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Anisotropic emission of gravitational waves (GWs) from inspiralling compact binaries leads

to the loss of linear momentum and hence gravitational recoil of the system. The loss rate of

linear momentum in the far-zone of the source (a nonspinning binary system of black holes in

quasicircular orbit) is investigated at the 2.5 post-Newtonian (PN) order and used to provide an

analytical expression in harmonic coordinates for the 2.5PN accurate recoil velocity of the binary

accumulated in the inspiral phase. The maximum recoil velocity of the binary system at the

end of its inspiral phase (i.e at the innermost stable circular orbit (ISCO)) estimated by the

2.5PN formula is of the order of 4 km s�1 which is smaller than the 2PN estimate of 22 km s�1.

Going beyond inspiral, we also provide an estimate of the more important contribution to the recoil

velocity from the plunge phase. The maximum recoil velocity at the end of the plunge, involving

contributions both from inspiral and plunge phase, for a binary with symmetric mass ratio � ¼ 0:2 is of

the order of 182 km s�1.
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I. INTRODUCTION

A coalescing black hole (BH) binary which is aniso-

tropically emitting gravitational waves (GWs) will ex-

perience a recoil as a consequence of the loss of linear

momentum from the binary through outgoing GWs.

This phenomenon of gravitational-wave recoil has sub-

stantial importance in astrophysics especially if one

wants to study models which suggest the formation

and growth of super massive black holes (SMBHs) at

the centers of galaxies through successive mergers from

smaller BHs (stellar or intermediate mass BHs) [1]. If

the kick velocity of the product BH is more than its

escape velocity from the host galaxy, the formation of

SMBHs will not be favored, as would be the case with

dwarf galaxies and globular clusters (see [2] for obser-

vational evidence for ejection of the SMBHs). Even if

the recoil velocity of the product BH is not sufficient to

eject it from the host (which may be the case with giant

elliptical galaxies), the product BH would be displaced

from the center and eventually would fall back. Such a

process may have important dynamical changes at the

galactic core. For a more detailed overview of astro-

physical possibilities, see Ref. [1]. One important claim

of [1] is that models that grow SMBHs from the

mergers of smaller BHs will not be favored for the

galaxies at redshifts z * 10 due to the difficulty in

retaining the ‘‘kicked’’ black holes. However, observa-

tions of the local universe suggest that most of the

galaxies (more than 50% of them) have SMBHs at their

centers [3]. This shows that there must be something

which prevents the ejection of the central black hole

from many of these galaxies and Ref. [4] investigates

such questions. In the light of the above arguments it

becomes important to have an accurate estimate of the

recoil velocity of the coalescing binary black holes

(BBHs).

One of the first proposals investigating the phenome-

non of gravitational-wave recoil is due to Peres [5].

Following the analogy from the classical electrodynam-

ics, it was suggested that the lowest order secular

effects related to gravitational-wave recoil arise due to

the interaction of mass quadrupole moment with mass

octupole moment or current quadrupole moment. His

work provided the first formal theory for gravitational-

wave recoil of a general material system in linearized

gravity and is valid for any kind of motion (rotational,

vibrational or any other kind) given the source is lo-

calized within a finite volume. In another early work,

Bonnor and Rotenberg [6] studied the emission of

gravitational waves from a pair of oscillating particles

and suggested the possibility of GW recoil. Papapetrou

[7] derived the leading order formula which involved

interaction of mass quadrupole moment with mass octu-

pole moment and current quadrupole moment. Later,

Thorne [8] generalized the idea by providing a general
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multipole expansion for the linear momentum loss as

seen in the far-zone of the source.

Within the post-Newtonian (PN) scheme, the leading

order contribution to the linear momentum flux from an

inspiralling binary system of two point masses in

Keplarian orbit was computed by Fitchett [9] and bi-

nary motion in circular orbit was discussed as a limiting

case of the main results of the work. The first PN

correction was added to it by Wiseman [10] and the

circular orbit case was discussed as a special case. In a

work by Blanchet, Qusailah and Will (hereafter BQW)

[11] the 1 PN expression for linear momentum flux,

from a nonspinning compact binary moving in quasi-

circular orbit, was extended to the 2PN order by adding

the hereditary contribution that occurs at 1.5PN order

and the instantaneous one occurring at the 2PN order.

Kidder [12] computed the leading order (spin-orbit)

contribution to linear momentum flux for generic orbits

and discussed circular orbit effects as a limiting case of

his findings. Recently, Racine et al. [13] extended

Kidder’s work by adding higher order spin corrections

(spin-orbit terms at 1.5PN order, spin-orbit tail and

spin-spin terms at 2PN order). They provided 2PN

accurate expression for the linear momentum flux

from spinning BBHs in generic orbits. They also spe-

cialize to the binary motion in circular orbit and pro-

vide estimates for the recoil velocity, accumulated

during the inspiral phase, for equal mass binaries with

spins equal in magnitude but opposite in direction.

Using the black hole perturbation theory, Favata et al.

[14] estimated the recoil velocity of the binary, treating it

as a test particle inspiralling into a black hole (spinning

or nonspinning), up to the innermost stable circular orbit

(ISCO) (accounting for the recoil velocity accumulated

during the inspiral phase) very accurately. Though their

calculations were valid only in extreme mass ratio limit

(qm � m1=m2 � 1), they extrapolated their results to

qm � 0:4 (with modest accuracy) using some scaling

results from quadrupole approximations. A crude esti-

mate of the contributions due to the plunge was also

given. Within the validity of the approach, their estimates

suggested the typical recoil velocity can be of the order

of 10–100 km s�1 but for some configurations it may

reach roughly up to 500 km s�1. Another computation

by Damour and Gopakumar [15] used the effective

one-body approach [16,17] to compute the total recoil

velocity of the final black hole taking into account the

contributions from all the three phases (inspiral, plunge

and ringdown). Depending upon the method they used to

compute linear momentum flux their estimates for maxi-

mum recoil velocity lie in the range 49–172 km s�1.

