A Network Centric Receiver Architecture

for

Low Frequency Arrays

by

PEEYUSH PRASAD

Thesis submitted to the Jawaharlal Nehru University
for the award of the degree of
Doctor of Philosophy

Raman Research Institute
Bangalore 560 080
India
September 2011

DECLARATION

I hereby declare that the work reported in this thesis has been independently car-
ried out by me at the Raman Research Institute, Bangalore, under the supervision of
Dr. C.R. Subrahmanya. The subject matter presented in this thesis has not previ-
ously formed the basis of the award of any degree, diploma, associateship, fellowship

or any other similar title of any University or Institution.

(Dr. C.R. Subrahmanya) (Peeyush Prasad)
Raman Research Institute
Bangalore 560 080

India.

CERTIFICATE

This is to certify that the thesis entitled A Network Centric Receiver Archi-
tecture for Low Frequency Arrays, submitted by Peeyush Prasad for the award
of the degree of Doctor of Philosphy of Jawaharlal Nehru University, is his original
work. This has not been published or submitted to any other University for any other

degree or diploma.

Prof. Ravi Subrahmanyan Dr. C.R. Subrahmanya
(Center Chairperson) (Thesis Supervisor)
Raman Research Institute

Bangalore 560 080

India.

Acknowledgements

This thesis would not have been possible without the active help and immense support
of a gamut of people. Their presence has been extremely important for me to reach
a position of writing an acknowledgement page in my thesis.

Firstly, I am deeply indebted to Prof. C.R. Subrahmanya, my thesis advisor. His
zeal for technical excellence, dedication towards radio astronomy, overall enthusiasm
and a positive attitude is what attracted me to work with him, when he took me in
as a fresh engineer. I have learnt a lot from him, not only technically, but also good
lessons in life. He has fearlessly exposed me to a wide variety of technical problems,
without letting me lose my self-confidence when things wouldn’t work, and come up
with life-saving ideas just when I would be giving up hope. More so, he has provided
just the right amount of guidance, leaving me mostly to my own devices but bringing
me back on track when I would (often) deviate. T owe all my technical knowledge to
him. It has been a pleasure to work with him during the course of our association,
which I hope to continue, and I wish him all the good health and happiness that he
deserves.

I would like to express my deep gratitude to colleagues at the Radio Astronomy
Laboratory, for having setup many of the analog receiver systems that have been used
in this thesis. They have also been around to answer my emergency calls (almost
always on weekends!), and helped me with a willingness which is beyond the call
of duty. Thanks to Som for being my first mentor, and always make things better
with his positive attitude, a quick game of badminton or evening snacks... (Thanks
for teaching me how to filch components too!) Thanks to Prabu, who taught me the
value of being organized, keeping a thorough lab-record, and NOT making changes to
working systems at the last minute (Prabu, I swear I only made cosmetic changes to
that Ooty code, and still don’t know why it didn’t work!). You have been ever-ready
for (elaborate) technical discussions, and provided support during those long, late
nights spent struggling with concepts and recalcitrant hardware. Thanks, Girish, for

all the help and support during the ORT phase, the late, cold misty nights at the

ORT tower, and for being a willing sounding board for my various tactics to tackle
system issues... and not to forget, the world class punning! Thanks to KBR, for the
imli and the mimmicry sessions, to Vani for her positivity and VHDL/FPGA tips, to
Kasturi and Sujatha who taught me how to solder properly and always helped me in
difficult times, and to Raghu for the RF tips and ever smiling visage.

I am grateful to my colleagues at RAC, who have always gone out of their way to
make my stay there comfortable, both technically and physically. Thanks to Manoha-
ran sir for the whole hearted support to my work, and the warmth and friendliness.
Thanks to DNG for the numerous analog related support I have requested (and some-
times demanded) from him. Thanks to Kalyan for the technical discussions and good
humour, to Arvind, Rajmohan and the workshop staff for prompt support, to the
observers for repeated observations, including escorting me late in the night to the
towers, to Mahesh for all the cabling, to VCS and other staff for laying the OFC, and
to the VSP and graduate students at RAC.

I would like to especially thank Dwaraka, my co-guide, who always ensured my
thesis was coming along on track. Thanks to Chitra for her hot bread and hospitality.
I am also grateful to my SAAC Committee, including Madan, and Uday for ensuring
I finished the last mile of the Ph.D, and especially Bala, who took a very pragmatic
view of things and was always ready with practical advise.

I express my deepest appreciation to all faculty members of the Astronomy and
Astrophysics group, as each one of them, in their own distinct way, make this group
ideal for pursuing research. Thanks to Desh and Shiv for technical discussions, Anish
for Ooty related queries, and Ramesh for hardware related issues.

Many thanks to my friends at the Astro floor, including batchmates Ruta (for her
down to earth nature), Wasim and Yogesh for long technical discussions, and support
during misery, Kanhaiya and Nishant for some good fun, Chandryee and Nipanjana
for soothing vocals, Kshitij for good friendship, and all the others who make the
astro floor lively and jovial. Thanks to Vidya, for her immense patience, and prompt
and timely help for any administrative issue. Thanks to Mamta Bai for writing out
endless declaration forms for our Ooty trips!

My special thanks to Rad for fulfilling all my adventurous, adolescent dreams of
flying and sailing, and to Dominique for her hospitality. Thanks to Lakshmi and
Ravi, for instilling confidence when most needed... You are an ideal couple!

RRI is very fortunate to have an excellent library, with a wonderful atmosphere.
My sincere thanks to the library staff for maintaining it wonderfully, and providing

many happy hours of browsing. Thanks to the very supportive administration of RRI,

i

especially Krishna, Marisa, Radha, and Ram for being very proactive in their help,
and letting us focus fully on research. My sincere gratitude to the housekeeping staff
of RRI, who maintain that special “RRI” feeling thoughout, including when RRI is a
riot of colored flowers. You have made an important difference to my life!

Last, but certainly not the least, I wish to thank my family. In fact, I cannot
begin to express my gratitude towards my family, and especially my parents, for all
the moral and practical support they have provided selflessly, and for many, many
years. They allowed me to pursue my dreams, without putting pressure to find a “real”
job, or to take “more interest in household affairs”. No uncomfortable questions were
ever asked about the extremely odd hours I would put in, or whether there was any
end to my research at all... Mummy and Daddy, it is only because of your efforts that
I didn’t just give up and run away! and your consideration in bringing me hot food
late in the nights to RRI will stay with me for the rest of my life... Mummy, for her
loving and affectionate nature, and Daddy, for being a constant source of inspiration
and encouragement. I am especially indebted to my sister Richa, who literally put
her life on hold, and took up all my responsibilities towards my parents, including
providing financial and moral support to all of us, just so that I could pursue what
I wanted. Thanks to my brother-in-law, Gaurav, for his helpful advise and support,
ever since he became an integral part of our family. Thanks to my sister Shweta and
Anand jiju, for being extremely supportive, and offering valuable help and suggestions
at all times. I can proudly say, I love you all, this thesis is as much a product of your
efforts, as mine... You all are the best!

A great outcome of my stay at RRI, and which has been a positive turning point
in my life, has been my meeting Divya. In fact, I would rate meeting her higher than
actually getting my Ph.D! She has been all that I could ever ask for in a partner,
and much, much more. Thank you Divya, for firstly believing in me when I was
completely unproven, and for skillfully guiding this thesis right from the beginning
(remember the coursework assignments, and my first InHouse meeting talk? :-)) My
thesis has been really enriched by your critical support, clarity of ideas, and eye for
detail. Thanks for (trying) teaching me the about the importance of deadlines, of
working with a focus, presenting technical work, and that being simple doesn’t mean

being technically unsound... in fact, thanks for teaching me about life...

i

Preface

The study of several astrophysical phenomena related to radio sources and their
environment, as well as, a variety of cosmological investigations are enriched by ob-
servations at the lowest ranges of the accessible radio window. These include the
study of ultra-steep spectrum objects like high red-shift radio galaxies and pulsars,
neutral Hydrogen content in the early universe, large scale structures like radio ha-
los, as also sky monitoring for transient events at low frequencies. For many such
investigations, existing radio telescopes are limited by factors like their sensitivity,
dynamic range and survey speed (constrainted by the instantaneous field of view).
These limitations are further aggravated by the increasing occurrence of interference,
as well as, atmospheric /ionospheric distortions to observations. However, rapid devel-
opments in high speed computing and communication have now provided a means for
improving the situation. This, in turn, has led to many recent developments involv-
ing new approaches towards instrumenting arrays, as well as the development of new
algorithms for calibration and imaging, thereby minimizing systematic distortions in
the observational estimates. Further, instrumentation trends for low frequency ar-
rays are moving towards mechanically simple, wide-band systems with large fields of
view, and programmable/configurable digital systems replacing the inherently rigidly
structured analog processing. This mainly involves direct digitization of the incoming
radio signal, and carrying out all further processing digitally.

Along similar trends, an upgrade of the Ooty Radio Telescope (ORT) to a full
correlation receiver of 264 elements is being planned, resulting in an order of magni-
tude increase in the instantaneous field of view. This, combined with an enhanced
(~ 40 MHz) Radio Frequency (RF) bandwidth, a configurable temporal and spectral
resolution, and the programmability of combining RF outputs will enable several new
classes of observations, and is expected to provide a new lease of life for this mature
telescope. However, the above features will require the receiver to handle about ~ 13
GBps of data, with a compute load of almost ~ 5 TFLOPs. Much of this load occurs

because of the correlator, which needs to manage >100 times the incoming data rate

v

due to the requirement of all-to-all connectivity. Here, the problem inherently has a
low arithmetic intensity, which degrades the performance of a cluster computer.

Thus, the distributed nature of data generators in a low frequency, wide field tele-
scope, coupled with the high I/O requirement, in order to guarantee high sensitivities,
requires a careful examination of the communication hierarchy of the receiver design.
In addition, spreading of computation hierarchically can result in efficient utilization
of the incoming data streams, where effective decisions on data handling can then be
taken locally. Both these criteria, as well as the need to keep the instrument config-
urable, require careful attention to the receiver architecture design. This forms the
main focus of a large part of the thesis.

In particular, the following four classes of problems have been addressed:

1. Approaches towards high bandwidth data distribution, distributed real-time

processing and analysis of the communication network topology in an interfer-

ometric array.

2. New features added to network functionality for handling the large datasets gen-
erated by current multi-element arrays, as well as the monitoring and feedback

inherently required in a distributed system.
3. Visualization, editing and calibration of the resulting large scale data sets.

4. An interdisciplinary approach for dynamic calibration of observations, using
geosynchronous navigation satellite signals.
This thesis comprises of six chapters; their broad contents are stated below. Refer-
ences made in each chapter are listed out in the Bibliography, available at the end of
the thesis.

Chapter 1 reviews the observational challenges in low frequency radio astronomy,
and also examines the current state of the art of digital receiver design. Further, an
analysis of the computational and communication requirements of implementing ef-
ficient low frequency array receivers has been carried out, given available technology
and trends. An important outcome of this analysis is the highlighting of the role
played by the communication and reorganization of large datasets required for the

correlation. This motivates our receiver architecture.

Chapter 2 presents a Networked Signal Processing System architecture optimized
for low frequency radio astronomical applications. In particular, this architecture has

a scalable and distributed hardware/software co-design, and is well suited to match

requirements of arrays consisting of a large number of spatially distributed antenna
elements, with significant requirements of real-time processing and data routing. This
architecture explicitly employs techniques of data fusion at multiple levels of a pro-
cessing hierarchy, while exploiting features available from commodity components for
data transport and distributed computing. It also carries out effective load balancing
via efficient data routing. In addition, it makes provisions for the implementation of
algorithms which may require multiple passes on the incoming, high bandwidth data
wn real-time. Such an approach can help in enhancing the observation’s efficiency,
e.g., by segregating the real-time data stream along different dimensions, or by car-
rying out sophisticated pre-processing (which is descriptive, rather than predictive in

nature) on large bandwidth data before the irreversible data fusion operation.

Chapter 3 presents an implementation of the NSPS architecture in the form of
a programmable, hybrid digital receiver for the upgraded ORT. While the upgrade
aims at configuring the ORT as a prototype 40-element array and a wide-field in-
strument for cosmological investigations, the receiver implementation demonstrates
several advantages towards receiver programmability, efficiency, and ease of develop-
ment offered by the NSPS approach. Further, details of the receiver implementation,

its validation and an approach towards its calibration are presented.

Chapter 4 presents a scalable software correlator implemented on commodity pro-
cessors, and developed as a real-time backend for the ORT prototype array receiver.
Such a correlator balances the ease and rapidity of development in a software en-
vironment using commodity communication and computing components, while still
being a feasible implementation for medium sized arrays. Further, the NSPS allows
streaming data to be rearranged to suit the processing element’s architecture, making

this implementation very efficient.

Chapter 5 discusses novel tools and algorithms developed by us towards visualiza-
tion, editing and calibration of large-scale low frequency observations. The need for
such tools is a natural consequence of configuring a radio telescope as a combination
of a large number of elements with large bandwidths, which results in large quanti-
ties of data being generated. In addition, some new approaches towards improving
the sensitivity of low frequency observations, mainly by carrying out a segregation
of observed visibiliities are also presented. Further, the possibility of improving the

corrections to ionospheric distortions of low frequency observations by conducting

vi

satellite interferometry on geosynchronous navigation satellites has been explored.
Furthermore, a scheme for carrying out simultaneous satellite and celestial observa-
tions using the GMRT is discussed.

Finally, Chapter 6 discusses the main findings and conclusions of the thesis. An
appendix presents a description of the main data structures and hardware entities of
the NSPS implementation for the ORT receiver.

Publications

The work presented in the thesis has been presented via the following publications:
1. A High Speed Networked Signal Processing Platform for Multi element Radio
Telescopes
Peeyush Prasad, C.R. Subrahmanya
Vol. 31, 1, 1-22, Experimental Astronomy.

2. Reconfiguration of the Qoty Radio Telescope as a 40-element programmable tele-
scope
C. R. Subrahmanya, Peeyush Prasad, B.S. Girish, P.K. Manoharan, D.
Nandagopal et. al.

Manuscript in preparation.

3. Software Correlator for the 44-element Ooty Radio Telescope
Peeyush Prasad, C.R. Subrahmanya
IEEE International Conference on High Performance Computing (HiPC), 2010
arXiv:1102.0148.

4. Dynamic Range Improvement of GMRT Low Frequency Images
Peeyush Prasad, C.R. Subrahmanya
The Low Frequency Radio Universe, Vol. 407, 398-401, ASP Conference series.

5. Interferometric Observations of Geosynchronous Satellites
C.R. Subrahmanya, Peeyush Prasad, R. Somashekar
Proceedings of The 2nd International Conference on Space Technology (ICST),
To be published in IEEE Xplore.

Vil

Contents

1 Introduction 1
1.1 Low frequency radio astronomy 1
1.2 Low frequency observational challenges 3
1.3 Correlator-receiver signal processing overview 4
1.4 Current trends in low frequency radio telescopes 6

1.4.1 LOFAR architecture 8
1.4.2 MWA architecture 9
1.4.3 APERTIF architecture 10
1.4.4 CASPER approach 11
1.5 Network centric design of receiver architectures 12
1.6 Ooty Radio Telescope 13

2 A High Speed Networked Signal Processing System for Multi-element
Radio Telescopes 16
2.1 Introduction 16
2.2 Network centric approach to array signal processing 18

2.2.1 Telescope array as a distributed computing environment . . . 18

2.2.2 Load balancing, job scheduling and synchronization in a dis-
tributed configurationo 19
2.2.3 Commodity processors for correlations 20
2.2.4 Network centric approach 21
2.3 Real-time processing requirements 22
2.3.1 Computation 23
2.3.2 Dataroutingo o 24
2.3.3 Protocol and network topology 24
2.3.4 Process scheduling 0L 25
24 NSPSasaFusion Tree 26
2.4.1 Fusion tree interconnection model 28

viil

2.4.2 NSPS tree network characteristics
2.4.3 Interface to external network
2.4.4 Control and Monitoring network
2.4.5 Calibration network
246 Clocknetwork
2.4.7 Datanetwork
2.4.8 Load partitioning and scheduling
2.4.9 Choice of fusing dimension
2.5 Discussion e

2.6 Conclusions

NSPS Implementation for Ooty Radio Telescope
3.1 Introduction
3.2 ORT infrastructure: The legacy system
321 Frontend oL
3.2.2 Backend receiver systems
3.2.3 Telescope control and receiver interface
3.2.4 Distribution of synchronizing signal
3.3 ORT upgradation
3.3.1 RF signal conditioning subsystem
3.3.2 NSPS based hybrid array receiver
3.4 System architecture oo o oo
3.4.1 Packet configuration L oo
3.4.2 Design control flow o000
3.4.3 Reader-Writer interface o000
3.5 Digital subsystemo oL o
3.5.1 Remote digitizer and pooler entities
3.5.2 Central data pooler,
3.5.3 Aurora to GigE bridge 0oL
3.5.4 Commodity class processor cluster
3.5.5 Data transport mechanism
3.5.6 Sampling clock generation and distribution
3.5.7 Alignment of distributed data
3.6 Reconfiguration plan for the ORT
3.6.1 ORT NSPSlayout
3.6.2 System control Lo

X

99

3.7 Discussion 75

3.8 Conclusions 75
A 40-Element Hybrid Software Spectral Correlator 77
4.1 Introduction 77
4.2 Commodity processors for streaming correlation 79
4.3 Correlator implementation for ORT 81
4.3.1 NSPS Level-0 node hardware 81
4.3.2 Software correlator architecture L. 82
4.3.3 FFT implementation 85
4.3.4 Cross multiply & accumulate implementation (XMAC) 88
4.3.5 Software data pooling 91
4.4 Results 92
4.4.1 Communication protocols 93
4.4.2 FFT ... o e 93
4.4.3 Cross multiply and accumulate (XMAC) 95
4.4.4 Correlator 95
4.5 Calibration of the 40-element prototype array 97
4.5.1 Delay and phase o oo 100
4.5.2 Redundancy based calibration 102
4.6 Formationofa l-Dmap 103
477 Discussion e 104
4.8 Conclusions e 105

New approaches for Visualization and Editing of Interferometric

Data 108
5.1 Introduction 108
5.2 High temporal and spectral resolution observations 109
5.3 Tools for large volume visibility visualization and editing 111
5.3.1 Visibility visualizero 111
5.4 Collation of multiple observations for high sensitivity 114
5.5 Interdisciplinary approach towards ionospheric calibration 117
5.5.1 Satellite interferometry of WorldSpace satellite 120
5.5.2 Experimental setup L. 121
5.5.3 Satellite interferometry of INMARSAT 4F1 satellite 123
5.5.4 Simultaneous satellite and sky observations with GMRT . . . 123
5550 Results. 128

5.6 Conclusions
6 Conclusions

Bibliography

A Packet Structures for the ORT NSPS implementation

B Photographs

xi

131

134

140

145

Chapter 1

Introduction

1.1 Low frequency radio astronomy

Although radio astronomy began with observations at low frequencies (< 408 MHz),
the need for high angular resolutions and dynamic ranges for carrying out studies
of discrete radio sources and the progress in receiver technology resulted in a shift
towards observations at higher frequencies (= GHz). Thus, the high frequency domain
was explored to a much greater extent, as compared to low frequencies.

However, there has been recent revival of interest in the low frequency radio regime
for addressing several problems of astrophysical significance |1], ranging from study of
coherent emission processes, e.g., jovian bursts [2], solar [3] and stellar radio bursts [4],
pulsar emission [5] to investigation of galaxy mergers, activity in giant radio galaxies,
buoyancy in cluster halos, and cluster-cluster interactions [6], and relic radio sources
associated with clusters of galaxies [7].

More importantly, a strong scientific motivation for low frequency observations is
seen recently for problems which inherently require wide fields of view (or possibly
all-sky imaging) and high sensitivities. Such observations are valuable for detecting
diffuse features [8], carrying out blind and targeted source variability studies over a
range of timescales (from tens of nanoseconds to years) [9],[10], etc., or for studying
the large scale structure of the universe. In addition, detection of radio transients
[11], which are expected to have the majority of their populations observable only at
low frequencies, also require wide fields of view to carry out rapid and continuous sky
monitoring.

The above motivating factors have led to a resurgence of interest in low frequency
radio astronomy, with an emphasis on large instantaneous fields of view and high tem-

poral and spectral resolutions. This is evident from the fact that recent and upcoming

1.1 Low frequency radio astronomy 2

large telescopes are being constructed with a large number of small, mechanically sim-
ple antenna elements. Here, each element provides the required large field of view,
with the array response being steered in software (and not by mechanical steering of
the individual elements). While such a concept would have implied impractical re-
ceivers in the past, rapid developments in computing and communication have made
them feasible in recent times. However, a new challenge to algorithm development
is posed by the need to reconcile with the ever-increasing presence of man-made Ra-
dio Frequency Interference (RFI), which is more prevalent at lower, than at higher
frequencies.

Further, since the modern trend is of arrays utilizing a very large number of an-
tenna elements, the associated digital signal processing systems (since analog process-
ing is not practical) have to perform large volumes of computing and communication
at all levels. The resulting load (which may exceed currently encountered loads by
orders of magnitude) is managed by systems ranging from dedicated hardware carry-
ing out repetitive computing, to quasi-realtime computing, (possibly on commodity
nodes). In addition, such receiver architectures need configurability and flexibility
in processing in order to implement various observing modes, and to allow tapping
of data from different processing levels. Furthermore, observing environments at low
frequencies can require constant monitoring, e.g., for RFI.

Thus, sensitive low frequency observations from configurable instruments can open
up entirely new phase spaces of discovery for radio astronomy. To this end, many
of the current efforts are directed towards implementing the Square Kilometer Array
(SKA) [12, 13], a telescope of unprecedented sensitivity and configurability.

With this background, this thesis presents a detailed examination of the comput-
ing and communication hierarchies for a specific class of multi-element radio telescope,
and presents a partitioning of computing and memory across the signal processing
hierarchy. In particular, our partitioning of the computing ranges from being dense
and suitable for latency critical operations, to being highly configurable and latency
tolerant (while being temporally spread, e.g., in commodity processors). Similarly,
memory available to the signal processing units ranges from being limited, but avail-
able to high bandwidth processing in the early stages (e.g., very early in the data
flow hierarchy, in configurable hardware), to being virtually unlimited and accessible
in a variety of ways, e.g., via commodity processors. With large number of elements,
the major complexity of real time processing in a radio telescope arises from the
correlator, which is required to perform cross-correlation of signals arriving at every

receiving element in different spectral bands and to cater to dynamically varying dif-

1.2 Low frequency observational challenges 3

ferential delays and phases. Thus, the correlator is the fundamental signal processing
system examined in this thesis.
We will now discuss some observational challenges at the lowest frequencies of

observation.

1.2 Low frequency observational challenges

Low frequency observations have faced considerable challenges to achieve high resolu-
tions, sensitivities and dynamic ranges. Previous attempts at improving the resolution
and sensitivity of low frequency observations by using larger arrays, in fact, posed
major challenges to their calibration [14|. This, primarily, is due to ionospheric phase
fluctuations, which lead to short coherent integration times, resulting in low sensitivi-
ties and dynamic ranges. These phase fluctuations, in turn, are caused by the rapidly
fluctuating time and position dependent nature of ionospheric structures. In partic-
ular, the signal received by one element of an interferometer, experiences an excess
path length as compared to another. This excess path length is dependent on the line
of sight column density of electrons, and can be modelled [15] as L; = 40.3v 2N,
where, L; is the ionospheric excess path length (in centimeter) due to the ionosphere,
N, is the electron density (in 10'® electrons/m?), and v is the observing frequency
(in GHz). The introduction of this excess path results in a temporal phase winding
due to the added phase which, in turn, leads to random phase distortions on observed
visibilities. These visibility distortions at low frequencies of observation are magnified
due to the =2 dependency of the excess path length, as well as due to the larger fields
of view. It may be noted that these challenges were difficult to meet using previously
available computing and communication infrastructure, but now seem tractable.

Man-made RFT also poses a major challenge to high-fidelity estimations of the ra-
dio sky at low frequencies. RFI can be dealt with by either relocating arrays to remote
sites (becoming more and more difficult to find), or by implementing adaptive and
real time algorithms for tolerating RFT [16, 17|, which also require large computing
resources.

Furthermore, the operating parameters and mechanisms of even the current in-
struments lead to the irreversible contamination of visibilities (and subsequent propa-
gation of errors), by the initial visibility estimation process operating on the incoming
data. This results in reduced sensitivity. An example of this contamination by errors,
is the averaging over RFT affected data, caused due to the time resolution (tens of

seconds range) feasible for standard radio observatories. Though such a temporal

1.3 Correlator-receiver signal processing overview 4

resolution is sufficient to sample the observed visibility after fringe stopping, it is
usually inadequate to cater to a characterization of ambient RFI. Thus, distortions
on such visibilities can only be partially corrected by post processing data analysis.
This reduces the reliability of observations, which in turn, lowers the dynamic range.

In the next section, the signal processing and communication requirements of a
correlator are first briefly reviewed. A description of current trends in signal pro-
cessing in an array radio telescope is given, particularly focusing on the effects of
the rapidly advancing computing technology on implementations. This discussion
gives a context for a distributed, communication and signal processing platform de-
veloped by us for handling the signal processing of a multi-element, low frequency

array telescope.

1.3 Correlator-receiver signal processing overview

The main digital signal processing blocks in a traditional spectral correlation (FX,
[18]) receiver are: (a) conditioning of the incoming per-antenna time series via com-
panding, filtering, windowing, etc., (b) spectral analysis of the filtered stream via an
FFT or filterbank (the F part in the FX), and (¢) cross-multiply of each spectral
channel of an antenna element with the corresponding spectral channel of every other
antenna element (the X part in FX). The FX part of the correlator is represented by

the following set of equations:

X, (0 =3, () exp (=5™) (L)

Spq (k) =< X, (k) . X, (k) > (1.2)

where, X, is the Discrete Fourier Transform of the data stream (z,) from the
antenna element p, n is the time index (sample number), k is the spectral channel
index, and Sy, (k) is the Cross Power spectrum corresponding to the spectral channel
k of the antenna elements p and q.

Here, we see that parts (a) and (b) of the correlator operate on a per antenna
basis, and are completely independent of the data from other antenna elements. Part
(c), on the other hand, requires data from every antenna element to be brought to
the cross multiplying circuit before output corresponding to a certain time-step can
be generated. This single operation contributes to the nature of the problem turning

out to be I/O bound, as well as to the constraints in I/O decomposition for a Parallel

1.3 Correlator-receiver signal processing overview 5t

implementation.

Unreliable, long haul links

‘ v Group level
Operations
<[ADC] (e.g. XMAC)

/ FX

Group [) | ——
< Stream level
Operations
(e.g. FFT)

Group 1 -

-

7
oy

Spatially separated Antenna Elements

o [—o
Stream 1 | |
‘e e o 0
Can be carried 0 A l
out in field @_. Many-tg-Many Group 2 jwefet
Switch
Stage 0 e & o
processors
:Network
v Group N7 pttached
Stage 1 processors Storage
v —<JADcC]

Figure 1.1: Signal flow and main components in a typical FX Correlator. Here, the
communication mainly consists of the bringing in of data from remote sources, and
the formation of data sets amenable to group level operations, while the computing
can be categorized as being on a per-datastream, or a per-data group level. Thus, the
three main parts of a conventional correlator are the stream level operating entities,
the many-to-many data switch, and the group level operating entities.

This fundamental nature of a correlator engine, namely, the requirement of re-
distribution of data at a large scale, is depicted schematically in Figure 1.1. Here,
computing on the data is split into two categories corresponding to the two parts
mentioned above: a per-datastream part, and the other which requires a set consisting
of rigidly related data from all datastreams to be present before any computing can be
carried out. These two categories of computing are linked to each other by the many-
to-many data disperser (represented in Figure 1.1 by the many-to-many switch), thus
forming the three major components of the correlator, namely, per-stream processors
(referred to as Stage-0 processors), the data dispersers, and the block-level processors
(referred to as Stage-1 processors). The correlations thus formed are then used to

synthesize various observation modes via post-processing. To meet the requirements

1.4 Current trends in low frequency radio telescopes 6

of current observations, a feedback of information from various monitoring processes
is required, before the data is irreversibly reduced.
In the next section, we analyze the receiver architectures of contemporary instru-

ments which utilize the current state of computing and communication.

1.4 Current trends in low frequency radio telescopes

In recent times, instrumentation for radio astronomy has been heavily influenced
by the rapid technological progress in computing and communication resources. In
particular, a variety of processing element architectures, which optimize certain as-
pects of signal processing or communication are now available in the commodity
market, and are being applied to astronomical signal processing. This is in contrast
to the earlier trend of developing customized hardware to carry out the more demand-
ing aspects of the processing, with high bandwidth communication being restricted to
the analog domain. These factors affect all aspects of array telescope design, ranging
from the number and placement of sensors, the correlator architecture, to the possible
observing modes. Some aspects of the progress especially relevant to radio astronomy
are due to the reducing cost of high bandwidth, long haul I/O resources, as well as
increasing 1/O capabilities of commodity resources. Another aspect relates to the re-
ducing cost and increasing memory and I/O capabilities of Field Programmable Gate
Array (FPGA) platforms, which are reconfigurable hardware used to implement dense
computing at high speed and with very low power consumption. Further, rapidly re-
ducing memory volume to cost ratios makes it feasible to equip receiver hardware
with large amounts of memory at various levels, resulting in the availability of large
I/O buffers for real-time data. This opens up yet another dimension to the receiver
implementation configuration.

For instruments commissioned in the past few decades, such advances have given
rise to a trend of carrying out the core computing of their correlation receivers (earlier
carried out on dense, customized hardware), on commodity hardware with general
purpose, but optimized software, thereby increasing their configurability and oper-
ating parameters. Prime examples of this trend is the recently commissioned Giant

Meterwave Radio Telescope (GMRT) software correlator, which is described below.

The GMRT Software Correlator: The GMRT [19] has been recently equipped
with a 32 antenna, 33 MHz, dual polarization, fully real-time software backend [20],

using only off-the-shelf components. Here, the received RF analog band from each

1.4 Current trends in low frequency radio telescopes 7

antenna is transmitted over optical fibres to a central receiver, where the signal is con-
ditioned and sampled. A correlator and a beam-former (in coherent and incoherent
mode) have been implemented in software running on commodity processors. These
use Peripheral Component Interface (PCI) bus-based Analog to Digital Converter
(ADC) cards and a Linux cluster of 48 nodes with dual gigabit inter-node connec-
tivity for the real-time data transfer requirements. The software backend operates
on Intel Xeon clusters, organized into three layers: acquisition, computational and
storage layer. The complete software approach with minimum of hardware, allows for
many concepts related to distributed and parallel processing to be used, in order to
share the computing and communication load among the available resources. Thus,
a Message Passing Interface (MPI) based approach has been taken for inter-node
communication and synchronization, while OpenMP [21] has been used to utilize the
multiple cores on each processor, with library based vector processing. Data disper-
sion for correlation is carried out using Commercial Off The Shelf (COTS) switches.
Here, the receiver architecture is centralized, in that all sensor outputs are brought to
the center before being digitized. Finally, the correlator also has a baseband recording
mode, where data can be transferred to an offsite HPC cluster over a high bandwidth
link, providing close to real-time transfer rates. Such an arrangement makes it possi-
ble to closely examine the sampled raw data, for implementing novel algorithms.
However, the above view of enhancing configurability of existing instruments via
purely software implementations, turns out to be inadequate for future telescopes,
which usually consist of a large number of elements, with a high processing band-
width. These requirements could earlier be met only by Application Specific Inte-
grated Circuit (ASIC) implementations, with their inherent developmental cost and
inflexibility. For such instruments, mainly being proposed in the 21%¢ century, config-
urable hardware (usually in the form of firmware on FPGAs), as well as software, is
extensively used. Such hybrid architectures are essential for the application of com-
puting not only for carrying out the required processing, but also to handle calibration
and reliability enhancement of the data, in real time. Newer array receivers based on
this approach are increasingly adaptive to a changing observing environment, in real
time.

It may be noted that, such a shift in the approach makes it fundamentally different
from the earlier view of the receiver architecture as a streaming, linear flow of data,
with a fixed series of computation.

The result of these advances can be seen, e.g., in the increasing number of elements

in modern arrays and the ability to carry out a variety of observations simultaneously.

1.4 Current trends in low frequency radio telescopes 8

We now provide a brief overview of some of the array and receiver designs being
currently implemented in order to provide a context for the network centric approach
of this thesis.

1.4.1 LOFAR architecture

The Low Frequency Array |22, 23| is a real-time, multi-sensor aperture synthesis
array operating between 20 MHz to 240 MHz. It is currently composed of 36 phased-
array “stations” spread over an area ~ 100 Km in diameter in The Netherlands.
Each station consists of 48 “High band” (120-240 MHz) tiles (each tile being a 4x4
grid of dual-polarization, bowtie elements), and 96 “Low band” (20-80 MHz), dual
polarization, drooped dipole elements. The telescope has four main components:
(a) sensor field stations (b) high bandwidth Wide Area Network, implemented using
10Gbps Gigabit Ethernet (10GbE) (c¢) Central Processing Facility (CEP), and (d)
software blocks for control and monitoring. Here, we focus only on the CEP.

At each station, an analog beam-former is used at each tile to generate a phased
array beam, following which the entire incoming RF band is baseband sampled, and
sent to a station digital receiver. Here, a digital beam-former implemented on recon-
figurable hardware (FPGAs) creates spectral, dual-polarization phased array beams
with configurable bandwidth and number, ranging from a single, 32 MHz beam to
eight beams with a 4 MHz spread. The combination is dictated by the total output
link bandwidth available from each station. Digitally formed beams from each station
are connected to the CEP, which carries out the bulk of the processing in software
using a large set of commodity class processors |24].

The LOFAR utilizes several of the aspects discussed above. Since rapid reconfig-
uration and multiple, concurrent observing capability is a key feature, digitization is
carried out early in the signal flow to maximize configurability, with the ability to
tap preprocessed data. Large memory at the field station is available in the form of
the “Transient Buffer Board”, which can store and forward a large (~ 1 sec) burst of
the incoming raw data, to be examined at the central station. The CEP uses several
clusters of commodity class processors, with a high bandwidth switch fabric intercon-

nect system, each being optimized for specific tasks.

