

�
�
1

3
_z2 log

�
z

z00

�
� _z2

12
þOð2Þ

�
: (5.7)

Once we have expressions for the energy flux F in MH
coordinates, we can compute the final expression for in-
stantaneous part of energy flux in MH coordinates follow-
ing the procedure adopted in Sec. VA.

1. Case I: Infall from a finite distance

Substituting for _z in MH coordinates, in the expression
for energy flux in MH coordinates, one can obtain the
expression for the instantaneous part of far-zone radiative
energy flux in MH coordinates as a function of the sepa-
ration between the two objects at some instant. Rather than
writing the full expression for energy flux in MH coordi-
nates we list here the difference to be added to the
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expression in SH coordinates [Eq. (5.4)] to obtain the
corresponding expression in MH coordinates. We have

�ðSH!MHÞðdE=dtÞinst
¼ 16
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���
: (5.8)

2. Case II: Infall from infinity

By inserting s ¼ z=zi back in the Eq. (5.8) and taking the
limit when zi ! 1, the expression for ‘‘�ðSH!MHÞdE=dt’’
takes the form

�ðSH!MHÞðdE=dtÞinst ¼ 16

15

c5

G
�2�8

��
� 110

3
� log

�
z

z00

��
:

(5.9)

C. The 3PN instantaneous energy flux
in ADM coordinates

In this section we provide the expressions for instanta-
neous part of the energy flux in ADM coordinates which
could be useful for the comparison with the numerical
relativity results. One can write the energy flux F in the
ADM coordinates as

F ADM ¼ F SH þ �ðSH!ADMÞF ; (5.10)

where F SH is given by Eqs. (5.1) and (5.2) and the shift
‘‘�ðSH!ADMÞF ’’ for the head-on situation is

�ðSH!ADMÞF ¼ �G4m5�2
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: (5.11)

We have made use of Eq. (3.1) to get Eq. (5.11) from the general expression for ‘‘�ðSH!ADMÞF ’’, given by Eq. (6.11)
of [25].

1. Case I: Infall from a finite distance

Substituting for _z in ADM coordinates in the expression for energy flux in ADM coordinates, we obtain the
expression for the difference ‘‘�ðSH!ADMÞdE=dt,’’ which should be added to Eq. (5.4) to obtain the instantaneous part

of the energy flux in ADM coordinates. It reads as
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(5.12)

2. Case II: Infall from infinity

Inserting s ¼ z=zi back in Eq. (5.12) and taking the limit when zi ! 1 we obtain the expression for
‘‘�ðSH!ADMÞðdE=dtÞ’’ as

�ðSH!ADMÞðdE=dtÞinst ¼ 16
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: (5.13)
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VI. HEREDITARY CONTRIBUTIONS IN THE
FLUX FOR HEAD-ON COLLISION

In this section we shall compute the hereditary contri-
butions to the GW energy flux at 3PN order given by the
Eqs. (2.9), (2.14), and (2.15). The first hereditary contribu-
tion to the energy flux occurs at 1.5PN order and is due to
GW tails caused by the interaction between mass quadru-
pole moment and the ADM mass of the source causing
the spacetime curvature. This contribution is given by the
first term in Eq. (2.14) where as the second term represents
the subdominant tail at 2.5PN order caused due to interac-
tion of a higher order multipole moment with the ADM
mass of the source. Two cubic order tail terms, given by
Eq. (2.15), known as tails-of-tails and tail-squared occur at
3PN order and are caused due to the interaction of tails
with ADM mass of the source and interaction of tails
among themselves.