Reference [18] presents estimates of the recoil velocities

for binaries in orbits with small eccentricities using an

approximation technique that is valid only for late stages

of the plunge. They also combine their results with the

PN estimates of recoil velocity at ISCO of BQW in order

to give estimates for recoil velocity for binaries in

quasicircular orbits and find that for a binary with sym-

metric mass ratio (ratio of reduced mass of the binary to

the total mass) � ¼ 0:2 the recoil velocity estimates

should lie in the range of ð79–216Þ km s�1. In a recent

work [19], the recoil of the final BH was investigated

combining the results of [11] with the calculation of

contribution from the ringdown phase performed using

the close-limit approximation. They found that the radia-

tion emitted in the ringdown phase produces a significant

antikick and thus brings down the estimates of recoil

velocity based on only inspiral and plunge phase, e.g.

after including the contributions from ringdown phase

the maximum recoil velocity of the final black-hole is of

the order of 180 km s�1 as compared to BQW estimate

of 243 km s�1 which does not include the contribution

from the ringdown phase (also see Fig. 1 of [19] for a

comparison of this result with various numerical and

analytical estimates). In another recent work [20], the

phenomenon of recoil of a spinning BBH (extreme mass

ratio) due to the inspiral, merger and ringdown phase of

its evolution has been investigated. The issue of antikick

has been examined very carefully and they found that for

orbits aligned with the BH spin, the antikick grows with

the spin. Also, a prograde coalescence of a smaller BH

into the rapidly rotating bigger BH results in the smallest

kick, whereas the retrograde coalescence insures the

maximum recoil.

In addition to the analytical or semianalytical esti-

mates of the recoil, there have been many investiga-

tions using numerical techniques. Recent numerical

simulations for nonspinning [21–24] BBHs in quasicir-

cular orbit have shown that the recoil velocity can

reach up to a few hundred km s�1, while for the spin-

ning case [25–28] the recoil velocity estimates are

much higher and can be of the order of few thousand

km s�1. Although numerical simulations can put better

constraints on these estimates, such simulations (espe-

cially those which include BH spins) are computation-

ally very expensive. Moreover a very detailed

multipolar study of numerical results for BBH recoil

[29] shows the need of analytical and semianalytical

schemes in order to gain a deeper understanding of the

problem at hand and also as a check to numerical

results.

In the present work we extend the 2PN calculation of

[11] for linear momentum loss from a nonspinning

BBH in quasicircular orbit by adding terms (both in-

stantaneous and hereditary) which contribute at 2.5PN

order and thus give an analytical expression for linear
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momentum flux which is now 2.5PN accurate.

Naturally, in the 2PN limit our expression for linear

momentum flux given by Eq. (3.23) reduces to Eq. (20)

of [11]. The 2.5PN accurate expression for the recoil

velocity of the binary is given by Eq. (4.6) which

reduces to Eq. (23) of [11] in the 2PN limit. For

computing the contribution to the recoil velocity due

to the plunge phase, we simply adopt the discussion

given in Sec. (4.1) of [11] and perform the computation

using our 2.5PN accurate formulas. We find that the

maximum recoil velocity experienced by the binary at

the end of inspiral (at fiducial ISCO) and end of the

plunge (which includes the contributions from both

inspiral and plunge phase) is of the order of 4 km s�1

and 182 km s�1, respectively, and corresponds to the

binary with symmetric mass ratio of � ¼ 0:2. In con-

trast, the maximum recoil velocity at the end of the

inspiral and the plunge using the 2PN formulas (see

Fig. 1 of [11]) is of the order of 22 km s�1 and

243 km s�1, respectively, corresponding to the same

� ¼ 0:2. We see here that inclusion of terms at 2.5PN

order brings down the estimates for the recoil velocity

significantly, exhibiting in this problem the feature aris-

ing from the asymptotic nature of the PN expansion and

the need to explicitly investigate the next PN order

implications of a calculation. This also reminds us of

a similar result of [10], where the inclusion of 1PN

contribution brought down the Newtonian estimates

since the 1PN term contributed negatively to the recoil

velocity. Something similar happens here and the large

negative coefficients at 2.5PN order (see Eq. (4.6))

brings down the 2PN estimates significantly.

The paper is organized in the following way. In

Sec. II, we first provide the PN structure of the linear

momentum flux in terms of the radiative multipole

moments and then we give explicit expressions for

the instantaneous and hereditary contribution sepa-

rately in terms of the source multipole moments.

Section III starts with the formulas for source multi-

pole moments with desired PN accuracy and next

shows the computation of both instantaneous and he-

reditary contributions to the linear momentum in the

far-zone of the binary. Finally, we give the 2.5PN

accurate expression for the linear momentum flux by

adding instantaneous and hereditary contributions. In

Sec. IV, we discuss the computation of the recoil

velocity of the binary and also give the 2.5PN accurate

analytical expression for the same. Section V explores

the method for estimating the recoil velocity accumu-

lated during the plunge phase. In Sec. VI, we present

our numerical estimates of total recoil velocity and its

dependence on the composition of the binary as well as

final discussions.

II. THE POST-NEWTONIAN STRUCTURE FOR
LINEAR MOMENTUM FLUX

The general formula for linear momentum flux in the
far-zone of the source in terms of symmetric trace-free
radiative multipole moments is given in [8] and at relative
2.5PN order it takes the following form (see Eq. (4.20’) of
Ref. [8].)

F i
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�
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(2.1)

In the above expression, UL and VL (where L ¼
i1i2 � � � il represents a multi-index composed of l spatial
indices) are the mass-type and current-type radiative multi-

pole moments, respectively, and UðpÞ
L and VðpÞ

L denote their
pth time derivatives. The Levi-Civita tensor is denoted by
"ijk, such that "123 ¼ þ1 and Oð1=c6Þ indicates that we

ignore contributions of the order 3PN and higher. The
moments appearing in the formula are functions of re-
tarded time U � T � ðR=cÞ in radiative coordinates.
Here R and T denote the distance of the source from the
observer and the time of observation in radiative coordi-
nates, respectively.
It should be evident from Eq. (2.1) that the computation

of 2.5PN accurate linear momentum flux requires the
knowledge of Uij, Vij and Uijk at 2.5PN order, Uijkl and

