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Determination of the Polarization Vectors of Lattice Waves by Anomalous Nentron Scatiering
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The Argand diagram representation of cocherent inelastic scattering (one-phonon process) is presented.
This is used to show that IF(H,q)| # |F(FL3) in a pon-cenirosymmetric two-atom strecture when an
anomalous scatterer s present and |F(H,g)! # |F(H,3)1 even in a NaCl-type structure when both atoms
are normal scatterers. This paper describes how the polarization vectors of lattice waves may be experi-
mentally determined im a crystal containing a nuclide which scatters thermal pentrons ancmalouslv.
The procedures for the determination of the polarization vectors in centrosymmetric and non-centro-
syrmmetric structures when they are, in general, complex and for a Bravais lattice when they are always
linearly polarized have also been presented. It is shown that the ‘phase problem’ associated with the
determination of the initial phase of e]hptlc motion can, in principle, be solved by using anomalous

neutron scatteri ng.

1. Introduction

The importanée of experimentally determining the
polarization vectors of lattice waves has been recog-
nized by many authors (Brockhouse, 1964; Doliing &
Woods, 1965). Unlike the eigenvalues of the dynamical
matrix, the components of the polarization vector are
always linear functions of the elements of the dynamical
matrix. Thus the determination of ‘the interatomic
force constants through the measured frequencies and
the polarization vectors, provides an advantage over
the method of non-linear fitting of the dynamical
equation to the observed frequencies. In some specially
simple cases when g, the wave-vector of the lattice
wave lies in a symmetry plane or is along a symmetry
axis, the direction of the polarization vector may be
determined from symmetry considerations. This is
probably the reason why most of the experiments on
inelastic scattering are confired to wave propagation
along a symunetry direction. We shall concern our-
selves with wave propagation along a general direction
in the crystal and attempt to obtain thg components
of the polarization vector from the observed intensity
data. Recenily Cochran (1968) suggested the method
of inelastic Patterson synthesis to extract information
about the polarization vectors and discussed the
inherent difficulties involved m interpreting this
synthesis. Only at q=0, has the synthesis a simple
interpretation. Further, this method requires the coi-
lection of the intensity data of the coherent one-phonon
scattering neat a large number of reciprocal-lattice
points and thus poses a number of experimenial prob-
tems. Ramaseshan & Viswanathan (1970} showed that
the breakdown of Friedel’s law in inelastic scattering,
in a crystal which has at Ieast one anomalous scatterer
canvyield information regarding the polarization vectors
of lattice waves. In this paper, the relevant experimental
data to be collected and the mode of extracting the
components of the polarization vector are discussed.

Further, the Argand diagram representation of the
coherent one-phonon process in the presence and.ab-
sence of anomalous neutron scattering is presented. This
representation simplifies the writing down of the struc-
ture factors in complex structures and helps in visual-
izing the differences in structure factors under various
experimerital conditions.

2, Anomalons neutron scatteriﬁg

Peterson & Smith (1961, 1962} showed that thermal
neutrons are scattered anomalously by some nuclides
like Cd!3, Sm!*, Eulst and Gd%¥’ leading to the viola-
tion of Friedel’s law in non-centrosymumetric structures.
The anomalous neutron scattermg length of an atom
B has the form ;

by=by, +by+iby m

where by, represents the normal scattering length
while &y and &, correspond to dispersion terms. A
typical dispersion curve of & and b* for Cd'3 is given in
Fig. 1. b% is always positive whereas 5, may take both
positive and negative values, a8 behaviour markedly
different from that in X-ray scattering. In the Figures
that illustrate this paper, b} has been taken as positive.

Ruamascshan (1966) pointed out that since /by~
4:0-5-0 and bp/bp,~8, almost two orders of magnitude
larger than the corresponding quantities in X-ray scat-
tering, anomalous neutron scattering may well be used
to solve large structures provided accurate measure-
ments of the intensity is possible. The method of doing
this was wotked out by Singh & Ramaseshan (1968).
These techniques used in structural crystallography
may be directly applied to yicld the components of the
polarization vector, since the coherent inelastic scat-
tering results from the interference of wavelets from a
erystal the equilibrium configuration of which is per-
turbed by a propagating lattice wave,
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3. Description of the polarization vector and coherent
one-phonen process