It should be evident from Eqs. (2.14) and (2.15) that the
computation of all terms would require only Newtonian
order inputs except the mass-type quadrupolar tail
term—first term in Eq. (2.14) —which would include
1PN corrections. Note that the second term appearing in
Eq. (2.14) and needed to be evaluated with Newtonian
accuracy, does not contribute to the energy flux for the
head-on situation. The reason is that this term involves
4th and 6th derivatives of octupole moment [see Eq. (4.3)
for the expression] but one can check that, at the leading
order third and higher order derivatives of octupole mo-

ment vanish, i.e. IðnÞijk ¼ 0 for n > 2, and hence second

integral would not contribute. With this we have just the
first term left in Eq. (2.14) which gives a hereditary
contribution to GW energy flux at 2.5PN order.
Computation of this term will require the knowledge of
1PN accurate expression for the quadrupole mass moment
and 1PN accurate trajectory of the system. In addition to
this the 1PN accurate expression for ADM mass would
also be needed for the computations of tails at 2.5PN
order. We have provided the 1PN trajectory in Sec. III D
which will be used in computing the hereditary con
tributions. As for the instantaneous part we will compute
the hereditary contributions as well for two different
situations, case I—infall from a finite distance and
case II—infall from infinity.

It is important to note that, at 3PN order unlike the
instantaneous part of the flux, the hereditary part is the
same in all the three coordinate systems—SH, MH, and
ADM since it involves the inputs which are at most re-
quired at 1PN order and are same in all three coordinate
systems.

In addition to the inputs listed in Sec III D we also need
1PN accurate expressions for mass quadrupole moment
and for ADMmass. The mass quadrupole moment in terms
of the variables z and _z is given by Eq. (4.2). In the 1PN
limit it reads

Iij ¼ �mz2
�
1þ 1

c2

�
_z2
�
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14
� 27

14
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�

þGm
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� 5
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���
nhinji: (6.1)

The relation between the ADM mass M and total mass
m ¼ m1 þm2 is given by

M ¼ m

�
1þ �

c2

�
_z2

2
�Gm

z

��
; (6.2)

where _z is given by Eq. (3.8) and is needed to be just
Newtonian accurate.

A. Case I: Infall from a finite distance

In this case the 1PN accurate expression for quadrupole
moment takes the form

Iij ¼ mz2�

�
1þGm

c2z

�
4

7
� 19

7
�þ s

�
� 9

7
þ 27

7
�

���
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(6.3)

The relation between ADM mass and total mass at 1PN
order is given as

M ¼ m

�
1�Gm�

c2zi

�
: (6.4)

From the above expression the ADM mass M is indepen-
dent of z which is consistent with the constancy of M and
the recognition of the expression of the initial Newtonian
energy �Gm�=zi. Hereditary terms will involve two inte-
grals, which are given as

Itail ¼
Z u
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; (6.5a)
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After evaluating the integrals we get
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where Int1ðsÞ, Int20ðsÞ, Int21ðsÞ, Int30ðsÞ, Int31ðsÞ, Int40ðsÞ, and Int41ðsÞ appearing in Eq. (6.6a) are given by
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and Int5ðsÞ and Int6ðsÞ appearing in Eq. (6.6b) are given by
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With Eq. (6.6) we can write the various pieces of the hereditary contributions to GW energy flux given by
Eq. (2.9) as
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Combining Eqs. (2.9), (6.9), (6.10), and (6.11) now we can write the hereditary contribution at 3PN order involving
contribution from tails, tail-of-tail, and tail squared terms as
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As we can see the above equation still has some depen-
dence on the arbitrary scale z0 at 3PN order. Recall, the
presence of a logarithmic dependence on z0 in the instan-
taneous contribution to energy flux at 3PN order. The term

appearing in the hereditary contribution exactly cancels
with similar terms present in instantaneous flux expression
for energy flux and thus the total flux becomes independent
of the arbitrary length scale z0 as expected.
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B. Case II: Infall from infinity

The 1PN accurate expression for quadrupole moment
reads

Iij ¼ mz2�

�
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�
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7
� 19

7
�

��
nhinji: (6.13)

It is evident from Eq. (3.25), the relation connecting ADM
mass M and total mass m [Eq. (6.2)] reduces to

M ¼ m: (6.14)

This is consistent with the earlier comment and corre-
sponds to energy vanishing initially. In order to compute
the hereditary contribution first we need to evaluate the two
integrals appearing in Eqs. (2.14) and (2.15). The integral
associated with the first term of Eq. (2.14) is
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and the integral appearing in the first term of Eq. (2.15) is
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Having all the relevant inputs at the required PN order the
value of these integrals read
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where the quantity c ð1Þð113 Þ appearing in Eq. (6.17b) is a

PolyGamma function whose numerical value is 0.313 25.
(Of course, formally they correspond to s ! 0 case of the
previous section.)