Vijk at 1.5PN order, and Uijklm and Vijkl at Newtonian

order. In a recent work [30], UL and VL have been com-
puted with accuracies sufficient for the present purpose
using multipolar post-Minkowskian approximation ap-
proach [31–36]. In the multipolar post-Minkowskian for-
malism UL and VL are related to canonical moments ML

and SL (Eqs. (5.4)–(5.8) of [30]) which in turn are related to
source moments fIL; JL; XL;WL; YL; ZLg (Eqs. (5.9)–(5.11)
of [30]). Rewriting the expressions for the radiative mo-
ments in terms of the source moments, the linear momen-
tum flux can be decomposed as the sum of two distinct
parts: the instantaneous terms and the hereditary terms. By
instantaneous we refer to contributions in the linear mo-
mentum flux which depend on the dynamics of the system
only at the retarded instant U � T � ðR=cÞ. Hereditary
contributions to the flux, on the other hand, are terms
nonlocal in time depending on the dynamics of the system
in its entire past [37]. The linear momentum flux thus is
conveniently decomposed into

F i
P ¼ ðF i

PÞinst þ ðF i
PÞhered; (2.2)

2.5PN LINEAR MOMENTUM FLUX FROM INSPIRALLING. . . PHYSICAL REVIEW D 85, 044021 (2012)

044021-3



where the instantaneous part is given by

ðF i
PÞinst ¼
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where
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In the above, angular brackets (hi) surrounding indices denote symmetric trace-free projections. Underlined
indices denote indices that are excluded in the symmetric trace-free projection. The hereditary contribution can
be written as
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Here, M denotes the ADM mass of the system. �0 appearing in above hereditary integrals is an arbitrary constant and is
related to an arbitrary length scale, r0, by the relation �0 ¼ r0=c. It enters the relation connecting retarded time U �
T � ðR=cÞ in radiative coordinates to retarded time u � th � rh=c in harmonic coordinates (where rh is the distance of the
source in harmonic coordinates). The relation between retarded time in radiative coordinates, and the one in harmonic
coordinates reads as

U ¼ th � rh
c
� 2GM

c3
log

�
rh
r0

�
: (2.6)

III. THE 2.5PN LINEAR MOMENTUM FLUX: APPLICATION TO INSPIRALLING COMPACT
BINARIES IN CIRCULAR ORBITS

Equations (2.2), (2.3), (2.4), and (2.5) collectively give the far-zone linear momentum flux from generic PN sources in
terms of the source multipole moments fIL; JL;WL; YLg. In this section, we specialize to the case of nonspinning
inspiralling compact binaries, in which two compact objects (neutron stars and/or black holes) are moving around each
other in quasicircular orbits. All the source multipole moments in case of nonspinning inspiralling compact binaries
moving in quasicircular orbits are now known with the accuracies sufficient for the present purpose and have been
computed and listed in [30] (see Eqs. (5.12)–(5.25) there). Here, we just quote those results with the accuracies that is
required for the present purpose. For mass-type moments, we have

Iij ¼ �m

�
xhiji

�
1þ �

�
� 1

42
� 13

14
�

�
þ �2

�
� 461

1512
� 18395

1512
�� 241

1512
�2

��

þ r2

c2
vhiji

�
11

21
� 11

7
�þ �

�
1607

378
� 1681

378
�þ 229

378
�2

��
þ 48

7

r

c
�2�xhivji

�
þO

�
1

c6

�
; (3.1a)

Iijk ¼ ��m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p �
xhijki

�
1� ��þ �2

�
� 139

330
� 11923

660
�� 29

110
�2

��

þ r2

c2
xhivjki

�
1� 2�þ �

�
1066

165
� 1433

330
�þ 21

55
�2

��
þ 196

15

r

c
�2�xhijvki

�
þO

�
1

c6

�
; (3.1b)

Iijkl ¼ �m

�
xhijkli

�
1� 3�þ �

�
3

110
� 25

22
�þ 69

22
�2

��
þ 78

55

r2

c2
xhijvklið1� 5�þ 5�2Þ

�
þO

�
1

c4

�
; (3.1c)

Iijklm ¼ ��m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
xhijklmið1� 2�Þ þO

�
1

c2

�
; (3.1d)

and for the current-type moments1 we have

1The coefficient ‘‘�484=105’’ appearing at the 2.5PN order in the expression for Jij in Eq. 5.15b of [30] is incorrect and should be
replaced by ‘‘�148=35’’ (see (3.2a)).
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Jij¼��m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p �
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28
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7
�

�
þ�2

�
13

9
�4651

252
�� 1

168
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��
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r

c
�2�"abhivjiaxb

�
þO

�
1

c6

�
; (3.2a)

Jijk¼�m

�
"abhixjkiavb

�
1�3�þ�

�
181

90
�109

18
�þ13

18
�2

��
þ 7

45

r2

c2
"abhixavjkibð1�5�þ5�2Þ

�
þO

�
1

c4

�
; (3.2b)

Jijkl¼��m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4�

p
"abhixjkliavbð1�2�ÞþO

�
1

c2

�
: (3.2c)

Computation of linear momentum flux at 2.5PN order also
requires, 1PN accurate expression for mass monopole mo-
ment, which can be identified with ADM mass (M) of the
source, and Newtonian accurate expression for the current
dipole moment Ji. We have

I ¼ M ¼ m

�
1� �

2
�

�
þO

�
1

c4

�
; (3.3a)

Ji ¼ �m"abixavb þO
�
1

c2

�
: (3.3b)

In addition to mass-type and current-type moments, we
also need some of the gauge moments which only need to
be Newtonian accurate and are given as

W ¼ O
�
1

c2

�
; (3.4a)

Wi ¼ 1

10
�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
r2vi þO

�
1

c2

�
; (3.4b)

Yi ¼ 1

5

Gm2�

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
xi þO

�
1

c2

�
: (3.4c)

In the above, m ¼ m1 þm2 is the total mass of the binary
with m1 and m2 as the binary’s component masses and � is
the symmetric mass ratio and is defined by the combination
ðm1m2=m

2Þ. xi and vi denote the relative separation and
relative velocity of the two objects constituting the binary,
respectively, and can be defined as xi ¼ yi1 � yi2 and vi ¼
dxi=dt ¼ vi

1 � vi
2 (where ðyi1; yi2Þ and ðvi

1; v
i
2Þ are posi-

tions and velocities of components of the binary). � is a
PN parameter and is defined by the quantity ðGm=c2rÞ.

