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Generating function formula of heat transfer in harmonic networks
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We consider heat transfer across an arbitrary classical harmonic network connected to two heat baths at
different temperatures. The network has N positional degrees of freedom, of which NL are connected to a
bath at temperature TL and NR are connected to a bath at temperature TR . We derive an exact formula for the
cumulant generating function for heat transfer between the two baths. The formula is valid even for NL �= NR

and satisfies the Gallavotti-Cohen fluctuation symmetry. Since harmonic crystals in three dimensions are known
to exhibit different regimes of transport such as ballistic, anomalous, and diffusive, our result implies validity of
the fluctuation theorem in all regimes. Our exact formula provides a powerful tool to study other properties of
nonequilibrium current fluctuations.
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I. INTRODUCTION

Nonequilibrium systems typically generate currents of mass
or energy. Understanding the general features of currents and
their fluctuations is one of the main goals in nonequilibrium
statistical physics. In this context the fluctuation theorem
(FT) is a remarkable discovery [1,2]. This has been theo-
retically [1–4] and experimentally demonstrated [5] in many
systems. These studies have pointed to the significance of
the large deviation function (LDF) of the current and the
related cumulant generating function (CGF) in understanding
nonequilibrium steady states. Some other interesting related
developments include the study of Bertini and co-workers
[6], who introduced a hydrodynamic fluctuation theory to
study large dynamic fluctuations in steady states, and that
of Bodineau and Derrida [7,8], who conjectured an additivity
principle for the LDF and CGF of current, from which one can
predict the quantitative behavior of higher-order correlations
of currents.

In the context of transport, most analytic results on LDFs
and FTs are on systems where the bulk dynamics is stochastic,
such as the simple exclusion process, zero range process,
Brownian motors, etc. [3,8,9]. It is of general interest to
consider and develop these arguments for systems with bulk
Hamiltonian dynamics. However, exact analysis here is gener-
ally difficult. For example, even the problem of demonstrating
Fourier’s law of heat conduction in a deterministic system has
proved to be difficult and has led to many surprises [10–12].
Heat conduction in harmonic lattices is one exception where
many nonequilibrium properties can be precisely discussed.
The average heat current, the main focus of work so far, is given
by a Landauer-like formula in terms of phonon transmission
coefficients [13]. Using the transport formula it was recently
demonstrated [14] numerically that disordered harmonic crys-
tals in two and three dimensions can exhibit different regimes
of transport such as ballistic, localized, anomalous, and
diffusive. Given that this simple deterministic model exhibits
various regimes of transport, it is of interest to study the
generic features of nonequilibrium current fluctuations in this
system.

In this paper, we derive the general formula of the CGF for
heat current in an arbitrary harmonic lattice connected to two
heat baths, which provides a basis to explore generic features
of current fluctuations. Consider heat transfer through a system
from a bath at temperature TL to a bath at temperature TR . Let
Q be the heat transferred from the left reservoir to the system
during measurement time τ . In general, the distribution of heat
P (Q) has an asymptotic form P (Q) ∼ eτh(q) at large τ where
h(q = Q/τ ) is the LDF. The CGF μ(λ) generates cumulants
of the heat transferred and is defined through the relation
〈eλQ〉 ∼ eτμ(λ). The LDF h(q) and the CGF μ(λ) are connected
through the Legendre transform μ(λ) = maxq[λq + h(q)].
Properties of heat current fluctuations are contained in h(q)
or equivalently in μ(λ), and various results such as the steady
state FT and the additivity principle conjecture can be stated
in the framework of either the LDF or the CGF. For heat
conduction, the steady-state FT of Gallavotti-Cohen (GC) [2]
implies the symmetry relation μ(λ) = μ(−λ − �β), where
�β = 1/TR − 1/TL, and is referred to as the GC symmetry.
There are examples where the symmetry of μ(λ) does not
imply the FT [15]. However, the CGF and its symmetry
property themselves provide important information on current
fluctuations. Among these, one of the most interesting conse-
quences of the symmetry relation is that it leads to the standard
linear response results such as Onsager reciprocity and Green-
Kubo relations [3,16] and in addition makes predictions of
responses in the far-from-equilibrium regime [17–19]. So
far, for Hamiltonian systems, the CGF has been analytically
obtained for one- and two-particle systems [20,21] and for
a one-dimensional quantum harmonic chain [22]. Here we
obtain a general formula for the CGF of a harmonic system
in terms of the transmission matrix of a phonon mode ω from
one reservoir to the other. Remarkably, the expression is robust
regardless of the complexity of the network and the number
of particles that are attached to reservoirs and always satisfies
the GC symmetry.