Software correlator: For the main load of correlation estimation, the partic-
ular choice of commodity processor includes a three-dimensional, high bandwidth
inter-processor interconnect. A Single Algorithm Multiple Data (SAMD) approach is

adopted, with the incoming data streams being split and sent to multiple processing

1.4 Current trends in low frequency radio telescopes 9

units, each carrying out identical operations on their data streams. Here, beam direc-
tion and frequency are used to carry out data splitting, which requires a dispersion of
the incoming data (multiple beams from a single station) to the processing elements.

This dispersion is carried out in two stages, the first of which creates group of
data containing a smaller time-frequency window from all stations. This stage uses
the Infiniband switch fabric with an all-to-all connection scheme. The second stage
of fine grained switching is carried out using the processor interconnect fabric. Large
cluster memory buffers enable pipelined processing which, in turn, allows calibration
solutions to be determined and applied online, as well as to relax hard real-time
constraints.

The instrument’s agility is demonstrated by the number of simultaneous observ-
ing modes currently possible, and also by the ability of the system to accommodate
additional special processing blocks within the existing design, for carrying out cus-
tomized observations. An example of this is the Transient Detection pipeline, which

operates on bursts of raw data from each sensor, at high time resolution.

1.4.2 MWA architecture

The Murchison Widefield Array (MWA) [25] is an aperture array of 128 tiles
situated in a radio quiet region in Western Australia. One of its primary goals is the
detection and characterization of the 21cm neutral hydrogen signals from the Epoch
of Reionization (EoR) , along with the discovery and monitoring of transient and
variable sources, among others. Here, a wide field of view, large fractional bandwidth,
high spectral dynamic range and a well defined instantaneous point spread function
are necessary. Thus, the telescope operates on any 32 MHz spectral band between
80-300 MHz, with the dense inner core within a 350 m extent giving close to complete
UV coverage. Each tile is a 4x4 array of dual polarization elements (referred to as
“Bowtie” elements [25]), with an analog beam-former generating a phased array beam
of width 15 — 50° (depending on frequency) in a desired direction in the sky, within
the ~ 120° sensor field of view. Thus, the array consists of ~ 2048 sensor elements
in all, with the currently installed 32-tile demonstrator system.

The RF signal from each tile is baseband sampled at the tile, where a coarse
spectral binning of the entire 80-300 MHz band is carried out. Then, depending
on the chosen frequency window, a digital sub-band of 32 MHz is sent over optical
fibres to a central digital receiver for correlation. Here, a high resolution spectral
binning and data rearrangement for cross multiplication is carried out, before the

actual visibilities are formed.

1.4 Current trends in low frequency radio telescopes 10

In this system, reconfigurability is achieved by using FPGA hardware at all levels
of processing. However, a higher level of flexibility and lowered development time was
achieved by implementing the correlator for the demonstrator system on a Graphical
Processing Unit (GPU) based system, hosted on a commodity processor system. Here,
the commodity processor system carries out aggregation of the incoming data and
prepares it for the cross multiply, which is carried out by the GPU subsystem.

For the full system, an FPGA based digital beam-former is planned to be im-
plemented along with the hardware correlator. For maximum sensitivity, this beam-
former would require continuous updation of calibration parameters, which are gener-
ated by a real-time calibration loop operating on the incoming data. Thus, this array
also utilizes digital signal processing via innovative algorithms, in order to efficiently

carry out low frequency observations.

1.4.3 APERTIF architecture

The Aperture Tile in Focus (APERTIF) [26] program seeks to enhance the field of
view (and thus, the survey speed) of the WSRT by the installation of Phased Array
Feeds (PAF) with instantaneous bandwidth of 300 MHz over a 1000-1750 MHz range.
PAFs are arrays of electrically small antenna elements (< A/2) in the focal plane of
the reflector. These allow multiple beams to be formed on the sky, which is the
only way of forming closely packed beams on telescopes with small f/D ratios. In the
APERTIF, signals from the 121 elements making up the FPA are digitized, spectrally
analyzed and processed by a digital beam-former at the antenna base itself, which
produces 37 dual polarized beams for every sub-band. This is done by multiplying
every sub-band from each sensor with a different complex weight, and adding them
together to form the beam. Data from corresponding beams from all antennas is
then sent to a central correlator for carrying out aperture synthesis over the whole
array. The computing for just the sub-band filter and beam-former is estimated at
100 TMAC/s for 12 dishes, while each beam-former generates 178 Gbps per dish [27],
which are sent over 10GbE links to the central processor. In addition, a real-time
calibration mechanism exists which turns on a reference noise source on the reflector
surface.

In this system, the large computing is carried out using configurable hardware,
mainly because a high level of configurability is not needed from the FPA beam-
former. However, the processing is carried out digitally, and the large data volumes

require an optimized communication hierarchy.

1.4 Current trends in low frequency radio telescopes 11

1.4.4 CASPER approach

The CASPER (Collaboration for Astronomy Signal Processing and Electronics Re-
search) project [28] attempts reconfigurability of instrument design via the creation
of a library of firmware components with standard interfaces, on configurable hard-
ware like FPGAs. These components can be attached to each other to implement
commonly used operations in radio astronomy like beamforming or correlation. This
approach is much more efficient than similar attempts in software, and reduces hard-
ware development time. Also, the high compute density and low power consumption
of configurable hardware make it the only approach for larger arrays. However, the
requirement of almost real-time reconfiguration of the instrumentation for different
observing modes is difficult to meet, prompting a hybrid architecture, with the hard-

ware carrying out some fraction of the computing load.

In all the above implementations, analog signals are digitized early in the signal
flow, which results in increased configurability as well as the stability of DSP-based
subsystems, as compared to analog subsystems. Field based remote preprocessing
(due to the ability to distribute dense computing via FPGAs) is required to handle the
resulting large computing. Further, high bandwidth data transfer over digital links are
essential, as they allow larger processed bandwidths, in addition to increased spatial
extents. Finally, a variety of commodity processor based correlator implementations
can be seen, with the required data dispersion being carried out using commodity
switches. This allows for flexible receiver configurations.

It may be noted that in between pure software receiver implementations (e.g.,
GMRT) and hybrid approaches needed for arrays with a large number of elements
(e.g., LOFAR), there exists a niche for receiver architectures for medium sized arrays
with modest (~few tens of MHz) bandwidths. These do not have a computing re-
quirement heavy enough for extensive hardware offloading, yet it is diverse enough
that it cannot be carried out on commodity components without hardware support,
e.g., a receiver for the planned upgradation of the Ooty Radio Telescope. Here the
existing phased array instrument is being planned to be reconfigured as an array of
264 elements within its 506 m extent (discussed in Chapter 3, Section 3.6). Such
a niche area has been thoroughly examined in this thesis, resulting in the design
of a Networked Signal Processing System (NSPS) architecture for receiver design,

discussed in brief in the next section.

1.5 Network centric design of receiver architectures 12

1.5 Network centric design of receiver architectures

The Network centric approach proposed in this thesis leads to a signal processing
and data routing architecture tailored to the requirements of adaptive, low frequency
instrumentation. Here, the role of the network is elevated from merely a data carrier
between processors, to an entity carrying out job scheduling and load balancing in
a distributed computing scenario, by way of data routing. Further, this architecture
corresponds to the application of computing not only for carrying out the required
processing, but also to handle calibration and reliability enhancement of the data,
in real time. It utilizes dense and distributed computing, effective load and commu-
nication balancing, and high transport bandwidths over large spatial extents, which
are feasible due to recent advances in computing and communication, as well as their
rapidly falling costs.

Furthermore, an important aspect of our architecture is that it is explicitly equipped
with large and fast distributed memories across the signal processing hierarchy for ef-
fective load and communication balancing between computing elements. Since achiev-
ing high sensitivity can involve unorthodox methods of analysis (which may benefit
from accessing pre-processed or even raw data), and may require several passes on
the data in order to segregate deviant data, our architecture creates an infrastructure
which allows examination and modification of the real-time incoming data stream at
high temporal and spectral resolutions. Here, large memories allow for characteriza-
tion of data using multiple processing passes.

Our approach is, thus, a hardware/software co-design, with ability of offloading
a significant fraction of data routing, shuffling and preprocessing onto a customized
hardware layer, while the core of the computing can be carried out using commodity
processing elements. This allows us to retain rapid processing reconfigurability via
commodity processing, while the custom hardware segment contains features which
allow special algorithms to be implemented, in order to increase observational sensi-
tivity.

This approach can be highly efficient for medium-sized arrays, where net data
rates and computing are matched to commodity hardware and software resources. It
may be noted that upcoming array telescopes of the SKA category usually consist
of at least two array configuration regimes: a tightly clustered core (medium sized),
and outlier stations, spread over a large spatial extent. Our approach is thus directly
applicable to the former’s signal processing requirements. Further, though medium

sized arrays with a large cluster of spatially confined sensor elements did exist in the

1.6 Ooty Radio Telescope 13

past (e.g., cylindrical apertures with their dense line feeds), the signal available to
the user was always pre-combined, leading to a single, large effective aperture. Thus,
such existing instruments can also be interfaced with receivers based on our proposed
hybrid architecture, which can lead to much larger effective fields of view.

As a demonstration of our ideas, the Ooty Radio Telescope has been reconfigured
with a high sensitivity receiver whose implementation is based on our architecture.
We describe the salient details of this telescope next, while pointing out its suitability

for carrying out high sensitivity observations.

1.6 Ooty Radio Telescope

The Ooty Radio Telescope (ORT) [29] is a multibeam phased array system, with
its reflector consisting of a 506m X 30m equatorially mounted North-South cylinder,
operating at a nominal central frequency of 326.5 MHz. Its single polarization line feed
consists of an equispaced linear array of 1056 dipoles along the north-south focal line.
The entire telescope is arranged to have the cylinder long axis parallel to the rotation
axis of the Earth, making it an equatorially mounted telescope, and able to track the
same region of the sky continuously for upto 9 hours. Here, each dipole is equipped
with a tuned Low Noise Amplifier (LNA) (with about 50 MHz bandwidth), along
with an RF phase shifter to facilitate pointing a phased array beam in a declination
range of 0 = +45° [30].

The dipole array is organized into “modules” consisting of 48 dipoles each. There
are 22 such modules, with 11 forming the north half (identified as NO1 to N11), and
11 modules forming the south half for the telescope (identified as SO1 to S11). The
telescope is depicted in Figure 1.2, where its line feed can be seen along with the
Aluminium channel which houses an analog network for combining the outputs of
its dipoles in phase, to form the module output. This is a purely passive network,
and consists of a Christmas tree arrangement of combiners, after an appropriate RF
phase has been applied to the dipoles. The phased output of each module is down-
converted to an Intermediate Frequency (IF) of 30 MHz in the field. This is done
using a Local Oscillator (LO) signal at 296.5 MHz which is generated in a Central
Receiver Building, and distributed to each of the 22 modules using an equal length
cable network. The IF band is then transported over another set of equal length cables
to the Central Receiver Building for further processing. In the original beam-forming
receiver [31], after further conditioning of the incoming IF signal, inter-module delays

are compensated, and the module outputs combined as a phased array, using 12

1.6 Ooty Radio Telescope 14

Dipole Array
with Al.
Channel for
combiner tree

Reflector

Figure 1.2: View of the ORT cylinder, with its line feed and organization of dipoles
into modules shown.

beam-formers. To ensure high sensitivity, a per-module phase can be added to the
LO signal. Thus, the analog receiver system can generate 12 correlated, phased array
beams by correlating corresponding phased array beams from the north and the south
half of the telescope. The telescope is steered mechanically in Right Ascension, and
electronically via phasing in declination.

Although confusion-limited for observing discrete sources, the high sensitivity
(Acpp~ 8000 m?) and the equatorial mount of the ORT, makes it possible for a mod-
ern, programmable receiver to enable it with unique advantages for detection of large
scale structures and monitoring the sky for variability with high sensitivity. Keeping
this in mind, a programme is under way to reconfigure the ORT as a 264-element
radio telescope, for which the first phase targets a reconfiguration of the ORT into a
44-element telescope. In this thesis, we have applied the concepts of NSPS to design
a real time signal processing system for this first phase, as described in Chapter 3
and 4.

Further, the need for recognizing RFI in a large synthesis radio telescope and for
monitoring rapid phase fluctuations requires the output of the correlators to be exam-
ined and edited using a much higher time resolution than necessary for imaging. To
benefit from such a high resolution sampling, we have developed some tools for visu-

alization, threshold based flagging, and minimizing systematic biases in the estimates

1.6 Ooty Radio Telescope 15

provided to standard deconvolution algorithms. These are discussed in Chapter 5,
which also introduces a novel approach for calibrating the non-isoplanatic ionospheric
effects in arrays like the GMRT, using geosynchronous navigation satellites which will

be available in the near future.

Chapter 2

A High Speed Networked Signal
Processing System for Multi-element

Radio Telescopes

2.1 Introduction

A Multi-element Radio Telescope is a spatially spread array of antennas (or antenna
elements) whose noise-like responses are required to be time aligned, dynamically
calibrated and combined or correlated in real time. The resulting estimates of spatio-
temporal and spectral correlations between responses of pairs of elements can be
used to recover the desired information on the strength and distribution of radio
emission within the common field of view [15] using standard post-processing software.
Thus, the signal of interest is statistical in nature, resulting from a minute level of
mutual coherence arising from weak celestial signals buried in noise. Because of
the large number of elements and the high sampling rates necessary for bandwidths
exceeding several tens of MHz in recent arrays, real-time statistical estimation is
essential to achieve practical data rates and volumes for recording and post processing.
For instance, an upgrade of the Ooty Radio Telescope has been recently initiated,
and aims at treating the 30m x 506m parabolic cylindrical antenna of the ORT as
264 independent sets of elements, each of which is planned to be sampled at 80
MS/s, leading to a data generation rate of 21 Gigasamples per second, exceeding 80
Terabytes per hour. Till recently, computing requirements of this scale forced a choice
of custom hardware to be the most favored platform. However, rapid developments in

the fields of digital technology, communication and computing have led to a changing

16

2.1 Introduction 17

trend towards alternative approaches for upcoming telescopes. Such approaches range
between a customized and reusable hardware library of components on an FPGA
platform, e.g., the CASPER project [28], and a software-only approach, e.g., at the
GMRT [20]. The GMRT is an example of a recent transition from custom hardware
to a software-only approach.

In this chapter, we have taken a middle path, where the real-time processing of
a multi-element radio telescope is abstracted as a multi-sensor, data fusion problem,
which has been decomposed broadly into a set of computing and network function-
alities. A practical and scalable architecture for implementing such a partitioning is
enabled by current technology. Here, we present a new platform/architecture called
the Networked Signal Processing System (NSPS), which addresses this multi-sensor,
data fusion problem in terms of packetized, heterogeneous, distributed and real-time
signal processing.

The NSPS is a co-operative of two kinds of networks, among which one is a custom
peer-to-peer network while the other is a part of a commodity processor network. The
custom network includes subsystems related to the digitization for high speed data
acquisition, and all intermediate routing and preprocessing blocks as the network
nodes, in which the emphasis is on traffic shaping, on-the-fly processing and load
balancing for effective distributed computing. However, all customized protocols are
absorbed while crossing over the last mile to interface to the commodity processor
network using a common industry-standard network protocol. The actual estimation
of the correlations is carried out by nodes on the commodity network.

In contrast to the traditional use of a packetized network as merely a data trans-
port fabric between processing entities, we use the notion of “a logical packet” based
on an application specific “Transaction Unit”, which itself may be composed of a
large number of physical packets, whose sizes are network-specific. This unit refers
to a time stretch long enough to facilitate a dynamical flagging mechanism or/and to
relax the constraint on timing, synchronization and scheduling of workloads on the
commodity Operating Systems, on which processing is expected to be carried out.
Both these requirements necessitate lower level NSPS nodes to be equipped with large
memories, which are also used to route traffic selectively (traffic shaping) to higher
levels in the NSPS. Two independent considerations have led us towards stretching
the transaction unit to a good fraction of a second. One of these, as explained above,
is to provide latency tolerance in order to simplify software on standard computing
platforms, while the other arises from a desire to make explicit provision for prepro-

cessing using concepts related to Modern Information theory, as discussed in [32].

2.2 Network centric approach to array signal processing 18

Another concept in literature which we find useful in the present context is that
of “multi-sensor data fusion”, defined by [33], as a system model where “spatially and
temporally indexed data provided by different sources are combined (fused) in order to
improve the processing and interpretation of these data”. This model, widely used in
applications like military target tracking, weather forecasting etc., has many features
relevant for describing the control flow and pre-processing required in a multi-element
radio telescope before correlation. In a sense, the NSPS is an adaptation of the data
fusion architecture to our domain. Our analysis of the nature of the real-time problem
results in a natural partitioning into two broad categories as elaborated in Section
2.3. This is our primary motivation for defining the NSPS architecture, described as
a Fusion Tree in Section 2.4. In the next section, we provide a motivation for defining

a network centric receiver architecture.

2.2 Network centric approach to array signal pro-

cessing

The inherent nature of distributed data sources, due to the spatial separation of the
antenna elements, suggests that it is important to consider data transportation to a
central location and its distribution to various processing elements, to be part of signal
processing architecture. However, for the special case of a correlator implementation
on commodity hardware, networks can play a bigger role than as mere data transport
mediums. In this section, we highlight the diversity and centrality of networks in an
array receiver, and the role of effective network management on the efficiency of the

commodity component utilization.

2.2.1 Telescope array as a distributed computing environment

The current trend in telescope arrays of deploying a large number of elements with
smaller individual collecting areas, to obtain the necessary collecting area (and hence
sensitivity), requires large scale computation. However, the computing loads for even
moderately sized arrays with software back-ends (e.g., GMRT, or the 40-element
ORT) are too large to be sustained on typical commodity computers, unless a high
performance cluster out of many such nodes is formed. Thus, an array receiver
with a software backed, needs to manage and optimize the usage of several kinds of

networks: (a) long haul network which brings in data from remote data sources (b)

2.2 Network centric approach to array signal processing 19

Custom Commaodity
) : network
switch Bridge Lol
Data | I Memory
Source . as a
— [l N Switch
5 o "
Data 2 _ o 2 | < 2
Source < — - " g - £ .
ot — [e] Q L = =
] /] (] =)) o -
3] 0 o o > =
g - o > = = o
. = ol 2 o = 2
Data < 8 5 g . & i
Source o = = O =
D_ -
© > ©
© @ = = —
S o = (U]
Data 5 T S -
Source B
- Processor
Custom Custom Commaodity core
peer-to-peer peer-to-peer switch Network

network network

Figure 2.1: Schematic depicting the various networks in a commodity processor based
receiver.

high bandwidth network between a group of local commodity processing systems, and
(¢) intra-processor network between the many cores making up a modern processor.
These are depicted in Figure 2.1, with the shown network technology specific to our

implementation.

2.2.2 Load balancing, job scheduling and synchronization in a

distributed configuration

As in any distributed computing system, there is an inherent need for partitioning
the incoming data, and the subsequent scheduling of such individual partitions, onto
the multiple processing elements (i.e., load balancing), in an array receiver. This
load balancing needs to be carried out in an optimal fashion, such that a processors’
waiting time for data partitions or synchronization events is minimized, leading to
individual processing entities remain mostly active. Further, the correlation process
requires a fine-grained synchronization between data sources, which also needs to be

maintained to maximize coherence.

2.2 Network centric approach to array signal processing 20

Further, efficient handling of the increased 1/O requires analysis of two aspects:
(a) Adequate choice of network protocol stack, which can affect the number (and
hence management) of processors, and (b) Proper and efficient routing of all data
between processors, which ideally matches their processing bandwidth, with the data
rate associated with them. Thus, a high bandwidth network link should terminate
into a set of processors via a switch such that the entire processing for all data on the
link should be feasible using that processor set.

In our approach, data is delivered by various subsystems to a receiver network
by terminating networking links into appropriate switches of various kinds. This is
in contrast with conventional approaches, where usually a processor is exclusively
required for bringing data into the commodity processors’ domain.

The current state-of-the-art systems, consisting of 8-12 processing cores per server,
are typically able to process correlations at ~ 40 MS /s per core, for a 40-element array.
This corresponds to a ~ 100 MBps rate, which is well suited for a GigE link. Thus, a
higher data rate protocol has not been chosen, in order to match the processing and
I/O bandwidth per core.

2.2.3 Commodity processors for correlations

Correlator I/O requirements: When implemented with commodity processors,
the processing in a correlator turns out to be I/O bound due to several reasons.
Firstly, apart from the large volumes of data generated, the correlation operation also
has a low compute to I/O ratio, implying that only a few operations are carried out on
each byte after its arrival from the I/O subsystem, before it is written back. Further,
the estimation of Cross Power Spectra results in an increase in the I/O handling
requirement by a factor of N/2 (where N is the number of elements), before data-rate
reduction via accumulation can take place. In addition, the drastic increase in 1/O
due to the all-to-all connectivity required to carry out cross multiplications, ultimately
results in processors remaining idle and waiting for data to arrive. Thus, the process is
fundamentally I/O bound, with processing elements waiting for appropriately aligned
data blocks to reach them, before carrying out the correlation process.

We now examine a conventional software correlator’s 1/0O, computing hierarchy,
and its distributed computing environment.

The GMRT software correlator [20] utilizes MPI on a 48-node Xeon cluster, and
has a typical approach to the parallel correlator implementation. The total number

of Xeon cores available is ~ 112, with the system’s total incoming data rate being ~ 2

2.2 Network centric approach to array signal processing 21

GBps. In addition, correlations between 64 elements are computed (2 polarizations of
32 antennas). The system has a dedicated acquisition cluster, consisting of a set of 16
nodes, each containing a group of four digitizers bundled on a PCI-Express board, on-
board a Xeon class machine. It may be noted that this layer is needed purely because
of the use of a bus-based interface (PCI-Express), whose bandwidth further restricts
the total data streams available to an acquisition layer processor to four. Further, the
data dispersion for correlation is realized using commodity GigE switches, which route
the dispersed data to a real-time computing recording cluster, consisting of 16, quad-
core Xeon nodes. Such a dispersion still requires synchronization between different
nodes of the compute cluster, over the GigE network.

The GMRT utilizes software barriers in order to synchronize processes operating
on partitions of the data flow. Such barriers fundamentally cause the processors to
idle while waiting for all other processes to reach the same state of computation. In
addition, extra communication overhead is incurred on an already congested network
between processors, when a barrier implementation ascertains synchronization. This
effect is enhanced for the fine-grained synchronization required in streaming correla-
tors, leading to suboptimal processor utilization. Further, scheduling of jobs across
processors, or of a temporal decomposition of jobs on the same processor requires
a job scheduler, which is an important part of MPI-like implementations. However,
these job schedulers are complex, and require periodic status updates of the candi-
date processors, thus making them non-optimal for correlators, where there is a very
strict, and constant relationship between various processors and their data. Thus,

correlation processes are best served with very simple and deterministic scheduling.

2.2.4 Network centric approach

We have introduced a peer-to-peer network implemented within the custom hardware
domain, to co-operate with a commodity network (e.g., in a High Performance Cluster
(HPC) computer) in order to satisfy the overall requirements of real time signal
processing. Two independent functionalities are fulfilled by the peer-to-peer network:
(a) concentration of data from spatially distributed antenna elements onto a single
location, and (b) distribution of this data among the multiple processing nodes of an
HPC (i.e., data partitioning and load balancing).

In our approach, we have reduced the need for fine grained synchronization in
order to improve processor active periods. This is achieved by making all data per-

tinent to a compute set, available to a processor locally, and on demand. Further,

2.3 Real-time processing requirements 22

the all-to-all connectivity between data sources required for correlation is carried out
using the local memory of the processing element, which is more efficient than using
traditional connectivity. This is implemented via a simple data rerouting within the
peer-to-peer network. The re-routed data can then be transmitted to other similar
processors in a time multiplexed fashion, which is found to be efficient in reducing
overall communication between processors. These rerouting operations can be conve-
niently carried out by introducing a data concentrator and router in the path, before
the data reaches the processing element. Further, the fine grained synchronization
constraint on the incoming data can be eased by the introduction of memory buffers
on components within the data path, into which high bandwidth data can be writ-
ten in chronological order of timestamp. This approach also minimizes the effects
of missing data on the synchronizing process, as well as allows processors with soft
real-time and variable latency responses, to be employed in a strict real-time system.

Thus, our approach is Network Centric, where the receiver is seen as a cooperative
of networks, due to a large fraction of the above mentioned functionalities being
implemented within the custom, peer-to-peer network.

The next section categorizes real-time processing requirements, in order to opti-

mize implementations of each category.

2.3 Real-time processing requirements

Without getting into specific details of the real-time processing required for a large
multi-element radio telescope, we abstract them into a combination of three broad
categories:
o Embarrassingly parallel processing, e.g., spectral decomposition of the incoming
time series (say via FFT or polyphase filter banks) and the recognition and
management of path-induced distortions/interference on timescales significantly

smaller than the integration time chosen for the correlations.

* Pipelined processing, e.g., multi-beam formation (say K beams) by phasing N

elements requires Klogs N pipelined operations for each spectral band.

® Data Fusion operations, in which the data originating from different antenna el-
ements are hierarchically fused (combined via routing and application-dependent
processing) along a chosen set of dimensions which include time, frequency and

spatial spread.

2.3 Real-time processing requirements 23

The most important fusion operation for an antenna array is the real-time correla-
tion of signals from every possible pair of antenna elements in different frequency
sub-bands. Apart from being an O(N?) process (for an N element array) from a
computational point of view, this brings in the additional complication of routing
large volumes of distributed data to appropriate data processing elements to provide
a complete-graph connectivity between the sources of data and processing elements.
Significantly, cross-correlation between all possible pairs of signals is also essential for
using self-calibration techniques to enable dynamic calibration of instrumental and
atmospheric contributions to the data corresponding to different elements, before
they are subjected to an irreversible fusing operation in a phased array. This makes
a spectral correlator an implicit requirement, even for a phased array, for minimizing
the irreversible loss of information resulting from distortions induced in the the path
or the local environment.

In our approach, we bifurcate the requirements of a real-time system into Com-
modity and Custom segments. In the current state of technology, the commodity
segment can be fulfilled by subsystems available in the market while the custom seg-
ment can generally be realized on the basis of customized hardware and/or firmware
layers based on COTS technology. Such a bifurcation is explained below for different
functional categories of the NSPS:

2.3.1 Computation

e COTS Segment: Computationally complex and/or latency tolerant processing,
typically realized on a programmable platform ranging from workstations to a

high performance cluster.

e (Custom Segment: Latency critical, logic intensive and repetitive pattern of de-
terministic processing, well suited for a configurable platform, typically FPGA-
based.

For efficient computation, we pay special attention to reducing coupling between data
in order to target explicit parallelism at all levels of processing. Multiple parallel cir-
cuits are implemented in the FPGA-based custom segment, while the current trend of
multicore processors with access to shared memory is exploited in high level software.
Further, the desired high signal bandwidth and large number of antenna elements
make the processing complex and compute intensive. This aspect, and the advantage
of quickly implementing exploratory algorithms, make a commodity compute clus-

ter an attractive choice for the central computing. This is recognized by explicitly

2.3 Real-time processing requirements 24

including the cluster in the COTS segment mentioned above.

2.3.2 Data routing

e COTS Segment: Commercial switches with all-to-all connectivity are used for
data routing to commodity processors and broadcasting in the last mile, as well
as for load balancing. The routing is controlled by manipulating the destina-
tion addresses on data packets. Connection-less protocols like User Datagram
Protocol (UDP) are adequate for high-speed, streaming applications where a
small fraction of lost packets does not affect performance adversely. Packet
collisions are minimized in full duplex, point-to-point connections between net-
work partners, and also because data flow is extremely asymmetric. Further,
the criteria for load partitioning discussed in Section 2.4.8 very often result in
under-utilization of link speeds to match them to sustainable processing band-
widths.

o (Custom Segment: Customized switches with static routes for traffic shaping
are relevant when only a subset of the network data needs to flow to a subset
of the nodes based on certain conditions. They are generally implemented in

configurable logic.

Since many FPGAs support Gigabit Ethernet MAC as a hard (or publicly accessible
soft) IP, this feature is useful while introducing a bridge between the peer-to-peer
network and the commodity network in the last stage of the custom segment. In
addition, some or all the major subsystems may have management support from an

embedded or explicit on-board processor.

2.3.3 Protocol and network topology

o COTS Segment: A commodity network compatible with a typical high perfor-
mance compute cluster, which includes Gigabit Ethernet as a de facto standard

for interfacing with external systems.

o (Custom Segment: A peer-to-peer network which may include significant on-
the-fly application specific operations, suitable for implementing on a standard
FPGA platform.

An implementation of the actual processing on a dedicated set of identical hard-
ware circuits or parallel processors can take advantage of an intelligent network ca-

pable of elementary on-the-fly operations to achieve a balance on the dataflow and

2.3 Real-time processing requirements 25

Externally generated
side Information
(phase solutions, flagging information)

Ve

/

Y

Streaming data
from Upstream nodes

» Data Router |—>
»| Data Router |—>

Multi-pass

processing

\J

Traffic shaping

Large Memory buffer

A

N

Side information|for next level
v

Figure 2.2: Data Pooler node of the NSPS shown carrying out data fusion and traffic
shaping.

computing requirements. This is depicted in Figure 2.2, where a “Data Pooler” node,
as defined in Section 2.4, is shown carrying out real-time fusion of the streaming data
by using the side information made available by external sources. At the same time,
the pooler is seen generating side information out of the fused data set by way of
multiple processing passes on the stored data. The pooler can then segregate the
data, and route the segregated components to different data sinks using the routing
information available with the peer-to-peer link nodes. We use “traffic shaping” here
in a more general sense than in Internet traffic shaping (which delays lower priority
packets in favour of better network performance of higher priority packets) to refer
to both segregation of the incoming stream, as well as the specific routing of segre-
gated data to different sinks. Further, the efficiency of hierarchical computation can
be significantly improved by accommodating some degree of pre-processing and/or

partitioning of data in each level of the custom segment to facilitate the next level.

2.3.4 Process scheduling

e COTS Segment: The overall task supervision, command and monitor, user
interface and the dynamic system monitoring are tasks whose complexity is
best left to the commodity segment to handle, where a variety of tools ranging
from MPI, compiler resources and advanced operating systems like Linux or

VxWorks are available.

e Clustom Segment: Event driven scheduling with periodic or quasi-periodic events

2.4 NSPS as a Fusion Tree 26

generated conveniently in a low latency logic implementation suitable for an
FPGA. The interval between the events is stretched to handle an application-

specific transaction unit to the extent permissible within the available resources.

2.4 NSPS as a Fusion Tree

In this Section, we present the NSPS architecture as a Multi-sensor Data Fusion
Tree, in which both conventional and “virtual” sensors play a role. While entities
like antenna elements, round-trip phase/delay monitors, noise calibration etc. can
be treated as “conventional” sensors, “virtual” sensors result from processing blocks
at various levels. For instance, pre-processing can result in a flagging mechanism to
improve the reliability of fusion systems like correlators, in which the original data is
erased while compressing its information into a statistical estimate, to be passed to
the next level.

The signal processing system proposed in this paper is a set of spatially separated
nodes of varying communication and processing capabilities, which are interconnected
by a customized high speed tree-like packet switched network interfaced to master
commodity nodes. This is equivalent to a Data Fusion Tree, with the nodes of the tree
performing operations like traffic shaping, packet routing, or pre-processing before
data fusion. Accordingly, we have described the overall architecture of NSPS in the
form of a fusion tree, schematically represented in Figure 2.3. However, each level
provides a different mixture of functional capabilities. This has resulted from our
recognition of the following features of the functional requirements:

e Distributed computing across many nodes of different processing capabilities,

with local parameters guided by a processor capable of seeing a subset of all
data.

e Data routing nodes with configurable routes for routing preprocessed data sub-

sets.

e Nodes with large memory buffers to enable multiple passes on data, also for

enabling memory based data transposition.

e A High speed network interconnecting all nodes, with ability of COTS nodes to

tap into the network.

e Interface to a master commodity node through a standard interface like Gigabit
Ethernet (GigE).

Thus, from a functional point of view, we classify the nodes in NSPS into the following

2.4 NSPS as a Fusion Tree 27

three categories:

1. Data Poolers/Fusers: Nodes with sufficient on-board memory to allow packe-
tizing and multiple processing passes on incoming data. These break the need
for many-to-many connectivity in the correlation process by transposing data
via memory based switches. The transposition, based on different parameters,
ultimately serves a packet of data suitable for processing by a single element of

a distributed system in an embarrassingly parallel manner.

2. Data Routers: These elements are endowed with high speed links to either
peers or more powerful processors to whom incoming packets are routed based
on statically configured routes. These form an integral part of our architecture,
helping in the load balancing by directing appropriate subsets of preprocessed
data to different processing elements. We use commodity switches for routing
data to multiple external sinks by forming many-to-many connections between

data sources and data processors.

3. Data Processors: These elements have high compute density and can be used
for preprocessing, as well as for data rate reduction. We classify processors into

two groups as mentioned earlier:

(a) Those catering to computationally complex and/or latency tolerant pro-
cessing, an example of which is the estimation of system calibration pa-
rameters based on a long (few minutes) history of data, and its dynamic
updation. This processing is generally carried out by sending a subset of

the data to a central processor.

(b) Latency critical, logic intensive and repetitive pattern of deterministic pro-
cessing. An example of this class is the real-time block-level data encoding
process requiring the estimation of block level statistics. This can be car-

ried out by multiple passes on small segments of data.