A. Instantaneous terms

Equation (2.3) is the general formula for the instanta-
neous part of the linear momentum flux from generic PN
sources in terms of the source multipole moments
fIL; JL;WL; YLg. Computation of linear momentum flux
involves computing time derivatives of the source multi-
pole moments which in turn requires the knowledge of
equations of motion with appropriate PN accuracy. Linear
momentum flux computation at 2.5PN order will thus
require 2.5PN accurate equations of motion [30,38].

Let the x-y plane be the orbital plane of the binary.2 �
denotes the orbital phase of the binary giving the direction

of the unit vector, n̂ ¼ x=r, along the binary’s relative
separation, then

n̂ ¼ cos�êx þ sin�êy : (3.5)

The binary’s relative separation, velocity and acceleration
are given by

x ¼ rn̂; (3.6a)

v ¼ _r n̂þr!�̂; (3.6b)

a ¼ ð €r� r!2Þn̂þ ðr _!þ 2 _r!Þ�̂; (3.6c)

where an over dot denotes a time derivative and r ¼ jxj is
the distance between the two objects in the binary. The

orbital frequency ! is given by ! ¼ _�. The motion of the
binary can be described by the rotating orthonormal triad

ðn̂; �̂; êzÞ with �̂ ¼ êz � n̂.
Up to 2PN order, one can model the binary’s orbit as

exact circular orbit with _r ¼ _! ¼ 0, but at 2.5PN order
orbit of the binary decays due to radiation reaction forces
and one must include the inspiral effects. The leading order
effect is computed using energy balance equation assum-
ing that system is losing its orbital energy only through

gravitational radiation. At the 2.5PN order, for _r and _� we
have

_r ¼ � 64

5

ffiffiffiffiffiffiffiffi
Gm

r

s
��5=2 þO

�
1

c7

�
; (3.7a)

_! ¼ 96

5

Gm

r3
��5=2 þO

�
1

c7

�
: (3.7b)

By substituting the expressions for _r and _! in Eq. (3.6b)
and (3.6c), one can write for the relative inspiral velocity
and relative acceleration as

v ¼ r!�̂� 64

5

ffiffiffiffiffiffiffiffi
Gm

r

s
��5=2n̂þO

�
1

c6

�
; (3.8a)

a ¼ �!2x� 32

5

ffiffiffiffiffiffiffiffi
Gm

r3

s
��5=2vþO

�
1

c6

�
: (3.8b)

Finally, we give the PN expression for orbital frequency as
a function of the binary’s separation r which is now known
with 3PN accuracy [30], but in the present work we just
need the 2PN accurate expression. In harmonic coordi-
nates, it is given as

2Since we are considering only nonspinning binary systems in
quasicircular orbits, the motion will be in a fixed plane.
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!2¼Gm

r3

�
1þ�ð�3þ�Þþ�2

�
6þ41

4
�þ�2

�
þO

�
1

c6

��
:

(3.9)

It is often convenient to use a parameter x which is directly
connected to the orbital frequency rather instead of using
the PN parameter �.3 Our new parameter x is related to
orbital frequency (Eq. 6.5 in [30]) as

x ¼
�
Gm!

c3

�
2=3

: (3.10)

A relation between � and x can be obtained by using
Eq. (3.10) in Eq. (3.9) and inverting for � in terms of x.
At the 2PN order, the PN parameter � is related to the
parameter x as

� ¼ x

�
1þ x

�
1� �

3

�
þ x2

�
1� 65

12
�

�
þO

�
1

c6

��
: (3.11)

Now, we have all the inputs to compute the derivatives of
source multipole moments with accuracies sufficient for
the computation of 2.5PN accurate expression for linear
momentum flux. Once we have the desired time derivatives
of various source multipole moments, we can insert them
in Eq. (2.3) to get the 2.5PN accurate instantaneous part of
the linear momentum flux. After a tedious but straightfor-
ward computation, we get for the 2.5PN accurate expres-
sion for linear momentum flux in terms of the parameter �

ðF i
PÞinst¼�464

105

c4

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4�

p
�11=2�2

��
1þ�

�
�1861

174

� 91

261
�

�
þ�2

�
139355

2871
þ36269

1044
�þ 17

3828
�2

��
�̂i

þ1199

290
�5=2�n̂iþO

�
1

c6

��
: (3.12)

Alternatively, we can rewrite the instantaneous part of
linear momentum flux given by Eq. (3.12) in terms of the
parameter x by using Eq. (3.11) in the above equation. At
2.5PN order, the linear momentum flux in terms of the
parameter x reads as

ðF i
PÞinst¼�464

105

c4

G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4�

p
x11=2�2

��
1þx

�
�452

87
�1139

522
�

�

þx2
�
�71345

22968
þ36761

2088
�þ147101

68904
�2

��
�̂i

þ1199

290
x5=2�n̂iþO

�
1

c6

��
: (3.13)

B. Hereditary terms

In this subsection, we shall compute the hereditary
contribution to linear momentum flux from a nonspinning
inspiralling compact binary in quasicircular orbits, which
in terms of the source multipole moments is given by
Eq. (2.5). The leading order hereditary contribution
(1.5PN term) for the nonspinning compact binaries in
circular orbit have been computed in [11] and later con-
firmed by Racine et al.[13]. In this section, we extend the
computation of the hereditary contributions by adding
terms contributing at the 2.5PN order.
If the x-y plane is the binary’s orbital plane and the

orbital phase at a given retarded time U be �ðUÞ, then
unit vectors n̂ and �̂ can be written as

n̂ðUÞ ¼ cos�ðUÞêx þ sin�ðUÞêy ; (3.14a)

�̂ðUÞ ¼ � sin�ðUÞêx þ cos�ðUÞêy : (3.14b)

It is evident from Eq. (2.5) that to compute the hereditary
contribution, one must know the relevant multipole mo-
ments and their derivatives both at any retarded time U as
well as at some other time U0 � U� � < U. Since multi-

pole moments at retarded time U0 shall involve n̂ and �̂ at

U0, it would be useful to express n̂ðU0Þ and �̂ðU0Þ in terms

of n̂ðUÞ and �̂ðUÞ, which are independent of the integration
variable, �, and thus one can pull out the vector quantities
out side the hereditary integral. Following [13], one pos-

sible way is to express n̂ðU0Þ and �̂ðU0Þ as a linear combi-

nation of n̂ðUÞ and �̂ðUÞ as

n̂ðU0Þ ¼ cos½�ðUÞ ��ðU0Þ�n̂
� sin½�ðUÞ ��ðU0Þ��̂; (3.15a)