For the discussion that follows, it is mecessary to
describe briefly the polarization vector and its relation-
-ship to the coherent one-phonon process. We follow
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Fig. 1. Variation of ¥ and ¥ with wavelength for C4113
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the general notation vsed by Maradudin, Montroll &
Weiss (1963). Consider a crystal with a unit cell having

r atoms, The position vector of the xth atom in the /th.

unit cefl is given by
x(,‘)—x(f)-i-x(x)
x(n ‘defines the origin of the /th unit cell relative to

some origin in the crystal and x(x) defines the pofion
of the xth atom relative to the cell origin. ‘We shall

confine ourselves to the ‘harmonic approximation'.

Then the equation of motion of the crystal is given by
Miile) =~ 3 Pegllic; I'c”) ugll’")
17 R

where «,f=1,2,3 correspond to the three cartesian
comporents and w(lx) denotes the displacement of the
xth atom in the /th cell from the equilibrium configura-
tion. We seek a solution where the displacements are
of the form

u(he)= Z ;/M e(xl‘) exp i {‘l X(.J —wr(Q)} -
(0} represents the scalar amplitude, directly related
to the energy of the mode in thermal equilibrivm, and
does not enter the dynamical equation. r%x{‘,’) denotes

the eigenvector of the xth atom for the mode (§).
Thus, the equations of motion could be written as

wifg) e(xlf)=- ‘Z‘; D,,(xx'!&) e_g(fc']?)s
j=12,...3r; 2,=1,23.

Desirer’|g) are the elements of the ‘dynamical matrix’
which are related to the inter-atomic force constants
Dopl(Oxc; I’:_Ix’) through the relation,

¢¢(0x r— rx') VMM, ED,,(xx';q)
" x exp— S fa- (N -x(D}

The coefficients e.(xl‘) for a given q and j and for
different atoms in the unit cell are regarded as the
components of a 3r dimensional vector of unit magni-
tude called the ‘polarization vector’. The enumeration
of these coefficients gives us the relative amplitudes of
the different atoms in the unit cell.
The eigenvectors satisfy the orthonormality condi-
tion ‘ .
S ety eulels) =3, . ©
d .
Since the elements of the dynamical matrix are complex
quantities, the ecigenvectors are in general complex.
Only when each atom in the structure lies at a centre
of inversion, the dynamical matrix could be frans-
formed into a real symmetric matrix, and the corre-
sponding eigenvectors would be real. The significance
of the eigenvectors being complex is that the motion
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of an atom under the influence of a lattice. wave is

efliptic.
We write e(.rc] )= A-HB ¥
’ ay by
where é: asp and B=|b,1 .
- €y - b3

Thus the six components of the real vectors A and B
specify the elliptic moticn of a given atom. 1l a two
atom structure and for q in a general direction, we
reguire twelve componenTs to describe completely the
elliptic motions of the two atoms. At q=0, for all
structures, the elliptic motion degeneratednto a lingar
one and the iitial phase of motion will be either 0 or
7. The phase difference between the two atoms is 0
for the aconstic mode and # for the optical mode.

The differential cross section for one-phenon scat-
tering, with the usual notion, is given by

d2o k
d0ds Rk & =
where
_ NR{AG)+1F 1)
S(I__{'_, wy= T’m@—— —-
5 . .
7ar, P (= WalK . el exp (IH . )}
+- 0 ep W, K . e(BI) &p {TH . x3(B)}
VMB - . =
x T, (@] IKFq-H}. '(8}

x4 and 3,"(3) represent the ethbnum pos:tlon.

Fctors of te two atoms A and B in the unit cell. b,
and b denote the coherent scattering lengths of the two
nuclei respectively. The positive sign represents the.
phonon creation process whereas the negative sign
represents the annihilation process. The two & func-
tions represent the conscrvation of energy and crysta[
momentum during the scattering process. K=k—kg is
the scattering vector or the momentum transfer vector.