II. HARMONIC NETWORKS AND HEAT TRANSFER

We consider an arbitrary classical harmonic network with
N positional degrees of freedom labeled i = 1,2, . . . ,N of
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FIG. 1. (Color online) A schematic picture of the harmonic
network connected to reservoirs. Positional degrees of freedom is
labeled by i = 1, . . . ,N . The points at � = i ∈ L and r = i ∈ R are
attached to the left and right reservoirs.

which NL are connected to a bath at temperature TL and NR

are connected to a bath at temperature TR (see Fig. 1). As an
example, for a three-dimensional cubic crystal consisting of
N3

c atoms with vector displacements, and with two opposite
faces coupled to heat baths, we would have N = 3N3

c and
NL = NR = 3N2

c . We denote the positional degrees and
their corresponding velocities by the column vectors X =
(x1,x2, . . . ,xN )T and V = (v1,v2, . . . ,vN )T , respectively. We
consider the following general harmonic Hamiltonian for the
system:

H = 1

2
V T MV + 1

2
XT KX, (1)

where M = diag{m1,m2, . . . ,mN } denotes the mass matrix
and K the force matrix for the system. We model the heat
baths by white-noise Langevin equations with each variable
coupled to a bath having an independent Langevin dynamics.
Let L(R) refer to the set of NL(NR) points connected to the
left (right) bath. For discriminating these points from the
bulk points, we use indices � = i ∈ L and r = i ∈ R. We
define the N -component noise vectors η = η(L) + η(R) such
that η� = η

(L)
� and ηr = η(R)

r are nonzero. Also we define the
diagonal matrices γ = γ (L) + γ (R) such that γ �� = γ

(L)
�� ≡ γ�

and γ rr = γ (R)
rr ≡ γr are nonzero. The equations of motion for

the system are then given by

Ẋ = V,

MV̇ = −KX − γV + η

= −KX − γ (L)V + η(L) − γ (R)V + η(R). (2)

The noise terms are assumed to be Gaussian white noise
with zero mean and correlations given by 〈η�(t)η�′(t ′)〉 =
2γ�TL δ�,�′δ(t − t ′), 〈ηr (t)ηr ′(t ′)〉 = 2γrTR δr,r ′δ(t − t ′), and
〈η�(t)ηr (t ′)〉 = 0, where we have set the Boltzmann constant
to the value one. The initial state at t = 0 is chosen from the
steady-state distribution, and we measure the heat Q flowing

from the left reservoir into the system between the times t = 0
to t = τ . We thus have

Q =
∑

�

∫ τ

0
dtv�(−γ�v� + η�). (3)

A solution of the linear equations Eq. (2) can be obtained by
introducing the following discrete Fourier transforms and their
inverses:

{X(t),V (t),η(t)} =
∞∑

n=−∞
{X̃(ωn),Ṽ (ωn),η̃(ωn)}e−iωnt ,

{X̃(ωn),Ṽ (ωn),η̃(ωn)} = 1

τ

∫ τ

0
{X(t),V (t),η(t)}eiωnt ,

where ωn = 2πn/τ . Plugging these into Eq. (2), we get

Ṽ (ωn) = −iωnG+(ωn)[η̃(L)(ωn) + η̃(R)(ωn)]

+ 1

τ
G+(ωn)[K�X + iωn M�V ], (4)

G+(ωn) = [ − Mω2
n + K − �(L)(ωn) − �(R)(ωn)

]−1
, (5)

where �(L,R)(ω) = iωγ (L,R), �X = X(τ ) − X(0), and �V =
V (τ ) − V (0). The matrix G+ is the Green’s function con-
necting bulk variables with reservoir properties. The noise
correlations in the Fourier space are given by

〈η̃�(ωn)η̃�′(ωn′)〉 = 2δ�,�′δn,−n′γ�TL /τ,

〈η̃r (ωn)η̃r ′(ωn′)〉 = 2δr,r ′δn,−n′γrTR /τ.