�̂ðU0Þ ¼ sin½�ðUÞ ��ðU0Þ�n̂
þ cos½�ðUÞ ��ðU0Þ��̂: (3.15b)

It should be evident from Eq. (2.5) that hereditary contri-
butions at the 2.5PN order require 1PN accuracy for the
quantities appearing in first four terms while in remaining
six terms they need only be Newtonian accurate. It should
be clear that while computing the time derivatives of the
source multipole moments for hereditary contributions, the
equations of motion need be only 1PN accurate at most. To
start, let us consider the combinations of derivatives of
source multipole moments appearing in the first term of

Eq. (2.5), i.e Ið4ÞijkðUÞIð5Þjk ðU� �Þ. We can use Eq. (3.15) to

express the quantity at hand in terms of n̂ðUÞ and �̂ðUÞ and
then perform the contraction of indices. After some
straightforward algebra, we have

3The use of x as a PN parameter is useful since it remains
invariant for a large class of coordinate transformations includ-
ing the harmonic and Arnowitt, Deser and Misner (ADM)
coordinate systems.
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Ið4ÞijkðUÞIð5Þjk ðU0Þ ¼ 16
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�
� 9263

7
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7
� cosð2��Þ

��
�̂iðUÞ

�
; (3.16)

where we have defined �� � �ðUÞ ��ðU� �Þ. Similarly, we can write for combinations of source multipole moments
in various terms of Eq. (2.5) as
EQ-TARGET;temp:intralink-;d3.17,d3.17a,d3.17b,d3.17c,d3.17d,d3.17e,d3.17f,d3.17g,d3.17h,d3.17i;52;661

Ið3Þjk ðUÞIð6ÞijkðU0Þ ¼ 2
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�
; (3.17a)

"ijkI
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ
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�
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�
; (3.17b)

"ijkJ
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ka ðUÞIð5Þja ðU0Þ ¼ �8
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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; (3.17c)

Ið5ÞijklðUÞIð6ÞjklðU0Þ ¼ 12

7

c19
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p ð1� 3�Þ�2f½� sinð��Þ � 54675 sinð3��Þ�n̂iðUÞ
þ ½cosð��Þ þ 54189 cosð3��Þ��̂iðUÞg; (3.17d)

Ið4ÞjklðUÞIð7ÞijklðU0Þ ¼ 96

7
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G4m2
x19=2
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p ð1� 3�Þ�2f½14 sinð2��Þ þ 12096 sinð4��Þ�n̂iðUÞ
þ ½�13 cosð2��Þ þ 12096 cosð4��Þ��̂iðUÞg; (3.17e)

"ijkI
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jabðUÞJð6ÞkabðU0Þ ¼ 32
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G4m2
x19=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p ð1� 3�Þ�2f40 sinð2��Þn̂iðUÞ � 41 cosð2��Þ�̂iðUÞg; (3.17f)
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ð4Þ
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p ð1� 3�Þ�2f½sinð��Þ � 729 sinð3��Þ�n̂iðUÞ
þ ½� cosð��Þ � 729 cosð3��Þ��̂iðUÞg; (3.17g)

Jð4ÞijkðUÞJð5Þjk ðU0Þ ¼ � 8

3

c19

G4m2
x19=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p ð1� 3�Þ�2fsinð��Þn̂iðUÞ � cosð��Þ�̂iðUÞg; (3.17h)

Jð3Þjk ðUÞJð6ÞijkðU0Þ ¼ 32

3
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G4m2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p ð1� 3�Þ�2fsinð2��Þn̂iðUÞ þ cosð2��Þ�̂iðUÞg: (3.17i)

It is evident from the above that the dependence of the relevant quantities on the integration variable � is only through
�� which under the assumption of adiabatic inspiral takes the form

�� ¼ �ðUÞ ��ðU� �Þ ¼ �ðUÞ �
�
�ðUÞ � �

�
d�

d�

�
�¼U

þ � � �
�
¼ !�; (3.18)

where second and higher derivatives of � have been neglected.
Finally, one just needs the following standard integral to compute the hereditary terms in (2.5):

Z 1

0
log

�
�

2b

�
ein!�d� ¼ � 1

n!

�
�

2
Sign½n!� þ i½lnð2jn!jbÞ þ C�

�
: (3.19)
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Equations (3.16), (3.17), (3.18), and (3.19) provide all the necessary inputs that are needed for computing the hereditary
terms. For the sake of compactness of the paper, we wish to skip some of the intermediate outcomes of the calculation
and directly quote the final expression for the 2.5PN accurate hereditary contribution, which in terms of the parameter x
reads as

ðF i
PÞhered ¼ � 464
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��
; (3.20)

where !̂0 appearing in the above provides a scale to the
logarithms and is given as

!01 ¼ 1

�0
exp

�
5921

1740
þ 48

29
log2� 405

116
log3� C

�
;

(3.21)

where C is Euler’s constant. One can verify that terms
involving the logarithms of frequency logð !

!01
Þ appearing

in Eq. (3.20) can be reabsorbed into a new definition of
phase variable and thus will disappear from the final ex-
pression for linear momentum flux. This possibility of
introducing a new phase variable containing all the loga-
rithms of frequency has been noticed and used in earlier
works [11,39,40]. We define the new phase variable c as

c ¼ �� 2GM!

c3
log

�
!

!01

�
; (3.22)

where M is the ADM mass of the source and is given by
Eq. (3.3a).

C. Total LMF

The final expression for the linear momentum flux
(LMF) in terms of the parameter x can be obtained by
simply adding Eq. (3.13) and (3.20) and using c , given by
Eq. (3.22), as the phase variable. In the final form the 2.5PN
expression for LMF reads as
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��
: (3.23)

It should be clear that now n̂ and �̂ are in the direction of
new phase angle c and c þ �=2, respectively, and are
given as

n̂ ¼ cosc êx þ sinc êy ; (3.24a)

�̂ ¼ � sinc êx þ cosc êy ; (3.24b)

where c is given by Eq. (3.22).