Thus, we visualize the NSPS as a restricted distributed system, depending primarily
on stripped down lightweight networking protocols and the static routes set up during
system configuration. Data routers, both customized and commodity, play an impor-
tant role in reorganizing data to be computationally palatable to processing nodes in
this scheme. A master node is in charge of command, configuration and control, and
is almost always a commodity node like a PC. It may be noted that custom process-
ing is spread across the NSPS tree by explicitly advocating local intelligence in every
node. As an illustration of the inherent facilitation of distributed processing in the

NSPS, some important aspects of the interconnection mechanism are elaborated in

2.4 NSPS as a Fusion Tree 28

Customised, Peer-to-Peer hardware domain

. 1 ; 7™\

ADC ’ PPL 4—‘ PPL ADC ADC | PPL 4—’ PPL ‘ADC
DPB DPB oo o DPB . DPB
Peer-to-Peer Packet | PPL .._ ... PPL ‘ Peer-to-Peer Packet

’ ' Switch and Data Pooler

L Switch and Data Pooler | 1
\ oo o %

- = = —[Central Pooler and Peer-to-Peer to Commodity network bridge]* - = =
] il il

/l \(iolm modit;/ Switch : Ij \

GP ||« I @GP Commodity hardware
CPU LCPU domain

R S

GP | |« »| GP
\ CPU CPU /

' DPB Data Processing Block | PPL | Peer-to-Peer Link

Figure 2.3: Conceptual layout of a Networked Signal Processing System architecture
showing the principal participating entities.

the following subsections.

2.4.1 Fusion tree interconnection model

Interconnects in the Data Fusion Tree consist of the following four essential graphs,
which can either be logical or explicitly physical manifestations.

1. Data network is a simplex, high bandwidth net connecting the leaf nodes of the

Fusion Tree to a central processor, possibly passing through several collation

levels of the signal processing tree.

2. Control and Monitor network is a full duplex, low bandwidth network and in-
terconnects all nodes hierarchically through management processors to a central

monitoring station.

3. Calib network is a full duplex, low bandwidth network. This allows calibration
information to reach the data fusing nodes before the sequence of irreversible

fusion operations take place.

2.4 NSPS as a Fusion Tree 29

4. Clock network is a full duplex network, providing the distribution of clocking
signals to the various nodes, as well as allowing a round trip clock phase mea-
surement.

In actual implementations, it may be simpler to realize these in terms of a set of
simplex networks, among which clock, control, monitor and calib are directed towards
the leaf nodes while the data and status (including response to monitor queries) belong
to simplex networks which flow from different levels of the fusion tree into the master
node.

Our network implementation can be bifurcated into the following sets:

1. Customized high speed serial peer-to-peer links terminating into peer-to-peer

switches which implement a subset of the complete graph connectivity.

2. Commodity high speed serial links terminating into commodity networking
equipment, with ability to interface to standard processing nodes.
In typical implementations, we expect custom links to be on a Passive Optical Network
(PON) based communication stack. Gigabit Ethernet is the preferred choice for the
backbone of commodity segment to connect to the custom network.

We exploit the high speed serializing ability of modern FPGAs to dispatch data on
high bandwidth copper links and use PON components to meet the spatial spread re-
quired to reach remote nodes over fibre links. As long as the bandwidth requirements
are met, no specific preference is implied for a choice among different networking
technologies. Thus, some implementations may utilize the embedded multi-gigabit
serializers in FPGAs for peer-to-peer links while others may refer the cross dispersion
of data to a compute cluster’s high bandwidth infiniband network, or use commodity
Gigabit Ethernet. This leads to the need for a flexible bridging mechanism which can
be exploited by implementations. For instance, data can be conveniently transmitted
over a peer-to-peer or a commodity link due to the maintained commonality of their

interfaces.

2.4.2 NSPS tree network characteristics

The high speed network internal to the NSPS tree has features which are restricted
and stripped down versions of those found in commodity networks. This is an op-
timization due to the highly controlled network which exists within the telescope
receiver environment. Our network differs from regular networks in several aspects:
e A controller node is assigned for every sub-tree at a given level. This entity

forwards command and status information between controller (level-0) and up-

2.4 NSPS as a Fusion Tree 30

stream levels. Thus, it is not a typical peer-to-peer network which does not
have such a hierarchical control structure. Broadcast and multicast domains
available in commodity networks are used to implement control and monitor
mechanisms, while explicit “pull” mechanisms are implemented on the custom
network. Here, the “pull” refers to the explicit request for data made by a
downstream node to an upstream node. The advantage of a “pull” mechanism
is that data is made available to a downstream node only when it is ready
to handle the data, as inferred from the downstream node’s request. Also, if a
downstream node is busy, then the upstream node loses data in integral packets,

thus maintaining timing information.

e The network configuration and routes are fixed statically in an application de-
pendent manner at configure time. There is no node discovery, and data routing
does not have an explicit mechanism for handling node failure. Since all data
flows towards a logical sink, there is also no destination address, although source
addresses can be preserved. This simplifies network management to a large ex-

tent at the cost of non-redundancy of NSPS entities.

e Communication protocols: All elements in our network, including master nodes,
generate similar kinds of packets which contain an 8 byte header with fixed
fields. These are typically indicative of the nature of accompanying data, as
well as its timestamp, source and other meta information. System state can
also be propagated through these packets, or by forming special status packets.
The restricted meta information processing makes it simpler to realize packet

formation in hardware with simple state machines.

e High speed serial interconnects: All entities in the internal network commu-
nicate via high speed serial interconnects with a clock recoverable from the
encoded data. This approach allows us to transmit data long-haul over fibre,
or short-haul over copper without any changes. In particular, we discourage

bus-based interconnection between physically separated nodes.

2.4.3 Interface to external network

Once preprocessed data is ready within the NSPS, it needs to be transferred onto a
commodity network for reaching commodity nodes for post processing or archiving.
Local intelligence in the peer network can be used to partition the data such that the
interfaces to commodity nodes use link speeds commensurate with their processing

ability. For simplicity, we have used Gigabit Ethernet as a typical standard external

2.4 NSPS as a Fusion Tree 31

interface. This is a popular high speed serial interconnect with a vast amount of
infrastructure available in the commodity market. It also allows transmission over
copper (UTP) to interface directly with commodity servers, or fibre (via conversion to
1000BaseX) for long-haul transmission. Commodity servers of moderate ability can
then be used as data sinks with minimal customization. This is also motivated by
the fact that many modern FPGAs have embedded high speed serial interconnects on
chip, with complete Gigabit Ethernet support in the form of on-chip Gigabit MACs
or as publicly available libraries.

For the last mile connectivity, UDP can be used since it is a simple connectionless
protocol with minimal overheads on top of IP. It is also possible to fill the relevant
UDP fields during system configuration, and hold them static for the duration of
an observation. Each of the internal network types carrying data (Data, Calib and
Control) can then be easily made available over a different UDP port as part of
the design. This allows an application program to associate independent threads to

service these streams.

2.4.4 Control and Monitoring network

The distributed nature of our architecture requires status monitoring of all nodes and
links, which can be handled by the individual sub-tree roots and communicated to the
master controller. This is implemented by a status “pull” scheme by which controlling
entities periodically query the status of all nodes in the NSPS tree rooted with them
by way of a special AYA (“AreYouAlive”) packet. The nodes respond with an TAA
(“TAmAlive”) packet containing selected status information. Similarly, control packets
contain command and configuration data. Each command packet typically results in
a status reply from the targeted entity, which confirms the receipt of the command,
and regenerates a control packet for the entities controlled by it. The master node
can use this in an appropriately scheduled housekeeping operation to discover failure

of nodes.

2.4.5 Calibration network

This network is meant to carry data from the NSPS tree which is relevant to form-
ing calibration solutions for the array. The calibration mechanism is to be applied
differently for the two main modes of observation with the NSPS:

e In the interferometric mode, the correlator can work independently of the ac-

tual gains and phases of the sensor elements, since the observations include

2.4 NSPS as a Fusion Tree 32

calibration scans at reasonable time intervals. Off-line processing can infer in-
termediate variations by supplementing interpolation between calibration scans
with dynamic calibration schemes like self-calibration based on the partial, low

bandwidth dataset available over the calibration network.

e On the other hand, real-time beam formation includes an irreversible fusing
operation which requires dynamic calibration to be part of data fusion. For-
tunately, it is often possible to use a relatively small subset of the data (non-
contiguous timeslices or a chosen frequency sub-band) for this purpose to enable
short term predictions of gain variations. These can be fed to the fusing nodes
well in time before irreversible fusing operations are performed. Since the com-
plexity of the actual algorithm used for calibration makes it better suited for
a general purpose computer, the calibration network can be used to route the
relevant subset of data to a commodity switch and deliver the calibration pa-

rameters to the appropriate NSPS tree level.

2.4.6 Clock network

In the spatially distributed, direct RF sampling NSPS architecture, clocks passed to
samplers have very stringent signal quality constraints in terms of net jitter and sta-
bility. The alignment of the multiple data sources before fusion requires high relative
stability of the sampling clocks with random jitters much smaller than the reciprocal
of the highest frequency in the sampled signal. Clock distribution should also include
a mechanism for ensuring the traceability of timekeeping at all digitizing blocks to
a centrally maintained time standard to a very high accuracy. The implementation
can benefit from commercial clock distributors which have embedded phase-lock loop
clock synthesizer with on-chip Voltage Controlled Oscillator (VCO) and a per port
delay tuning for the distributed clocks.

2.4.7 Data network

All data flowing in the NSPS is packetized with a custom, low overhead header.
All subsystems accept and generate data in a packetized fashion. This reflects the
inherent asynchronous nature of our system. Packets traversing our platform are
atomic and capable of independent existence. The packetizing of data means that
data loss due to network congestion or buffer over-runs is never arbitrary, but always
in units of packets. At any instant, our network can have different kinds of packets

traversing it, corresponding to different stages in the processing. The basic unit of

2.4 NSPS as a Fusion Tree 33

packet size is maintained as 8 bytes, which is a natural unit or sub-unit for different
memory and processing hierarchies. Adequate padding is used if necessary to maintain
this condition. The header is mandated to have a few fixed fields which are common
in size and layout across packet types, allowing processing entities to examine packets
which can be processed by them, while discarding the others. In a broadcast network,
this approach can waste bandwidth when packets are discarded, but the wastage can
be minimised by setting up static routes between partner nodes. This is possible in
both the custom and commodity peer-to-peer link nodes. The Command network,
on the other hand, is a broadcast network, with nodes passing on commands not
addressed to them to all other nodes downstream of themselves. Data sources can
include packet specific extensions to the packet headers generated by them. The
following fields are suggested as a mandatory part of the packet header:
e Source identifier: At every level of the tree, nodes are endowed with a unique
identifier which supplants the existing upstream source id, if any processing is

carried out on the packet.

e Datatype: This field allows processing entities to recognize which packets are

palatable to them and to reject others.

e Data pixel descriptor: This field lays out the size and description of the smallest
unit of data transfer to be one of an allowed set, which is implementation

dependent.

e Streams: This field records the number of independent signal sources present

in each packet.

e Packet size: The size of a packet is expressed in units of words as specified by
the datatype field.

¢ Timestamp: This field is populated as early as possible in the data generation
path and maintained across data processing. This field is generally populated
by a timestamp counter running on either a reference clock or on the sampling
clock itself and is traceable to the centrally maintained time standard.
This specification is efficient for real-time streaming data description with minimum
overhead. For archival of processed data, a standard format which allows multiple
binary streams to maintain their identity, like the FITS or VLBI Data Interchange
Format (as proposed by the VDIF Task Force (2009)) can be used.

2.5 Discussion 34

2.4.8 Load partitioning and scheduling

No subsystem in our scheme is source synchronous, be it at the hardware or the soft-
ware level. All subsystems have enough memory for a store-and-forward of several
packets. This allows the processing to happen at the packet level, on a faster clock
than the sampling clock of front end ADCs. It also eases the timing requirements
of designs implemented in FPGAs and makes them more tolerant of clocking errors.
Sequencers play an important role in our architecture, generating events on which the
processing progresses. The sequencers generate necessary globally aligned events to
which any action taken on the basis of commands from commodity network will get
aligned. A simple example is an implementation where all processes in the peer net-
work operate at a block level, with a periodic event signifying the need for scheduling
a new process as a result of the arrival of a new block of data.

It is important to match the communication bandwidth to processing abilities at
every level in the signal processing tree. More specifically, event markers generated
by the sequencers should facilitate a partitioning of processing in each level into
abstract transactions, where each transaction deals with the entire data collected
over a convenient timeslice and the relevant data are locally available on demand.
In particular, it is desirable that processing at the central commodity segment is
facilitated at a cadence suited for general purpose operating system scheduling to
achieve latency tolerance. For instance, to be commensurate with a housekeeping tick
of 10 milliseconds in typical Linux configurations, the transaction timeslices should

be several times longer.

2.4.9 Choice of fusing dimension

Among the available axes in processing space along which the data can be partitioned
and distributed to parallel processors, the time axis is often the most convenient for
slicing, as individual timeslices can be considered independent. For a large network,
we realize this from a hierarchical set of Data Poolers populating different levels of
the processing tree, which can collate data from different sources and partition them

along the time dimension at each level.

2.5 Discussion

While asynchronous, packetized processing over standard networks is a relatively new

concept in radio telescopes, it is being embraced enthusiastically due to the many

2.6 Conclusions 35

benefits it offers to the system designer. Even among this class of telescope data
processors, contemporary architectures usually have a direct link from the samplers
to the central processor. Some operations like a digital filter bank or FFT are carried
out remotely, while others like cross-correlation is done centrally. The memory-rich
architectures of modern FPGAs help in distributing computing to remote nodes and
enables buffering to allow multiple passes on the streaming data. As the data volume
grows, e.g., in the central pooling stations, the processing can be supported by large
off-chip memory using commercial memory modules, routinely supported by modern
FPGAs. This provides substantial enhancement to buffering for transaction level
operations and data partitioning. The use of standard software stacks also allows
us to leverage the various high performance modes being worked upon by system
optimizers, e.g., the zero copy mechanism on Linux.

Another challenging problem with large arrays is the so-called corner turning
problem, which refers to the transposition of the input signal matrix needed to achieve
the all-to-all communication necessary for correlation. Earlier approaches have looked
at either commercial switches or entirely customized switches for routing data|34].
We break this problem down into levels, and apply a hybrid of commercial as well
as custom routing. The Data Pooler element is utilized to implement a memory
based switch, while the COTS (GigE) network controller manages another level of

redirection by manipulating UDP destination addresses.

2.6 Conclusions

We have presented a packetized, heterogeneous and distributed signal processing ar-
chitecture for radio interferometric signal processing which elevates the network to a
core system component. The architecture addresses some of the core issues pertaining
to interferometric signal processing. We visualize this problem as that of an appro-
priate workload creation and scheduled dispatch to matched processors over a data
flow tree. Here, the leaf nodes are sources of data, with data processors handling a
managed slice of the processing at the intermediate nodes of this tree. We emphasize
the use of COTS components, both hardware and software, for rapid deployment,
ease of maintenance, and lowering the cost of the architecture implementation.

The goal of realizing a programmable telescope with NSPS is facilitated by defin-
ing rigid interfaces between both hardware and software components. This can allow
exchange of a variety of data with varying communication and computing require-

ments between levels in the network. Most of the individual nodes in the NSPS can

2.6 Conclusions 36

change the nature of their processing within the limits specified by their designed
personality and available resources at the node. This allows offloading of computing
requirements in a hierarchical manner up the NSPS tree, trading off implementation
time with hardware capability of an application mode. Due to the rigidity of inter-
facing protocols as well as the standardized networks making up the system, we can
comfortably add nodes which can tap into the NSPS in order to carry out a different
processing chain. Data duplication, if required, can be carried out by COTS com-
ponents (e.g., by switches operating in broadcast mode) thus reducing development
load.

We have presented an outline of the NSPS implementation being planned for
configuring the ORT as a programmable 264 element telescope. Our architecture
is optimally tuned to service the needs of medium sized arrays. We advocate full
software processing for smaller arrays, with an increasing factor of hardware offload
as the array size grows. This approach has being taken by us in building a 40 element
demonstrator as a precursor to the receiver for the full 264 element ORT array. This
receiver exploits all NSPS aspects we have dwelt on, and is in an advanced stage of

completion.

Chapter 3

NSPS Implementation for Ooty
Radio Telescope

3.1 Introduction

The Ooty Radio Telescope (ORT) is currently undergoing a major upgrade as part
of a plan for its reconfiguration into a programmable array, with enhanced sensitivity
and an order of magnitude increase in its field of view. This will be achieved by
effectively digitizing every 1.92 meter section of the 506 m line focus of the ORT
cylinder, leading to an equispaced, linear array of 264 antenna elements. In the first
phase of this upgrade, the ORT has been reconfigured into a 44 antenna element array,
by tapping the 327 MHz RF output of every half-module (which is itself constituted
of a phased array of 24 dipoles) of the array.

In this chapter, a real-time processing system for this array is presented. This
system, based on concepts of the Networked Signal Processing System (NSPS) ar-
chitecture, consists of prototype custom hardware implemented as a test-bed for the
major NSPS architectural concepts, as well as a full software backend. Thus, the
focus of the current work was on validating the new RF sub-systems and digitizers
for the upgrade and establishing efficient protocols for the custom and commodity
network sections of the NSPS. In addition, critical aspects of the sampling clock dis-
tribution and synchronization between the distributed data sources, as well as data
acquisition into the commodity hardware levels of the NSPS, have been addressed. A
part of the processing and large memory management required by the NSPS architec-
ture has thus been simulated in software running on commodity hardware. Further,

the data I/O and processing throughputs sustainable on the target hardware were

37

3.1 Introduction 38

found to be adequate for implementing a real-time receiver for the 44-element array,
although the full 264-element receiver implementation would require some aspects of
pre-processing and data routing to be shifted to configurable hardware. It may be
noted that although the full upgrade implementation is complicated due to the larger
number of communicating entities, many of the main concepts of the NSPS have been
demonstrated in the presented digital receiver implementation.

Thus, in this chapter, we present technical details related to reconfiguring the
ORT as a wide-field instrument equipped with a sensitive, interferometric receiver,
from its current role as a phased array telescope. Such an upgrade leads to increased
sensitivity, field of view, high temporal and spectral resolutions, in addition to the
ability to rapidly reconfigure the instrument. These features enable several new classes
of observations, notably, faster surveys, searches for variability in the sky via rapid
sky monitoring and high sensitivity observations of large scale structures.

It may be noted that out of the 44 half modules initially released with the upgraded
RF signal conditioning subsystem, 4 half modules at either end of the array (S11
and N11, north and south) are being used to carry out RF validation of various
subsystems, and are not considered in the description presented here. Thus, a 40-
element RF system has been commissioned, and these 40 elements alone are interfaced
to the upgraded digital receiver, although the software backend is flexible enough
to incorporate the additional elements. Here, the interferometric receiver system
is an implementation of the NSPS architecture, which deals with enabling a high
speed, scalable, communication and signal processing network, as well as providing
the ability to distribute the data dispersion (necessary to bring aligned data from
different antanna elements for correlation) across various NSPS hierarchical levels.
Further, since the NSPS architecture maximizes the use of commodity computing and
communication, the implementation utilizes off the shelf components to the extent
possible.

However, for many applications, the typical cache hierarchies and synchronous,
burst oriented RAMs of commodity processing systems limits their efficiency, e.g.,
with random accesses of data in memory. They are also bottlenecked during inter-
processor or inter-core 1/0, for data bandwidths of the scale required by streaming
correlators. Further, repeated queries on the streaming data and multiple data ex-
changes are generated between the distributed data sources, in order to establish the
high degree of synchronization needed before the spatial correlation function can be
reliably estimated. Commodity hardware is inefficient for such operations. Thus, we

split the receiver implementation between commodity processors and custom hard-

3.2 ORT infrastructure: The legacy system 39

ware, wherein, the former caters to the core processing, while the latter carries out
data shuffling and routing.

Here, we describe the role of the custom hardware section of the NSPS in our
hybrid approach to the correlation estimation problem, as well as the crucial aspects
of the system software architecture. Further, a system design for the full 264-element
processing system, while establishing links to the 40-element system implementation,
is presented. The core computing of the correlator, along with the post-processing
required for calibrating the array, and generating the various modes of operation of

the receiver, is detailed in Chapter 4.

3.2 ORT infrastructure: The legacy system

The ORT (introduced in Chapter 1) usually operates in phased-array mode, and is
currently equipped with several heterodyning receivers for its various modes of op-
eration. The upgraded receiver system described here has been implemented using
several existing sub-systems, reviewed in the next sections. Following this, a descrip-
tion of newer infrastructure for RF conditioning is given, which was developed as a

first phase of the ORT upgrade program.

3.2.1 Frontend
RF Frontend

This subsystem is composed of an array of 24 dipoles (termed a “half-module”), along
with a passive, christmas tree arrangement of 4, 2 and 3-way combiners, in order
to form a single combined RF output from the dipole array. Every dipole, with a
separation of 0.478 m (0.5208 \, where A = 0.9182 m, corresponding to the center
frequency of 326.5 MHz) from the next, is equipped with an LNA and a stripline
phase shifter capable of applying a phase to the incoming RF in %6 units. This allows
the combined array beam from 24 dipoles to be steered within an effective range of
430 in declination. It may be noted that this applied phase is the so called “proper”
phase, corresponding to the residual phase after integer multiples of 27 have been
removed. This leads to bandwidth decorrelation in the RF frontend output, for large
bandwidths. The RF frontend [30] is depicted in Figure 3.1, and is used by all the
available receivers. It is implemented in the Aluminium channel along the line feed
of the ORT. It may be noted that the RF Frontend output (corresponding to an 11

3.2 ORT infrastructure: The legacy system 40

Dipole Dipole
1 24
4 way 4 way 4 way 4 way 4 way 4 way
combiner combiner combiner combiner combiner combiner
2 way } 2 way 2 way |
combiner combiner combiner
o 3Sway |
ERlE Half Module
RF Tapping > » 10 New Digital
system
From Dipoles 2510 48 —— 2 way
combiner

| To ORT Analog Receiver chain ‘

Figure 3.1: ORT RF Frontend for an array of 24 dipoles (Half module). The RF
tapping location for the RF digital receiver is shown. The RF frontend is implemented
within the line feed of the telescope.

m section of the ORT array) does not reach the central receiver room, and is thus

not available to any of the existing backend receiver systems.

The Frontend IF conversion subsystem

This subsystem carries out the heterodyning of the combined RF output from the RF
Frontend, to an Intermediate Frequency (IF) of 30 MHz. It operates on the output of
two half-modules, and consists of a 2-way combiner to create a single module output,
which is amplified, passed through an image rejection filter, and then mixed with an
incoming Local Oscillator (LO) at 296.5 MHz. This sub-system is depicted in Figure
3.2, and is implemented within the per-module feed support structure of the ORT.
The resulting IF output is then transmitted to a central receiver room over equal
length cables, where the rest of the IF processing is carried out. This subsystem
has the ability of tuning the per-module LO phases for applying a broadband phase
correction, in order to enhance the sensitivity of the phased array outputs from the
complete ORT.

3.2 ORT infrastructure: The legacy system 41

RF Frontend

North Half Module

RF Frontend
South Half Module

\ i
A

2 way combiner

RF Amp

Image Rejection Filter

LO Phase
Mixer

To ORT Analog Receiver Chain
AN S/

Figure 3.2: Frontend IF' conversion subsystem, which generates a single I[F output by
combining the RF of 48 phased dipoles. The generated IF is then sent to the central
receiver room for further processing.

3.2.2 Backend receiver systems

The ORT is equipped with an analog IF receiver [31] which operates with a ~ 4
MHz bandwidth. It has 12 identical analog beam-formers, separately for the north
and the south half of the telescope, which generate 12 phased array beams separated
by 3'. Corresponding beams from each half of the telescope can then be correlated
using an analog correlator, resulting in 12 correlated beams with the full resolution
of 6'x2°. Thus, the total field of view is ~ 72'x2°. The sensitivity of the system is
typically about 250 per Jy, for a 1 sec integration, and the system temperature Ty,
is measured to be ~ 150 K [35]. The schematic of the signal flow of this receiver is
shown in Figure 3.3.

Recently, a new digital IF receiver [36] has been implemented as an enhancement
to the existing analog receiver. It has an increased bandwidth of ~ 10 MHz, while
the beam forming is carried out via software running on commodity hardware. The
receiver includes LO phase control and a multiphase clock for compensating fractional
sampling clock delays, in order to achieve high sensitivity. The functional block
diagram of this system is shown in Figure 3.4.

It may be noted that the above receivers operate from the central receiver room,

and only on the received IF signals. Thus, they have limited configurability, and a

3.2 ORT infrastructure: The legacy system 42

N11 S11
RF amp RF amp
Image rejection Image rejection
filter filter
wer @ —— @ —— —®

[LO branching }
IF amp Antenna IF amp
L 1
— — i — —_—
~— e = = _-
PAL PAL
(15 MHz) I (15 MHz)
Recr. room

Local
oscillator

/

-~

Step delay

Fractional delay
PA2
' (15 MHz)

Monitor Monitor

PA2
5 MHz)

Phase check Phase check
¥ NLL ¥ N1
| 12 way clivil:lerJ | 12 way dividerJ

#1 *12 *1 *12

Beam forming network] | Beam forming network]

+1 *2 +3 +4 +5+B ?+5 *B*N*H*lz *1 *2 *3 +4 +5*5 *B +9+10+H*12

Correlator beam

Figure 3.3: ORT analog receiver signal flow and main components. The system is
capable of generating 12 phased array beams from the north and south half of the
telescope, each separated by 3°, and correlating the corresponding north and south
beams. Delays are implemented using switched cable lengths.

3.2 ORT infrastructure: The legacy system 43

S11

RF amp

Image rejection
filter

X

\ N11
RF amp

‘e

Mixer

8

[LO branching]

IF amp Antenna IF amp
— — | — —
S _-
PA1 I PAL
(15 MHz) (15 MHz)

Recr. room
Local |
oscillator :7

0 b 1 B

. pc |

Figure 3.4: ORT digital receiver signal flow and its main components, along with the
signal conditioning block. The IF from each module is digitized, and the rest of the
processing s carried out on commodity processors.

3.2 ORT infrastructure: The legacy system 44

restricted field of view which is determined by the combined beam width of 48 dipoles
being phased within the two half modules.

Further, the existing ORT receiver configurations allow for carrying out observa-
tions, which include, e.g., Inter Planetary Scintillation studies [37], Pulsar observa-
tions [38], Radio Recombination line observations [39] etc. However, certain newer
classes of observations, which can be highly benefitted by the ORT instrument de-
sign, require higher sensitivity and a larger field of view, in addition to a higher
degree of configurability than currently possible. Thus, the instrument was required
to be coupled with a configurable and sensitive receiver to carry out such observa-
tions. A further decision of allowing the co-existence of the existing heterodyned
receivers, along with minimizing the downtime of the telescope was taken, which had
implications on the design of the upgraded systems.

It may be noted that apart from the above, several dedicated receivers for different
types of observations have been built in the past, including a pulsar receiver [40], an
autocorrelator and spectral line receiver [41]. These have subsequently been phased

out, highlighting the need for a flexible receiver capable of taking on multiple roles.

3.2.3 Telescope control and receiver interface

The ORT array is steered mechanically in Right Ascension (RA), and electronically
in declination.

RA (East-West) control: The RA steering is controlled manually, with the
current antenna position available to the telescope operator via a read-out of the
antenna encoders. This position information is also made available to the upgraded
ORT receiver system over a system network, where it is recorded periodically into the
headers of the generated correlations by control threads within the upgraded receiver.

Declination control: The declination is electronically set, and traditionally con-
sists of two stages. In the first stage, the RF phase of each dipole is set (in units of
22.5°), such that the combined half module (24 dipole) beam is pointing towards the
chosen declination. This control is carried out by a declination control PC which,
in turn, sends the 4-bit phase setting data over an HDLC link to every dipole. The
declination control PC, in turn, can be commanded by a control thread within the
upgraded receiver. Further, while the earlier IF receivers required another level of
IF delay setting before beamforming, a phased array response in all directions within
the beam is created with the upgraded system, due to which only the RF declination

setting mechanism from the existing control path needs to be maintained. It may

3.3 ORT upgradation 45

be noted that certain declinations can have a pointing error of upto 8, due to the
quantization of the applied phase. The RF declination control system is described in
[42].

3.2.4 Distribution of synchronizing signal

The ORT has an available mechanism for carrying out a coherent replication and
distribution of a centrally generated LO signal to the IF conversion frontend in every
module. This mechanism, used by earlier IF receivers, consists of a christmas tree
arrangement, of power splitters over equal length RF cables. In implementing the
upgrade, we have utilized this available network in order to transmit a synchronizing
signal at ~ 50 MHz (described later in Section 3.5.7) from the center to the remote
digitizers. It may be noted that while the synchronizing signal is combined at the
center with the LO before being transmitted to remote elements, it is effectively
filtered out before the LO is used in the mixers to generate the IF. This was found

to have no noticeable effect on existing systems.

3.3 ORT upgradation

Keeping in mind the constraints placed by existing receivers, and the suitability of
the ORT for certain classes of observations, an upgrade of the ORT is in progress.
Here, we present details of a reconfiguration of the ORT as a 40-element array, with
a new interferometric receiver. To this end, the ORT array analog frontend was
modified, and the received RF from each of the 40 half modules was suitably tapped
and conditioned, as explained in Section 3.3.1. Signals with a bandwidth of ~ 20 MHz
from each of the 40 array sensor elements were then fed into a 40-element complex
spectral correlator receiver, which was designed and implemented using a simplified
NSPS architecture.

3.3.1 RF signal conditioning subsystem

This subsystem caters to tapping the combined RF from the existing ORT RF fron-
tend (Figure 3.1), conditioning the tapped RF for direct RF sampling, and feeding it
into the new NSPS based digital receiver. Further, in order to allow co-existence of
the TF receivers, this subsystem creates an appropriate coupled signal to feed to the
existing frontend TF conversion subsystems. Thus, the RF signal conditioning sub-

system effectively bypasses the frontend IF conversion subsystem for the RF digital

3.3 ORT upgradation 46

receiver. In addition, it amplifies the RF such that the signal noise is dominant over
the quantization noise of the ADC. It also minimizes out of band spurious signals
over the analog bandwidth of the chosen ADC, which would otherwise alias into the
sampled band due to harmonic sampling.

Here, commercially available Surface Acoustic Wave (SAW) filters were used to
benefit from their much sharper roll-off and higher stop-band attenuation. Conse-
quently, the high power 296.5 MHz LO transmitted from the center to every module
for heterodyning (needed by the existing receivers), was effectively attenuated by ~ 30
dB, which otherwise would have aliased into the sampled pass band. Further, the out
of band signals within the analog bandwidth of the ADCs were also substantially
attenuated.

This subsystem was also required to have a high dynamic range due to the designed
absence of an Automatic Gain Control (AGC) system, in order to maintain linearity
in heavy RFT situations, as well as with the strongest sources like the sun.

Thus, the RF signal conditioning subsystem was composed of two stages. In stage-
1, the first stage of amplification (pre-amplifier) of the combined RF received from
the RF frontend is carried out to counter cable losses during transmission of the RF
from the line feed to the reflector base. In addition, a coupled port is provided to
interface the RE frontend output to the next system in the existing analog chain, the
IF' conversion subsystem. These modules are located along the telescope line feed, and
in close proximity to the RF Frontend output. In stage-2, the incoming RF is filtered
to ~ 18 MHz via a two stage SAW filter combination, and further post-amplification
is carried out to condition the gain for the ADC requirements. The modules making
up this stage are located below the reflector, at the antenna base. The output gains
are equalized to the extent possible, with the actual gain control carried out digitally.

The RF bands before and after the analog conditioning are shown in Figure 3.5.
Here, the suppression of several out of band signals, in addition to the LO signal, is
clearly seen.

A schematic of the RF signal conditioning subsystem configuration for the 40-
element array is depicted in Figure 3.6. Here, following the stage-1, each half module
from a group of 10 (240 dipoles) is brought to a common location (the “pillar”) over
an equal length LMR195 cable, for RF digitization. This set of 10 signals is then
referred to as a “signal cluster”. The stage-2 modules are located within the pillar,
and also provide the bias for each of the stage-1 amplifier modules.

Initial prototypes of these modules were developed in-house at RRI by colleagues

in the Radio Astronomy Laboratory (RAL), with subsequent mass production in col-

3.3 ORT upgradation 47

19 - — 0
296.5 MHz N
: S e
b i
g 10 | i E‘{L
E £ |
bt = R
4 g -20
g : I R SR 01, O T .
e 30 “ﬁ‘}ﬂ"m_imiwf" NN S S B o
. i f ‘L\"\».m."qj_v »
ot iy
2 : i
0 200 400 600 800 1000 s — P
Frequency (MHz) Frequency (MHz)
(a) (b)
-26
0 Tl
T -20 ' 5 46
& i 2 (
e
= .40 JI g -68 ¥
@
2 | : f
g \ . S g I \
80 A \ - e WA b — U
-80 -106
100.8 3007 5005 700.3 900.1 287 307 327 347 367
Frequency (MHz) Frequency (MHz)
(c) (d)

Figure 3.5: Comparison of the RF band, before (a, b) and after (c, d) signal condi-
tioning. (c) show the attenuation of out of band components within the ADC analog
bandwidth, while (d) shows the leaking LO signal being attenuated, in addition to
band-shaping for sampling.

laboration with a local industry. The modules were installed by the observatory staff,
and their effect on the existing analog system was first minimized, before continuing
with the mass production and deployment.

The incoming RF from the antenna is directly sampled as close to the reception
point as possible, by the ADCs in the field. In order to carry out such a direct
RF sampling, ADCs with large analog bandwidths are required. Further, the ORT
RF frequency is ~ 327 MHz, which falls within the specifications of a large number
of ADC parts, with the one chosen having an analog bandwidth of ~ 600 MHz.
The required signal transfer from remote, spatially distributed data sources, to a
centralized location is carried out by data transmission over high speed, serial, packet-
switched networks. These are implemented using optical fibres, which provide the
advantage of low cost and efficiency of digital networks for long haul data transport.

All further processing is carried out in software using general purpose processors,

3.3 ORT upgradation 48

RF — Frontend RF — Frontend
(North half-module) (South half-module)
Pre Amp Pre Amp
J Frontend IF '

L | Conversion | J

To Backend Receiver Systems \ A chan.
7 A
[1
Bias-T Bias-T
| l
SAW filter SAW filter
\ I
Post Amp Post Amp
| 1
Anti-Alias filter Anti-Alias filter

—— bbb

12 channel signal processing

S slEL Pillar

Sampled data to receiver room over fibre

Figure 3.6: Schematic showing the major components of the analog subsystem for
conditioning the tapped RF from 24 combined dipoles.

which is feasible for such medium sized arrays using the current state-of-the-art. Such
an approach allows for a considerable reduction in complexity of the instrument, while
enhancing its reconfigurability. This reduction in complexity is seen in Figure 3.7.
Figure 3.8 provides a broad level schematic of the entire system.