Using Eq. (6.17) in Eqs. (2.14) and (2.15) we write
various pieces of hereditary contribution given by
Eq. (2.9) as
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As mentioned earlier the 2PN accurate energy flux has
been given in [16] which involves the hereditary contribu-
tion to the energy flux at 1.5PN order. On comparing our
results [1.5PN term in Eq. (6.18) above with coefficient
�5] and [Eq. (2.31) of [16] with coefficient �15] for the
contribution due to dominant tail we find a mismatch. This
apparent discrepancy is a gauge-artifact arising from the
difference in our choice of u ¼ t� r=c in contrast to the
choice in SPW [16] uSPW ¼ t� r=c� ð2GM=c3Þ�
logðc2r=GmÞ. We have checked that once we adopt the
SPW definition of retarded time in harmonic coordinates
uSPW, our result also leads to the coefficient�15 as in [16].
This difference serves to remind us that the representation
of the energy flux in terms of � is not gauge invariant.
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Now we can write the total hereditary contribution up to
3PN order to energy flux as
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The presence of the arbitrary scale z0 in the above expres-
sion is similar to the one already noted in Eq. (6.12) and
will disappear from the final expression for energy flux.

VII. THE COMPLETE 3PN ENERGY FLUX
FOR HEAD-ON SITUATION

A. Case I: Infall from finite a distance

Having computed both the instantaneous and the heredi-
tary contributions to the energy flux at 3PN order for head-

on situation we are now ready to write the complete 3PN
far-zone energy flux due to head-on infall of two compact
objects with arbitrary mass ratios. Since the ADM coor-
dinates are independent of gauge-dependent logarithms
they may be better suited for comparison with numerical
relativity results, and we exhibit the complete 3PN accu-
rate energy flux expression in these coordinates obtained
by adding the hereditary part [Eq. (6.12)] and instanta-
neous part [Eq. (5.12)] of the energy flux. The final result is
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We can see the final expression for the energy flux
[Eq. (7.1)] is independent of the arbitrary length scale z0.
Similarly by using Eqs. (6.12) and (5.4) [(5.8)], one can
find the complete 3PN expression for the energy flux in the
SH [MH] coordinates. Given the total energy flux as a
function of the separation between the two objects at any
instant the total energy radiated during the infall can be
computed as

�E ¼ �
Z zi

zf

�
dE
dt

�
dz

_z
; (7.2)

where zi and zf are the initial and final separation between
the two objects under head-on infall. Inserting s ¼ z=zi
and � ¼ Gm=c2z back in Eq. (7.1) and then using it along
with _z in ADM coordinates in Eq. (7.2) one can compute
the total energy radiated during the radial infall of the two
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objects from a initial separation zi to a final separation zf.
Since Eq. (7.1) involves some integrals which can only be
evaluated numerically, we use the NIntegrate option inbuilt
in MATHEMATICA to compute the total radiated energy
during the process of infall. On the other hand for the
case of infall from infinity, since we have computed the
energy flux as a function of the separation between the two
objects in closed form we shall provide 3PN expression
for the total energy radiated during the radial infall from
zi ¼ 1 to the final separation zf in Sec. VII B, however we

wish to plot the curves corresponding to the limit zi ¼ 1
with those corresponding to the case of infall from a finite
distance for comparing the results.

B. Case (II): Infall from infinity

For this case the complete 3PN expression for energy flux
in ADM coordinates can be obtained by adding hereditary
part [Eq. (6.21)] and instantaneous part [Eq. (5.13)] of
energy flux and we have
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We can now see the final expression for the energy flux
[Eq. (7.3)] is independent of the arbitrary length scale z0.
Similarly by employing Eq. (6.21) with Eqs. (5.5) and (5.9)
one finds the complete 3PN expression for energy flux in
SH and MH coordinates, respectively.