H is a reciprocal-lattice vector. The scattering vector

associated with H satisfies the momentum conserva-

fon law
5 g+qa. {8a)

From equation (8) it is clear that we can define an
inelastic structure factor, F(I_{) glven by

by
;/M exp {— WB}K e(Bi“} exp {11{ 1“(3)}
Thus K . e(A]]} and K. g{Bi“) represent the proba-
bility ampﬁtudes for ﬁie-nhonon scattermg so that
(bﬂ,.’lu\{ ) exp{ - W‘(}K e(Al ) and (bg/|' My} »exp

e

'l'
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{— WglK . e(B}) may be considered as the scattering
lengths of thie two atoms for the coherent one-phonon
scattering.

e

o

Fig. 3. Bragg refiexion — two atom structure with atom B, an
anomalous scatterer. O4=by exp {— Wi}, AB= bp, X
exp{— Wa}, BE =b'p exp {— Wa} and B'B”=5b"n xexp
{— Wz}, iF(H)MF(H)I
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Fig. 4. One-phonon scattering in a non-centrosymmetsic struc-
ture; normal scattering. .
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OP= WW-A-CXD {— WK . P,
3 PO=-22 ep (—WK.Q
‘a i 7R
i by
‘._“ QR= — VMz exp{— WrK.R
and RS= —b———txp{ WrIK .S [FK)=|F(R).
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4. Argand diagram representation: non-centrosymmetric
structures

{a) Bragg reflexion: normal and anomalous scaitering

Fig. 2 gives the Argand disgram For a Bragg re-
flexion in a non-centrosymmetric structure containing
two atoms per unit cell, both being nommal scatterers
for neutrons. The reciprocal-lattice vectors W and
represent the reflexions from the planes (hk!) 3ad (hEN)
respectively. In Fig. 2

Od=b exp{—W,}and AB=h, exp {— Wy}

where b and by are the normal scattering lengths of
the two atoms. exp {— W} and exp {— W} are the
Debye-Waller factors for the two atoms. In X-ray
crystallographic practice, it is the convention to reflect
the Argand diagram of F(H) about the real axis to
facilitate the comparison of F(H) and F{ff). We shall
follow this convention in this pAper. FrofT Fig. 2, it is
clear that |F(H)| =1F(H), leading to Friedel's law. Fig.
3 represents the situation when the atom B in the strue-
ture becomes an anomalous scatterer for thermal
neutrons. The scattering length of atom B is given by
equation (1). In Fig. 3, BB'=b exp {— Wyrtand BB =

¥

Fig. 5. One-phonon scattering — atom 8, an anomalons scar-f
terer,
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Fig. 6. Interaction with an opticai phonon - atom B8, an
.anomalous scatterer.

ba . , [
E — WP, B,
oP Vifa exp { 4]K j
(bp,+b ) ‘
1 =0 T - W, R :
i PR Vts exp {—We} K. R, i
! . . &3 _ .
| RR"= RR"= 57773 exp {— Fe}K . R;
|
#:_ _*L’{@!f]{@!:__ e e

by exp {— W}, Since the relative phase of (b, +55)
and b} is independent of the scattering vectors H and
H, we get |F(H)| | F(R)| leading to the breakdown of
Friedel's law.. '

Coherent one-phonon process: normal scattering

" For a general g, the two atoms in the umit cell
describe elliptic motions. We write the eigenvectors of
the two atoms as

| (dp=P+iQ }
 eBN=R+iS.

B 4] N s - 51
P= [Jzz]} Q= [?2} » R= [r;} and 8= [52] .
3, g r 53

P, Q, R and S zre real vectors and thus twelve com-
poments are required to describe completely their
elliptic motions. The polarization vector, V(}), which
is normahzed to unit magnitnde is a column matrix
given by

and

)]

Dtig
Pptiq
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The comiplete cnumeration of these twelve cornponents
gives us the relative amplitudes and phases of the two
atoms in the tnit ceil. The inhial phase of the elliptic
motion is determined by the magnitude of the inter-
atomic forces and hence cannot be determined by sym-
matry considerations. From equation {9), we get

. E.e4p=K.Brexp {2} K. Q
and K . &(BI)=K . R-+exp {in/2) K.s. o

Fig. 4. represents the Argand diagram for one-phonon
scattering. F(E) represents the structure factor for
coherent one Phonon process corresponding fo the
point defined by K on the ‘scattering surface’. From the
relation (84), it is clear that the point defined by Kon
the scattering surface is associated with the Iattice
wave of wave-vector . For §, the eigenvecters of the
two atoms are compleX conjufates of the corresponding
quantities for %sigxﬁfying that the sense of description
of the ellipse Will now be in the opposite direetion.
That is

HAP=E-1Q } : an

N=R —§ "
and 3(5[,)—3 J§‘.