The overall signal flow from the telescope is shown schematically in Figure 3.9.
Here, data generated by spatially distributed sensors (represented by the ADCs) is
shown to be dispersed and rearranged in a distributed manner, over the different lev-
els of the NSPS custom hardware hierarchy. This is in contrast with a conventional
correlator flow, which typically uses a centralized switching (Figure 1.1) for carrying
out the data dispersion. Following the dispersion, packets containing data from all
sensors are routed to individual cores of a commodity processor, where the actual
estimation of the spatio-temporal cross correlation function takes place. This is rep-

resented by the FX block in Figure 3.9, and constitutes the commodity processing

3.3 ORT upgradation

49

N/ NN N/ N1Ls N/ SN N\ sus
RF amp RF amp RF amp RF amp
Signal Signal Signal Signal
conditioning conditioning conditioning conditioning
\J \J \ \i
Digitiser + Digitiser + Digitiser + Digitiser +
data transport data transport data transport data transport
Antenna
— = i — = =
S — e | =
¢Recr. room
\ Y \ \J

‘ NSPS custom segment]

A

Y J

4

‘ Processor based | Processor based ’

software receiver

software receiver

A

\

[

Archive

)

Figure 3.7: Schematic depicting the main components of the NSPS based receiver
for ORT, viz., the analog signal conditioning, the remote digitizer blocks, the NSPS
custom segment, and the NSPS commodity segment.

section of the hybrid correlator.

3.3.2 NSPS based hybrid array receiver

The communication and computing requirements of the 40-element array interfero-

metric receiver naturally devolved into four levels of the NSPS hierarchy, with func-

tionalities as elaborated below:

1. ADC Modules (Remote digitizers): These constitute the distributed sources of

data, and are themselves composed of the digitizers. They carry out the first

level of data pooling, and correspond to Level-3 in the NSPS hierarchy.

2. Central Data Pooler: This component constitutes the Level-2 of the NSPS, and

implements its Data Pooler entity, which pools the data from various allotted

upstream Level-3 entities.

3. Bridge: This component consists of another stage of data buffering, and im-

plements the bridge between the customized segment of the NSPS and the

3.3 ORT upgradation 50

/

Half module's combined RF
over LMR195 to digitizer

& N3 [. 1 Shielded room with
N8 .
- /

“Cluster” of 10 half
modules in a pillar /‘

Dedicated fibre path from
pillar to shielded room

Figure 3.8: Broad level schematic view of the ORT 40 element interferometric array,
and its receiver. Fach of the shown pillars handles 10 half module antenna elements,
performing digitization, packetization, data transposition and timestamping of the
data, before transmitting them over an optical fibre network to a central processor.

‘ v S— Group level
i Operations
o <laocls|| (e.g- XMAC)
5 E
s \/ S FX
g <JADC] g ||Stream level
o = Operations
= = e.g. FFT
g = (eg) |
o =
% i = $Stream 0| Streaml|...|Stream M
© ()]
g .g -——||>Stream 0| Streaml|...|Stream M
e o o S
i = $+Stream 0| Streamll...|8tream M A A
® © -——||>Stream 0| Streaml|...|Stream M
t% = Stage 0
© H
o [} i
= 2 processors ‘Network
s " Attached
i Storage
T

Stage 1 processors

v <JApC]»

Figure 3.9: Data flow in the NSPS based hybrid correlator implementation shown in
the NSPS custom segment (where data is grouped hierarchically into transaction units)
and in the NSPS commodity segment (where transposed data is routed to individual
processors for carrying out the FX correlation).

3.3 ORT upgradation 51

1 2 24 1 2 24

[Analog Combining Analog Combining

00 0

Network Network

g

\
Clustered RF NSPS Level-3 (Clustered RF
digitizing digitizing
[Data dispersion | * " """ """ Data dispersion]
+ TXx + Tx
AN ! ! /
e N
Data Pooler
NSPS Level-2
- J
e N\
\
[Custom to Commodity Bridge]
_ NSPS Level-l/
4 I
Calibration
CPU Phased
Cluster i
N y NSPS Level-0/

Figure 3.10: Schematic view of the components of the implemented ORT 40-element
recewwer system, mapped onto an NSPS architecture based implementation.

3.3 ORT upgradation 52

commodity segment. It constitutes the Level-1 of the NSPS.
4. HPC cluster: This component constitutes the root, or Level-0 of the NSPS

hierarchy, and implements the central compute engine. It is made up of a
cluster of commodity class processors.
A schematic view of the receiver, with each of these NSPS hierarchical levels mapped
to functional blocks, is depicted in Figure 3.10. It may be noted that the coher-
ent sampling of distributed RF signals required by the correlator is carried out by
transmitting a high stability reference via the fibre based clock network of the NSPS.

The “Data Pooler” and the “Data Router” entities of the NSPS architecture are
implemented on a custom FPGA based board, using the onchip BlockRAM resources
of the FPGA. The pooler allows the correlator to operate in convenient transaction
units, where data continuity is guaranteed. The correlator forms one of the multiple
possible backends for the fusion tree of the NSPS.

For setting delay compensation values at the digitizer boards, the control and
monitor network of the NSPS is utilized. This allows the generated data streams to
be aligned to sampling clock precision (in time) at NSPS Level-3. This is crucial,
since carrying out such an alignment in the lower levels of the NSPS (or in software)
is extremely inefficient. Further, the custom to commodity bridge of the data network
of the NSPS is implemented to provide data over standard GigE ports and UNIX

sockets, resulting in easy interfacing with the Level-0 nodes.

Load balancing by the NSPS data pooler

Large I/0 rates are generated by the distributed samplers, due to a combination
of high sampling rates, large number of sensor elements, and higher number of data
bits per sample. For instance, for the ORT upgrade discussed in this thesis, each of
the 40 antenna elements generate ~ 20 MBps, when sampled with a 4-bit resolution,
at ~ 40 MS/s. This leads to a total data rate of ~ 800 MBps from the system, leading
to a distributed approach to handle these rates.

In particular, since the correlation process requires the local availability of data
from all sensor elements on-demand, the routing of data from every sensor increases
the data bandwidth to a level which cannot be handled by a single commodity pro-
cessing element. Thus, to simplify load balancing in a distributed computing environ-

ment, we utilize the process of “data pooling”. This reorganizes data into “Iransaction

3.3 ORT upgradation 53

Ao (to ... t511) Ao (to ...
Al (to..tsi1) [| T ———— L A1 (to..tn1) —
A9 (0. t510) \\ 7 0 U) ’

A20 (t0 -.- th-1)
A10 (to ... t511) A39 (10 ...
A1 (to ... t511)

_A19 (o ... t511)

A20 (to ... t511)
A21 (t0 ... t511)

_A2g (to .- ts11)
f

FX Correlator

Azo (to ... t511)
A3 (to..ts11)

A39 (to..1511)

Figure 3.11: Schematic view of the time domain data transposition carried out by
the Data Pooler Entity of the NSPS. Here, A, (t,...t;) refers to (p —q) consecutive
samples from antenna element A;.

Units”, and routes consecutive such units selectively to multiple processors at the lower
NSPS levels, thus carrying out a shaping of the incoming traffic.

Such a regrouping of the data can be carried out using onboard memory buffers,
with the data being split along either the time or frequency axis (if an FFT is being
carried out within the NSPS hardware), before being dispatched. It may be noted
that since no replication of data takes place at this level, the incoming and outgoing
data rates remain the same. On the other hand, each parcel of data sent to a processor
is self contained for correlation, i.e., it contains the same timeslice of data from every
sensor element. Such a re-grouping is depicted schematically in Figure 3.11 for the
40-element array.

Another aspect which determines the load balancing in the NSPS fusion tree is to
control parcelling of data to processors, based on their processing bandwidth. Thus,
each processing element is fed data only at a rate which it can comfortably process.
This is efficiently done by the Data Pooler due to its selective data routing. The Data
Pooler, thus, handles both the large I/O rates, and the load balancing of processing
on this data.

3.4 System architecture 54

Transaction oriented processing model

In a conventional data network, the unit of communication is a data packet, which
is an ordered set of data grouped along with metadata into a unit convenient for
transfer over the chosen network technology.

We have extended this concept to make the basic unit of computation a “trans-
action unit”, which deals with a timeslice of data convenient from the astronomical
signal processing perspective. For instance, a transaction unit may comprise of data
acquired over a timeslice of a few milliseconds. In the context of correlation, a trans-
action unit precludes the requirement of high bandwidth communication between the
processing and data collecting elements in the distributed system, while large scale
data transposition can be carried out using memory buffers. Such an approach also
allows us to introduce a deliberate pipeline delay in the incoming data stream. This,
is turn, facilitates synchronization between data from different streams, in addition
to allowing multiple passes to be carried out on the incoming streaming data, in real
time. The generation of a transaction unit requires the collation, and holding of data
which, in turn, needs large memories at the highest levels in the data hierarchy. This

is carried out in the memory of the Data Pooler entities of the NSPS.

3.4 System architecture

In this section, we describe the system architecture of the 40-element ORT array
receiver.

The system carries out direct digitization of the incoming RF, with the data then
being sent over a tree-like packet switched network. Here, all dataflows use a store and
forward, packetizing interface, with no streaming flows. Thus, the entire routing and
processing following packetization is carried out at the packet level only. The overall

system is distributed in nature, and thus requires management of the hierarchy.

3.4.1 Packet configuration

Packets are atomic, and capable of independent existence, in order to distribute the
system state over the NSPS tree, instead of centralizing it. This also allows the
same software infrastructure to tap packets from different levels. To implement this
approach, each packet of data preserves relevant meta-data about a subsystem from
where it is generated in a per-packet header. This metadata can include information
like the type of data, the source id of the data generator, the number of data streams

making up the packet, the bits per sample, etc. which in turn, allows processing

3.4 System architecture 55

routines to query the meta data and proceed further, without relying on an external
database of subsystem information.

It may be noted that the sizes of packets, which can be different for various types,
are also encoded within the packet header. All packets begin with a common 16-byte
header, and are mandated to be multiples of 16 bytes in size. This restriction allows
for efficient memory access on commodity vectored processors (by ensuring appropri-
ate memory alignment). Further, sequence numbers from the different layers of the

NSPS can also be stored, which allows for traceback and data grouping.

Packet flow configuration: All packets flowing within the signal processing
tree can be segregated into the following types:
1. Real-time, high bandwidth, streaming flow, which is composed of raw or prepro-

cessed data within the transport/processing tree.

2. Processed data flow, which can be real-time, (e.g., correlation output, beam
formation) or quasi real-time (e.g., offline correlation followed by beam forming).

This is treated as part of the data network.
3. Low bandwidth status flow, which is a part of network and system management.

4. Low bandwidth calibration/monitoring flow, which can contain small subsets of
the full data stream for monitoring, or for dynamic estimation of calibration
parameters.

These flows should be logically separable in the system, thereby allowing separate
processes to individually tap onto them. To this end, packets belonging to different
flows are identified by a unique “Datatype”, which is maintained across the signal
processing tree, till a block level operation on the packet changes its type. For en-
abling debugging, the system design also allows for the collection of data streams
from different levels in the NSPS hierarchy.

Addressing: Since the data flow is heavily asymmetric, the addressing from the
data sources at the higher levels of the NSPS to the lower levels is controlled by
static routing. However, each source of distributed data maintains its identification
via a source id field, which helps in identifying them at the lower NSPS levels. The
control packets, which need to be addressed to specific nodes within the NSPS, are
transmitted in a broadcast fashion with the destination address. Intermediate nodes
then examine these control packets, and broadcast them forward if the destination

does not match their own address.

3.4 System architecture 56

Packet structure: The packet structure, apart from fulfilling the above re-
quirements of packet independence, should also be easy to query and implement in
configurable hardware, without needing excessive protocol management. Hardware
choice restricts raw data from the digitizers to appear in groups of 12 or less. For
the 40-element array, each group contains 10 data streams. With a grouping of 512
samples per packet, a basic raw data packet is 2576 bytes (including the 16 byte hdr),
assuming 4-bit quantization per sample. These packets are segmented on reaching the
last mile GigE interface, in order to comply with the protocol’s 1500 byte Maximum
Transaction Unit (MTU).

The raw data packet consists of a 16-byte header, followed by actual data, which
can be a timeseries, or a slice of a spectrum. The header includes space for meta
information from intermediate NSPS levels, which is initially empty, and is filled up
as the packet traverses the hierarchy. Such an approach gives a common packet size
across the hierarchy, yet allows different layers to record relevant information. If extra
information needs to be added, an extension header can be created. In our system,
the main packet types relate to a per-sensor raw stream, and correlated data streams,
whose structures are described below. Apart from these, details of other kinds of
packets, as elaborated in the packet flow configuration, are listed in Appendix A. A
data packet can store different kinds of data, differentiated by the data type field of
the structure.

For raw data flows, this structure is given in Listing 3.1:

typedef struct

{ unsigned int seq :12; // Sequence of this pkt at current level
unsigned int id : 4; // The id of the NSPS node at this level

} __attribute__((packed)) LayerHdrType;

typedef struct
{ unsigned int srcid :4; // The unique source id of the data source
unsigned int datatype:4; // The kind of data carried by this packet

unsigned int bits2pix:4; // The sample quantization or datatype

unsigned int chans :4; // Number of datastreams within the packet
unsigned short words; // The size of this packet in 8-byte units
unsigned int tick; // The timestamp of this packet

LayerHdrType lay[3];
unsigned char grpid;
unsigned char unused;

} __attribute__((aligned (16), packed)) DataHdrType;

3.4 System architecture 57

typedef struct

{ DataHdrType hdr;
unsigned char datal[0];

} DataPktType;

Listing 3.1: Memory layout of a raw data packet traversing the NSPS hierarchy.

Correlated data from all baselines, for a particular time instant flows across the

NSPS network in packets with a structure as shown below:

typedef struct
{ unsigned char srcid;
unsigned int datatype: 4;
unsigned int bits2pix: 4;
unsigned int chans : 4; // Interpreted as number of blines in pkt
unsigned int words 112
unsigned int tick;
unsigned short taps;
unsigned short blines;
float f_samp; // Sampling rate
} CorrHdrType;

typedef struct // Represents cross spectrum of 1 bline
{ char a0; // The first sensor element (-1=>flagged)
char astarl; // The second sensor element

} PackBlineHdrType;

// In this layout, all baseline data is clumped together, while
// baseline information is at the packet beginning.
typedef struct
{ CorrHdrType hdr;
PackBlineHdrType *bline;
_Complex float cspect[0]; // The CPS follows this
} PackCorrPktType;

Listing 3.2: Memory layout of a correlated data packet traversing the NSPS hierarchy.

3.4.2 Design control flow

For any given observation, a configuration file specifies observational parameters,

e.g., field location, observation mode (transit/tracking) etc. System parameters like

3.4 System architecture 58

/ > Read Data Bus

<= Read Address Bus
> Packet header (128 bits)

e Bank select

\ h
FPGA core Local link
library resources | interface
g

Block RAM
packet buffers

w«—— Read enable

#+— Read clock

Read/ write

\ interface /___,. Data ready

Figure 3.12: Schematic of the packet level Reader- Writer interface used in the custom
hardware segment of the NSPS.

the sampling clock, the NSPS tree connection hierarchy (including the commodity
cluster mapping to the NSPS bridge entities), the sensor to ADC channel mapping,
etc. are recorded in another system configuration file, which only a privileged user
can modify. Further, each NSPS entity (like Data Pooler, Bridge etc.) maintains its
internal status, e.g., its capabilities, current firmware code version, etc., within its
local memory, which can be queried from the control processor.

System control is implemented by the root NSPS node via control packets, which
can be addressed to different levels, or to individual entities within levels. Further,
system status can be determined by sending queries to each NSPS node, which gen-
erate status packets in response.

Control involves setting parameters like the Look Up Table (LUT) entries and
the delay settings in the hardware, or generating the timestamp reset signal, the
start signal, the stop signal etc., from the root node to each remote data source.
Since the root level cluster sees upto 8 GigE links, we designate one link to be the
master controller having the authority to issue command packets. These can then be

forwarded by intermediate entities till the destination is reached.

3.4.3 Reader-Writer interface

The reader-writer process at the interface of each NSPS custom hardware entity
carries out packet store-and-forwarding to the next level. In case the write rate is
faster than the read (which can be possible in a configurable system), the design
ensures that data is lost in units of integral packets only, thereby maintaining timing

synchronization between the distributed streams.

3.5 Digital subsystem 59

Each interface has an associated simple dual ported buffer composed of two banks,
with one bank for writing, and the other for reading. Further, the reader and writer
clocks are assumed to be different in rate and phase, and unrelated to each other. The
initial read and write addresses are generated by an external control logic, based on the
current status of the reading process, and on packet boundaries. The writer process
generates a signal (data_rdy) for the control logic (a few clocks before it completes
writing one packet/buffer) which, in turn, examines the current read address. In case
of a busy reader, the currently written bank is overwritten. Otherwise, the reader is
invoked to empty the ready bank. At the next signal, the reader will automatically see
the latest data, while the writer will go to the next bank, after any number of cycles
on the current bank. This scheme is depicted in Figure 3.12, and is used extensively

in each NSPS custom hardware entity.

3.5 Digital subsystem

This section discusses an implementation of the NSPS architecture with four hier-
archical levels, as described in Section 3.3.2. This implementation was used to pre-
process, route and correlate samples of the appropriately conditioned RF data, thus
allowing for various modes of the receiver to be implemented. Some of the primary
requirements of the digital subsystem (implemented in the custom hardware segment

of the NSPS) for the array are:
1. Appropriate sampling of the conditioned RF.

2. Preprocessing, grouping and routing of streaming data.

3. Appropriate and synchronized timestamping of data, on the basis of which

combining of data from the different data sources can be carried out.

4. A flexible data transport mechanism for aggregating spatially distributed data

to a central repository or correlator.

3.5.1 Remote digitizer and pooler entities

The remote digitizer module, shown schematically in Figure 3.13, carries out harmonic
sampling of the incoming RF at 327 MHz from a group of 10 antennas, followed by a
first level of pooling on the sampled data. This subsystem corresponds to the Level-3
in the NSPS hierarchy. It consists of an analog and a digital sub-module, implemented

on different PCB boards and interconnected using a high-speed connector.

3.5 Digital subsystem 60

Analog section Digital section
------ -F---r11SPI controller

. ADC |l [[Delay | _ .
AD9527 ™ block » Companding
S b S
. ADC ||| 8§ || | Delay _ .
4‘@ g g » Companding
= O
i £ Delay © Link
x IS : @ || e N : Q@
O E g 4{;; % ™1 block g T - handler
0= a' — a
a- =
- ADC LT |1, fDelay Compandin

Serial Aurora
Out

Companding

ADC || ||| Delay
AD9627 block

Reference Clk

Figure 3.13: Digitizer section and its main components: clock distributor, ADCs,
delay block, companding block, first level data pooler and the serial link handler.

The analog section (with an isolated power supply to minimize leakage from the
digital section) consists of a set of 6 AD9627, dual-channel, 110 MS/s, 10-bit ADCs
which are capable of sampling RF of upto 600 MHz. The choice of sampling clock
results in the RF band falling in the 8 harmonic. Its generation and distribution are
described later in Section 3.5.6. The particular choice of ADC accepts a sinusoidal
clock input, and is equipped with an on-chip sampling clock conditioner, clock divider
and duty cycle stabilizer. This makes it possible to use the on-chip features to convert
a sine wave input clock to a square-wave, enable duty-cycle stabilizer, and divide by
suitable integer to generate the sampling clock from the input. Thus, an input clock,
whose frequency is 2-8 times the actual sampling rate needed, can be used. This puts
the clock and its harmonics out of the received 327 MHz band.

The ADC boards are coupled over high speed LVDS board-to-board links to the
pooler and communication handler, which reorganizes, frames and timestamps the
data at the remote source itself. It also contains an implementation of the companding
LUTs, which convert the incoming 8-bit samples to 4-bits/sample, leading to an
output data rate of ~20 MBps per ADC channel, or ~200 MBps per ADC module.
This data is sent over a single high speed (2.5 Gbps/250 MBps) serial Aurora link

from each ADC module, to a central Pooler card, over an optical fibre link.

3.5 Digital subsystem 61

Adequate shielding of the digital section has been provided by packing the sub-
modules in milled boxes, while the ADCs are shielded with soldered cages, in order

to minimize pickup by the sensitive ORT antenna.

Level 3 pooler:

The “Transaction Unit” at this level corresponds to a fixed number (usually 512) of
samples from an ADC pair. Thus, it can be created using the internal BlockRAM
based memory of the FPGA itself. The buffering scheme consists of a double buffer
per ADC (channel pair), whose reader can implement various data layouts by appro-
priately accessing the channel buffers, in order to allow optimal access from processors
downstream of this level. The formatted buffer outputs are then collated into a single
packet for transmission. Apart from the ADC input, all other logic at this level runs
at a 125 MHz core clock, with a 64 bit bus. Thus, the maximum data rate internal
to the FPGA is 1 GBps.

3.5.2 Central data pooler

At the central location, a single Virtex5 board is used to implement a second level of
data pooling on the outputs of each pillar via the central Data Pooler entity of the
NSPS architecture. This forms the Level-2 of the NSPS hierarchy. Here, the card
is equipped with eight high speed serial links, which can be used to implement both
the custom and the commodity network data link layers. As a Data Pooler entity,
all eight links are used as part of the custom network infrastructure. The necessary
data transposition is carried out by placing incoming packets in locations within a
local, high speed buffer implemented using the FPGA Block RAMs, based on their
32-bit timestamps. This approach caters to missing packets from the same timeslice
on links from individual pillars, which can otherwise lead to loss of synchronization.
Thus, the Level-2 data pooler carries out a temporal traffic shaping within the NSPS
custom hardware domain.

The onboard buffer also allows for the creation of a reasonable transaction unit,
on which other processing passes can be carried out as a block, (if necessary). This
approach also provides a guarantee of mostly contiguous data over the entire trans-
action unit which, in turn, allows us to implement a burst mode, with a higher net
incoming data rate than that of the outgoing links. Further, this feature can be used
in observing modes which require continuous data sampled at very high temporal

resolutions. It may be noted that the current pooler implementation limits the trans-

3.5 Digital subsystem 62

Packet Packet
NO8 Buffer 4r\ Au_rora
Aurora i 64bit it | Aurora Local linky | jnk
Link [gpit)| i Tx |Interface /1prigge
1
Read/write Read/write
interface interface
NO3 —,\ Aurora
Aurora 16bt) Data 64bit) 16 bit § Auroral 'I-r‘]’tg?f'a"":’;k Link
Link |.L6 bi:t> V [Transposition V| Tx ‘l/ Bridge
Read/write and Read/write 1
interface SIS interface
S03 —,\ Auroral
Aurora 166t Command [eapir) 16 it) Auroral o8l | ink
Link |16 bi> —\/ Forwarding _l/ TX ‘l/ Bridge
0
Read/write Read/write
interface interface
S08 4,\ Aurora
Link [16 bi> — —/| Tx _"me"ace/ Bridge
0
Read/write Read/write
interface interface

Figure 3.14: Block diagram of the Layer 2 data pooler card showing the various levels
of implemented packet buffering, as well as the data transposition block.

action unit to a few tens of multiples of the Short Term Accumulation (STA) cycle,
within the constraints of the dynamic range of the integer logic used for the correla-
tor implementation. A newer version of the pooler will incorporate DDR memory to

increase the transaction size substantially.

Firmware code layout in the data pooler node

While the incoming data is buffered at the packet level in FPGA BlockRAM, the
transaction unit is created using a large, per output link, BlockRAM based mem-
ory buffer. The layout of the data written into this buffer can be tuned to match
the Level-0 node’s requirement (for most efficient reads and computing) by an ap-
propriate reading order from the packet buffers. Here, a single entity, i.e., central
data transposition and routing entity, present between the packet and pooling buffers
(shown in of Figure 3.14) deals with these reads. This gives the flexibility to generate
different data layouts, due to the well defined interface to buffers on both input and

3.5 Digital subsystem 63

Packet =
FFo| | €th0

Buffer
i gbit) UDP |Local link\ f———o{ la—»
14 Ping Pong wrapper|interface /| | Rx

i

Auroral Read/write
Link LA interface
0 64 bit)
E_il Ping Pong FTEO ethl
| - Local link -
64bit 8 bit UDP |. Rx
Read/write 14 : WrapperlmmacE FIFO
interface .
Memory Read!wme —_
writer/reader interface
Tx
I\ eth2
Packet 64bit gbi) UYDP [Locatiink\ [FFO | &0
v wrappetlinterface Rx
Auroral Buffer pp FIFO
Link _f\ Read/write
1 || B4 bit interface
IE Hit) Ping Pong 14
Tx
eth3
: FIFO
Read/write %i\ E{> UDP |Local link' i inie
- i X
interface _l/ wrapper| interface B

Read/write —
interface

Figure 3.15: Block diagram showing the connectivity within the Peer-to-Peer to com-
modity bridge card.

output sides. The block level schematic of the Level-2 Data Pooler is illustrated in
Figure 3.14.

3.5.3 Aurora to GigE bridge

The NSPS Level-1 nodes act as bridges between the custom and the commodity
network of the NSPS architecture. Thus, the bridge manages not only the protocol
translation, latency differences between the more latency prone commodity network
and the rigidly synchronous custom network, but also any bandwidth differences
between the two domains.

The hardware at this level is identical to that at Level-2, except that out of the
eight available high speed serial links per card, four are configured as part of the
commodity network, while two are configured as part of the custom network. Here,
for the 40-element system with currently supported bandwidths, two such cards are
sufficient to manage the full incoming data rate, with each card handling ~ 400 MBps
on two Aurora links. The data received on each link (the collated output packets of
the Data Pooler card) is buffered, and routed in a time multiplexed manner to the
commodity processors, over two commodity (GigE) links. Thus, the four available

GigE links can serve the full incoming bandwidth. In case the system configuration

3.5 Digital subsystem 64

Level-1 Entities: Level-0 Entities:
Virtex-5 with 2 Quad core,
Aurora, 4 GIigE links, Dual Processor
2GB DDR Xeons
[|
—»MGT114/0 McT1168 N6
. - I 1 PC3
Level-3 Entities: Level-2 Entities: | f'l]] eth7
6MNos. AD9627 Virtex-5 with 8 GTllMJ] . MGTHSI
connected to Virtex5 Aurora links, 2GB DDR Bridgel

[]

N8:MGT114/0(-NE GTlleq g [VIGTllztfq— PC2

A
N3:MGT114/0/-0 MGT116/ g _ MGT114/
3

| S0 I
SIMCTLL4/0 S pMGTIIEY 5 € MGT112!

semeTLa0l S plicTied § cTu PCl
| |

High stability PCO
reference

Control and Monitor
Processor

Figure 3.16: Block level connection scheme of the NSPS based receiver, depicting the
mapping of the serial link infrastructure onto each NSPS component.

results in a higher overall data rate, more bridge cards can be added to the NSPS,
such that the output bandwidth to a commodity processor matches its processing
bandwidth.

The overall layout of logic is depicted in Figure 3.15, while the block level connec-

tion scheme of the system is depicted in Figure 3.16.

3.5.4 Commodity class processor cluster

At the root of the NSPS signal processing tree is a cluster of commodity server class
machines. These form the Level-0 node of the NSPS implementation. For the 40-
element receiver, the root node is currently a small cluster of four server class machines
with dual Intel Xeon class processors. This cluster represents the commodity segment
of the NSPS, with nodes being interconnected by a commodity networking stack. Data
from the remote digitizers, after traversing the NSPS signal processing tree, terminate
into this Level-0 node. All processing on the streaming data (to implement the various
modes of the receiver) is carried out on the commodity, multi-core processors of the
Level-0 cluster. A description of this processing is the subject of Chapter 4. The
cluster is also equipped with a large data archive, capable of storing streaming raw

data for several hours of observations.

3.5 Digital subsystem 65

3.5.5 Data transport mechanism

In this section, we describe the NSPS data transport network implementation. Trans-
portation of raw or preprocessed data from its source to a compute engine requires
careful consideration due to the distributed nature of the signal sources. Also, the
large bandwidth of the streaming data requires a high bandwidth I1/O stack. The
streaming nature of data precludes any implementation for reliability between com-
municating peers, (e.g., via re-transmission and acknowledgements) as these require
memory for buffering. Further, due to the guarantee of internal consistency of timing
provided for every packet, data loss can only translate to a loss in sensitivity. Thus,
we have chosen a high speed serial 1/0O mechanism to transport data both within the
customized as well as commodity segments of the NSPS design. Such 1/O implemen-
tations are currently routinely available as part of modern FPGA platforms, which
are also equipped for dealing with commodity protocols like Gigabit Ethernet. This

enables them to directly communicate with commodity PC hardware as well.

NSPS custom network

Based on the choice of FPGA part (Xilinx Virtex-5), we have chosen the Aurora
serial protocol stack for board-to-board communication requirements within the NSPS
custom domain. This high speed, light weight, point-to-point serial protocol is layered
on top of the Xilinx RocketIO interface, which has native hardware support on the
FPGA. The protocol operates as a packetized, connection oriented data stream with
explicit setup and tear-down of connections. It incorporates an 8bit/10bit [43] data
encoding scheme for reliable transfer of data. Further, a 16-bit packet level First
In First Out (FIFO) interface is made available to the local side for transmission
and reception of data. Handshaking signals are used both at the local side, as well
as between remote entities, to ensure proper data transfer. The protocol does not
support retransmission in case of error. We operate this protocol at a wire-speed of

2.5 Gbps within the peer-to-peer NSPS custom network.

NSPS commodity network

For communication between the customized segment and the commodity hardware
forming the backend of our system architecture, we have chosen Gigabit Ethernet
(GigE) as the Data Link Layer. This is a popular, point-to-point commodity protocol
stack for high-speed serial transport of data over Unshielded Twisted Pair (UTP)
cables, with a wide support base. Also, our chosen FPGA platform offers library

3.5 Digital subsystem 66

Central Clock Generator Pillars

NSPS clock
network || Clock
dist.

valitavalifevaliavaliavaliny
(=222
O|l1010|0]|[8]|0
QOO0 0]0

COoF |
10 MHz interface Clock

reference S I dist. [|
Clock OfF ||
S
l

v
>
g
0O

GPS 1pps

~F synth. H Clock }»_’imerface
(DDS) dist.
OfF Clock
dist.
\\ Clock
Optical fibre dist.
TX.

interface
Figure 3.17: Coherent distribution of a high stability sampling clock to the remote
nodes of the NSPS implementation.

O/F | |
interface

>
0 0 0 0

v
>
o)
0O

support for GigEl implementations in a variety of forms. The User Datagram Protocol
(UDP) has been chosen as the transport layer protocol between the custom and the
commodity network, due to its ease of implementation within the custom side bridge
card FPGAs, in addition to its efficiency due to software buffering by the Operating
System. This lightweight protocol also enables host side data stream discrimination
within the commodity segment via UDP ports, to which different service threads of
processing can be attached.

Further, packet sizes have been restricted to a few KiloBytes throughout the NSPS
tree, with segmentation and reassembly carried out, if required. This restriction arises
due to several factors, like the packet buffering within FPGA BlockRAMS, the custom
segment Aurora links requiring to send “Clock compensation” symbols periodically
to maintain synchronization with the remote peer, and the MTU of GigE being 1500
bytes.

3.5.6 Sampling clock generation and distribution

The sampling of the incoming RF from all elements in the array requires the avail-
ability of a high stability sampling clock, with its coherency maintained across the

sampled elements, in order to combine the element outputs in a phase coherent man-

3.5 Digital subsystem 67

ner. Here, the jitter specification on the sampling clock is related to the maximum
frequency content of the incoming RF, even though the maximum sampling rate can
be restricted to greater than twice the incoming available bandwidth.

Further, using the standard harmonic sampling formula [44], a sampling clock of
39.5 MHz was found to be adequate for sampling the ~ 17 MHz anti-aliasing filter
output (with a 0.5 MHz guard band on either side). This sinusoidal sampling clock
was generated centrally using a Direct Digital Synthesizer (DDS), whose reference was
a GPS disciplined Rubidium Oscillator available at the observatory. The reference
has an inherent clock stability of ~ 10712, Once generated, four copies of this clock
are made using a clock distributor board which utilizes a low relative jitter and skew
clock distributor chip, (the LMK01020, 30 fs additional jitter, 30 ps skew), and are
directly available for transmission over optical fibre modules to the four remote ADC
modules housing the distributed digitizers. We use the NSPS clock network (Figure
3.17) for the sampling clock distribution to these digitizers. Here, this clock network is
a digital, optical fibre based network, consisting of point-to-point links from the center
to every pillar. Each ADC module then coherently distributes the received centrally
generated clock to every digitizer within the digitizer group, using an on-board LMK
device. Thus, the relative alignment of sampling clocks within the ADC module is
assured to a small fraction of the RF wavelength. A provision for monitoring the
phase of the distributed clock to each pillar has been made by enabling a round-trip

calibration for the propagation over optical fibre.

3.5.7 Alignment of distributed data

In a real-time correlator implementation, data generated by coherently sampling
the distributed sources needs to be aligned to the level of a few sampling clock ticks
in order to preserve correlation. This is because the error in the correlation coefficient
estimate between broad band signals is reduced, when such signals are aligned to a
small fraction of their reciprocal bandwidths. Further, since the remote digitizers
of the ORT receiver are organized into 4 digitizer groups, each containing a set of
10 digitizers as a single module, this alignment is required to be maintained within,
and also across the ADC groups. Consequently, the data streams are aligned in two
stages. The first stage of data alignment between an ADC module’s 10 digitizers is
carried out by setting delay registers associated with each digitizer to the appropriate
delays between the data streams. These delays can be loaded by the central controller

as part of system initialization.

3.5 Digital subsystem 68

~ To NSPS Level 0

[T] (Digitizer Block

NV, |Delay

Trigger

Reset

2/4_.‘ AAAA Delay

Control\ —»‘TM. Delay
HP

A

I

Figure 3.18: Schematic showing the propagation of a reset control packet from a central
command processor, in order to affect a time aligned reset of the remote entities.