(6)

Since the noise strength η̃(ωn) ∼ O(1/τ 1/2) and �X,�V ∼
O(1) we see that the second term in Eq. (4) is
∼ 1/τ 1/2 order smaller than the first and so can be
dropped. It can in fact be shown that it contributes order
1/τ corrections to the CGF [23]. We note that Ṽ ∗(ωn) =
Ṽ (−ωn),η̃∗(ωn) = η̃(−ωn). The heat transferred Q [Eq. (3)]
can be expressed in terms of the Fourier modes with n �
0 as Q = ∑∞

n=0

∑
�[−2γ�ṽ�(ωn)ṽ∗

� (ωn) + η̃�(ωn)ṽ∗
� (ωn) +

ṽ�(ωn)η̃∗
� (ωn)]. We define G−(ω) = G+(−ω) = [G+(ω)]∗

and �(L,R)(ω) = Im[�(L,R)(ω)] = ωγ (L,R). On using the
solution (4) without the second term, i.e., Ṽ (ωn) =
−iωn G+(ωn) [η̃(L)(ωn) + η̃(R)(ωn)], we get the expression of
Q as

Q = τ

∞∑
n=0

(−2ωn)[η̃�′(ωn)G+
�′� + η̃r (ωn)G+

r�]�(L)
��

× [G−
��′′ η̃

∗
�′′(ωn) + G−

�r ′ η̃
∗
r ′(ωn)] − iωn

× [η̃�′(ωn)(G+
�′� − G−

�′�) + η̃r (ωn)(G+
r� − G−

r�)]η̃∗
� (ωn)

= τ

∞∑
n=0

[η̃L(ωn),η̃R(ωn)]A
(

η̃∗
L(ωn)

η̃∗
R(ωn)

)
, (7)

where η̃L (η̃R) denotes an NL (NR) component column vector
of noise belonging to � ∈ L (r ∈ R) sites, while the NL + NR

dimensional Hermitian matrix A is given by

A =
(

2ωn[G+�(R)G−]LL iωn[G−]LR − 2ωn[G+�(L)G−]LR

−iωn[G+]RL − 2ωn[G+�(L)G−]RL −2ωn[G+�(L)G−]RR

)
. (8)
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The subscripts L and R in the matrices, respectively, represent
the space of � and r sites. In Eqs. (7) and (8), the ωn dependence
of G and � has been suppressed. In what follows, the ωn

dependence in variables is omitted unless it is necessary. In
obtaining the (L,L) element of the matrix A, we have used
the following Green’s function identity, which easily follows
from the definition (5):

G+ − G− = 2iG− (�(L) + �(R)) G+

= 2iG+ (�(L) + �(R)) G−. (9)

III. CUMULANT GENERATING FUNCTION

We now proceed to the calculation of the CGF. The
characteristic function Z(λ) = 〈eλQ〉 is obtained by using the
expression in Eq. (7) and averaging over the Gaussian noise
variables, whose correlation matrix is given in Eq. (6). We get

Z(λ) = N
∏
n�0

∫
d[η̃L,η̃R,η̃∗

L,η̃∗
R] exp

{
τ (η̃L,η̃R)

×
[
λA −

(
1

2TL
[�(L)]−1 0

0 1
2TR

[�(R)]−1

)](
η̃∗

L

η̃∗
R

)}
, (10)

where N denotes the normalization factor of the noise
distribution. By performing the Gaussian integral, one obtains
the formal expression of the CGF:

μ(λ) = 1

τ
logZ(λ)

∣∣∣
τ→∞

= − 1

τ

∑
n�0

log detB
∣∣∣
τ→∞

, (11)

B = 1 − λ

(
TL TLR

TRL −TR

)(
TL1 0

0 TR1

)
, (12)

where

TL = 4[G+�(R)G−�(L)]LL,

TR = 4[G+�(L)G−�(R)]RR,

TLR = −4[G+�(R)G−�(R)]LR + 2i[G−�(R)]LR,

TRL = −4[G+�(L)G−�(L)]RL − 2i[G+�(L)]RL.