IV. RECOIL VELOCITY

Given the 2.5PN far-zone linear momentum flux due to a
nonspinning inspiralling compact binary in quasicircular
orbits (Eq. (3.23)), one can have 2.5PN accurate formula
for the loss rate of linear momentum by the source using
the linear momentum balance equation, which is

dPi

dt
¼ �F i

P: (4.1)

The net loss of linear momentum can be obtained by
integrating the balance equation, i.e.

�Pi ¼ �
Z t

�1
dt0F i

P: (4.2)

Since we have for the nonspinning compact objects mov-
ing in quasicircular orbit

dn̂i

dt
¼ !�̂i; (4.3a)

d�̂i

dt
¼ �!n̂i; (4.3b)

where ! is the orbital frequency of the inspiral. We can
have
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Z
n̂idt ¼ �

Z 1

!
d�̂i ¼ � 1

!
�̂i; (4.4a)

Z
�̂idt ¼

Z 1

!
dn̂i ¼ 1

!
n̂i: (4.4b)

It should now be clear that in order to compute the net loss
of linear momentum at any instant (before the orbit evolves
to the last stable orbit around which generally the assump-
tion of adiabatic approximation should break down) one

just needs to replace n̂i by ��̂i=! and �̂i by n̂i=!. Once

we have the net change in the momentum during the orbital
evolution of the binary we can obtain the recoil velocity
of the source by simply dividing it by the mass of the
system, i.e.

�Vi ¼ �Pi=m; (4.5)

and we find in terms of our parameter x, the 2.5PN accurate
expression for the recoil velocity as

Vi
recoil ¼

464

105
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
x4�2

��
1þ x

�
� 452

87
� 1139

522
�

�
þ 309

58
�x3=2 þ x2

�
� 71345

22968
þ 36761

2088
�þ 147101

68904
�2

�

þ x5=2
�
� 2663

116
�� 2185

87
��

��
n̂i þ x5=2

�
106187

50460
� 32835

841
log2þ 77625

3364
log3þ

�
� 32698

12615
þ 109740

841
log2

� 66645

841
log3

�
�

�
�̂i þO

�
1

c6

��
: (4.6)

V. NUMERICAL ESTIMATES OF
RECOIL VELOCITY

With 2.5PN accurate formulas for the linear momentum
flux (Eq. (3.23)) and the recoil velocity (Eq. (4.6)), we now
wish to compute the recoil velocity accumulated during the
plunge phase. Generally, the PN approximation is consid-
ered to be less reliable for the orbits within the ISCO; by
this we mean that PN corrections, when compared to the
leading order contribution, become comparable. If these
corrections are small even beyond the ISCO, then one can
use Eq. (3.23) to estimate the velocity accumulated during

the plunge phase. Generally, it is expected that these cor-
rections would become comparable to the leading order
contribution near the common event horizon and thus one
can only provide a crude estimate of the recoil velocity
accumulated during the plunge. For this purpose, we sim-
ply adopt the methodology used in BQW [11] (see Sec. 4.1
there4). We shall first compute the recoil velocity at the
ISCO using Eq. (4.6), where ISCO is taken to be that of a
point particle moving around a Schwarzschild black hole
with the mass equal to the total mass of the binary i.e.m ¼
m1 þm2. For the kick velocity at the ISCO, we can write

Vi
ISCO¼

464

105
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4�

p
x4ISCO�

2

��
1þxISCO

�
�452

87
�1139

522
�

�
þ309

58
�x3=2ISCOþx2ISCO

�
�71345

22968
þ36761

2088
�þ147101

68904
�2

�

þx5=2ISCO

�
�2663

116
��2185

87
��

��
n̂iISCOþx5=2ISCO

�
106187

50460
�32835

841
log2þ77625

3364
log3þ

�
�32698

12615
þ109740

841
log2

�66645

841
log3

�
�

�
�̂i
ISCOþO

�
1

c6

��
; (5.1)

where xISCO, n̂
i
ISCO and �̂i

ISCO denote values of x, n̂i and �̂i

at the ISCO, respectively. For a point mass moving around
a Schwarzschild black-hole of mass m in circular orbits,
xISCO ¼ 1=6. We choose for simplicity the phase at the
ISCO to be c ¼ 0 and thus n̂iISCO ¼ f1; 0; 0g and �̂ISCO ¼
f0; 1; 0g. With this, we can compute the recoil velocity due
to the inspiral phase.

Following BQW, we adopt the effective one-body ap-
proach [16,17] to compute the plunge contribution to the
recoil velocity. We assume that a point particle of mass� is

moving in the gravitational field of a Schwarzschild black
hole of massm where� is the reduced mass of the system.
In addition to this, we also ignore the effect of radiated
energy and angular momentum on the plunge orbit. We
have for the geodesic equations in the Schwarzschild ge-
ometry as

dt

d�
¼ ~E=c2

1� 2Gm
c2rs

; (5.2a)

dc

d�
¼ ~L

r2s
; (5.2b)

�
drs
d�

�
2 ¼ ~E2=c2 � c2

�
1� 2Gm

c2rs

��
1þ ~L2

c2r2s

�
: (5.2c)

4Though all necessary details have been given in [11], we
provide here some of the basic formulas for completeness of the
paper as well as for the convenience of the reader.
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Here, � is the proper time along the geodesic and ~E and ~L
are energy and orbital angular momentum per unit mass
and can be defined in terms of dimensionless variables �E
and �L as

~E ¼ c2 �E; (5.3a)

~L ¼ Gm

c
�L: (5.3b)

Using Eq. (5.2b) and (5.2c), one can obtain the phase of the
orbit as

c ¼
Z y

y0

� �L

½ �E2 � ð1� 2yÞð1þ �L2y2Þ�1=2
�
dy; (5.4)

with y ¼ ðGm=rsc
2Þ and for the phase at the beginning of

the plunge we have chosen c ¼ 0 (at y ¼ y0) to match the
phase of the orbit at the ISCO.

Now the kick velocity accumulated during the plunge
phase can be given by the following formula:

�Vi
plunge ¼

1

m

Z tHorizon

t0

dt
dPi

dt
; (5.5)

where t0 and tHorizon are the times at the beginning of the
plunge and when the particle approaches the horizon,
respectively.