In order to carry out the second stage of data alignment data across signal clus-
ters, a common reset is propagated from the center to each signal cluster, as depicted
in Figure 3.18. This reset is initiated by the control processor in the form of a reset
command packet to the Data Pooler card, which is buffered by it till an external
trigger (e.g., a 1 pulse per second (1 pps) from a GPS receiver) is received. Then, the
reset command packet is simultaneously transmitted by the Data Pooler to all the
ADC modules, where its reception, and the release of the soft resets within the ADC
module are expected to vary minimally, due to differential hardware or protocol laten-
cies. These latencies remain constant with time, and are estimated using a common,
explicit synchronizing signal broadcast throughout the system. Inter-comparison of
the timing of data from different ADC modules can be carried out using the presence
of an included 32-bit timestamp in the header of every packet generated from an ADC
module. These timestamps are generated within the FPGA logic of the remote ADC
modules via a 32-bit timestamp counter updated on the incoming sampling clock,

and are propagated across different levels of processing and datatypes, till the final

3.5 Digital subsystem 69

Pillar
60 mg Pillar
L N8 ——
S3 —— % N3

$

> ﬁ —
S8 ——
/—

boorscttissnl bty <

Power (dB)
&

20

0 0.2 04 0.6 0.8 1 0.57 0.58 0.59 0.6 0.61 0.62
Time (sec) Time (sec)
(a) (b)

Figure 3.19: Plot showing the scheme for estimating inter-pillar delays, using RF
transmission of an FSK encoded 1pps to each pillar, on equal length cable. This
signal is subsequently digitized and sent back for digital demodulation. The plots show
total power within 1 sec, after carrying out digital demodulation. (b) is a zoomed
version of the plot (a).

archiving. Thus, the inter-ADC module latencies are compensated by initializing the
timestamp counter of each ADC module to the measured latencies, in steps of sam-
pling clock period. Further, the actual data transmission from the remote digitizer
modules is activated with offsets of the inter-ADC module delays (again in sampling
clock units), resulting in data packets with identical timestamps being close in abso-
lute time, to the level of a few samples. It may be noted that the high stability of the
sampling clock and its coherent distribution enforces strict relative timing between
all the generated datastreams within the NSPS.

A higher (better than one sample) level of synchronization between ADC modules
is implemented by injecting a common synchronizing signal from the central receiver
to every signal cluster. This mechanism uses an existing, equal path length RF
cable network used to distribute the local oscillator to the IF frontend (as described
in Section 3.2.4). This scheme [45], essentially distributes a trigger to the remote
digitizers, by modulating it as a phase-continuous, Frequency Shift Keying (FSK)
between two synthesized tones. Here, the switching is aligned with an external signal
(a GPS 1 pps in the current scheme), and the switching signal is generated using
a DDS module. At every pillar, this signal is combined with one of the existing
incoming analog signals, and both are sampled. The data is then made available to
both the remote side FPGAs (to demodulate and initialize themselves, if required),

as well as to the Level-0 processors in order to carry out a finer level of centralized

3.6 Reconfiguration plan for the ORT 70

synchronization.

Such an arrangement allows us to calibrate the path length differences to each
ADC module by carrying out phase difference measurements on the synchronizing
signal, which can be directly converted to delays. The estimation accuracy is limited
by the SNR on the phase difference estimations, which, due to the periodic nature of
the signal, can be improved by coherently folding the acquired synchronizing signal
over several seconds. In addition, the phase stability of the digitized path can also
be monitored continuously, and applied as part of continuous calibration. The latter
can be done by monitoring the phase variation on the injected, high SNR FSK signal
as a function of time. The injected tones have a separation of ~300 KHz, which
resolves microsecond level delays, while their frequency is bin-centered for our choice
of sampling clock and FF'T size, allowing for accurate phase comparisons.

As seen in Figure 3.19, a synchronization to within 10 us is possible by using just
the power of one of the FSK tones, which results in a pulse-like transition at the
1 pps. The figure also shows the FSK switching, signalling the occurrence of a 1
pps pulse. A closer look at the transition shows relative delays of a few milliseconds
between the different clusters of data sources. These are determined during system
commissioning, and corrected during observations.

The traceability of absolute time in the system is maintained by recording the
time when the system was reset. This can be added as a constant offset to the 32-bit
timestamp available in the header of every data packet. Thus, the set of commodity
processors which carry out the correlation depend on this timing, which is maintained
throughout the system by the strict time-tagging carried out by the FPGA. Further,
while integrating the processed data, an average time computed from the time-tags
of the packets making up the integration time is used to represent the processed data
packet. The collation of such processed data into chronological sets also uses the

FPGA time-tag to reorder packets.
3.6 Reconfiguration plan for the ORT

In this section, we provide an example of an NSPS implementation by giving an
outline of the system being planned for modernizing the ORT [29]. A collaborative
program for carrying out this upgrade has been undertaken jointly by the Raman
Research Institute (RRI) and the National Centre for Radio Astrophysics (NCRA),
which operates the ORT. It may be noted that this reconfiguration plan is currently
under implementation, and the hardware described in this section has already been

procured.

3.6 Reconfiguration plan for the ORT 71

The ORT is a 506m X 30m equatorially mounted cylindrical telescope with an
equispaced linear array of 1056 dipoles along the focal line. Each dipole has a tuned
LNA [30] with about 40 MHz bandwidth centered at 327 MHz. As part of the planned
upgrade, the feed array is logically divided into 264 identical segments, where each
segment represents an independent antenna element of size 1.93m x 30m. The aim of
this upgrade is to reconfigure the ORT into a programmable 264-element array. When
completed, the reconfigured ORT will have an instantaneous field of view of ~ 277
bandwidth of ~ 35 MHz and will be equipped with an NSPS-based digital receiver.
Currently, prototypes have been tested for a large fraction of the custom segment of
the NSPS and the analog signal conditioning subsystems. The final production and
integration is expected to be completed in 2012. The digitizers are organized in 22
digitization blocks located below the reflector at a spacing of about 23 m, where each
digitization block includes a 12-channel digitizer capable of operating at 100 MS/s.
All the 22 digitization blocks are connected in a star topology with a central system
using a peer-to-peer network on optical fibres with multiple links operating at speeds
of 2.5 Gigabits/sec from each block.

3.6.1 ORT NSPS layout

The proposed system consists of four hierarchical levels as illustrated in Figure 3.20,
where Level-0 is the root node and is realized by a high performance cluster with
Infiniband for inter-node communication and GigE for communication with the NSPS.
The high speed peer network uses the light weight Aurora protocol simplex links for
data uplink, with last mile via GigE. Currently, bandwidths of upto 100 MBps per
GigE link into Level-0 memory have been sustained.

e [Level 3: This level is composed of the distributed digitization infrastructure
and is installed at the antenna base. The prime components of this level are
the digitizers, the sampling clock reception and conditioning circuitry, the first
level data organizer and the peer-to-peer link handler. All these components
required for handling 12 sensor elements from a 23 m section of the ORT are

implemented as a single board.

= The ADCs (dual channel AD9600) are capable of a 100 MS/s sampling for
signals with frequencies upto ~ 600 MHz. The ~ 60 dB dynamic range
at 10 bit resolution allows us to implement an AGC in software. More
importantly, the implementation can benefit from the on-chip sampling

clock conditioner, divider and duty cycle stabilizer. For instance, it is

3.6 Reconfiguration plan for the ORT 72

Control and Monitor
Gigabit Switch

C&M Level 0 NSPS node

| Cluster based backend

|- = Data Router nodes

g,
Compute
node

Level 1 & 2 NSPS nodes o
Virtex5, 2GB RAM Datgw i'c%ab't
- 1 of 11

re—]
From neighbour NSPS node Acquisi-

° | tion
> node

Data Pooler

Acquisi-
Tion
node

Spartané + ADC 1 IE Spartané + ADC

Level 2 & 3 NSPS nodes
22 Digitized 23m (12 sensor) Sections

UL LSS W
L
—

W /

Cluster Infiniband links

Level 1 & 2 NSPS nodes [High stability reference
Virtex5, 2GB RAM
™ 11 of 11

Duplex clock links

Figure 3.20: Proposed NSPS implementation for configuring ORT as a 264 element
programmable telescope.

possible to provide a sine-wave with frequency 2-8 times the sampling
clock, and use the on-chip features to convert to square-wave, enable duty-
cycle stabilizer and divide by suitable integer to get the sampling clock,
thus reducing the overall sampling clock jitter and hence the phase noise
in the sampled data. This feature is useful in direct (harmonic) sampling
of the incoming 327 MHz RF since the Nyquist sampling interval in a
band-limited RF is decided only by the bandwidth while jitter tolerance
depends on the highest frequency content.

= This level has an embedded clock synthesizer and distributor for the on-
board 12-channel ADC based on a reference distributed on fibre by the
central high stability clock distributor. It is received using a digital fibre
optic receiver. The embedded clock distributor is based on a clock buffer
and distributor (LMK03020) which has an on-chip Voltage Controlled Os-
cillator (VCO) and per-port delay tuning.

= The first data processing block is implemented in a Xilinx Spartan6 (L.X45T)

3.6 Reconfiguration plan for the ORT 73

FPGA to perform a conversion of the ADC 10 bit resolution data to ~ 4
bit via configurable, table-driven logic, where the look-up-table (LUT) is
dynamically updated to accommodate innovative schemes of compression
and segregation. For instance, we can assume that a choice among a pre-
determined set of LUTS is best suited for coding/compressing the data in
a set of physical packets associated with a Transaction Unit. Here, each
table implements a different encoding of the input word to an output with
lesser number of bits per word. Further, we assume that every word of each
physical packet is encoded by a choice between two LUTs out of the set,
to represent normal and segregated(flagged) data. For decompression by
downstream nodes, the tags of these two LUTs can be accommodated in
the packet header, while a one-bit selection between the two can be associ-
ated with each data word - thus achieving the dual purpose of flagging and
scaling at the word level. Such a scheme can accommodate a wide range
of scale factors and hence a large dynamic range within a logical packet.
Suitable thresholds for packet-level choice of LUTs can be generated on
the basis of integrated power over a reasonable time stretch as part of the

pre-processing.

= The Data Router node buffers data from all 12 sensors in internal memory
and reorganizes them to form packets containing identical time-stretches
from all antenna elements. The peer-to-peer link out of each 23 m section
which connects Level-3 to Level-2 is implemented using the 4 available
RocketlO multi-gigabit onboard serializers on the Spartan6. Our choice
of SFP for the current implementation can sustain link speeds of upto
2.6Gbps on single mode fibre, while we use the light-weight Aurora protocol
at a wire speed of 2.5Gbps for communication between Level 3 and Level
2.

e Level 2: This Level is implemented using an FPGA (Virtex5 LX50T) board
whose on-board resources include 2GB of memory and 8 multi-gigabit transceivers
and expansion connectors. This board can sustain the following Level-2 func-

tionalities:

= FFT block: Here, the data processor block first decodes data from a pair of
sensors, packs them into the real and imaginary parts of a 32-bit complex
integer word, and implements a pipeline stage (e.g., radix-64) of a split

radix FFT for all pairs of incoming channels. The processing resources are

3.6 Reconfiguration plan for the ORT 74

enough to handle upto 24 channels (2 Level-3 entities) at the maximum

sampling rate.

= The Data Pooler block operates using the large local DDR2 RAM and the
interconnection with other Level-2 cards to pool subsets of both local and
remote Level-2 data into transaction oriented packets by partitioning data
along the time axis. Here, each transaction refers to the processing of a

specific timeslice for the entire array.

= The Data router block collects data from the local RAM in units appro-
priate for transfer to each outgoing port, packetizes them and sends out
selected time slices to Level-1 entities. Provision for computation offload-
ing is provided in the form of spare peer-to-peer links which can add on

more Level-2 cards.

e Level 1: At this level, a memory-based, NSPS to commodity network bridge is
implemented. Large bursts of continuous time slices are first buffered in RAM,
and then sent out over Gigk as properly timestamped packets. The level imple-
ments load partitioning as configured by the root level by manipulating ethernet
destination addresses of streams going into the data GigE switch. There is pos-
sibility of implementing a data processor block for the remaining 16 point FFT
operation pending from the split radix FFT.

e Level 0: At the root of the NSPS tree, a medium level cluster is proposed
to handle both the communication and processing requirements for forming
correlations between all sensors. It is important to note that the cluster inter-
node traffic is significantly reduced due to the data routing and transposition
carried out using the Data Pooling nodes at the various levels. The formation
of actual correlations and the calibration parameter estimation is carried out
by this level. The above mentioned partitioning of the load into the 3 levels
can be used to bring a subset of data from all 264 elements into one node via a

quad-GigE card.

3.6.2 System control

The control network is a simplex, one-way channel from a master with unique id (in
the commodity segment) to the peer network through the bridge node. Thus, while
data can be routed to arbitrary nodes in the cluster depending on the UDP destination

addresses (set during configuration), commands are accepted by the bridge node only

3.7 Discussion 75

through a privileged link from the master. This simplifies assigning privileges to
operations related to starting, stopping or resetting the acquisition state machines,
configuring the network routes on customized hardware switches, changing ethernet
destination addresses, or changing the contents of the LUTs used in higher level nodes

like the digitizers.

3.7 Discussion

The implementation of 40-element array receiver establishes many ideas which are
directly applicable to the full 264-element implementation. Some differences between
the current 40-element, and the planned 264-element implementation relate to the
sizes of packets traversing the custom and commodity networks. In the full system,
each digitizer node will be generating packets on the Aurora links which will have a
larger number of samples from all digitizers. This allows for a lower metadata over-
head, while encapsulating a larger timeslice. The commodity segment implementation
will employ Jumbo frames, using which an Aurora packet can be directly translated
into a GigE packet without segmentation, as is being currently done. This avoids the
reassembly load in the commodity segment, while also improving reliability, which is
reduced when fragments of the segmented packets are lost.

For a generalization of our approach to the 264-element system, the massive cen-
tralization of data pooling can be simplified using large DDR2/DDR3 memory buffers
in the custom hardware hierarchy, as is already planned for the final system. A peak
data rate of 100 Ms/s x 4bits for 264 elements of the ORT would correspond to about
13.2 GB/s, for which the Level-1 buffering of 22 GB in 11 Virtex-5 cards (shown in
Figure 3.20) is comfortable to sustain transactions of upto a fraction of a second du-
ration. Further, due to the unilateral nature of the data transfer, the Aurora links are
planned to be operated in simplex mode, since only a single, low bandwidth reverse
path is adequate per digitizer node for command reception. This allows the usage
of spare Aurora links in peer cards at a given NSPS level, to be used for transmit-
ting data relevant for pooling. The large buffers planned for the hardware are also

expected to ease constraints on synchronization.

3.8 Conclusions

We have presented details of reconfiguring the ORT into a 40-element array, and
equipping it with a hybrid digital, packetized, FX spectral correlation receiver, which

3.8 Conclusions 76

will lead to a larger field of view and higher overall sensitivity of the instrument.
This, in turn, will enable several new classes of observations to be carried out by the
ORT. Here, the receiver is based on a scaled down version of the NSPS architecture,
suitable for the requirements of such an array. Further, a majority of the processing
is carried out in software, while the minor changes made to the analog frontend sec-
tion do not affect the ORT’s earlier receivers. The software based signal processing,
in addition to providing the ability to tap data at various levels of processing re-
quired for system validation, increases the configurability of the instrument in terms
of allowing the formation of various sub-arrays, with a variety of backend processing.
This implementation has served as a test-bed for refining the prototype cards, the
networking protocols and helped in defining the processor side software architecture.
Most importantly, it has helped in testing the response of the ORT in the RF do-
main with digital processing, which has not been attempted earlier. Further, many
of the infrastructural aspects of the full system, e.g., fibre topology, gain budgets,
calibration aspects etc. have been resolved using the experience with the prototype

40-element array receiver.

Chapter 4

A 40-Element Hybrid Software

Spectral Correlator

4.1 Introduction

In a typical array, a Correlator Receiver is used [46] to: (a) align data streams recorded
at different spatially separated stations, (b) correct for dynamically varying direction
dependent, geometric delays and phases, and static instrumental delays/phases of
individual antennas, and (c) estimate the correlation coefficient between data from
different antennas. The recorded correlations are then used in post-processing, e.g.,
for forming a multi-beam phased array, or a synthesis imaging mode, etc. Hence, cor-
relators are an important component of a multi-element Radio Telescope configured
as an interferometric array. In particular, a software based correlator offers signif-
icant flexibility of interfacing and reconfiguration, as well as the advantage of high
level programming tool chains and low development times.

In the recent past, the pace of development of commodity compute and I/0
components has made it possible to implement software correlators for arrays with
medium I/O and computing requirements, on reasonably sized High Performance
Computing (HPC) clusters. This is partly due to the availability of optimized vector
libraries and increasing DSP support on modern general purpose CPU architectures,
as well as due to the rise of high bandwidth I/O interfaces to commodity processors,
like Multi-lane PCI-Express and Gigabit Ethernet. Several such implementations, for
both connected element interferometry (LOFAR [24], and GMRT [20]), and VLBI
(DiFX [47]) have been functional for some time now.

However, one of the major limitations of a software-only approach arises due to

7

4.1 Introduction 78

the required cross-dispersion of data from every antenna element in the array, to the
logic which carries out the correlation. Further, although commodity processors have
very efficient compute units, their abilities of receiving and shuffling a large amount
of high bandwidth data between multiple processing elements, is inherently limited
by their commodity architectures. This makes most of the software correlators 1/O
bound, rather than compute bound. It may be noted that, even when their I/O
capabilities are enhanced via high bandwidth networking add-ons (like Infiniband),
the inherently asynchronous and latency prone software layer makes it difficult to
implement a distributed, streaming application with strict real-time synchronization
requirements, on commodity processors and Operating Systems (OSes).

Thus, for the upgraded Ooty Radio Telescope (ORT), we have proposed a hybrid
approach for a correlator implementation, which is a heterogeneous, hardware/soft-
ware co-design. In particular, high bandwidth data routing and shuffling (which are
pre-requisites for correlation), but are inefficiently handled in software, are offloaded
partially to customized hardware, while the core computing of the correlator is carried
out on commodity processors. Our hybrid approach thus relies on hardware offload-
ing of the minimum of processing and routing necessary to make the core computing
of the correlator efficient on commodity hardware.

This approach is, in fact, a direct implementation of the NSPS architecture pro-
posed by us (described in Chapter 2). Such an NSPS based implementation allows
the use of the highly efficient compute engines of commodity CPUs for integer based
correlation. It may be noted that the dynamic range of these integer operations is
adequate for a streaming correlator application [48]. Further, operations which are
inefficient on commodity processors, like data transposition, synchronization and re-
arrangement, are carried out in configurable hardware (in the form of FPGAs) of the
NSPS custom hardware segment. In addition, effective load balancing is carried out
by the Data Pooler entity of the NSPS custom hardware (described in Chapter 3).
This, in turn, allows a set of commodity class processors to handle the high data rates
from the 40 antenna elements. The implementation, thus, involves logic resources via
FPGASs on custom boards, for latency critical, but deterministic processing, and inter-
connected, general purpose processors, for latency tolerant, but complex computing.

It is important to note that conventionally, hybrid correlators refer to those which
use different kinds of processing elements, each suited for a specific stage of processing,
e.g., carrying out FFT in FPGA and cross multiplication in commodity processors.

In this chapter, we present a hybrid, software based spectral correlator for multi-

element radio telescopes. In particular, the design and implementation of a hetero-

4.2 Commodity processors for streaming correlation 79

geneous, parallelized, packetized, FX spectral correlator is presented. A core feature
of this design is the data communication between subsystems terminating in large
memories, which has implications on synchronization, compression and reliability of
the transferred high bandwidth data. Further, details of the implemented software
correlator architecture, an optimized integer FFT and an integer cross multiply and
accumulate (XMAC) implementation are also discussed.

In the next section, we describe the role of commodity class processors in the

hybrid approach adapted by us towards the correlation estimation problem.

4.2 Commodity processors for streaming correlation

The overall signal flow from the telescope is shown schematically in Figure 3.9
of Chapter 3. As is shown, data generated by spatially distributed sensors (repre-
sented by the ADCs) is dispersed and rearranged in a distributed manner, over the
different levels of the NSPS custom hardware hierarchy, before being sent to multiple
commodity processors for correlation.

We rely on using modern enterprise class processors (coupled with matched moth-
erboards having multiple independent 1/O pipelines), as efficient platforms for im-
plementing streaming applications, like correlators. This approach benefits from the
multiple, highly optimized Arithmetic Logical Units (ALUs), (usually with several
pipelines, wide execution units and high clock rates) provided by modern commod-
ity processors. In addition, larger volume RAM, faster and larger cache memories,
increasing number of cores, as well as larger vectored register sizes, also increase the
efficiency of this approach.

Further, certain features of the data and computation flow in a streaming cor-
relator application help in optimizing its implementation on commodity processors.

These are briefly discussed below:

1. Low arithmetic intensity: The basic operation of spectral correlation, which
consists of fetching two complex operands, forming their product, and writing
the result to an accumulator, results in a low compute instruction/byte ratio
of 1. Thus, the implementation has to handle a large amount of data shuffling
and data access over broad memory ranges, while carrying out relatively few

compute operations on this data.

2. Streaming data flow: The data flow in a correlator is extremely smooth, with

4.2 Commodity processors for streaming correlation 80

no random accesses or runtime dependent jumps. This allows the processors’
caching mechanism, as well as frontend data pipelines to be used very efficiently,
while hardware and software data prefetching on these flows can be effectively

carried out due to the linear flow of the incoming data.

3. Predictable and regular instruction flow: The core computing in a corre-
lator is simple, deterministic and repetitive, and thus does not contain sudden
and random jumps in control flow. The branching is extremely regular, leading
to a lower level of branch misprediction in a commodity processor, and thus, a
lower level of pipeline bubbles and flushing, which increases efficiency. Further,
the repetitive nature of the instructions prevents pipeline stalls due to under or

overflow of pipeline queue buffers.

4. Integer operations: The receiver’s 4-bit sampling quantization [48| results
in a sufficient spectral dynamic range (40-50 dB) needed to handle the REFI
environment at the ORT, while leading to acceptable 1/O bandwidth within
the various networks in the implementation. Due to this, the correlator is
entirely implemented via integer instructions, which efficiently use the integer
ALU pipelines of a processor. It may be noted that integer ALUs on commodity
processors routinely have faster throughputs, in addition to being larger in
number than the more complex floating point ALUs. This speedup with integer

only instructions is due to:

(a) Denser vector computing using instruction sets like the Streaming Second
Extensions (SSE) on the target processors. These specialized instructions
operate on a group (vector) of data at a time, leading to larger number of

operations per processor clock cycle.

(b) Denser data packing, leading to lower number of cache-line misses while

shuffling data, as well as while loading from 1/0 buffers.

(c) Lower latency and higher throughputs of integer arithmetic instructions as

compared to floating point arithmetic.

5. Multiply and Accumulate (MAC): The MAC process, which forms a major-
ity of the computing needed for the generation of the spectral cross correlation,
can be efficiently implemented on a commodity processor. However, this re-
quires the incoming data to be laid out optimally in memory. This important

aspect is elaborated upon, in Section 4.3.4.

4.3 Correlator implementation for ORT 81

Memory as a switch: Estimation of the spectral correlation between data streams
from different antennas consists of a per-stream processing segment (which operates
independently on each sensor’s data stream, and thus is embarrassingly parallel), as
well as a group-level processing segment, which requires a many-to-one connectivity
between sensor data streams and the group processor. We have chosen to realize this
many-to-one connectivity using the memory associated with commodity processing
systems as a “switch”, thus enabling the efficient utilization of the multiple compute
cores available on commodity processors. Such an approach was found to be more
efficient as compared to switches implemented using explicit I/O, or data replication
via broadcasting mechanisms.

However, implementing many-to-one “switches” in the memory of a processor re-
quires the availability of data from all sensor streams for a given timeslice, on demand.
This important function is carried out in the NSPS’s Data Pooler entity, which uti-
lizes its on-board memory to carry out a traffic shaping. This shaping refers to the
grouping of incoming distributed data into packets containing data from the same
timeslice, but for all 40 streams. These packet groups are then routed to individ-
ual commodity processors, thereby allowing the all-to-all memory based switch to be
implemented in the processor’s memory. This aggregation of data from distributed
data sources into a single data packet can be extremely expensive if carried out in a

conventional manner using a centralized switch (shown in Figure 1.1 of Chapter 1).

4.3 Correlator implementation for ORT

We now present an implementation of our hybrid FX spectral correlator approach
(based on the NSPS architecture) for the 40 antenna element ORT array.

4.3.1 NSPS Level-0 node hardware

In this section, we present the specific technical details of the Level-0 nodes for
the hybrid correlator implementation.

Here, these Level-0 nodes are implemented on commodity server class machines.
In particular, the compute nodes are Intel Xeon E5430 (Harpertown) class, quad core,
dual processor systems, which offer 128 bit Single Instruction Multiple Data (SIMD)
registers as part of the SSE and later Instruction Set Architectures (ISAs). These
instruction sets are rich in integer operations on a vector of data organized as 16

bytes, 8 short ints or 4 integers. Each of the four cores has 3 different vector ALUs,

4.3 Correlator implementation for ORT 82

which are independent of the Floating Point Units (FPUs), scalar integer ALU and
the vectored FPU. The vector ALUs are placed on 3 ports of the Re-Order Buffer,
thus allowing a high theoretical throughput of almost 1 vectored instruction every
clock cycle. The memory subsystem of the Level-0 node used in our implementation
was found to have memory bandwidths of ~ 40 GBps for 128-bit sequential reads
and ~ 34 GBps for writes from cache memory (using the STREAM benchmark).
Each node is equipped with two GigE links, and 16 GB of DDR2 RAM. The software
environment on these nodes is Intel’s icc compiler based, on a 64-bit GNU/Linux
installation.

A block level schematic view of the NSPS Level-0 nodes interfaced with the NSPS
custom segment depicted in Figure 4.1. This view shows the incoming transaction
units (composed of multiple physical frames holding data transposed by the NSPS
Data Pooler) traversing multiple, parallel I/O paths commonly found on typical com-
modity hardware, before being written into large memory buffers. These buffers, in
turn, replicate and house the transaction units in contiguous regions in memory.

Most importantly, the individual transaction units are then assigned to individual
processing cores for their correlation, with a minimum of communication expected
between different cores. This is due to the transposed transaction unit having avail-
able, all the data required for correlation by a processing core. Such an approach is
benefited by the current trend of increasing number of processing cores per physical

processor.

4.3.2 Software correlator architecture

The schematic of the correlator architecture is depicted in Figure 4.2. As shown,
the software correlator implementation consists of the following main software com-
ponents:

1. Network handler modules, which receive raw data from the NSPS hardware.

2. Memory buffer modules, which allow for coarse level synchronization, and block

operations over longer time stretches using large memory buffers.

3. Core processing modules, which consist of an optimized integer FFT, and an

integer XMAC implementation.

4. Collator modules, which collate processed data from all the core processing

modules, to form the output of the correlator.

In addition, the sequencer module manages the temporal sequence of the generated

output. For a multicore architecture, each of the modules can be assigned to an

4.3 Correlator implementation for ORT

83

0 (Cho,Chl, ...
L (Cho,Chl, ..
511(Cho, Chi, ..

Ch39)
Ch39)

reme ———(SPS Level 0
Cho (0, t1..1511) T Ch3g) :
L - e
Chl (0, t1..1511) < 98 Mbps/GigE link — —
T (2%)
- it
8 . FO... F8n o - 1
52 — - eon eon
ég __ . GIgESh B o oes{Ee | ((Core2 Core 3
— = e
2 E NSPS > = £2 |:"> E = > F1,F9 ... F8n+1
. B < =c Xeon Xeon
g - " Core 0 Core 1
= E—
= F7. F8n+7 © __ [Node [S l
F3
l r=Aalea
Fa Core 2 Core 3
Ch39 (10, t1..t511) = Node
— 2
- Node 0 F3,F11 ... FBn+7
s |Node m
F7
e 3

Figure 4.1: Schematic depicting the NSPS custom segment interfaced with the NSPS
Level-0 commodity hardware. The multiple cores of execution are matched to the
transaction unit based output of the NSPS’s custom section.

individual computing core for the duration of the processing, thus minimizing jumps
of the running processes across cores, and maximizing cache locality. Here, the NSPS
distributes the total I/O over multiple links in order to match the per link I/O to the
processing bandwidth of each processor being used in the Level-0 NSPS nodes.

In particular, the time domain data decomposition and the synchronization across
transaction units carried out by the NSPS custom hardware allows us to adopt a
Single Algorithm, Multiple Data (SAMD) approach to parallelize the correlator im-
plementation. A popular framework for such parallel implementations is OpenMP
[21], which realizes automatic parallelization of code, based on programmer issued
compiler directives. However, an explicit thread based approach, where the threads
have minimal communication between each other, was followed, which allowed for a
better mapping of the logical subdivisions of the problem to the resources, than that
using an OpenMP based approach.

The NSPS custom hardware serves out atomic and independent data packets on
Here, each GigE link

is served by an I/O thread which creates a pool of the incoming data packets in a

multiple GigE links, to the dual processor compute nodes.

large buffer in thread local memory. These threads then serve packets in a strict

sequence to each of the four available cores in a processor, in a Round-Robin fashion.

4.3 Correlator implementation for ORT

84

/ Sequencer|

Data
4|_ Large Memory Procetgtsmg
Data | Buffers Eny
== | collecting == Data
| entity | Processing| [| 8
A —
3OO \ entity T:_me
— slice
/Z Data
& Large Memory Processing collator
Data Buffers entity
— | Co“ect[ng =t ‘;=
_ entity | </ Daa /]
} Processing,
eee entity
ata from remote nodes Processed
® 0 0 — dl?ta
r N collator
/ASequencer| Data \
_‘_L . Large Memory Procetgtsing
| Data | Buffers entrty
- | collecting === Data L
| entity | Processing g
A =
~O A \ entity T:!'ne
—— slice
 —— DaIa
- Large Memory Processing collator
— Datf} Buffers entity
=== | collecting == ——— J—
. entity < Jaa
=EaT L) Pro;rt—]:-;tsmg
\Da.ta 1rc_¥| remote nodes J /

Figure 4.2: Block diagram of the software correlator architecture. Here, data is col-
lected from each GigFE link by a data collecting entity, which organizes the incoming
transaction units into large memory buffers. A sequencer indicates their arrival and
schedules their processing onto individual data processing entities. The processed out-
put is then collated in two stages: time slice collation, followed by collation of data
from multiple nodes.

Each correlator thread utilizes a set of two incoming packets, (which correspond to
16 timeslices of 64 samples each) for carrying out the correlation.

At this level of time integration (~ 25 us), the data rate from the correlator, in
fact, increases by about 10x due to the large number of baselines for the 40 element
array. This output data is then sent to the Long Term Accumulation (LTA) process,
which maintains its own cache for carrying out long integrations. After accumulating
~ 400 incoming data blocks, a compression of ~ 40x is achieved, with the data rate
of the generated correlations being ~ 20 MBps. This is the net output data rate,
which, in practice, is shared by 4 nodes, leading to a very manageable 5 MBps data

write rate to disk.

4.3 Correlator implementation for ORT 85

4.3.3 FFT implementation

We have designed and implemented a vectorized, pair FFT module using only
integer operations. Here, a single complex FFT on two packed, unrelated data streams
(either a pair of antennas or different timeslices of the same antenna) is carried out,
followed by the extraction of the individual streams.

This implementation is optimized for a 4-bit input precision, and generates outputs
in a manner optimal for the XMAC, computed in the next stage. This FF'T module
operates on all input streams, and carries out a 64-point, Radix-8 Decimation-In-
Time FFT, in two stages (i.e., stage-0 and stage-1) of Radix-8 FFT. Such a two-level

decomposition can be compactly summarized by the following equation [49]:

7 7
X (k) =X Br+s)=> W& WS (8l +m) W', (4.1)
m=0 =0

where, X (k) is the k" Fourier component, x(n) is the incoming time-series from
an antenna, Wgs & Wy are the twiddle factors, and r & s vary from 0 to 7. Each
Radix-8 stage of the FF'T is, in turn, implemented as two Radix-4 stages followed by
a Radix-2 stage. This results in a spectral resolution of ~ 625 KHz for the ~ 40 MHz
sampling.

Some of the additional advantages of our FFT implementation are:

1. Stage-0 data shuffling occurs at the byte level, reducing memory move opera-

tions.

2. Radix-8 FFT involves only the usage of complex add and subtract operations,
or the swapping of the real and imaginary components (as against full complex

multiplies), for implementing the FFT butterfly.

3. A scaling factor of \/ié needs to be applied as part of the Radix-8 butterfly
implementation. Since this is a common factor for both real and imaginary
components of an intermediate complex number, we can use a scaled, 8-bit
representation for this factor in stage-0, and a 16-bit representation in stage-1
of the FF'T. This scaling is also applicable to the twiddle factors involved. Since
these representations are more accurate than the incoming 4-bit data, the error
in the integer FF'T is limited by the precision of the incoming data, rather than

by the integer FFT itself.

4. A fully vectorized FFT was implemented, with all memory moves and accesses

being optimized for 128 bit SSE instructions.

4.3 Correlator implementation for ORT 86

5. The final stage of the FFT reorganizes data in the most optimal manner for the
XMAC operation (see section 4.3.4). Also, the extraction of individual streams
from the pair FFT output is combined with this data shuffling/reorganization.

This absorbs the extraction load to a large extent.

6. The FFT can be easily extended to 512 points by the addition of another Radix-

8 stage, for achieving a higher spectral resolution (if required).

In the following subsections, we describe the sequence of steps involved in imple-
menting the FFT. Here, the incoming raw data streams are first decomposed into
appropriately strided subsets, with the real and imaginary components accommodat-
ing different timeslices of a pair of streams. Stage-0 of the FFT is then carried out,
whose output is shuffled for stage-1, which in turn, results in the 64-point, 16-bit
complex FFT output. Subsequently, the individual streams’ output is extracted, and

simultaneously rearranged in order to carry out the XMAC optimally.