Thus the structure factor for K is the complex con-

jugate of that for §_so that the intensity is equal at
these two points on the seattering surface.

&) ) i
ig. 7. Schematic diagram of the momentum conservation
{a) general case |K}# K|, (b} special casz K=Kl

o x
big. 8. One-phonon absorption and ernissipn processes near a
i reciprocal-fattice point — eigenvectors real.
| ot
OF= —WaK. P,

{ 7. P (- WK e
o opre o [—WalK.R

' = Mz P Bk LK,

oF= ba exp {— W4JK’ . P,

i VM4

i by | ;

.“ PR= Vﬁ;—cxp{— WalK . R;

L X6P=H.x%4), X'ER=X'PR=H.xB);

N (F(H, @)] £1F(HLD)I.

h% (€] Coherent one-phonon process: anomalous scattering

The presence of anomalous scattering causes an
intensity difference at the points defined by K and X
on the scattering surface. Fig. 5 gives the Argan
diagram for the one-phonon process where atom B is
2n anomalous scatterer. The elliptic motion of the
atom B gives rise to two scattering lengths for coherent
inelastic scattering as represented by QR and RS in the
Figure. Associated with each of these scattering lengths
there will be a component due to anomalous scatiering
ahead in phase by /2. Thus, in the Argand diagram,
SR’ and R'S"” are the itwo anomalous scattering
lengths associated with QR and RS respectively. From
the diagram one sees that up to the point S, there is
symmetry between K and ﬁ refiexions. For the re-
flexion K, the components"RS and SR” add as they
are in tHe same phase whereas for K, the component
RS is subtracted from SR as theé¥ are in opposite
phases. A similar asymmetry occurs for the component
RS also. That is [#F(K)+ F(K)|. The expressions for
the intensity at X and X on thie scattering surface can
be written down from the Argand diagram. Apart
from a constant factor, we have




; . T. G. RAMESH AND S. RAMASESHAN : o3y

IK)= exp{ WK, P)2+(K Qy}

+ 2P { ZWB} Z5) [{(bpy+bp)K . R~ B3R . S)2
+ {(b£o+bB)K. S+ 5K . R}
L, 2exp{~(F + W)}
VMM,
% [b,{(bp,+ b5)K . R— 03K . S}
x {K . P cos H.. x¥%{B)—x%(4)
+ K. Qsin H, x%B)—x%(4)}
— b {(bg,+B2)K . S+53K . R}

o

by

X

Fig. 9. One-phonon absorption and emission processes near

a veciprocal lattice point ~ eigenvectors complex.

) OP=W-—exp{ WK . P,
i 0P’=—%{—-cxp{—WA}K'.l"‘,

l/
\! PQ.. —u—cxp{ WK, Q,

! VM

: .

. Po= VM exp {— WalK'. Q,
QOR= —V——M-—exp{ WslK . R,
;Q’R’ V‘M —exp{— WB}K R,
" bs

j- RS= VMa exp {— WalK. S,
Dors- T?u—exp{ WslK' .S

XOP=H.x%d), XY'OR=X"Q'R'=H.xNE);
IFHQ#IFELDL

x {K.PsinH. ﬂ(Ej—x“(A}
~X.Qceos H. x%B)—x%4)}],

= dexp {— (W, + W3z}
A= I(K) —I(K) = AT
f=106) - 1080 VM My
x b by . R{K . P sin H. x¥(B)—x(4)
' — K. Q cos H. xYB)-x4)}
+8 K.S{K.P cos H.x¥B)—x%4)
© + K. Qsin H.x%(B)—x3(4)}.

Choosing a second wavelength for the incident thermat
neutrons so that the dispersion terms &, and b3 are
altered and repeating the experiment at K and :Ea we
get two more independent equations. This is trie only.
if the value of b3{(bz,+ b%) is not the same for the two
wavelengths. From these four independent equations,

the unknowns K. IéK Q,K R and K. S can be
found. Now wﬁonsﬁ'ér the “Helfstic schttermg near
other reciprocal-lattice points corresponding fo the
interaction with the same phonon {i.e. phonon of same
energy and Repeating the experiment for two dif-
ferent scattel"’lﬁ'Ag vectors, we obtain twelve independent
equations from which all the componenis of P, Q, R
and S can be extracted. Thus the determination of tie
real fnd imaginary components of an’ eigenvector is
equivalent to solving the ‘phase problem’ associated
with the initial phase of the elliptic motion.