Now it is clear from Eq. (5.2a) that the time coordinate t
is singular in nature at the horizon, i.e. at rs ¼ 2Gm=c2,
and thus we must have a variable which is nonsingular in
nature at the horizon to compute the above integral. We can
write Eq. (5.5) as

�Vi
plunge ¼

1

m

Z �
d �!

d �!=dt

�
dPi

dt
; (5.6)

where the quantity, �!, is the proper angular frequency,
defined as �! ¼ dc =d�, and is given by Eq. (5.2b). After
some straightforward algebra, we obtain

�Vi
plunge ¼

G �L

c3

Z yHorizon

y0

�
1

x3=2
dPi

dt

�

�
�

dy

½ �E2 � ð1� 2yÞð1þ �L2y2Þ�1=2
�
; (5.7)

where dP=dt in terms of our parameter x is given by
Eq. (4.1) in combination with Eq. (3.23). Now x is related
to the variable y by the following equation and can be
obtained after a few steps of algebra:

x ¼
� �L
�E
y2ð1� 2yÞ

�
2=3

: (5.8)

Using the above relation and the definition of phase given
by Eq. (5.4), the quantity inside the integral of Eq. (5.7)
becomes a function of just the integration variable, y. With
known values of �E and �L for the plunge, one can numeri-
cally compute the integral of Eq. (5.7).

Our next task is to choose appropriate values for �E and
�L, which are also consistent with their values at the ISCO.
In fact, there may be several ways to match a circular orbit
at the ISCO to a suitable plunge orbit; we would use the
two methods which have been used in [11]. In the first
method, the particle is given an energy ~E � c2 �E such that,

at the ISCO, and for an ISCO angular momentum ~LISCO ¼ffiffiffiffiffiffi
12

p ðGm=cÞ, its radial velocity is given by the standard
quadrupole energy-loss formula for a circular orbit, which
is given as

drh
dt

¼ � 64

5

�
Gm

c2rh

�
3
�c; (5.9)

where rh is the binary’s radial separation in harmonic
coordinates. For a test particle, at the ISCO, rh ¼
5ðGm=c2Þ, so we have ðdrh=dtÞISCO ¼ �ð8=25Þ2�c.
Since radial and time coordinates in Schwarzschild and
harmonic coordinate systems are related as

rs ¼ rh þGm=c2; ts ¼ th ¼ t; (5.10)

we have for the radial velocity of the particle in
Schwarzschild coordinates as

drs
dt

¼ drh
dt

¼ �ð8=25Þ2�c: (5.11)

It is easy to show using Eq. (5.2a) and (5.2c) that the
required energy for such an orbit will be given by

�E 2 ¼ 8

9

�
1� 9

4

1

c2

�
drs
dt

�
2

ISCO

��1
; (5.12)

where drs=dt is given by Eq. (5.11).
Now with �E given by the above equation and the

choice �L ¼ ffiffiffiffiffiffi
12

p
, we can compute the desired integral

numerically.5 As last input, for the limiting values of the
integration variable y, we choose y0 ¼ 1=6 and yHorizon ¼
ð2ð1þ �ÞÞ�1. Note that the choice y0 ¼ 1=6 and the ones
that have been made for �E and �L above will not be con-
sistent with Eq. (5.8); thus when computing the recoil
velocity at the ISCO the value of the parameters x at
ISCO must be consistent with the choice for y0, �E and �L
made above.
In the second method, one matches the circular orbit at

the ISCO and the one associated with the plunge by
evolving it across the ISCO. It can be performed using
the energy and angular momentum balance equations for
circular orbits in the adiabatic limit at the ISCO. For this,
we shall have

d �E

dt
¼ � 32

5

c3�

Gm
x5ISCO; (5.13a)

d �L

dt
¼

�
Gm!ISCO

c3

��1 d �E

dt
¼ � 32

5

c3�

Gm
x7=2ISCO: (5.13b)

5For this purpose, we shall use the NIntegrate option inbuilt in
MATHEMATICA.
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Following [11], we can write for the quantity on the left
side of Eq. (5.13)

d �E=dt ¼ ð �E� �EISCOÞ=ð	PÞ; (5.14a)

d �L=dt ¼ ð �L� �LISCOÞ=ð	PÞ: (5.14b)

Here, 	 denotes a fraction of the orbital period P of the

circular motion at the ISCO. Now using !ISCO ¼
ðc3=GmÞx3=2ISCO, we have for the plunge orbit

�E ¼ �EISCO � 64�

5
	�x7=2ISCO; (5.15)

�L ¼ �LISCO � 64�

5
	�x2ISCO: (5.16)

Finally, in the second model, in order to integrate the
integral in the problem we need to specify the limiting
values for the variable y. For the initial value of the
parameter (at ISCO), y ¼ y0, one can solve the following
equations which is obtained using Eq. (5.8):

xISCO ¼ 6�1 ¼
� �L
�E
y20ð1� 2y0Þ

�
2=3

: (5.17)

For the value of the parameter, y, at the horizon again we
take yHorizon ¼ ð2ð1þ �ÞÞ�1. For the fraction 	 of the
period, we choose values between 1 and 0.01, and check
the dependence of the result on this choice (see below).

VI. RESULTS AND DISCUSSIONS

Equation (3.23) gives the 2.5PN formula for computing
the loss rate of linear momentum in the far-zone of a
nonspinning inspiralling compact binary in a quasicircular
orbit. In Sec. V, we show how one can numerically estimate
the recoil velocity accumulated during the plunge phase,
after making some simplifying assumptions. The recoil
velocity at the end of the inspiral phase, i.e. at the fiducial
ISCO, is given by Eq. (5.1) whereas the recoil velocity
accumulated during the plunge phase is given by Eq. (5.7).
The integral of Eq. (5.7) needs to be evaluated numerically
keeping in mind that appropriate choices for energy and
angular momentum at the onset of the plunge phase has
been made in order to match the inspiral and plunge orbits
at the fiducial ISCO. Figure 1 shows our numerical esti-
mates for the recoil velocity, based on the two methods
(we call them M1 and M2) for matching the circular orbit
at the fiducial ISCO to a suitable plunge orbit, discussed in
the previous section. Figure 1 also shows a comparison
between the recoil velocity estimates using the two meth-
ods, M1 and M2. It is evident from the figure that results
from both the methods are consistent with each other for
smaller value of the parameter 	, defined above. In the
case of M2, we have shown curves corresponding to 	 ¼
f0:01; 0:05; 0:1; 0:5; 1:0g, and one can see that the curves
with 	 ¼ 0:01 and 0.05 are very close to the curve corre-
sponding to the M1. We also observe that the