4.3.3.1 Data decomposition for stage-0 of the FFT

The NSPS implementation for the ORT organizes data into groups of 512 time-
contiguous samples, referred to as frames. Incoming frames are decomposed into 8
timeslices of 64 contiguous samples each for the next stage (stage-0) processing. The
4-bit data samples are then picked from every 64 sample data set, with a stride of &,
resulting in 8 samples per data set. These samples are then unpacked from 4-bits into
8-bits. Corresponding samples from 16 such timeslices (from two consecutive frames)
are then put into a single SSE register (128-bit wide), hence each sample is separated
from the next by 64 samples. Thus, 8 such SSE registers are used to accommodate all
the samples for carrying out the first stage, 8-point FFT on 16 samples (organized as
8 complex numbers). Such a decomposition results in the optimal usage of the SSE
registers.
4.3.3.2 Stage-0 Radix-8 FFT

In this stage, a pair of Radix-4 FFTs is carried out separately, on the even and odd
samples in the 8-sample group. These are implemented using native packed arithmetic
instructions, as the Radix-4 butterfly implementation consists of direct addition or
subtraction of complex numbers. Further, the multiplication by +¢ in the Radix-4
butterfly, corresponds to a swap between the real and imaginary components of each

complex number. This swap operation was optimally carried out using a packed swap

4.3 Correlator implementation for ORT 87

instruction, available from the chosen processor’s instruction set.

The Radix-2 at the end of stage-0 requires a multiplication with factors like
(+1 +4), with a scaling by \/Li These multiply operations are implemented by first
forming all the sums and differences of the real and imaginary components of the
complex Radix-4 output, followed by a swapping between the resultant components,
which depends upon the multiplicative factor.

Further, all stage-0 operations are in-place, and carried out in 8-bit mode. Thus,
4 spare bits are generated on expanding the input data (which has a precision of 4
bits) to bytes. These 4 spare bits allow accumulation over 16 incoming data values,
while in a stage-0 Radix-8, an accumulation is carried out only on 8 data samples.
Thus, the bit-growth in our Radix-8 implementation is well within the constraints
set by the available word size. It may be noted that all scaling and normalizations
are carried out after the accumulations, in order to preserve precision. Once the
stage-0 operation is carried out for all 8 timeslices, the output is multiplied with the
appropriate twiddle factor (W{}* in Eq. 1), rearranged in a bit-reversed order, and
then passed on for the stage-1 FFT implementation.
4.3.3.3 Stage-1 Radix-8 FFT

Stage-1 carries out another 8-point FFT on a set of 8 complex numbers, formed
by taking the correspondingspectral channels of each stage-0 group output. Since this
stage is implemented with 16-bit integer precision, an intermediate process handles
converting the 8-bit complex outputs of stage-0, to 16-bit complex. Thus, stage-1
generates 16-bit complex outputs, corresponding to the 64-point FFT of the incom-
ing raw datastreams. Since the output is in-order, a separate code block can be used
to extract individual, transformed data streams for carrying out the XMAC. This
output extraction is merged with the task of rearranging the data in the most opti-
mal manner for the XMAC.

Data scaling: In each of the two Radix-8 stages, the Radix-2 implementation
(following the Radix-4) requires multiplication by a \/Li factor, which is represented as
an 8-bit scaled integer. The Radix-4 outputs, (fed as inputs to Radix-2), and the \/Li
factor are converted to 16-bit before this multiplication. Since the Radix-2 output is
also restricted to 16 bits, the pmulhw instruction is used, which discards the lower 16
bits of the 32-bit output of the multiplier. At this stage, proper scaling of the input is
required to ensure that data bits are not discarded during the pmulhw instruction. This
scale factor depends on the range of the incoming data, and must be precomputed

and set. A similar operation is carried out during the stage-1 implementation, where

4.3 Correlator implementation for ORT 88

once again, such scale factors need to be tuned. Note that if floating point operations
were to be carried out, such a data dependent scaling would not be needed, thereby
avoiding overheads. However, the integer operations are much more efficient, as the

actual float operations have a lower throughput (See Table 4.3).

Arithmetic intensity: The arithmetic intensity (defined as the number of op-
erations performed per byte of data loaded from memory) is extremely low for the
correlation algorithm. This implies that, for actual implementations, the memory
shuffling and move operations can form a significant fraction of the computing load.
Hence, for the FFT implementation, we have used the most efficient way of moving
data, i.e., using 128 bit SSE moves. Here, cache misses due to moves (which result in
stalling of the instruction) were minimized. Significantly, the current implementation
results in memory moves accounting for close to 50% of the total instructions. This
is essentially due to the shuffling of data being carried out while it is compressed at
4-bits/sample.

Further, the dominant arithmetic instruction in the FFT is packed adds and sub-
tracts on bytes and words, which are available in the SSE ISA in a “signed saturated
mode”. This allowed operations on data to be carried out without scaling to prevent
overflow, thereby reducing the otherwise required checks.

The frequency of occurrence of the instructions dominating our implementation,

and their estimated latencies and throughputs are depicted in Table 4.8.
4.3.4 Cross multiply & accumulate implementation (XMAC)

The XMAC implementation requires a much higher processing bandwidth than the
FFT itself, and thus accounts for a large fraction of the processing time in a correlator.
For the XMAC implementation in our approach, the important task of collation of
data from all distributed sources into a single packet is carried out by the custom
hardware (Data Pooler) of the NSPS architecture. This allows correlation within
such a packet to be carried out by a single processor core, without communicating
with any other core. Further, the time alignment of the distributed data (needed for
high correlator efficiency) is also carried out by the NSPS hardware. In comparison,
carrying out these tasks of data collation and alignment in software using commodity
networks is highly inefficient.

However, in spite of eliminating inter-processor communication at a fine level via
data collation, the layout of this collated data can still lead to inefficient memory

access. The large 1/0 resulting from the low arithmetic intensity of the correlation

4.3 Correlator implementation for ORT 89

Registered over baseline loop

"\

yadar | 17 [6 | 5 | 4 [3 | 2 | 1 |0 | «TIME

_2 0 re re re re re re re re\ | ant0,chO

‘© - - - , , - - -

S 8 im im im im im im im im | N

S 16 re re re re re re re re |antO,chl \

14}

Sll2aim[im[im|im][im][im][im]|im ~N EEE
32 re re re re re re re re |antl,chO ><
40 [im | im | im | im | im | im | im | im 47 | MAC

48 re re re re re re re re antl,ct}‘]y
56 im im im im im im im im

Figure 4.3: Schematic representation of the optimal data layout for XMAC. The FFT
output is 16-bit integer complex, with the XMAC output being 32-bit integer complex.
This can be converted to 32-bit floating point complex during LTA.

process further increases this inefficiency. Thus, there is a requirement of designing
an optimal data layout for carrying out the XMAC.

We now discuss some aspects related to designing such an optimal layout. In the
spectral cross multiplication process, the data from the same sensor needs to be used
several times on an average, in multiplication operations with data from all other
sensors. Thus, an optimal layout should allow registering (in CPU registers) such an
often used data object. Further, the output data layout of popular libraries used for
the previous FF'T operation can result in the required data objects spanning several
cache-lines. This leads to the loading of an entire cache-line into L1 cache, for every
object access. Thus, an optimal layout should aim at increasing spatial locality, lead-
ing to efficient cache-line access and utilization. Furthermore, the accumulators re-
quired for every spectral channel of each baseline (following the cross-multiplication),
can quickly overflow the limited L1 cache of commodity processors, even for small
arrays with limited spectral resolution. This, in turn, leads to a lowered throughput
of the correlator. In our case, for a 64-point FF'T, the 40 antenna elements lead to
780 baselines being formed, and an integer-complex representation for each complex
accumulator results in their occupying , leads to just these accumulators occupying
about ~ 200 KB, which overflows L1 cache by 6x. Thus, an optimal data layout
should minimize the number of accumulators needed, thereby reducing cache misses.
4.3.4.1 Optimal XMAC layout

Based on the aspects discussed above, we have carried out an efficient arrangement

4.3 Correlator implementation for ORT 90

of the FFT outputs, which results in an optimal XMAC implementation. This is pos-
sible due to the available flexibility of reorganizing the FFT output as per computing
convenience. The optimal layout is depicted in Figure 4.3, and has the following
features:

1. Multiple timeslices of the same data object are placed in a single SSE register.
Notably, the primary data compression in a correlator occurs in the temporal
accumulation of the formed correlation coefficients, (which takes place after the
complex multiplication). This is most efficiently done using instructions like
phaddd and pmadd, which require all timeslices to be available in the same SSE
register. Thus, such a choice of integer-only ISA instructions further supports

the chosen placement.

2. Data from different antennas are closely placed in memory, in order to minimize

cache misses.

3. The real and imaginary 16-bit components of each spectral channel are sepa-
rated, such that they reside in different SSE registers. This is optimal due to
the presence of instructions like pmulwd, which can carry out vector multipli-
cations on the separated data, resulting in efficient generation of products of
the kind (Re (AntO)*Re (Ant1)), (Im(Ant0)*Im(Ant1)), (Re(Ant0)*Im(Ant1)) and

(Im(Ant0)*Re (Ant1)). These are then used to form the complex cross products.

4. Data from a single sensor is held in an SSE register, while all 39 baselines with
this sensor are being formed. This minimizes memory access for such frequently

used data.

Further, SSE instructions with the ability to saturate each component of the vec-
tor were used. This feature avoids possible error in the final correlations, if such a

saturation occurs during the various temporal accumulations.

4.3.4.2 Hierarchical accumulation

There are several contexts which require different integration times over which cor-
relations are to be accumulated. While the requirement of high temporal resolution
(low integration time) is dictated by observational requirements, e.g., the local RFI
environment, or search for high time-resolution variability, post correlation process-
ing requirements dictate lower temporal resolutions (higher integration time), which

result in higher sensitivity and a lower I/O load to manage. As discussed earlier, the

4.3 Correlator implementation for ORT 91

particular choice of data layout and the SIMD instructions used, also dictates a min-
imal integration period. Further, observational parameters also need to be accounted
for, e.g., ionospheric scintillations in low frequency observations, which have a typical
bandwidth of ~few KHz, thus requiring low (millisecond) level integrations.

Thus, the accumulation was implemented in a hierarchical manner. At the lowest
level of this hierarchy, the pre-integration corresponds to a time span required for
an efficient SIMD implementation, and was fixed to 8 timeslices. This allows us to
carry out this pre-integration using only 16-bit precision, making the implementation
more efficient. The next hierarchical level consists of a programmable Short Term
Accumulation (STA), which was carried out using 32-bit arithmetic. This results in
high data rates and temporal resolutions, with the accumulated correlations being
typically routed in-memory to online processes, which carry out multiple passes on
this data. This is required to generate side-information, which is later used to seg-
regate unreliable data before the highest level of the hierarchy, i.e., the Long Term
Accumulation (LTA). Here, segregated data is allowed to be separately accumulated
over a longer time (typically tens of milliseconds).

Such a hierarchical scheme not only allows for better estimates of the cross corre-
lation coefficients, but also creates a pool of so-called unreliable data, which can then

be sent to a separate processor for further analysis.

4.3.5 Software data pooling

In the implementation of the 40-element array receiver interfaced with the described
software correlator, the “Data Pooler” element has been implemented via software,
on commodity computing systems. This system, whose configuration is depicted in
Figure 4.4, carries out a real-time software based data pooling, followed by real-time
correlation. Here, distributed data generated in the custom segment of the NSPS is
connected to the commodity segment via a bridge layer. These data are acquired by
a recorder sub-level, which can either store bursts of the incoming, high bandwidth
data to disk for offline processing, or route them to output ports for transport to the
next sub-level.

The pooler element utilizes the large memories available on such systems in order
to carry out a second level of data transposition on the incoming, high bandwidth
data from different recorders, creating transaction units of upto 1 minute with the
target hardware. This transposition is carried out by a data playback and pooling
layer, which places incoming packets in locations in the system RAM, based on their

32-bit timestamps. Such an approach caters to missing packets from individual pillars,

4.4 Results 92

Custom segment Commodity segment
/ NO8 (Aurora link) (Gigﬁ |i?6 N ™ \
Signal —+—»{ correlator
G0 i Data plavback correlator
Bridge 1 ata playbac »{_correlator |
|»{Data recorder] and pooling »{ correlator
R pl
NO3 S »{ correlator
Signal =
Cluster 3) - .
I || Realtime Pipeline Real time
S (O] acquisition storage correlation
=
.503 (Aurora link) o
=eal < -+ correlator
= ol D layback/+—m™_correlator
Hutne I ata playback—__correlator]
i Data recorder and pooling » correlator
S08 » _correlator

Signal
\Clﬁs?t:r N A N 4 /

Figure 4.4: Scheme for software based data pooling. Here, the NSPS custom segment
acts as a streaming Data Acquisition System. The data transposition of the incoming
data is carried out using commodity switches, while the data pooling and creation of
transaction units 1s carried out by a pipeline stage in the commodity segment of the

NSPS.

which can otherwise lead to loss of synchronization. These pooled data packets (each
consisting of time-aligned data from all distributed sensors) are then forwarded to a
cluster of commodity processors over the commodity segment of the NSPS network,
which carry out the bulk of the processing in order to form an estimate of the spatial
correlation function. Thus, the Level-3 Data Pooler carries out a temporal traffic
shaping within the NSPS commodity hardware and network domain.

This software system facilitates the validation of several subsystems relevant to the
NSPS architecture, including link and data integrity, checks for synchronized clock

distribution etc., before their ultimate integration into the hardware.

4.4 Results

This section presents comparisons of our correlator against a “control” correlator
implementation, having identical computational and correlator parameters (in both
floating point and 16-bit integer versions). The control correlators were implemented

using the most optimal standard library functions available, and operate using stan-

4.4 Results 93

dard data layouts. In particular, Intel’s Integrated Performance Primitive (IPP) [50]
library was used for the main computational load of the FFT and XMAC. This library
offers a vectorized FF'T, generic AddProduct () functions for float complex vectors, and
several other vectorized arithmetic functions. The float AddProduct function osten-
sibly uses the floating point Fused-Multiply-Add (FMA) instructions available on
modern Intel architectures [51]. For the integer comparison, we used the vector mul-
tiply and vector add functions separately to generate the complex products. Further,
standard code and data optimization procedures were followed where ever possible,
like allocating memory on cache-line size aligned addresses, avoiding split cache-lines
by operating within a cache-line if possible, etc. Intel’s Vtune profiler was used to
obtain processor and memory subsystem specific comparison results.

The results can be grouped into three categories: (a) correlator subsystem through-
put rates excluding the external I/O requirements (but including the memory subsys-
tem) (b) compute and memory access efficiency related, and (c) full system through-
puts. We first present comparisons of individual sub-components of the correlator,
and subsequently compare the full correlator implementations.

A breakup of the overall load among the major components of the correlator is
tabulated in Table 4.5, to bring out the effect of the optimization of each functional
block.

4.4.1 Communication protocols

Since the correlation process is expected to be I/O bound, and a standard protocol
(UDP) interfaced to a commodity switch and motherboard is utilized, the incoming
rates sustainable on our target hardware were measured. The data was generated by
the NSPS Level-1 entities, which in the current implementation, is a custom Virtex-5
FPGA based board with a GigE implementation.

In our implementation, we were able to sustain a total bandwidth of ~105 MBps
for long durations into Level-0 node memory, with a loss fraction of <1%. The
loss fraction for multiple data rates is tabulated in Table 4.1. These numbers were
obtained by inter-comparing the timestamps from the incoming streaming raw data.
Thus, we found that commodity hardware with stock networking stacks can operate
with high efficiency, for multiple such data links (upto 4 on our hardware) terminating

in a single Level-0 hardware node.

4.4.2 FFT

The major components of our FFT implementation, their load contribution to pro-

gram execution and their main functionalities are tabulated in Table 4.2. As can be

4.4 Results 94

Samp Per GigE % data received Longest drop
clock | Rate (MBps) (MB)
| 4 Active GigE links, (3GB/burst) |
20 MHz 50 [99.94, 99.77, 99.99, 99.97] [0.96, 1.57, 0.02, 0.04]
42 MHz 105 [95.58, 98.75, 99.67, 96.04] [1.01, 1.12, 1.38, 1.68]

Table 4.1: PC based burst mode link reliability of a Bridge card. The packet structure
allows embedding of sequence numbers in order to verify link reliability. The set of
numbers in col. 3 and j correspond to each of the four active links.

‘ Functional block ‘ % load ‘ CPI ‘ Major functionality ‘
mergeBlockPair () 26 1.083 | Timeslice reordering, nibble to byte conversion
radix8Byte() 9 0.566 | Stage 0 FF'T

byte2WordPairTwid () 31 0.620 | Byte to word conversion, twiddle multiplication
and reordering for stage 1
radix8WordStrided() 15 0.572 | Stage 1 FFT

retrieve_pair_fft() 12 0.629 | Pair FFT extraction

Table 4.2: Functional load distribution of the integer FFT implementation.

seen, the shuffling of data within the FFT kernel (implemented in the mergeBlockPair
and byte2WordPairTwid functions) takes a large fraction of the compute time, com-
pared to the actual multiply and accumulates. This can be attributed to a much
higher fraction of mov, or I/O, than compute instructions, seen in the histogram of
instructions in our implementation (Table 4.8).

As a measure of compute efficiency, the CPI (Clocks Per Instruction retired) ratio
was used. This should ideally be close to 0.25 for a 4-way superscalar processor
architecture such as ours. We obtain an overall CPI value of 0.483 for the complex
FFT engine with pair retrieval. The IPP floating point FFT generated the best CPI
of 0.441.

Next, we compared the performance of our FFT implementation, termed NSPS_int,
with that of standard optimized libraries. In our tests, we found Intel’s IPP FF'T to
be marginally faster than that available from fftw3 [52|, for FFT sizes ranging between
64 and 512. For the purpose of illustration, we present measurements for a 64-point
implementation, which are tabulated in Table 4.3. In order to carry out these bench
tests, a large data pool of several GigaBytes was first assembled in memory, and
subsequently, only memory reads were used to feed the FFT engines. Thus, we
involved the memory and cache sub-systems, but not the I/O subsystem. Also, the
memory access is unidirectional due to the read only access. Comparison between

code generated by gce and Intel icc compilers were made, and the latter was found

4.4 Results 95

64 point FFT Single complex | 20 stream complex Speedup CPI
Category (MFFT/s) (MFFT/s) (NSPS_int Vs Others)

NSPS int 8.825 1.31 1 0.483
IPP 16-bit int 0.292 0.014 30.2 0.479
IPP float 0.411 0.020 21.4 0.441
FEFTWS3 strided float 0.200 -NA- 44 -NA-

Table 4.3: Comparison of the speed up and FFT throughputs between various reference
implementations and our integer FFT implementation. These rates are for complex
FFT without paiwr FFT extraction.

to be a few percent faster than gcc. Hence, the icc compiler was used for all further
tests.

Further, all implementations operate on the packed 4-bits/sample data layout,
i.e., the cost of the raw nibble extraction is also included in the measured numbers.
All tests were carried out on a single core of the target system, with the most optimal
variant of the FFT used.

It is interesting to note that our integer FF'T implementation was faster than the
library implementations by several factors. Further, an almost 2 orders of magnitude
speedup was obtained while operating on a packed data stream. This demonstrates
efficient use of memory access for the larger dimension complex vectors. Note that
the IPP float FFT is faster than the short-int FF'T, contrary to expectations.

4.4.3 Cross multiply and accumulate (XMAC)

In Table 4.4, we can see an average speedup of ~ 4x for our optimized XMAC
implementation (using the data layout described above), against those using IPP
library functions (ippsMul and ippsAdd, ippsAddProd). It may be noted that these
numbers only measure compute performance, and have been generated by in-memory,
static test data buffers, thus eliminating external I/0.

This table also depicts the higher efficiency of the integer units by ~2x against
the floating point units of the processor. Further, it is clearly seen that the IPP float
implementation using the addProduct () or FMA instructions is actually faster than
the IPP integer implementation. It is important to note that the XMAC engine forms
a major part of the correlator load, as borne out by the load distribution presented

in Table 4.5, with speedup gains affecting the full correlator performance.

4.4.4 Correlator

The per-core load contribution of the functional blocks of the correlator is tabu-
lated in Table 4.5, for the IPP implementation, and in Table 4.6 for the NSPS based

4.4 Results 96

Acc. | xL1D | IPP 16-bit | NSPS 16-bit | Speed | IPP float | NSPS float | Speed
GMAC/s GMAC/s Up | (Addprod) | GMAC/s Up

44x32 3.7 0.304 1.21 3.98 0.342 0.670 1.96
44x64 7 0.352 1.29 3.66 0.378 0.670 1.77
44x128 14 0.385 1.29 3.35 0.388 0.672 1.73
44x256 | 29.5 0.404 1.29 3.19 0.385 -NA- -NA-

Table 4.4: Tabulated speedup of complex XMAC for correlation using optimal data
layouts and hand-coded SSE assembly, against standard functions from the Intel IPP
vectorized library. The first column gives the number of antenna elements x spectral
channels. The second column gives the L1D overflow factor of the accumulators. The
speedup is of the NSPS implementation against IPP’s FFT output layout.

Function IPP 16bit int
% Load
XMAC 76
Data Extraction 7.0
Complex 64-point FFT 5.8
ipps_ BitRev 1.9
extract _fftpair 2.4
ippsConvert 8u32f 1.5
ippsReal ToCplx 32f 1.7
ipps_ Mul 3.5

Table 4.5: Profiled compute load distribution of the major code blocks of the reference
correlator implementation.

implementation. The measured load distribution re-iterates the importance of the

data layout for optimization.

The net measured throughput of the various correlator implementations, tabu-
lated in Table 4.7, clearly shows the effects of our optimization. We achieve a total
speedup of a factor ~3.5x. These throughputs are in units of actual input network
data rate handled, which is related to the total allowed system bandwidth. For our
system, with a sampling clock of ~ 40 MS/s, 4-bit sampling and 40 antenna elements,
this translates to ~ 800 MBps of total data to be handled. The throughputs were
measured by first processing only in-memory data with no 1/O load (mem. reads),
and then with the network 1/0O handlers feeding incoming streaming data to memory
(net. reads). It may be noted that the net. reads correspond to a single GigE link’s
data bandwidth, as against the eight links needed to serve the full incoming data

rate.

4.5 Calibration of the 40-element prototype array 97

Function ‘ % Load ‘
XMAC (STA) 57.4
Cnvt to 32-bit+LTA 15.6
byte2wordpairTwid 6.7

mergeBlockpair 3.5
radix8 WordStride8 3.9
retrieve pair_ fft 2.4
radix8Byte 1.9

Table 4.6: NSPS correlator load distribution among the main software blocks. The
correlator operates on the incoming, high bandwidth data-streams, in quasi-real-time.

Correlator Type Mem. reads | Net. reads

(per core) | (per core)
IPP float (ippAddProduct) 26.4 24.8
IPP 16-bit int 15.8 15.1
NSPS int 91.8 88.7

Table 4.7: Measured correlator throughputs, in MBps of data read from a memory
pool (mem. reads), and using live packets over a single network link (net. reads).
The rates correspond to a correlator time constant of 1600 packets.

Figure 4.5 shows the bandpasses of typical antenna elements from the telescope,
after an integration of ~100 ms. The ripples and the droop seen in the bandpass
are due to the anti-aliasing SAW filter response. Typical baseline outputs from some
baselines for a calibrator source (Hercules -A, S3o7 = 175 Jy) are also shown in Figure
4.6. Further, Figure 4.7 shows the closure phase errors in the dataset. These are used

to identify antennas causing the visibilities to deviate from their expected values.

4.5 Calibration of the 40-element prototype array

While carrying out an observation, the signals from each antenna sensor element of
the ORT can have an unknown and random delay and phase with respect to each
other. These delays and phases can have two parts: one due to the geometry of the
array in relation to the source position (which changes in a calculable manner for
different sources, but not with time), and the other due to the instrumental delays,
i.e., differential delays between the electrical paths taken by the signals before they
are correlated. These instrumenatl delays are expected to remain static for a typical
observing session, and for different declinations, but can slowly change with time.
Both these delays need to corrected before the data from different elements in the

array can be combined.

4.5 Calibration of the 40-element prototype array 98

BB [-SOBS -t

Tsoes o Lsom

Power (dB)

T A RS WS RS SUSSSS =7 1 S SUSRS S S

318 326.5 335 318 326.5 335 318 326.5 335
Frequency (MHz)

Figure 4.5: Typical bandpasses of antenna elements from the upgraded ORT. The
ripples seen are inherent to the anti-aliasing bandpass SAW filter. These effects can
be calibrated to a large extent due to their temporal stability. The spectral line in the
SO6N antenna bandpass is due to the combining of the synchronizing FSK signal with
the sky signal.

Thus, the calibration of an interferometric array recovers true visibilities from
the observed ones, which can be corrupted by both instrumental and environmental
effects, and refers to estimating the per sensor element complex gain as a function of
time, sky position or frequency. These estimations are subsequently applied to the
observed data as corrections, in order to increase the sensitivity of the instrument.
Thus, the calibration consists of obtaining a per-sensor element broadband phase
and delay contribution due to the instrumentation. The errors due to the latter are
expected to start dominating, once wider fields of view are imaged. This can be

summarized by the following equation [53]:

‘/Zgbs = ‘/ZzTueGlGjGw + Cij + Gij (42)

where, for an array with N sensors, V;; represents the complex output of the

interferometer formed by sensors i & j, G; is the total complex gain for telescope

4.5 Calibration of the 40-element prototype array 99
| S09S-NO6N| i NO8N:N06S| i NO08S:N06S
0.016 R ey
0.008 0
do
-
c 0 H H H H H
[T T T T T T
S | SO7N:NOG | S07S:NO6 | NO9N:N06S
i 0016 e e Yoo o
©
@ @©
Q =
O 0 w
< 0.008 7]
§e] 8
s | 2o
£ o ; ; ;
o ‘ i NO7N:NOE | NO7S:NO6
O 0.016 - o e
‘ Vo
0.008
: ~ 2
0 f f f t f f t }
322 3265 331 322 326.5 331 322 326.5 331
Frequency (MHz)

Figure 4.6: Cross power spectrum of baselines ranging in length from 23 m to 345
m. The correlation coefficients on the source Her. A from different baselines, after
an integration of ~ 100 ms are seen to vary due to the absence of an AGC, which is
implemented in software.

30
100

=)
=]

20

i)
=)

Closure phase error (deg)
o
4
P

=
B
/

-100

330 20

Closure phase error (deg)

Frequency (MHz)

30

Antenna closure group

ke -100

20

40

60

80

100

120

Antenna closure group

Figure 4.7: Closure phase errors being used to identify deviant antennas within the
recorded dataset. Such antennas have a closure error significantly larger than that of
other groups, and can thus be isolated.

4.5 Calibration of the 40-element prototype array 100

565 . $10S:509S MW

e

e

564

Cross Correlation

e

~200 200 200 200
Delay (Sampling Clocks)

563

Figure 4.8: Plot showing the estimation of sample level delay between the antennas
from a representative baseline. The cross correlation between the two antennas is seen
to peak at the delay offset corresponding to the actual delay between them.

i, incorporating amplitude and phase errors due to the sensor, G;; represents the
baseline dependent, complex gain, after all known corrections are applied, ¢;; is an
additive error, and e;; is the thermal noise.

Calibration can be achieved by carrying out dedicated observations of calibrator
sources (which have known and invariable position, spectrum and flux) close to the
field under study, with the per-sensor complex gains usually determined before and
after carrying out the observation. This method assumes that the gains G;, G; and Gj;
are fairly constant with time, and over different (nearby) parts of the sky (standard
calibration).

Since correlation maintains the phase difference between a pair of elements, the
phased array response can be created post-facto in a correlation receiver. This is
possible, provided the differential delays are compensated before correlation, to a
temporal resolution better than the inverse bandwidth of the spectral resolution of
each data stream, and the sensor phases are calibrated before forming a phased array
map.

Before elaborating on the details of the calibration implementation, we briefly

discuss some aspects of calibration specific to the ORT upgrade.

4.5.1 Delay and phase

In the upgraded system, which has minimal analog components, the variable instru-
mental delays are expected to be caused only due to the analog conditioning subsys-

tem, and possibly due to variable drifts in differential sampling clock phase between

4.5 Calibration of the 40-element prototype array 101

elements. A us level delay can arise in each path due to the SAW filters installed, but
the differential delays are expected to be minimal, as all filters were obtained from
the same production batch. In addition, the fibre paths from the signal clusters to
the center are not of equal length, and can vary by upto 100 m between the ends of
the array. This can add a delay of upto hundreds of nanoseconds (or several tens of
clock cycles) between signal clusters. Once the signals arrive at the center, no further
relative delays are expected to be added.

As per the Fourier Transform delay to phase relationship [49], any uncompensated
delay between two datastreams gives rise to a frequency dependent phase, leading to
the generation of a phase-ramp across the sampled band. Further, a constant phase
offset (broadband phase) to the band is expected, due to various effects like harmonic
sampling.

Thus, initial delays between antennas, to the level of a few sampling clock ticks,
are extracted by first carrying out observations of strong calibrator sources at low
declinations, and then detecting the peak in the full-band time correlation between all
antennas and the reference antenna (as shown in Figure 4.8). These are corrected by
delaying each antenna’s data stream in integer sampling clock units, which increases
correlation, and reduces the phase winding per spectral channel in the cross power
spectrum. It may be noted that carrying out delay corrections in base-band on a
harmonically sampled signal leads to the generation of a constant cumulative phase
accumulated by every unit of delay introduced at base-band, which itself is given
by the ratio of phase center frequency (326.5 MHz) and the sampling frequency.
Since this phase is delay dependent, it varies for different baselines. Once the coarse
delays were estimated, they were accommodated in a system level table maintained on
the software correlator platform, from which the table driven fixed delay application
process operates.

Delays finer than a sampling clock unit per baseline, can be estimated using the
slopes on the phase ramps observed. These are then added to the integer delays
already estimated, to obtain a per-baseline delay. This delay, for every baseline, is
then collapsed into per antenna delays using ANTSOL, and recorded into a system
file, from where they can be applied as haedware based corrections for subsequent
observations. These fractional sampling clock delay corrections are shown for a rep-
resentative baseline in Figure 4.9.

The calibrated visibilities for a single sensor cluster are depicted in Figure 4.10.

4.5 Calibration of the 40-element prototype array 102

g g

4 R
Wﬁﬁw 0 15, »W+mfmihv.m;ﬁ.§w IR *%it*m%‘“

(i 5 S L

Phase (rad)
o
+
4
Phase (rad)

322 326.5 331 322 326.5 331
Freauencv (MHz) Freauencv (MHz)

(a) (b)

Figure 4.9: Plots showing the phase of a representative baseline, (a) before and (b)
after a fractional sampling clock delay has been applied.

150 150

75

Phase (degrees)
o
—
Phase (degrees)
o

-150 -150
100

25 5 75 25 5 75 100
Baseline Penmh (X) Baseline Penmh (™)

(a) (b)

Figure 4.10: Plots showing the phase of wisibilities across the telescope array, (a)
before and (b) after calibrating with Her. A. The spatial extent is ~115 m of the ORT
array, corresponding to 1 sensor cluster (10 half modules).

4.5.2 Redundancy based calibration

The redundancy baseline calibration technique determines antenna based complex
corrections directly from the data, without making assumptions about the sky bright-
ness distribution. This is possible when an array configuration results in the same
baseline vector (i.e, any pair of sensors having the same orientation and spacing to a
source) occurring more than once. Further, an equispaced linear array (such as the
ORT) results in a large number of such redundant baselines, which can be used to
estimate the true visibilities more accurately. By taking the difference between the
estimation of true and observed visibilities, the per-sensor complex correction factors

can be determined, and subsequently applied to observations. For this approach, no

4.6 Formation of a 1-D map 103

separate calibrator observations need to be carried out, due to the simultaneous re-
dundant sky observations available, provided enough SNR for comparing baselines is
available. It may be noted that redundancy calibration will result in a loss of the ac-
tual absolute flux, as well as the absolute position (due to an arbitrary, undetermined,
linear phase slope over the array). These can usually be countered by referencing the
observations to other apriori information. Further, each redundant baseline is weighed
by the square of the SNR, in order to suppress the effect of bad baselines. Redundancy
calibration has been implemented using a linear least squares approximation, which
has an analytical solution [53|. Here, the amplitudes and phases of the per sensor
complex gain are separately solved for, by first expressing them as complex exponen-
tials, followed by linearizing the gain equations, by taking their logrithmic form. The
gains and phases of the calibration equation, can then be separately solved. Thus, if

V =exp (v+iv)and G = exp (g + i¢), the separated gain and phase equations are:

v = O g+ g + ay (4.3)
= i) + 60— 85+ by 44

where, k (i, 7) is a correspondence which maps a baseline formed by the antennas
i and j, to the corresponding redundant baseline.

For the ORT 40-element prototype array, 38 redundant baselines are available in
the full correlation output, out of the full set of 780 baselines. The gain equation
matrix formulation consists of the unknown vector of 40 sensor gains and 38 true
visibility gains, while an additional constraint on the absolute flux level is specified
via the condition) g; = 0. The phase equation matrix is similar, and the absolute
telescope phase is constrained by specifying that the average phase for all sensors is
zero, » ¢; = 0. The input to the calibration routine is the normalized cross power
spectra from a clean observation stretch, with the full ~ 18 MHz band available as
four averaged channels of 4.5 MHz, and a temporal averaging of ~ 1 sec. A separate
calibration solution for every channel is generated, and written into a calibration

solution file, which can then be used to apply the corrections onto the observed data.

4.6 Formation of a 1-D map

Once the array has been calibrated, the complete “v” coverage of the observed field

from the ORT enables the creation of any number of phased array beams in different

4.7 Discussion 104

directions, resulting in a 1-D map. For an equispaced, linear array like the ORT
40-element array, this can be carried out by taking a spatial Fourier Transform of
the visibilities across different array spacings. These spacings are available to us in
the form of the visibility function for every non-redundant baseline from the array.
Thus, once calibrated complex visibilities are available, they are arranged into non-
redundant groups. Subsequently, visibilities from corresponding spectral channels
from each group are arranged along the spacing axis. The negative spacing axis is
populated with the complex conjugates of the visibilities, while the zero-spacing is
filled with a complex 0. In order to create an oversampling of beams, the visibilities
are then zero-padded to a number convenient for Fourier Transforming.