The matrices TL and TR are, respectively, NL × NL and NR ×
NR square matrices, and these can be regarded as transmission
amplitude of energy with the mode ωn from one reservoir
to the other. For NL = NR , it is known that these matrices
appear in the Landauer-like formula for average current [13].
As clarified later, even for unequal case NL �= NR , both of
these are transmission matrices and enter in the Landauer-
like formula. Although the physical meaning of TLR and TRL

are not clear, these are closely related to TL and TR . The
relations can be revealed by using the relation (9) iteratively.
Through tedious but straightforward calculations, one finds the
following nontrivial relations:

TLRTR = TLTLR, (13)

TRLTL = TRTRL, (14)

TRLTLR = TR(1 − TR). (15)

In order to get simple form of the CGF, we need to simplify the
determinant of B in Eq. (11). The relations (13)–(15) play a
central role in simplifying the determinant of B and in deriving
the final expression of the CGF. We heuristically introduce the
matrix C:

C =
(

1 CLR

0 CRR

)
,

(16)

CLR = λTRTLR + TR

TL

TLTLR,

CRR = 1 +
(

1

λTL

− λTL − 1

)
TR + TRLTLR

=
(

1 + TR

λTL

)
(1 − λTLTR) . (17)

The advantage of introducing the matrix C is that the product
BC has a simple form, and this is useful to simplify detB given
by detBC/ det C = detBC/ det CRR . With the relations (13)–
(15), one finds the following form for the product:

BC =
(

1 − λTLTL 0

−λTLTRL

(
1 + TR

λTL

)
[1 − TRTLTRλ(λ + �β)]

)
,

(18)

and hence

detB = det[1 − TRTLTRλ(λ + �β)]
det(1 − λTLTL)

det(1 − λTLTR)
.

(19)

Now by taking the singular value decomposition of the matrix
[(�(L))1/2G+(�(R))1/2]LR it can be shown that TL and TR have
the same set of nonzero eigenvalues. Hence det(1 − λTLTL) =
det(1 − λTLTR), and on using this in Eq. (19) we get, in the
large τ limit:

μ(λ) = − 1

2π

∫ ∞

0
dωTr log[1 − T (ω)TLTRλ(λ + �β)],

(20)

where one can use either TL and TR for the transmission
matrix T (ω), both of which generate the same values of
current cumulants. This formula for the CGF is the central
result of this paper. One can easily check that the GC
symmetry: μ(λ) = μ(−λ − �β) is satisfied. When the system
is one dimensional and NL = NR = 1, the formula reproduces
the classical limit of the quantum version of CGF [22].
Interestingly, the formula (20) is valid even for NL �= NR .
In this paper, for simplicity we demonstrated the derivation
for baths with white Gaussian noise. However, the formula is
also valid for generalized Langevin noise with memory kernel,
with appropriate definition of the matrices � and �.

IV. DISCUSSION

We have derived an exact formula for the CGF of a general
harmonic network (20) and shown that it satisfies the GC
symmetry. The formula is expressed in terms of the phonon
transmission matrix. The CGF can be used to obtain the
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average current 〈Q〉c/τ and current noise 〈Q2〉c/τ by taking
the first and second derivatives with respect to λ:

〈Q〉c
τ

= (TL − TR)

2π

∫ ∞

0
dω Tr[T (ω)],

〈Q2〉c
τ

= 1

2π

∫ ∞

0
dω Tr[T 2(ω)(TR − TL)2 + 2T (ω)TLTR].

Higher-order cumulants are also systematically given.
The transmission matrix can be obtained either analyti-

cally or numerically. In case of higher-dimensional regular
lattices, the recursive Green’s function method can be used
to efficiently generate the transmission matrix and thus
evaluate the CGF. The disordered harmonic lattice shows
different regimes of transport, such as ballistic, anomalous, and
diffusive transports, and hence our result implies validity of
the fluctuation theorem in all regimes of transport. In addition,

the formula (20) can be a powerful tool to explore generic
features of current fluctuation in these different regimes. One
of the most interesting possible application would be a test of
the conjecture of the additivity principle [7].

An open problem is the quantum expression of the CGF.
As in the one-dimensional case [22], a two-point observation
protocol to get distribution of heat is necessary, and this seems
to be a much more complex calculation than the one in this
paper.
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