maximum recoil velocity, as shown in Fig. 1, is
�182 km s�1 (for M1 and M2 with 	 ¼ 0:01) and corre-
sponds to the value of the parameter � ¼ 0:2. This is lower
than the 2PN accurate BQWestimate of about 243 km s�1

for the binary with the same mass ratio (i.e. � ¼ 0:2). This
behavior is due to the presence of large negative coeffi-
cients at the 2.5PN order (see Eq. (4.6)) which bring down
the estimates significantly. Such a behavior is not new to
PN calculations, e.g. a similar behavior was observed in
[10] at 1PN order (see Fig. 1 of [11]), where the use of 1PN
accurate results give a lower estimate for the recoil velocity
as compared to the one obtained using the Newtonian
formulas since the 1PN term again contributes negatively
to the recoil velocity.
Note that the estimates presented in Fig. 1 use only the

leading order radiation reaction effects for setting initial
energy (in M1) and energy and angular momentum (in
M2). We repeat the exercise using 2.5PN expressions for
relevant quantities beyond the leading order effect and find
that changes in estimates are negligible (relative % changes
are less than 0.5%).
As discussed earlier, normally the PN approximations

are expected to become less and less reliable beyond the
ISCO. This leads to a crude estimate of the accumulated
recoil velocity during the plunge phase. Hence, it becomes
important to compare our results to some other numerical/
analytical estimates, in order to be sure that these estimates
are indeed reliable. In the case of the present work the
closest comparison for the recoil velocity estimates
can be made by comparing our results with those of
BQW [11]. For a binary with � ¼ 0:22 and � ¼ 0:23,
BQW suggest that the recoil velocity should lie in a range,
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FIG. 1 (color online). Recoil velocity as a function of the mass
parameter � (symmetric mass ratio) has been shown. Plot shows a
comparison between the results obtained using the two methods
(we call them M1 and M2), discussed in Sec. V, that have been
used to match the circular orbit at the ISCO to a suitable plunge
orbit. It is evident from the figure that the two methods are
consistent with each other for smaller values of the parameter 	.
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ð171–251Þ km s�1 and ð146–220Þ km s�1, respectively.
The uncertainty in their results has been estimated by
flexing the 2PN expressions by addition of 2.5PN, 3PN
and 3.5PN terms and then computing the maximum varia-
tion in their results (see [11] for details). Our estimates of
the recoil velocity for a binary with � ¼ 0:22 and � ¼ 0:23
are 17 km s�1 and 158 km s�1, respectively, and thus our
estimates lie in the window for the recoil velocity provided
by BQW. However, we should note here that our estimates
can also change if we add contributions coming from the
3PN and the 3.5PN terms (although changes may be rela-
tively smaller). Currently, such an extension is not possible
as we do not have sufficiently accurate inputs in order to
perform such computations, and thus it will be the subject
matter of a work in the future. Our estimates are also
consistent with an earlier numerical work [21] which sug-
gests a range of values for recoil velocity between
ð100–380Þ km s�1 and ð90–290Þ km s�1 for � ¼ 0:22 and
� ¼ 0:23, respectively. As discussed in Sec. I, Ref. [18]
suggests that maximum recoil velocity estimate for a bi-
nary with � ¼ 0:2 in quasicircular orbit lie in a range
between ð79–216Þ km s�1. As mentioned above, our esti-
mate for such system is 182 km s�1 and thus is consistent
with their estimates.

We witnessed above that inclusion of 2.5PN contribu-
tions significantly changed earlier PN estimates for the
recoil velocity indicating that contributions at higher orders
need to be explicitly assessed due to the asymptotic nature
of the PN expansion. As mentioned above, contributions at
other high PN orders such as at 3PN and 3.5PN should be
included in some future work in order to have better esti-
mates for the recoil velocity, although the changes may be
relatively smaller as compared to those brought in by 2.5PN

contributions. A numerical study [22] suggests that the
recoil velocity estimates at the fiducial ISCO should be of
the order of �14 km s�1 for a binary with � ¼ 0:24 and
this estimate matches well with BQW estimates for the
same system. This is a relatively higher estimate as com-
pared to our estimate of 2:2 km s�1 at the fiducial ISCO for
a systemwith the samemass ratio. In such a case, we should
expect that inclusion of higher order contributions at the
3PN order will contribute to the recoil velocity positively
(in contrast to the negative contributions from 2.5PN terms)
and thus could bring up the estimates to match with esti-
mates of [22] and BQW. In addition to this, as a follow-up
of this work, one can try to include contributions due to the
final ringdown phase using 2.5PN accurate initial condi-
tions6 and then combine this with the recoil velocity esti-
mates for the inspiral and plunge phase presented here. This
will allow one to make more direct comparisons with the
results obtained using numerical relativity and the effective
one-body approach which include contributions from all
three phases of the binary evolution.

ACKNOWLEDGMENTS

We thank Luc Blanchet for useful discussions. K. G.A.
acknowledges the hospitality of Raman Research Institute
at various stages during the project. C.K.M. acknowledges
the hospitality of the Chennai Mathematical Institute dur-
ing Fall 2010. K. G.A. acknowledges discussions with M S
S Qusailah during the initial phase of the project.

[1] D. Merritt, M. Milosavljevic, M. Favata, S. A. Hughes, and
D. E. Holz, Astrophys. J. 607, L9 (2004).

[2] S. Komossa, H. Zhou, and H. Lu, Astrophys. J. 678, L81
(2008).

[3] D. Richstone, E. A. Ajhar, R. Bender, G. Bower, A.
Dressler, S.M. Faber, A. V. Filippenko, K. Gebhardt, R.
Green, L. C. Ho et al., Nature (London) 395, A14 (1998).

[4] J. D. Schnittman, Astrophys. J. 667, L133 (2007).
[5] A. Peres, Phys. Rev. 128, 2471 (1962).
[6] W. Bonnor and M. Rotenberg, Proc. R. Soc. A 265, 109

(1961).
[7] A. Papapetrou, Ann. Inst. Henri Poincaré XIV, 79
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