The FFT of spectral visibilities from every non-redundant baseline thus arranged,
results in the formation of an estimate of the sky brightness in N different directions,
where N is the input visibility vector size. This results in the creation of a 1-D
map with a resolution corresponding to the full array extent (0.1°), and covering the
available field of view of ~ 4°. The created beams can then be averaged spectrally,

in order to increase the sensitivity of the observation.

4.7 Discussion

Though our correlator has been implemented for 40 ORT elements, scaling it up to a
higher number of elements is possible essentially due to the data transposition carried
out by the NSPS data pooler element. A replication of such data pooler elements
can then cater to the larger number of elements. Further, the required scaling of the
computing can be carried out by the addition of Level-0 nodes, each of which cater
to a smaller timeslice.

In our approach, an optimized, integer, pair FF'T was implemented, instead of us-
ing popular vectorized FFT libraries, e.g., fftw3 and Intel’s IPP FFT. Fourier Trans-
forming the incoming streaming data (which is quantized to a 4-bit level), using such
libraries exceeds the precision requirements of our streaming correlator application.
In addition, their large float/double word-size makes them inefficient from the mem-
ory perspective for our use. This is because these libraries usually operate on single
precision floating point input words, (8x larger than our input word-size of 4 bits),
and generate output in floating point format. Though the IPP FFT can operate on
16-bit integer input data and generate 16-bit integer outputs, the internal processing
occurs in the single precision float format, thereby reducing its efficiency. Further,

carrying out a pair FFT using library implementations makes the following stage of

4.8 Conclusions 105

XMAC highly inefficient, due to their standard output formats.

In addition, for the XMAC implementation, we have used vectorized multiply
and add instructions, instead of Fused-Multiply-Add (FMA) instructions, increasingly
available on commodity processors, (e.g., MMX pmaddwd, or the SSE dpps). These FMA
instructions can be used to efficiently implement vectored complex multiplications
(for spectral correlations) in a single instruction, and thus are more efficient than
carrying out multiplication and addition operations individually. However, in the
initial stages of the correlation, the 4-bit quantization of the incoming data does not
warrant the precision available from floats, or even 32-bit integers. This precludes
the use of these FMA instructions, which currently are available only for floats or
32-bit integers. Hence, in our approach, we carry out the accumulation using 16-bit
complex integers over an STA. Further, this approach has a lower memory footprint
for the data intensive part of the XMAC.

The dynamic range of our correlator can be increased with companding by a
non-linear mapping of data from the ADCs to 4-bits, via Look-Up-Tables (LUTS).
This reduces the I/O bandwidth requirements of the NSPS, while maintaining the
full dynamic range available to the ADC. Further, the decoding required due to
companding can be accommodated in our implementation as a first preprocessing
step, which can be merged with the nibble to byte expansion in stage-0 of the FFT.

Current processors have an increasing number of cores with larger vector units,
and richer ISAs, e.g., the Intel SandyBridge processor micro-architecture (which has
upto 6 cores/CPU, 256-bit vectored registers and a new ISA called the Advanced
Vector Extensions). Also, the increased bandwidth requirements of these processors
are being matched by newer I/O architectures. This trend is directly relevant to our
correlator design due to the ability of parceling independent jobs to multiple cores,
and reducing the data dependency (hence communication) between them.

Table 4.8 depicts the frequency of occurrence of the various 1/O and compute
instructions in our correlator implementation. It highlights the importance of the ap-
proach adopted by us for the software correlator implementation, namely, minimizing

memory accesses via optimally laying out of the streaming data.

4.8 Conclusions

In this chapter, we have proposed a hybrid software/hardware approach for car-

rying out streaming correlation, based on the NSPS architecture. Here, while as-

4.8 Conclusions 106
Vector Extract | FFT St.0 Shuffle FFT St.1 | Pair Extract | XMAC | Total
Instruction | +Shuffle +Twid. mult. +Shuffle
movdqa’ 9920 4000 5120 7680 5120 7028 | 38868
movdqa’ 3760 1440 3840 1600 1280 6240 | 18160
pmul 0 640 0 0 0 12480 | 13120
pmulhrsw 0 0 5120 640 0 0 5760
paddw/psubw 0 4240 0 8480 2560 6240 21520
phaddw 0 0 0 0 0 5460 5460
pmovsxwd 0 0 0 0 0 0 0
pand 5120 0 0 0 0 0 0120
psllu/psrlw 2560 320 1280 0 0 0 4160
punpck 2560 640 0 0 0 0 3200
packsswb 0 320 0 0 0 0 320
Total 23920 11600 15360 18400 8960 37448

Table 4.8: Frequency of occurrence of 1/0 and compute instructions in the optimized
FFT and XMAC implementations for the major functional components of the NSPS
based software correlator. The numbers refer to those needed for correlating two pack-
ets containing all 40 data streams, with 512 samples of each antenna element within.

pects of data routing, preprocessing and synchronization have been moved to custom
hardware, the estimation of the correlation coefficients is carried out in commodity
processors. This approach results in decrease of development time of the correlator,
and an increase in its efficiency, flexibility and reconfigurability. An implementation
of this approach for a 40-element hybrid software spectral correlator was also pre-
sented. Here, we have demonstrated that this combination of custom and commodity
hardware results in an efficient realization, which retains the best qualities of both
software and hardware based correlators.

In our approach, the NSPS custom hardware utilizes memory based switches dis-
tributed over the signal processing tree for carrying out the data dispersion, and
generates packets containing regrouped data from all sensor elements. This approach
makes our correlator scalable.

We show that our vectorized, integer FF'T implementation is a factor of ~20x
faster than that of an implementation using Intel’s optimized vector FFT library.
Further, our chosen data layout, carefully optimized for the target processor architec-
ture, gives us a speedup of another factor of ~4x in the cross multiply. Thus, our full
software correlator obtains a speedup of a factor ~3.5x, allowing a pair of cores in the
target hardware to correlate data from 40 sensor elements with an analog bandwidth
of ~20 MHz. Thus, our hybrid approach for software correlation shows that it is

possible to implement medium sized correlators in optimized software on commodity

4.8 Conclusions 107

processors, by offloading data routing and shuffling onto hardware.

Chapter 5

New approaches for Visualization and

Editing of Interferometric Data

5.1 Introduction

In this chapter, we focus on some aspects of data visualization, editing and calibration
which we consider to be particularly important for observations at low frequencies.
Their importance stems from the ever increasing presence of Radio Frequency Inter-
ference (RFI) at low frequencies and the rapid phase fluctuations suffered by incoming
signals due to the ionosphere. Any attempt to minimize the biases in measured vis-
ibilities because of these factors, requires a sampling of visibilities much faster than
the rate needed by the changing geometrical effects during an observation. Though
preliminary, the results presented in this chapter already suggest the need for over-
sampling the visibilities by a factor of 100 or more, in typical stages of pre-processing
and calibration before they are further averaged to suit the deconvolution/image pro-
cessing packages. In particular, we elaborate upon some new empirical approaches
and software tools developed by us, which are useful for enhancing the reliability and
sensitivity of low frequency observations. The primary criterion employed by us de-
pends on the effective segregation of visibilities into deviant and concordant groups,
possibly in real time.

We first demonstrate that an attempt to reduce the systematic biases resulting
from low level RFI on the observed dataset requires high temporal and spectral res-
olutions which, in turn, allow us to obtain handles on different kinds of distortions
appearing in the data. Such distortions can occur at very different characteristic time

and frequency scales, each requiring possibly a different approach to minimize its ef-

108

5.2 High temporal and spectral resolution observations 109

fects on images derived from the observations. However, the data rates resulting from
such a high resolution requirement can be very large and often complicate analysis
due to the inherent problems associated with handling large data volumes. Towards
this end, we present some software tools developed by us which allow rapid visualiza-
tion and editing of high bandwidth data, and demonstrate them on test observations
carried out using the GMRT. It may be noted that the architecture of these tools not
only allows for their easy interfacing to the existing data collection stages of other
telescopes, but also makes them easily adaptable for real time applications. Further,
the tool implements some of the observing strategies developed by us, which allow
for the segregation of recorded data in an automated fashion.

In addition, we also examine the feasibility of setting up co-located facilities for
estimating phase distortions caused by non-isoplanaticity of the ionosphere using sig-
nals from geosynchronous navigation satellites (GEO). Towards this end, we present
some preliminary results from an L-band interferometer set up at the GMRT site, us-
ing the fibre-optic network of the GMRT. Although the setup was initially planned as
part of a low frequency transit survey to be carried out with the GMRT, the project
was given up subsequently when the operationalizing of the space segment for routine
availability of such satellite signals was delayed beyond the time frame of the present

thesis project. Details of the survey criteria are given in [54].

5.2 High temporal and spectral resolution observa-

tions

The visibilities generated by the GMRT after fringe stopping need to be sampled only
at intervals of tens of seconds, to ensure that changes in baseline due to earth-rotation
are within the Nyquist sampling criteria for image formation. However, the results
of test observations carried out by us at 245 MHz suggest that the nature of RFI
in contemporary operating environments at GMRT can call for high temporal and
spectral resolutions to avoid otherwise undetectable systematic biases in visibilities.

In our observations, the GMRT hardware correlator was used with the highest
temporal and spectral resolution feasible with the hardware. This corresponds to
a temporal resolution of 0.131 sec (corresponding to the rigidly fixed Short Term
Accumulation in the hardware), and spectral resolution (62.5 KHz) corresponding
to 256 channels within the observed bandwidth of 16 MHz. Since these are not

part of standard observing procedures, several modifications were made by us to the

5.2 High temporal and spectral resolution observations 110

Time |

e O S

Baseline

bin<3c

3o0<bin<6o

Figure 5.1: Time evolution of threshold based wvisibility flagging information in the
form of a histogram. The larger than expected bin counts in the 60 to 100 range
reveal low level distortions to visibility amplitudes.

real-time data acquisition chain of the GMRT in order to support the high data
rates of ~ 50 GB/hr generated by the high resolution requirements. Interestingly,
one such modification made by us relates to the explicit management of occasional
racing conditions between the various data writers and readers, created due to the
presence of several simultaneous threads of execution on the multiple cores of the
modern CPUs in use by the GMRT. This might not have been a problem with earlier
data acquisition computers, where the process scheduler of the operating system was
required to manage only a single core of processing.

An interesting perspective of the effect of RFT in the recorded data is provided
by Figure 5.1, which depicts the time evolution of the histogram of threshold based
flagging, pictorially. Here, flagging information from all 435 baselines of the GMRT for
a chosen time stretch, and a chosen spectral channel, are depicted along the columns,
or x-axis, while their time evolution is depicted along the rows, or y-axis of the figure.
Individual bins of the histogram, visible as sub-panels, correspond to the thresholds
applied on the amplitudes of the observed visibilities in units of o (standard deviation)
of the visibility amplitudes, estimated using data corresponding to a time stretch of
~ 8 secs. If a particular visibility amplitude within the chosen time stretch exceeds
the populations’ ¢ by a certain amount, the corresponding histogram bin count is
increased. A separate histogram is generated for every time stretch of ~ 8 sec. Tt
may be noted that the standard GMRT visibility temporal resolution is ~ 16 secs.
The entire information is then presented as a grey-scale image in the standard pgm
ascii image format, with a smaller bin count corresponding to darker greys.

An analysis of this data reveals that for 70-80% of the 8-sec blocks used for gen-
erating the histograms, errors between 60 and 100 (depicted in the third sub-panel

from the top, in Figure 5.1) are present for 10-20% of the time, corresponding to <

5.3 Tools for large volume visibility visualization and editing 111

2 secs (not necessarily contiguous) within an 8-second block. It is important to note
that such deviations remain undetected by conventional integration /flagging mecha-
nisms operating on the data integrated along either the time or frequency dimension,
although they affect the reliability of the visibilities significantly. Such deviations
should be discarded while estimating mean visibility (over larger time intervals of
tens of seconds) needed to be passed on to image processing software. These low-
level and random sources of corruption can appear due to the local RFI environment,
or because of the effect of the intervening media (especially the ionosphere) on the
observed visibilities.

Thus, the above analysis emphasises the need to carry out high temporal and
spectral resolution observations, and apply an initial level of threshold based flagging
in order to segregate deviant visibilities before fusing the data via integrations. How-
ever, such an operation on large volumes of data needs to be automated in order to
be feasible. The preprocessed data can then be passed on to regular data analysis
tools. To this end, we have developed a large data volume visualizing tool, which

incorporates automated flagging using a variety of approaches, and is described next.

5.3 Tools for large volume visibility visualization and
editing

Our observational approach generates large volumes of data (amounting to sev-
eral hundreds of GB for typical observations), due to high temporal and spectral
resolutions of these observations. These, in turn, are required for effective visibility
characterization and preprocessing, before calibration or imaging techniques available
in standard data analysis packages can be applied. However, the conventional observ-
ing schemes and the analysis tools available put serious constraints on the efficiency
with which analysis of this high volume data can be carried out. Hence, we have
developed new software tools for editing, calibration and preprocessing of visibilities,

before standard image processing software can be used.

5.3.1 Visibility visualizer

A QT class-library based tool was developed as part of a fast, large volume visibil-
ity visualization tool set to assist the display and editing of data, and to meet several
requirements of flagging and calibration. Here, visibilities and their attributes were
treated as a time series of a vector and presented as images. It acts as a top level

tool for both visualizing and editing incoming visibilities, as well as for carrying out

5.3 Tools for large volume visibility visualization and editing 112

novel pre-processing techniques on large data sets.

The developed tool operates using a simplified version of the native GMRT data
recording format, in order to conserve run-time memory. Due to the architecture
of the GMRT real-time acquisition software, which provides shared memory based
public interfaces and UNIX socket based parallel data streams, the tool can directly
interface with the GMRT real-time data pipeline, allowing for real-time visualization
of GMRT visibilities. After carrying out appropriate visualization and pre-processing,
it can generate FITS format files, in order to allow standard data analysis tools like
AIPS to be used for further processing.

The tool primarily utilizes the fast image rendering capabilities of QT (using the
bitBLT procedure) in order to display visibility amplitudes and phases as separate
images, which can be updated rapidly.

Figure 5.2 shows an example of the display of visibility amplitudes. In these
figures, each panel represents an antenna or a baseline. Each row of pixels corresponds
to one time slice of the available spectral channels (256 in the case of the depicted
dataset), with each pixel intensity representing the desired visibility attribute. Each
frame corresponds to ~ 1 minute of visibility data at 0.13 sec resolution, and can
be rapidly refreshed for all 435 GMRT baselines. These are then shown together
in a scrollable window. The time evolution of different aspects of the data can be
visualized using our tool, e.g., visibility amplitudes and phases etc.

Basic operations supported by our tool include display of visibilities and processed
outputs as images, reformatting to various file formats, extraction/reordering and
recording of subsets etc., with a baseline being the operational unit. A unified callback
interface exists which simplifies the plugging-in of modules for different operations like
correlation between different days, FF'T along any axis etc. In our implementation,
any data selected by the user is extracted by a file reader object, pooled by a data
formatter object and processed by a centralized processor object, which interfaces with
a per baseline display object. A central controller manages the graphical user interface
(GUI) and sequences all the desired operations. It is worth noting that this tool is
ideal for the display of large volumes of data - each frame in the Figure 5.2 corresponds
to about a Megabyte of visibility data which can be refreshed simultaneously for upto
a dozen frames at 100 Hz. Each of the frames in Figure 5.2, which display visibilities,
includes frames of 256 x 400 pixels.

Our tool includes a facility for multi-level data flagging based on user defined
thresholds, specified in rms units. The threshold limits are determined across spectral

channels, as well as over a fixed time interval. The flagging information is embedded

5.3 Tools for large volume visibility visualization and editing 113

| << << | # | > | s |>>| | 0 |Go—:= UD:DG:DG:UT L vIGraystaIEv
ANt W06 Ant. EOG o
-227 .79 28302 To3 82 356 61 18041 1743
[
Time o
=
3
=
L]

Frequency

Figure 5.2: Self correlation counts for two GMRT antennas displayed using the visi-
bility visualizer. Euvidence of intermittent RFI in the panel on the right, in addition
to continuous narrow band RFI in both frames can be clearly seen. Each panel depicts
about a minute of data at 0.131 sec resolution per pizel.

within the dataset, with the visualizer allowing the displayed pixels to either represent
the flagged data, or the flagging levels chosen. Flagged data are stored in the FITS
format with their weight set to -1, which implies ignoring the data. An example of the
tool carrying out such a flagging is depicted in Figure 5.3, where the different flagging
levels are shown in different colours. For instance, pixels coloured pink correspond
to visibilities with amplitude deviations between 6 — 100, while pixels in red denote
deviations above 100, with the visibility information being replaced by the chosen
color, in case the visibility needs to be flagged. As explained above, the tool can then
generate a flagged dataset from the incoming data.

The tool also allows for a user-defined mapping between the observed visibilities
and the displayed pixels’ color. Such an approach allows for an intuitive interface
between the data and the user, as the manipulation of the color index table helps in

quickly segregating data corresponding to different power ranges.

5.4 Collation of multiple observations for high sensitivity 114

Flc Edt Display Hzlp

p " L .- EELTEN U TET
I P A 5 s A sy © | Go-> occooo L UT v Linear ~ Graysale » 2007.11-20701 08.25) UT

WL 24 TA-F 6 wind-F0d
297

3.1 | 319 - G- B | 3 & Ll
—— —— —

Time

’—This Fil: jdala Licook3/EantiL.ILa. x. L Origing| File: /20n0v/1001-01 2000y2007.ad

F?‘eqﬂenéy —_—
Figure 5.3: Real-time display of automatically flagged visibilities from different base-

lines, based on amplitude thresholds. The flagged data are shown as pizels coloured
with the threshold bin into which the amplitude falls.

5.4 Collation of multiple observations for high sen-
sitivity

Requirements of high sensitivity and/or studies of variability at many timescales often
call for multiple observing sessions under nominally identical instrumental set up. For
instance, one of the primary motivators of the upgrade being planned for the ORT
is to investigate large scale structures and HI mass fluctuations at redshift close to
3.2 as well as monitoring the sky for transients or variability at different time scales.
While ORT is an equatorially mounted radio telescope offering identical components
of visibility to be estimated by tracking a given region of sky for upto 9 hours in a
day, a telescope like the GMRT restricts integration for a given visibility component
to a few instances of about a minute on a given day, depending on the baseline.
Deep observations often stretch to multiple sessions with identical (u,v) cover-
age. In some extreme cases like the cosmological investigations with the upgraded
ORT, the estimated observing time may span many months - to get an equivalent

of hundreds of hours of integration to look for any signature of Baryonic Acoustic

5.4 Collation of multiple observations for high sensitivity 115

oscillations (BAO) [8] at redshift close to 3. In fact, the BAO study is one of major
motivators of the upgrade of ORT to a 264-element programmable telescope. In all
these cases, observations within a single observing session are expected to be edited
using the criteria similar to those mentioned, before improving estimates by reason-
able integration (typically a few seconds). It is then necessary to ensure that mul-
tiple observing sessions are normalized to correspond to common instrumental gain
and edited to minimize systematic deviations between observations, before combining
them to enhance the precision of estimate.

Our approach for collapsing data from multiple observing sessions is based on the
cross-correlation of the time series representing visibilities corresponding to identi-
cal baselines on different days. Such an approach allows us to quickly identify low
level deviations to observed visibilities by carrying out an inter-comparison of the
supposedly identical visibilities from different sessions. The visibilities themselves are
expected to remain identical from day to day, due to the unchanging nature of the field
under observation. Thus, these inter-comparisons can be made by cross-correlating
the observations from different sessions. Since the different observing sessions can
have a gain, or time offset due to variations in the instrument response over a period
of time, such a visibility-visibility cross-correlation can also determine the clock and
gain offset between the two observing sessions. Since interference is unlikely to repli-
cate on different days, this approach will be very effective to detect an event which is
temporally or spectrally localized to one or a small subset of the observing sessions.
This can be taken into account to make better estimates using longer integrations
permitted by multiple observing sessions, and/or to detect localized events related to
transient phenomena.

In order to examine the feasibility of such an approach, we carried out transit mode
observations with the GMRT of identical LST ranges. As before, this observation was
also carried out at the highest time and frequency resolution available from the GMRT
hardware correlator. The visibility visualizer tool was then used to analyze the inter-
day cross-correlations between visibilities corresponding to identical baselines. A view
of the resulting correlations is depicted in Figure 5.4, where a higher correlation results
in a color closer to white, while low correlations are mapped to darker colors.

In such a dataset, visibilities which are consistent across days show up with a
higher correlation coefficient, while those affected by local distortions appear with
lower correlations. Further, flagged visibilities are not considered for correlation. The
output of such an analysis can be used to automatically flag visibilities from the

multiple observing sessions, and the remaining, consistent visibilities can then be

5.4 Collation of multiple observations for high sensitivity 116

T I I I B e e e
E06-504 E04-504 WY0B-504 d
-93.00 0.03 799.00 -03.00 -0.01 299.00
[[

WYOB-EDL
28900 -98.00 -0.07 299.00

Time i
o
: o
i £
e L
4 i
! "
i iy
i il
i %
I
J\
|
WWOB-EOB EQ04-EO06G Wo4-E04
-93 100 -0.01 2080.00 -98 00 -G8 .00 -0.03 299 00 .
. i] : _—
- ! .
i3

S
T sl AT T
e

This File: fdalalfiovk3/GanllLIla.x.Lls Criginal File: ;20n0ov/100s01 20n0v2007./La.4
Cork: FIFI ACANT TAC FhmnsMal FHIAL AEE 1 1E Muenllibinmn: A 131073 Nafima: BAAT 11 1ATT0.30A0 1

Frequency

Figure 5.4: Per channel, complex cross correlations of 235 MHz visibility time series
over identical LST range on two different days. Regions of constant brightness over
time show consistency between two days, while inconsistencies, due to low correlation,
appear as dark spots. The upper panel shows this affect as a wavy pattern in all base-

lines with antenna S04. Baselines W04-W06 and E04-E06 show large inconsistencies
from day to day.

5.5 Interdisciplinary approach towards ionospheric calibration 117

integrated in order to achieve the increased sensitivity.

5.5 Interdisciplinary approach towards ionospheric

calibration

In a typical interferometric observation, a session can include periodic observations of
calibration sources (which are sources with well modelled structures,close to the field
of observation) to help calibrate slowly varying instrumental gains and phases. This is
then improved during deconvolution using self-calibration techniques at minute level
intervals to track more rapid variations due to atmospheric conditions [15]. An inte-
gration of about a minute is a balance between a minimal sensitivity to detect in-field
departures from the model, and the timescale of phase variations. Such techniques
get complicated at low frequencies because of the enhancement of path-length fluc-
tuations, leading to contamination from fluctuations on scales much smaller than the
primary beam at the ionospheric heights or the array extent. This requires the phase
calibrator source to be within the same patch as the field of observation (i.e., in close
proximity), or a separate calibration to be done for each patch within the primary
beam. Thus, non-isoplanaticity of the ionosphere is a major limiting factor to the
dynamic range of low frequency synthesis telescopes, resulting in the highest dynamic
ranges achieved in telescopes like the GMRT at metre wavelengths falling far short
of sensitivity limits. One approach to handling the calibration in such cases was sug-
gested by [55]. For such a technique to be practical, it is necessary to get a reasonable
initial estimate of ionospheric delays in the primary beams of antennas located in the
array. Further, though self calibration can cater to rapid ionospheric fluctuations, it
assumes isoplanaticity, and requires a field dominated by a compact, strong source.
Further, it removes ionospheric phase errors only in the source’s direction [56]. Carry-
ing out simultaneous observations of the same field at two different frequencies (where
higher frequency observational phases are referenced to the lower frequency visibility
phases), requires instrumental support, which may not be available easily.

In addition, the L.1 and L5 coherent navigation signals radiated by GPS satellites
have also been used to model the phase screen between the observer and the satel-
lite [57], by estimating the arrival time delay between these signals. However, such
measurements of the phase fluctuations require the modelling of both small and large
scale ionospheric TEC variations, which are not afforded by the ~500 Km Ionospheric
Pierce Points due to the GPS satellites [58|.

5.5 Interdisciplinary approach towards ionospheric calibration 118

The advent of Wide Area Augmentation Service (WAAS) in satellite navigation
brings an interesting possibility of obtaining such estimates by a co-located interfer-
ometric set up, for observing navigation signals from such satellites. In India, the
first such satellite is likely to become operational in October 2011 as part of GAGAN
(GPS Aided Geo Augmentation to Navigation) [59] project to assist future aircraft
landing. Several such satellites have been announced by the Indian Space Research
Organization (ISRO) for this project, as well as related to the Indian Regional Navi-
gation Satellite System [60], based on a set of geo-synchronous satellites. As a result
of these projects, one expects a set of 10 geo-synchronous satellites by 2015, carry-
ing WAAS signals visible throughout the Indian subcontinent. This will result in
a unique opportunity for continuous estimation of arrival time differences of signals
from these satellites at a set of antennas located, e.g., within the extent of a synthesis
telescope like the GMRT. Such observations can result in direct estimates of differ-
ential ionospheric delays over the array extent, to be made throughout an observing
session. These can then be collated to form reliable estimates of differential delays
at the observing frequency, using the \? [15] dependence of ionospheric delays. This
makes a strong case for setting up an inter-disciplinary facility in a location like the
GMRT to benefit both the satellite and the radio astronomy communities.

In the following paragraphs, we present some preliminary results from such a
facility which was available in 2007. Both the described experiments related to L
band signals from geostationary satellites. Among them, one had a payload carrying
digital audio broadcast by Worldspace on Asiastar and the other (INMARSAT 4F1)
had a navigation payload leased temporarily by ISRO for their tests related to the
GAGAN project. In one experiment, dark fibres in the GMRT fibre optic network
were used to carry the received RF directly into the receiver room, which housed
the signal processing units commissioned by Raman Research Institute. The other
experiment uses a unique feature of the GMRT feed arrangement, which points the
L-band feed towards the sky when the 235 MHz feed is pointed towards the reflector.

The schematic of the setup used for the two experiments outlined in this section
is depicted in Figure 5.5, where a satellite signal interferometer is shown co-located
with a radio telescope.

Such a setup allows simultaneous observations to be carried out on the sky as
well as the satellite, along its line of sight. Moreover, the arrangement requires a
purely passive receiver setup. Further, the high SNR on satellite down-links makes
it possible to estimate their visibility phase with high accuracy, and within a short

integration period.

5.5 Interdisciplinary approach towards ionospheric calibration 119

@ Celestial source

30— Geostationary satellite

GMRT
Antenna

Correlator 2
Correlator 1

Figure 5.5: Schematic showing a co-located satellite interferometer with an interfero-
metric array.

The estimates of the arrival time differences from multiple satellites can then be
used to model variations of ionosphere in terms of the estimated delays suffered by
the satellite signal (at its frequency of transmission) along various lines of sight. The
resulting ionospheric model, created simultaneously and for the duration of the sky
observation, can then be translated to the lower frequency of celestial observation,
using the standard thin screen model of ionospheric delay variation with frequency
[15], and applied to the observed visibilities as corrections.

It may be noted that this approach requires the ability to estimate the arrival
time differences from satellites with high accuracy, due to the A* dependency of the
model delays. Thus, if the GEO satellites provide an L-band down-link, the frequency
of celestial observations may be ~10-20 times lower, leading to a requirement of a

phase estimation ~ 100 times more accurate. Further, multiple lines of sight through

5.5 Interdisciplinary approach towards ionospheric calibration 120

the atmosphere need to be available, in order to accurately model the ionosphere.
An important aspect of this approach is the ability to continuously estimate the
arrival time differences, which removes the ambiguity of multiple cycles of 27 in the
phase measurements. Further, the thin screen ionospheric delay model allows for the
translation of estimated delays from the higher frequency of observation, to the lower
celestial frequency. Thus, the primary observable, (the instantaneous Cross Power
phase on the satellite interferometer baselines), needs to be converted into delays, by
accounting for every turnover of 27 in the phase measurements.

The perturbation of geosynchronous orbits due to geopotential and other effects
like luni-solar attraction and solar radiation pressure, causes secular and periodic
changes to their orbit elements. This translates to a relative motion of the satel-
lite along the line of sight with respect to the earth, giving rise to a slowly varying
(roughly diurnal sinusoid) differential Doppler component in the observed interfero-
metric phase. However, since this systematic phase variation of the received signal
due to the Doppler on the GEO satellite signal is an extremely smooth, diurnal si-
nusoid, it can be modelled to a very high degree of accuracy. The residual effect on
the satellite phase (once external contributors have been removed by modelling), can
be reliably attributed to the relatively rapidly varying effects due to ionosphere and
a somewhat slower variation in the instrumental phases.

In this section, we describe the receiver infrastructure developed by us to carry

out satellite interferometry, and results from two separate observations.

5.5.1 Satellite interferometry of WorldSpace satellite

The Asiastar satellite had a Worldspace digital audio transmission at 1492 MHz,
which was used to carry out interferometry. The advantage of using signals from this
Geosynchronous satellite was the inexpensive analog receiver system, consisting of a
commercially available WorldSpace Yagi antenna with a built-in LNA. In view of the
inherent signal strength coming from such satellites, the required bandwidths and
integration times are well within simple processing capabilities of a normal worksta-
tion. However, the angular resolution which can be achieved by this method (which
improves with decreasing wavelength) depends on the array extent measured in units

of wavelength.

5.5 Interdisciplinary approach towards ionospheric calibration 121

= |WorldSpace |[& &
I L-Band B Q
ﬂ' LNA + Filter ||G o)

GPS Svnthesizer L-Band Data Sampling
Discplined > ();.—ZGHZ) > To » Acquisition |<— Clock
Reference IF Converter System (DDS)

Y
Astronomical | Side Information to gcﬂ%vased
Analysis [Astronomical Llnels
Analysis tools Correlator

Figure 5.6: Schematic view of the receiver infrastructure developed for carrying out
satellite interferometry. The limits set by reference clock stabilities can be reached
by cross-correlating a very small part of the received band, due to the SNR on the
satellite signal.

5.5.2 Experimental setup

In this experiment, we exploited the spare capacity of the GMRT fibre-optic network
to obtain a long baseline L-band interferometer. The specific sites chosen, were those
in the original plan of the GMRT (and hence with proper termination of fibre-optic
cables) but where no GMRT antenna were installed. These two locations were used
to position a pair of low-cost antennas (meant for receiving digital audio signals from
Worldspace), effectively separated by about 11.2 Km.

The receiver setup is depicted in Figure 5.6. The received RF from every node of
the interferometer was directly transmitted over the existing unused GMRT optical
fibre network to a central location for further processing.

Once the signals were received at a central location, they were coherently down-
converted to an Intermediate Frequency (IF) of 70 MHz, as shown in Figure 5.6.
These signals were then digitized using custom made ADC boards, and the data
acquired onto a commodity PC using custom made PCI Data Acquisition Cards.
Subsequently, a software spectral correlator was implemented in the PC, and the
arrival time differences were continuously estimated.

The slow relative motion of the satellite with respect to the Earth, results in
fringes visible in the estimated cross-correlation, and an example of such an estimation

is depicted in Figure 5.7. Here, the x-axis refers to the time offset from start of

5.5 Interdisciplinary approach towards ionospheric calibration 122

4000

2000

-2000

Cross Correlation
o

-4000

60 80 100 120
Time (Mins)

Figure 5.7: Observed fringes from the WorldSpace satellite’s L-band signal. The slow
phase variation evident in the phase offset between the two sets of fringes observed
~ 1Hour apart is due to the Doppler on the satellite signal, due to its motion relative
to the interferometer.

observation, while the y-axis is the real part of the cross correlation. The figure
shows two sets of fringes (in red and blue) from a one-hour stretch of data, with a
one-hour gap between the two sets. These are typical interferometric fringes, in which
a linear variation of path length difference is translated into a sinusoidal variation of
the cross-correlation. By counting cycles and measuring the residual phase offset, one
can infer that the time taken for a path length variation of 25 cycles is about 7220
secs, implying that the mean time for path length to vary by one wavelength (20.17
cm) was 7220/25 = 288.8 secs. The SNR was adequate for achieving an accuracy of
a fraction of degree in phase estimation, with a one-second integration. Thus, one
can conveniently detect a tiny relative displacement (by a fraction of a millimetre)
of the satellite along a direction parallel to the line joining the two antennas. The
output demonstrates the high SNR on the phase variation of the satellite signal.
More importantly, it can be seen that, due to a continuous measurement of the cross-

correlation, the phase variation can be tracked over multiple cycles of 27, thus leaving

5.5 Interdisciplinary approach towards ionospheric calibration 123

no ambiguity while converting the instantaneous phase to a delay.
Such a technique will be better explored by setting up a campus-wide network of

satellite receivers within the Raman Research Institute [61].

5.5.3 Satellite interferometry of INMARSAT 4F1 satellite

In order to model a phase screen over an array the size of the GMRT, several satellites
are required to be within the field of view. Further, to estimate arrival time differences
from each satellite, phase variations of the Cross Power from each of the multiple
satellites need to be tracked. In addition, since Geosynchronous satellites are fixed
relative to an observer’s local coordinates, the GMRT needs to be operated in Transit
mode, in order to carry out such observations.

For the special case of 245 MHz observations with the GMRT, such a scenario
of tracking the phase of multiple satellites is feasible, without the requirement of
setting up an additional co-located interferometer. This is possible with the trading
off of one polarization of the incoming sky signal from a few antennas involved in
recording data from the satellite. Further, both the sky and the satellite signals can
be simultaneously received and correlated using the existing GMRT receiver setup.

This is explained in the following sections.