(d) Interaction with an optical phonon

For the optical phonon with q=0, the initial phase
difference between the two at is m. The eigen-
vectors are real for this mode for all crystal structures.
Fig, 6 gives the relevant Argand diagram. The expres-
sions for the intensity at K and XK, get considerably
simplified if the mgenvectoﬁ‘are rédl. From Fig. 6,

I(K)——bz‘— o (~2W . (K. Py

+ SR L2 (0, 4 b4 03 (& R
exp {— (W0 W)
VMM
=K. R K.Pcos H. x%8)—x%4)
o {~ (Wt W)
s
- xEK.RK.PsinH.x(B)-x(4),
O 100 oty

x byb5 K. P K. R sin H. x%B) - x'(4).

+2

by(bp,+ by)

-2 Yo

Since K r and K. R are the only two unknowns,
measofement at ong wavelength determines them.
Choosing two different scattering vectors and con-
sidering the interaction with the same phonon, the six
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components charactenzmg the vectors P and Rcan be
extracted. Thus, in cases, where the” vibrafions are
linearly polarized (real eigemvectors) expressions for
I and 47 get considerably simplified and only six
meastrements are required to characterize the polar-
ization vector. ‘

45 (@) Cokerent one-phonon absorption and emission pro-

cesses near a reciprocal lattice point
(i} Eigenvectors real

The phonon creation and annihilation processes
near a reciprocal lattice point defined by H are char-
acterized by the conservation laws,

~ha=grll
K’ k’ l_ig—zg-H

A schematic diagram expressmg these momentum con-
servation laws is given in Fig. 7(a). It is clear from the
diagram that the scattering vectors corresponding to
phonon creation and annihilation processes, are dif-
ferent. That is l& is different from [K’} and differensly

oriented with respect to the eigenvectors so that the '

cross sections at the points K and K’ on the scattering
surface are different.

The intensity for K and K’ reflexions (see¢ Fig. 8) arce
given by the equatidns

I --—bz—exp{ WK J

+—biexp{ -2, (K. ;)2
babs_

Aa

xK PK.l_lucosH.x“(B)—-ggﬂ(A},
I(K)= ——-exp{ 2w, & . B

+2 = exp { (W, + W)}

+ 42 exp{~2,) (€. BF

+2

bAbB
— exp {—~ (W ,+ W,
M, p {—{W, 80}
X K’ . P K’ . R cos:H . x°(B)—x°(A) .

MNumber of components

S AU R

[
Table 1. Components of the polanzarmn vectar and the mcde of extracting them by anomalous neutron scatlering

Making use of the momenium conservation laws, we
get

% W,
Ai= z(x)-ff(xf)=4-%{~ﬁw¢}_q PH.P
- = A =Fr = =
ra i {2Vl gy g
My e = = =
+ ¢ bubs o2 =W+ W)} "

VM, MB
x«&l Pq R+q PH.R}cos H.x¥B)— x°(A)
AI=0 only when H . P= H—R=00rq P=gq.R=0.
= = "o = 5 e =

¥

X

_ - ——

Fig. 10. One-phonon scatiering in a centrosymmetric strug-;

ters — normal scattering.

OA1= Oda= ——exp [— WIK. A,

VM :

Ar1By= A B;= Wexp{ WIK.B,

. \ 2 :
“l OM= T/‘ﬂ? exp{—~WIK.AcosH.x, i

i i

‘ MN=" V,Mexp{ WIK.BsinH.x. o 4

Number of wave- Number of scattering

Number of atoms of the . lengths to be . vectors for i
per unit polarization used for the . which experiments |
Number Structure cell vector thermal neutrons are to be performed |
1 Non-centro- 2 (@) 12 (eitiptic  ~ 2 : 3
symmetric polarization)
(5) 6 (linear 1 3
. polarization)
2 Centro- 2 (a} 6 (elliptic 2 3
symmetric polarization)
(5 3 {linear ' 1 3
polarization)
3 Bravais 1 3 1 3

fattice
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Thus condition corresponds to a highly symmetric case
when the lattice wave is propagating normal to H,

Then the intensity at the two points defined by K afid

K’ is equal. This special case is given in Fig. 7(5).
Thus one gets the result that even in rock salt-type
structures where the eigenvectors are always real, the
;ntenblty for K and K' on the scattering surface should
be different.