Given total energy flux as a function of the separation
between the two objects at any instant the total energy
radiated during the infall can be computed as

�E ¼ �
Z þ1

zf

�
dE
dt

�
dz

_z
: (7.4)

Using the expression for energy flux in ADM coordinates
given by Eq. (7.3) and _z in ADM coordinates given by
Eq. (3.21) in the above we get the 3PN expression for total
energy radiated due to head-on infall of two compact
objects from infinity to a final separation of zf as
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where �f ¼ Gm=c2zf.

VIII. DISCUSSIONS AND CONCLUSION

Having listed the complete 3PN expressions for the GW
energy flux [Eqs. (7.1) and (7.3)] in ADM coordinates, in
this final section we examine its general behavior as a
function of the separation between the two objects
under the radial infall. Figure 1 shows the variation of
the energy flux, in units of �2 scaled by a factor c5=G ¼
3:63� 1052 joules-sec�1, as a function of the parameter �
in ADM coordinates (recall � ¼ Gm=c2z where z is the

instantaneous separation between the two compact objects
falling radially towards each other). Each panel in Fig. 1
shows a comparison between the energy flux emitted as a
function of the parameter � for different initial separations
including the limiting case of infinite initial separation
as well. In each panel curves corresponding to different
initial separations (characterized by the parameter �i ¼
Gm=c2zi) have been plotted for �i ¼ 0:05, 0.02, 0.01, and
0.0 and correspond to the situation when the initial sepa-
ration zi between the two objects is 20Gm=c2, 50Gm=c2,
100Gm=c2 and 1 respectively. Curves in the top panels
correspond to � ¼ 0 (test-body limit) while those in the
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bottom panels correspond to � ¼ 0:25 (equal-mass case).
It is obvious from the figure that the curves in each panel
approach each other with increasing � i.e. when the sepa-
ration between the two objects decreases. This feature can
be understood by recalling that since s ¼ z=zi ¼ �i=�, for
a fixed zi, the finite-separation corrections in powers of s
become progressively less important as the bodies ap-
proach each other (small z). The finite-separation effects,
important when the objects are far apart, are less significant
at closer separation and the curves for the energy flux
approach each other.

Figure 1 also compares the results that would be ob-
tained using the 2PN, 2.5PN, and 3PN accurate expression
for the energy flux and thus illustrates the improvements
arising from a more accurate expression for the energy
flux. It is clear from Fig. 1 that the energy flux emitted at
any instant monotonically increases as the separation be-
tween the objects under the infall decreases (with increas-
ing �) as generally expected. However from Fig. 1 we see
that after a certain maximum value of the parameter � in
the 2PN and 2.5PN cases the curves show a turnover and

start to decrease. This is an indication of the fact that the
PN approximation is no longer valid beyond this value of
�. It should be noted that the value of � where this happens
depends upon the choice of the initial separation between
the two objects, the PN accuracy of the expression for the
energy flux and the symmetric mass ratio of the binary.
Finally, Fig. 2 shows the total energy radiated [as dis-

cussed in the previous section for the finite initial separa-
tion case it has to be computed numerically using Eq. (7.2)
but for the infinite initial separation case it is given by
Eq. (7.4)] during a radial infall from initial separation zi
(characterized by the parameter �i ¼ Gm=c2zi) to a final
separation zf (characterized by the parameter �f ¼
Gm=c2z). Similar to Fig. 1 in Fig. 2 we study the effect
of using different PN-accurate expressions for energy flux
and also the effect of assuming different initial separations
in the problem. It is evident from each panel of the Fig. 2
that as �f (zf) increases (decreases) all curves approach