5.5.4 Simultaneous satellite and sky observations with GMRT

For carrying out observations with the GMRT in transit mode, one antenna in
each of its three arms was dedicated to recording signals from a GEO satellite at L
band. Further, the specific choice of the declination ensured that this satellite always
remained within the field of view. This allowed us to have a continuous measurement
of the arrival time differences of the satellite signals at these three dedicated antennas.
Hence, high SNR data for estimates of instantaneous phase distortions (due to the
sky above the array along three lines of sight), was obtained. The navigation signals
pertaining to our observations were part of trial runs for a WAAS implementation,
involving a broadcast of signals at 1.176 GHz (L5 band) from INMARSAT 4F1 —
a geosynchronous satellite in an orbit inclined at 2.4°, with the signal within the
received band of the L-band feed of the GMRT.
5.5.4.1 Array configuration

The GMRT was operated as two sub-arrays, one corresponding to the antennas

used for the dual satellite-sky observations, and the other corresponding to the rest

5.5 Interdisciplinary approach towards ionospheric calibration 124

1170 MHz

T

l

245 MHz

Figure 5.8: Simultaneous satellite and sky observations with the GMRT, made possible
due to the L-band feed looking into the sky (and towards the satellite) while the 245
MHz feed looks into the dish for reqular observations. The receiver configuration of
the GMRT allows for the received band from different feeds to be routed through the
IF system, to the central receiver.

of the antennas forming the array. While the navigation satellite signal at 1.17 GHz
was received using the L-band feed of the GMRT antenna looking at the sky, the
low frequency sky signal (235 MHz) was received from the feed looking into the
dish, as depicted in Figure 5.8. This was possible since the GMRT antenna’s gain
was not required to be sensitive to the inherently strong satellite signals. Further,
the loss of gain due to the circularly polarized WAAS signal being received from
the linearly polarized GMRT L-band feed was not significant enough to affect the
accuracy obtainable from the method, due to the high relative power of the received
satellite signal.

Once the RF from both sky and satellite was received, the GMRT frontend was
operated in a special dual frequency mode (enabled by the GMRT receiver) to simul-
taneously transmit the 235 MHz and 1.17 GHz signals in the two IF bands available
for transmission of the IF from the GMRT antenna to the central receiver. These
signals were then sampled and transported to the GMRT correlator system, where
correlations between the satellite signals were formed.

It may be noted that all the dishes were pointed towards a nominal direction
corresponding to the declination of the satellite in the middle of a one-hour observing

session. This setup is displayed graphically in Figure 5.9.

5.5 Interdisciplinary approach towards ionospheric calibration 125

" Ta Nasik
()
ALEFATA

E6

4
4 -
MANCHAR [- cn -
| -

A c1a . ciz
= - .

s6 . * 0100 w0 Mme
0 Skm —

Qulc
GMRT ARRAY CONFIGURATION

Frop,
N Pune

Figure 5.9: GMRT array configuration during simultaneous satellite and sky test
observations. Here, antennas used in the test observations, namely, W04, E04 and
S04 are circled.

5.5.4.2 Receiver system configuration

The two 16 MHz bands from the GMRT front end available in the USB HiRes mode of
the GMRT correlator, typically contain one polarization each from the dual polarized
GMRT feed. In our observations, one sideband of the chosen polarization on each of
the mid-arm satellite antennas was used to bring the satellite signal to the correlator,
while the other sideband was dedicated to celestial observations. This is possible as
all RF bands received by a GMRT antenna are down-converted to IF at all times,
with a final level switching routing a polarization of the selected band into the analog

transmitters.

5.5.4.3 Hardware correlator configuration

The data were recorded in the Upper Side Band (USB) High Resolution mode of the
hardware correlator. I'T may be noted that the high spectral resolution of 62.5 KHz
(corresponding to 256 channels across 16 MHz) in this correlator mode leads to a
better control on the RFI.

A significant aspect of our observing strategy was to take advantage of the short

time integration of 0.131 sec permitted by the GMRT hardware correlator. This

5.5 Interdisciplinary approach towards ionospheric calibration 126

File Edit Display Help
- s 23983,617979
lex < ¥ > > >>1 © |Go-> 000000 LUl - Lag |=|BlueDami«| apoi-11-20101:08:3 5 UT

Time|!

S 214

Frequency ——

Figure 5.10: Visualizer plates showing the artificial fringe on the satellite visibilities,
induced by the fringe stopping carried out for the moving sky by the GMRT correlator.

minimizes data required to be flagged during bursty interference and provides a means
to incorporate better data filters for managing phase distortions due to the ionosphere,

although our approach requires a data rate of about 50 GB/hr to be sustained.

5.5.4.4 Partial fringe stopping

The field of view at the chosen three arm antennas consisted of two components:
the sky moving at sidereal rate, and the GEO satellite (which is stationary within a
typical observing session of ~ 3 hrs and has a diurnal sinusoidal period). Even though
in transit observations geometrical delay (7,.,) is time independent, it does change
enough within the accumulation time of 1 STA (0.131 sec), thereby necessitating
fringe stopping.

While it was necessary to incorporate fringe rotation to preserve correlation for
the celestial sources, this would result in a loss of correlation for the satellite signal.
This, in turn, is due to the correlator applying identical fringe stopping parameters on
both the sky and satellite components, even though the 7,., for the satellite signal is

time independent. Thus, fringe rotation for the sky was applied only partially to the

5.5 Interdisciplinary approach towards ionospheric calibration 127

flle Edit Display Eelp
L 23085058771
lee | e 0 > S O | Go-> oooowo UT v Linear | Green Dol > 2007-11 20T01:00:45 ¢ UT

(\h.;,llu Ih\f\.ﬂlk IEEI4 (IIkEIE

:
e — —]
Time
vwa.m ﬁF\-m \.udEM

This Fil rﬂtm SEalie Awsmsza i §p22 f e Im migi IF\ 2|: HETmeti zum'lnu

Frequency _—

Figure 5.11: Visualizer plates showing the reduction in the artificial fringe rate on the
satellite visibilities, after offline fringe correction.

incoming data. This slowed down the phase winding rate for celestial baselines, while
increasing them for the satellite baselines. To note, the fringe rate was restricted to
less than a rad/sec for both the sky as well as the satellite baselines for the fastest
varying baselines. This was done by specifying a value of 180 MHz for the sky RF to
the fringe stopping subsystem, instead of the actual 235 MHz.

The residual uncorrected fringe on both the sky as well as the satellite signal would
still lead to loss of sensitivity due to the STA over some part of the sinusoidally varying
visibilities. Thus, this residual fringe has to be unwound offline in order to observe
any of the ‘sources’ from the sky signals.

A similar fringe correction needs to be applied to the satellite data as well. This
was carried out as part of the pre-processing on the recorded data from the satellite,
before meaningful parameters could be extracted from the satellite phase. Figures
5.10 and 5.11 depict the phase of the visibilities from the baselines dedicated to
observing the satellite signal, before and after the fringe stopping. The high SNR on

the satellite phase is noticeable.

5.5 Interdisciplinary approach towards ionospheric calibration 128

2000 ! ! T T
= ‘ ‘ ‘ ‘
<
©
[&]
c
o
2
'5 0 B~ = S .
)
£
|_
'
=
< -2000 | .
o
=
= Satellite Baselines
= S04:W04
= E04:W04 ——
© S04:E04 —— | |

-4000 : - ' L

350 400 450 500 550 600

Time (min past IST 0000)

Figure 5.12: Observed cumulative arrival time difference evolution from three different
baselines observing the INMARSAT satellite during Nov, 2007.

5.5.5 Results

The phase variations on the satellite signal visibilities, observed from three antennas
were extracted as a continuous cumulative value, and converted to arrival time dif-
ferences. This was carried out after the partial artificial fringe (due to the correlator
settings) was corrected. These are depicted in Figure 5.12, where the cumulative
variation of the estimated arrival time differences can be seen over a time duration of
~ 500 mins. Here, the arrival time difference shows a smooth variation because of the
Doppler on the satellite signal, arising due to its motion relative to the interferometer.
It is important to note the random variations in the arrival time difference, over the
smooth component due to satellite Doppler. These are seen over timescales of a few
minutes, and can be attributed to ionospheric effects.

The dominant smooth variation of the satellite phase due to the diurnal motion of
the satellite was compensated, and a power spectrum of the residuals over a timescale
typical for ionospheric fluctuations was taken. This is depicted in Figure 5.13. Here,

the SNR of the extracted phase variations is significant, in spite of the particular

5.5 Interdisciplinary approach towards ionospheric calibration 129
S04-W04 S04-E04
50 50
o o
kA Z
g g |
2 w g 40
o o
30 T 2 3 4 30 T 2 4
Frequency (Hz) Frequency (Hz)
(a) (b)
70 70
S04-W04 S04-E04
o o
Z Z
©)
= =
o] o]
o o
-10 7 3 4 -10 T 3 4
Frequency (Hz) Frequency (Hz)
(c) (d)

Figure 5.13: Power spectrum of random phase variations observed on the residuals
after contribution due to Doppler of INMARSAT satellite had been removed. Plots (a)
and (b) show the power spectrum from two baselines for the same time instant during
the continuous recording, while plots (¢) and (d) show the typical power spectrum
recorded from the same baselines at identical times, when no ionospheric random
path length differences are present. The observed lines in (a) and (b) are consistent
with signatures of travelling tonospheric clouds adding random extra path lengths to

the received signal.

5.6 Conclusions 130

observation being carried out pre-dawn during November, 2007, when the sun was
expected to be inactive.

It may be noted that this method can enable multiple lines of sight to be sampled,
by carrying out imaging on the satellite signal sources (which are treated as point
sources). This would be readily possible due to the presence of correlated data from
all satellite antenna elements as part of the GMRT correlator output.

This technique thus allows us to devise a simple scheme for carrying out a rapid
survey of the sky with the GMRT, benefitting from the advantage offered by keeping
a GEO satellite signal within the field of view [54].

5.6 Conclusions

In this chapter, we have presented novel approaches and tools useful for enhancing
the sensitivity of low frequency observations. This, in turn, is achieved by increasing
the reliability of the incoming dataset from a radio telescope, before carrying out
further analysis. An important conclusion of our analysis, is the requirement of high
temporal and spectral resolutions of observations, in order to better characterize the
RFI environment. Our visibility visualizer tool allows rapid visualization of large
datasets, which in turn, enables rough limits to be set on the parameters for the next
stage of analysis. Further, it can carry out simple editing of the recorded large volume
visibilities to carry out automated flagging on the incoming data.

A useful approach to carrying out observations requiring long integrations is to
spread the necessary observing time over multiple sessions, preferably carried out on
different days. This allows a better data editing of deviant visibilities by carrying out
cross correlations between the multiple days’ datasets. Our tool is flexible enough
to accommodate this and other approaches within its framework, in order to be
able to apply them on large databases. Another important aspect considered is the
applicability of simultaneously recorded satellite signals to enhance the quality of
observed visibilities. In particular, the possibility of using a high SNR GEO satellite
signal as a phase reference for reducing distortions caused to visibility phases due to
the ionosphere has been examined. We have also presented some key results from
experiments conducted on GEO satellites using an interferometer developed by us,
and co-located with the GMRT. In addition, software tools developed by us to cater
to the preprocessing of high volume data, resulting due to sampling of visibilities at

a very high temporal and spectral resolutions, have been presented.

Chapter 6
Conclusions

In recent times, there is a resurgence of interest in low frequency radio astronomy,
driven by many new observational goals enabled by increasing receiver capabilities.
These fundamentally relate to the modern receiver’s ability to cope with large-scale
real-time computing on high volumes of incoming data, as well as its increasing con-
figurability. However, the relatively low arithmetic intensity, and the distributed
nature of data sources pose new challenges, which require a careful examination of
the communication and computing aspects from the implementation perspective of
the receiver architecture design. This is partly due to the availability of a large variety
of components, allowing receiver implementations to span a range of design parame-
ters. One aspect which heavily influences design choices are the abilities of currently
available commodity computing and communication components, due to their ease of
development and lower cost. In addition, low frequency observational aspects which
influence the receiver’s design also need to be considered.

In this thesis, we have evaluated the design criteria of receivers tuned towards
carrying out high sensitivity low frequency observations, while being flexible in their
configuration, for a specific class of multi-element telescopes. We have generally
concluded that the best options involve a combination of Commercial Off The Shelf
(COTS), and custom segments.

Some important conclusions reached by us in this context are:

1. Large volumes of data need to flow across all levels of the communication hierar-

chy of a distributed receiver. This, in turn, is due to the fine temporal sampling
of the observables required in order to effectively segregate deviant data due to

the observing environment.

2. The network in a distributed receiver architecture plays a central role, which is

131

132

larger than merely that of a data transporter, and can be used to affect load

balancing and job scheduling.

3. The ability to buffer large volumes of data early in the dataflow hierarchy, and
subsequently operate in “Transaction Units” can influence the implementation
of a distributed receiver, with aspects ranging from synchronization between

the distributed data sources, to load balancing via data reordering.

4. Multiple processing passes may be required to be carried out on streaming data
for effective segregation. Further, the computing needs to be distributed across
the hierarchy, in order to carry out pre-processing or segregation of data at the

various levels.

5. The computing requirements of the receiver can be partitioned into categories,

and matched appropriate commodity components.

6. The development of algorithms to cater to low frequency observations require
continuous real-time feedback based on a descriptive model of the incoming
data.

Based on these conclusions, we have designed a Network centric receiver architecture,
termed the Networked Signal Processing System (NSPS). This is a packetized, het-
erogeneous and distributed signal processing architecture, with its various networks
as core system components. In this approach, the communication and processing is
visualized as a problem of an appropriate workload creation and scheduled dispatch
to matched processors over a data flow tree.

Further, we have implemented a programmable receiver system for the Ooty Ra-
dio Telescope (ORT), based on the NSPS architecture. This part of the work demon-
strates the viability of the NSPS approach. Here, the custom segment of the NSPS
was implemented in FPGA, and equipped with a high-speed peer-to-peer network.
This segment carries out the main task of load balancing via data reorganizing. It
also ensures synchronization between the distributed data sources.

In addition, we have equipped the implemented receiver system with a software
based correlator, operating on commodity class processors. This approach gives max-
imum flexibility of accepting different data formats and number of elements, while
leading to lowered development times. Here, we conclude that commodity class pro-
cessors, while being extremely flexible, can be competitive in their processing efficien-
cies in comparison with other approaches. This is possible, provided sources of their
inefficiency, e.g., frequent communication to other processors, inefficient utilization

of their processing architecture and memory hierarchy, are minimized. Towards this

133

end, the custom hardware segment of the NSPS provides explicit data partitioning to
achieve a high degree of load balancing, while eliminating the barrier synchronization
requirement to a large extent.

The distinguishing feature of our approach for medium sized arrays is the explicit
dependency on carrying out data processing via software on commodity hardware, as
well as a custom hardware section with the ability to route and regroup data at any
level of preprocessing. This is possible only with the data transposition ability of the
Data Pooler element, along with the ability to operate on discrete Transaction Units.

Finally, we have presented tools for visualization, editing and calibration of large
volume data sets, which are mainly necessitated by the requirement of observations
with high temporal and spectral resolutions. Further, the feasibility of certain observ-
ing strategies for carrying out high sensitivity observations have been explored. In
particular, the high SNR signal from Geosynchronous navigation satellites, observed
using facilities co-located with a radio telescope within the field of view of of the ce-
lestial observations, has been utilized. Such a strategy was used to carry out transit
mode observations from the Giant Meterwave Radio Telescope (GMRT).

We would like to point out the possibilities of future extension to this work. The
upcoming trend of multiple independent cores in commodity processors (upto 6 per
processor in the just released Intel SandyBridge microachitecture), as well as larger
vector units (256 bits in SandyBridge) benefits the NSPS approach, which places a
majority of the computing load on such processors. Porting our software correlator
to these architectures should allow direct gains in processed bandwidth, or in the
number of elements handled.

Further, the stage-0 of the FFT implementation (which has been designed to allow
offloading to hardware), can be implemented in the Level-3 hardware of the NSPS
implementation. This, in turn, will reduce a large fraction of the first level data shuf-
fles. In addition, once the entire FF'T is offloaded to hardware, the possibility of using
the spectral dimension for carrying out the Data Pooling is feasible. The output can
then utilize the 16-bit “half-floating point” support now available from libraries on
the target FPGA platform. The software correlator might also benefit from the usage
of half-floating point support, which is beginning to be available in commodity pro-
cessors. It may be noted that currently, only memory access and datatype conversion
instructions are available with the AVX instruction set implemented for the Sandy-
Bridge, although once arithmetic instructions are available, the load of computing
scaling factors based on the incoming data can be eliminated, while also increasing

the dynamic range of the receiver.

Bibliography

1]

12|

3]

4]

[5]

6]

7]

18]

19]

[10]

CL Carilli and S. Rawlings. Motivation, key science projects, standards and
assumptions. New Astronomy Reviews, 48(11-12):979-984, 2004.

A. Nigl, P. Zarka, J. Kuijpers, H. Falcke, L. Bahren, and L. Denis. Vlbi obser-
vations of jupiter with the initial test station of lofar and the nancay decametric
array. Astronomy and Astrophysics, 471:1099-1104, 2007.

C. Mercier and G. Chambe. High dynamic range images of the solar corona
between 150 and 450 mhz. The Astrophysical Journal Letters, 700:1.137, 2009.

R.M. Hjellming. Radio stars. Galactic and Extragalactic Radio Astronomy,
1:381-438, 1988.

AG Lyne, M. Burgay, M. Kramer, A. Possenti, RN Manchester, F. Camilo,
MA McLaughlin, DR Lorimer, N. D’Amico, BC Joshi, et al. A double-pulsar

system: A rare laboratory for relativistic gravity and plasma physics. Science,
303(5661):1153, 2004.

JJ Condon. Extragalactic astronomy at low frequencies. In From Clark Lake
to the Long Wavelength Array: Bill Erickson’s Radio Science, volume 345, page
237, 2005.

DE Harris, CP Stern, AG Willis, and PE Dewdney. The megaparsec radio relic
in supercluster, rood no. 27. The Astronomical Journal, 105:769-777, 1993.

C. Blake and K. Glazebrook. Probing dark energy using baryonic oscillations in
the galaxy power spectrum as a cosmological ruler. The Astrophysical Journal,

994:665, 2003.

TH Hankins, JS Kern, JC Weatherall, and JA Eilek. Nanosecond radio bursts
from strong plasma turbulence in the crab pulsar. Nature, 422(6928):141-143,
2003.

J. M. Cordes, T. J. Lazio, and M.A. Mclaughlin. The dynamic radio sky. New
Astronomy Review, 48:1459-1472, 2004.

134

BIBLIOGRAPHY 135

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

D.R. Lorimer, M. Bailes, M.A. McLaughlin, D.J. Narkevic, and F. Crawford.
A bright millisecond radio burst of extragalactic origin. Science, 318(5851):777,
2007.

P.E. Dewdney, P.J. Hall, R.T. Schilizzi, and T.J.L.W. Lazio. The square kilo-
metre array. Proceedings of the IEEE, 97(8):1482-1496, 2009.

AR Taylor. The square kilometre array. In IAU Symposium, volume 248, pages
164-169, 2008.

S. Bhatnagar. Calibration and imaging challenges at low radio frequencies: A
reivew of the state of the art. In ASP Conf. Series, volume 407, pages 375—-383,
2008.

A.R. Thompson, J.M. Moran, and G.W. Swenson. Interferometry and synthesis
in radio astronomy. Wiley-VCH, 2001.

S.J. Wijnholds, J.D. Bregman, and A.J. Boonstra. Sky noise limited snapshot
imaging in the presence of rfi with lofars initial test station. FExperimental As-
tronomy, 17(1):35-42, 2004.

S.W. Ellingson. Rfi mitigation and the ska. The Square Kilometre Array: An
Engineering Perspective, pages 261-267, 2005.

Y. Chikada, M. Ishiguro, H. Hirabayashi, M. Morimoto, KI Morita, K. Miyazawa,
K. Nagane, K. Murata, A. Tojo, S. Inoue, et al. A digital fft spectro-correlator for
radio astronomy. In Indirect Imaging. Measurement and Processing for Indirect

Imaging, volume 1, page 387, 1984.
G. Swarup, S. Ananthakrishnan, VK Kapahi, AP Rao, CR Subrahmanya, and

VK Kulkarni. The giant metre-wave radio telescope. Current Science, 60:95,
1991.

J. Roy, Y. Gupta, U.L. Pen, J.B. Peterson, S. Kudale, and J. Kodilkar. A real-
time software backend for the gmrt. FExperimental Astronomy, 28(17):26-60,
2010.

L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory

programming. Computational Science & Engineering, IEEE, 5(1):46-55, 1998.

H.D. Falcke, M.P. van Haarlem, A.G. de Bruyn, R. Braun, H.J.A. Rottgering,
B. Stappers, W.H.W.M. Boland, H.R. Butcher, E.J. de Geus, L.V. Koopmans,
et al. A very brief description of lofar—the low frequency array. Proceedings of
the International Astronomical Union, 2(14):386-387, 2006.

BIBLIOGRAPHY 136

23]

[24]

[25]

[26]

27]

28]

29]

[30]

31]

32]

M. de Vos. Lofar: the first of a new generation of radio telescopes. In Acoustics,
Speech, and Signal Processing, 2005. Proceedings.(ICASSP’05). IEEE Interna-
tional Conference on, volume 5, pages v—865. IEEE, 2005.

K. Schaaf, C. Broekema, G. Diepen, and E. Meijeren. The lofar central processing
facility architecture. The Square Kilometre Array: An Engineering Perspective,
pages 43-58, 2005.

C.J. Lonsdale, R.J. Cappallo, M.F. Morales, F.H. Briggs, L. Benkevitch, J.D.
Bowman, J.D. Bunton, S. Burns, B.E. Corey, L. DeSouza, et al. The murchison
widefield array: Design overview. Proceedings of the IEEE, 97(8):1497-1506,
2009.

T. Oosterloo, MAW Verheijen, W. van Cappellen, L. Bakker, G. Heald, and
M. Ivashina. Apertif-the focal-plane array system for the wsrt. In Proceedings of
Wide Field Astronomy € Technology for the Square Kilometre Array (SKADS
2009). 4-6 November 2009. Chateau de Limelette, Belgium. Published online at
hitp://pos. sissa. it/cgi-bin/reader/conf. cgi? confid= 132, id. 70, volume 1,
page 70, 2009.

WA van Cappellen and L. Bakker. Apertif: Phased array feeds for the westerbork

synthesis radio telescope. In Phased Array Systems and Technology (ARRAY),
2010 IEEE International Symposium on, pages 640-647. IEEE, 2010.

A. Parsons, D. Werthimer, D. Backer, T. Bastian, G. Bower, W. Brisken,
H. Chen, A. Deller, T. Filiba, D. Gary, et al. Digital instrumentation for the
radio astronomy community. Arziv preprint arXiv:0904.1181, 2009.

G. Swarup, NVG Sarma, MN Joshi, VK Kapahi, DS Bagri, SH Damle, S. Anan-
thakrishnan, V. Balasubramanian, SS Bhave, and RP Sinha. Large steerable
radio telescope at ootacamund, india. Nature, 230(17):185-188, 1971.

AJ Selvanayagam, A. Praveenkumar, D. Nandagopal, and T. Velusamy. Sensi-
tivity boost to the ooty radio telescope: A new phased array of 1056 dipoles with
1056 low noise amplifiers. IETE Technical Review, 10:333-339, 1993.

NVG Sarma, MN Joshi, DS Bagri, and S. Ananthakrishnan. Receiver system of
the ooty radio telescope. Journal of the Institution of Electronics and Telecom-
munication Engineers, 21:110-116, 1975.

Peeyush Prasad and C.R. Subrahmanya. A high speed networked signal pro-
cessing platform for multi-element radio telescopes. FEzperimental Astronomy,
31(1):1-22, 2011.

BIBLIOGRAPHY 137

[33]

[34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

[42]

43]

[44]
[45]

L.A. Klein. Sensor and data fusion: a tool for information assessment and
decision making, volume 138. SPIE Press, 2004.

A. Lutomirski, M. Tegmark, N.J. Sanchez, L..C. Stein, W.L. Urry, and M. Zal-
darriaga. Solving the corner-turning problem for large interferometers. Monthly
Notices of the Royal Astronomical Society, 2011.

D. Anish Roshi. A study of recombination lines from the galactic centre region
due to transitions at very high rydberg states. Master’s thesis, University of
Poona, Pune, 1995.

T. Prabu. A New Digital Receiver for the Ooty Radio Telescope. PhD thesis,
Center for Electronic Design and Technology, Indian Institute of Science (IISc),

Raman Research Institute, Bangalore, 2011.

PK Manoharan. Three-dimensional structure of the solar wind: Variation of
density with the solar cycle. Solar physics, 148(1):153-167, 1993.

P. Gothoskar and Y. Gupta. Scintillation velocities of five millisecond pulsars.
The Astrophysical Journal, 531:345, 2000.

NG Kantharia and KR Anantharamaiah. Carbon recombination lines from the
galactic plane at 34.5 & 328 mhz. Journal of Astrophysics and Astronomy,
22(1):51-80, 2001.

PS Ramkumar, T. Prabu, M. Girimaji, and G. Marker leyulu. A digital sig-
nal pre-processor for pulsar search. Journal of Astrophysics and Astronomy,
15(3):343-353, 1994.

D. Anish Roshi. A Study of the lonized Gas in the Galactic Plane using Radio

Recombination Lines near 327 MHz PhD thesis, National Center for Radio
Astrophysics, Tata Institute of Fundamental Research, Pune, 1999.

Ashok Singal. Lunar Occultation Observations and a Study of Cosmic Size Fvolu-
tion of Extragalactic Radio Sources. PhD thesis, University of Bombay, Bombay,
1988.

A.X. Widmer and P.A. Franaszek. A dc-balanced, partitioned-block, 8b/10b
transmission code. IBM Journal of research and development, 27(5):440-451,
1983.

R.G. Lyons. Understanding digital signal processing. Prentice Hall P TR, 2004.

C.R. Subrahmanya. Satellite astrometry: A status update. Private Communi-
cation, 2006.

BIBLIOGRAPHY 138

|46]

[47]

48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

L. D’Addario. Cross correlators. In Proceedings of the Astronoical Society of the
Pacific, volume 6, page 59, 1989.

AT Deller, SJ Tingay, M. Bailes, and C. West. Difx: A software correlator for
very long baseline interferometry using multiprocessor computing environments.
Publications of the Astronomical Society of the Pacific, 119:318-336, 2007.

J. Max. Quantizing for minimum distortion. Information Theory, IRE Transac-
tions on, 6(1):7-12, 1960.
R.N. Bracewell. The Fourier transform and its applications. McGraw-Hill, 2000.

Intel Integrated Performance Primitives for Intel Architecture: Reference Man-

ual. Intel Corporation, 2010.
Intel 64 and TA-32 Architectures Software Developer’s manual, Vol. 24 /2B: In-

struction Set Reference. Intel Corporation, 2010.

M. Frigo and S.G. Johnson. The design and implementation of fftw3. Proceedings
of the IEEE, 93(2):216-231, 2005.

M.H. Wieringa. An investigation of the telescope based calibration methods

redundancy and self-cal. Ezperimental astronomy, 2(4):203-225, 1992.

Peeyush Prasad and C. R. Subrahmanya. Dynamic range improvement of gmrt
low frequency images. In Proceedings of The Low Frequency Radio Universe,
ASP conference series, volume 407, pages 398—401, 2009.

CR Subrahmanya. Low frequency imaging and the non-isoplanatic atmosphere.
In TIAU Collog. 131: Radio Interferometry. Theory, Techniques, and Applications,
volume 19, pages 218222, 1991.

TJ Pearson and ACS Readhead. Image formation by self-calibration in radio

astronomy. Annual review of astronomy and astrophysics, 22:97-130, 1984.

CM Ho, AT Mannucci, UJ Lindgwister, and XQ Pi. Global ionospheric pertur-
bations monitored by the worldwide gps network. Geophysical Research Letters,

23:3219-3222, 1996.

WC Erickson, RA Perley, C. Flatters, and NE Kassim. Ionospheric corrections for
vla observations using local gps data. Astronomy and Astrophysics, 366(3):1071—
1080, 2001.

S.V. Kibe. Indian plan for satellite-based navigation system for civil aviation.
Current Science, 84:1405—-1411, 2008.

A. Bhaskaranarayana. Indian irnss and gagan. In COSPAR Meeting, Montreal,

BIBLIOGRAPHY 139

2008.
[61] C. R. Subrahmanya, Peeyush Prasad, and C.R. Somashekar. Interferometric

observations of geosynchronous satellites. In ICST conference proceedings, 2011.

Appendix A

Packet Structures for the ORT NSPS

implementation

This appendix lists the memory layouts of various kinds of packets flowing in the
ORT NSPS hierarchy, along with data flow discriminators in the form of UDP ports.

/* FPGA can send status and data packets only, while PC can send

* status, data and command packets. All pkts have the same header,

* and are distinguished by the datatype/srcid field.

* NOTE: These entries also define the various port numbers to wait

* on. These are hardcoded in the FPGA code as well.

*/

enum {DataPkt=0xd0, StatPkt=0xf0, CmdPkt=0xcO};

enum {DataPort=(DataPkt<<8)+255, StatPort=(StatPkt<<8)+255,
CmdPort=(CmdPkt <<8)+255};

/* Types of data packets:

* These flow only from the FPGA to the PC.

* A 4 bit field; giving 16 different types of handlable data.

*/

enum
{ DataUserDef |, // User defined data type
DataCnt N // Contents are a 32bit counter, for debug
DataRaw 5 // Contents are ADC raw data
DataRawZip , // Contents are ADC raw compressed data
DataFFTRaw , // Contents are FFT Complex output
DataFFTZip , // Contents are FFT Compressed output
DataFFTPow , // Contents are FFT Power spectra only
DataSpectCorr, // Contents are Spectral Correlations
DataRawStat , // Contents hold data statistics only
DataMeta, // Contents hold metadata (history/scanhdr)
DataSpectCorrPack, // Contents are Spectral Correlations with

140

141

// minimal header. Size is in 8-byte word units

DataTypes};

/* Types of status packets:
* These flow only from the FPGA to the PC.

*/

enum

{ SSubIAA = 1, // I am alive status packet
SSubStart , // Tx in start state
SSubStop s // Tx in stop state
SSubInvalOp, // Command invalid
SSubCmdDone , // Command successfully executed
SSubLUT , // Contains current LUT entries as data
SSubMon s // This is a monitor packet
StatusTypes};

/* Types of Command packets:
* These flow only from PC to FPGA

*/

enum

{ CSubReset 5 // Assert intermal reset. All counters reset
CSubSendAYA , // Send an Are you alive packet to FPGA
CSubStart s // Start FPGA application
CSubStop s // Stop FPGA application
CSubUpdateHdr , // Update intermnal IP hdrs
CSubUpdatelLUT, // payload has LUT updation data, see pktsub
CSubSendLUT , // Send current LUT entries to PC
CSubDoDbg , // Ask FPGA for a 32bit cntr at specified rate
CSubFlushFIFO, // Flush all FIFOs/buffers. TSCs are unaffected.
CSubGPIO R // Manipulate the 32 bit GPIO lines on FPGA
CSubChanSel , // Choose from upto 16 channel inputs
CSublInit s // Send an init command to data sources
CSubSetDelay , // Set a delay for given channel
CSubSetTS , // Set the TimeStamp counter to the given value
CSub2ch8bpp , // Choose a 2ch, 8bpp streaming mode from ethO
CSubUserDef , // Look at pktsub for decode
CmdTypesl;

typedef struct
{ HdrType hdr;

unsigned char datal[0];
} CmdPktType;

142

/* Layout of a status packet. This has
* by the App for app specific status.
*/

typedef struct

{ unsigned char mac[6];

unsigned char ip [4];
unsigned short csum;

} FPGADstType;

/* Every status packet has at the very
typedef struct

fields which are manipulatable

Also has common status fields.

least this much informationx*/

{ unsigned char FPGAVER; // Indicates version of the FPGA code

unsigned char ability_state;// advertised ability of FPGA code.
// Should be one among DSub* above (4bit)
// LSB 4 bits are current state

unsigned short appdef; // FPGA app specific field.

unsigned int GPIOlines; // Current

value of FPGA intermnal GPIO

FPGADstType destaddr[4]; // Internal current destinations.

unsigned char datal[0]; // Contains things like LUTs, current

// destinations etc. Size should be

// calculated based on type of status

// packet as well as size reported in

// UDP hdr.
} StatPktType;
typedef struct
{ unsigned char srcid;
unsigned int datatype: 4;
unsigned int Dbits2pix: 4;
unsigned int chans : 4,
unsigned int words :12; // Sizeof pkt(including hdr) in
unsigned int tick; // 8Byte units.
unsigned int taps;
float f_samp; // Sampling frequency in Hz

} SpectHdrType;

typedef struct

{ SpectHdrType hdr;
float pspect[0];

} PowPktType;

typedef struct

143

{ unsigned char srcid;

unsigned int datatype: 4;

unsigned int Dbits2pix: 4;

unsigned int chans : 4

unsigned int words :12; // sizeof pkt (with hdr) in 8byte units

unsigned int tick;

LayerHdrType lay[3];

unsigned char grpid;

unsigned char dummy;

unsigned int samps;

float f_samp; // All headers should be 8 byte aligned
} __attribute__((aligned (16), packed)) StatisticHdrType;

enum {HistBins=32};
typedef struct
{ float mean, var;
unsigned int hist[HistBins];

} StatisticWordType;

typedef struct

{ StatisticHdrType hdr;
StatisticWordType word[0];

} StatisticPktType;

// Timing related: NOTE: ORDER OF hw/sw matters!!
typedef struct
{ unsigned int hw, sw; } Tick;
typedef union
{ Tick t;
unsigned long long abscnt; // Software and Hardware absolute cntr.
} LongTick;

// Information specific to the field being observed
typedef struct
{ char name[32];

float ra, dec; // src coordinates in J2000

} SrcInfoType;

// Information specific to the observer for this scan
typedef struct
{ char name[32];

char projcodel[16];

144

struct timeval time; // Timestamp at beginning of scan
} ObsInfoType;

Appendix B
Photographs

This appendix consists of a few photographs of the implemented NSPS system for
the ORT.

North RF Signal
Conditioning unit

South RF Signal
Conditioning unit

RF Sampling +

i
data transfer unit & ‘_‘a:' $,
: ’ ﬂr; o

T

s T
L i

Figure B.1: Populated pillar, with analog signal conditioning systems and Level-3
remote digitizers visible.

145

146

Level-3
Remote Digitizer Block

10 analog inputs

Aurora Optical Fibre) I
link to data pooler Clock over SFP Sampling clock distributer

Figure B.2: Level-3 remote digitizer units, with onboard clock distribution.

Gigabit Ethernet links Aurora links Level-2 Data Level-1 Aurora to
to acquisition PC from pillars Pooler card GigE Bridge card

Figure B.3: Level-2 and Level-1 data pooler and bridge cards shown in their chassis.