each other which implies that most of the contribution
comes from the late stages of the infall. It is evident from
the plots in Fig. 2 that only beyond a certain minimum
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FIG. 1 (color online). Energy flux in ADM coordinates, in units of �2 (where � is the symmetric mass ratio of the binary), as a
function of the parameter � ¼ Gm=c2z for the head-on situation, for four different initial separations characterized by the parameter
�i ¼ Gm=c2zi: �i ¼ 0:05, �i ¼ 0:02, �i ¼ 0:01 and �i ¼ 0:0 (infinite initial separation limit) which correspond to the situations
when the initial separation zi between the two objects is 20Gm=c2, 50Gm=c2, 100Gm=c2 and1, respectively. Curves in the top panels
correspond to the value of � ¼ 0 (test-body limit) while those in the bottom panels correspond to the value of � ¼ 0:25 (equal-mass
case). Left, middle, and right panels in both top and bottom panels correspond to the 2PN, 2.5PN, and 3PN accurate expressions for
energy flux. The values given on the y-axis have been scaled by the factor c5=G ¼ 3:63� 1052 joules-sec�1. The labels on the x-axis
and alternative x-axis corresponds to inverse of the parameter � (which is the separation between the objects under radial infall at any
instant in units of Gm=c2) and the values of the PN parameter �, respectively.
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separation between the two objects (under the infall) the
estimates of energy radiated using PN expressions are
valid. The 2PN, 2.5PN and 3PN estimates of the total
energy radiated during the radial infall (from infinity) of
two equal mass compact objects is of the order of 2:2�
10�5, 4:3� 10�5 and 7:4� 10�5 respectively. In the test
particle limit The corresponding 2PN, 2.5PN, and 3PN
accurate results for total energy radiated in the test particle
limit are of the order of 1:4� 10�5, 3:1� 10�5, and 8:5�
10�5 respectively. Unlike the 2PN and 2.5PN cases where
the breakdown of the PN approximation is explicit in the
turnover, the 3PN approximation does not show any sharp
turnover. As a consequence the value quoted for the maxi-
mum energy radiated in the 3PN case is a bit arbitrary and
corresponds to the value at the point where the 2.5PN
approximation breaks down. From the Fig. 2 one can infer
that the energy radiated in the process of head-on infall for
the finite separation cases (�i ¼ 0:05, 0.02, 0.01) is of the
same order as in infinite initial separation case (�i ¼ 0). It
is evident from the above discussion that the 3PN estimates
of the peak luminosities and the energy loss in form
gravitational radiation during the infall between the initial
(zi) and a final point (zf) will not only be more than the

estimates of the same using a less accurate expressions
(2PN and 2.5PN accurate) but also they are valid till later
stages of the infall and thus allows one to compare the

results obtained using numerical relativity within the range
in which PN approximations are valid.
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APPENDIX: CALCULATION OF �ðSH!ADMÞE

General expression for energy E in CM frame associated
with SH coordinate system is given in terms of the natural
variables; r, v and _r [28]. Noticing this functional depen-
dence and the fact that it is a scalar quantity we expect
that under a transformation (r0 ! rþ �r, v0 ! vþ �v,
_r0 ! _rþ � _r ) this would transform in CM frame as

E0 ¼ Eþ �E: (A1)

Or equivalently for transformations between SH and ADM
coordinate systems,

EADM ¼ ESH þ �ðSH!ADMÞE; (A2)

where
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FIG. 2 (color online). Similar to Fig. 1 but for total energy radiated in units of �2c2m, during the head-on infall of two compact
objects from a initial separation zi in ADM coordinates (related to the parameter �i) to a final separation of zf (corresponding

parameter �f ¼ Gm=c2zf).
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�ðSH!ADMÞE ¼ �r
@E

@r
þ �v

@E

@v
þ � _r

@E

@ _r
: (A3)

The shifts in the variables r, v and _r connecting ADM and
SH coordinates are given by Eq. (6.10) of [25] and the

expression for CM energy ESH for general orbits is given
by Eq. (4.8) of [28]. Having all inputs we now
can write the shift �ðADM!SHÞE for general orbits which

reads as
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It is easy to see that when restrictions given by Eq. (3.1) are imposed, the above expression reduces to the form given by
Eq. (3.17).
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