(it} Eigen-vectors complex
“When the eigenvectors are complex signifying el-
liptic motions, we have the following relations

A= UIH=P+Q
and e(Bf)=e*(BIfj=R+iS .

Fig, 11. Ome-phonon scattering — atom £, an ancmalo
scalierer.
BiA"=
1 -1 VM ;
A B = VM y /
b+ b
ov-2 %—J{ " |
x[K.AcosH.x—K.Bsin H.x], *\
5 |
NR=2 ——exp {~HIK,AcosH.x,
7if P {— W} . l
s . ‘ !
NS=2V—b{-exp{-W}K.BsmH.x; !!
(FEY = [F(R). e
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Thus for the phonon absorption process, the imaginary
component K. @ leads the real component K. P in
phase by 72 while for the emission process K™, Qlags
X . P in phase by 7/2. Then the intensity diffeTence
E"E:tween K and K’ reflexions arises from two causes.
Firstly, the scati'—mg vectors for the two processes
are different and hence the cross sections are different.
There is a further intensity difference, owing to the
elliptic motions of the atoms. Fig. 9 represents the
Argand diagram for phonon absorption and “creation
processes when both ihe atoms i the structure are
describing elliptic motions.

As noted earlier, determination of the po!anzanon
vector requires measurements to be made for three
different scattering vectors. Since the phonon absorp-
tion and emission processes around a reciprocal-lattice
point correspond to two different scattering vectors,
measurements arcind two reciprocal-lattice points,
are sufficient for the determination of the polarization
vector. ’ ' '

. 5. Centro~symmetxic structures

g'i‘(Jj Coherent one-phonon process: normal scattering

Consider a centrosymmetric structure with two
atoms per unit cell, where the centre of inversion does
not coincide with the atomic positions.” Under the-
influence of a lattice wave, except in symmetry direc-
tions, the two atoms describe motion along identical
ellipses but in opposite sense. That is, the eigenvectors
for the two centrosymmetrically-related atoms, are
complex conjugates of one another, . -

CORINGD!

where x and % are the two centrosymmetrically related

atoms in the unit cell. Let x and X denote the equili-

brium position vectors of thse twD atoms. We write
LA,

Fig. 10 represents the Argand diagram for eoherent
one phonon process in a centrosymmetric structure
when both the atoms are normal scatterers for neutrons.
The scattering lengths (b/V M) exp {— WIK . A cormre-
sponding to the real part of the eigenvector can be
added for » and ¥ atoms, to give the resultant scat-
tering length OM along the real axis. The components
(b/V M) exp {— WK . B which arise owing to ellipti-
¢ity can again be or x and ¥ atoms to give the
resuitant M N along the real axis which is opposite in
phase with respect to QM. Further the same diagram
holds goed for the reflexion  also, because K . x=
11; (ﬁ% and K.2=K. x and |KT"' K} That is [F(K‘j]‘

I

IEKy=HE)= % exp {~2W}[K.AcosH.

—K.BsinH._xJ2

=

UL
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-where b represents the normal scattering length of the

atom.

The ellipses characterizing the motions of the two
atoms being identical, only siX components are Te-
quired to characterize the polacization vector. For the
reflexion K associated with the phonon wave-vector g,
onc has (5 add the contributions of both the centr3<
symmetricelly related atoms. This Ieads to perfect sym-
metry between K and K reflexions, so that the intensities
at these two pdfnts oil the scattering surface are equal
even for anomalous scattering. Fig. 11 gives the Argand
diagram for a centrosymmetric structure in the pres-
ence of anomalous scattering. The various scaitering
lengths for x and K atoms can be added so as to give a
scattering length along the real axis and another com-
ponent along the imaginary axis. From Fig. 11,

x{K AcosH.x—E._B“sing.é}z
+4(b")2cxp{ —2w}

x {g.&cosl{.é—lg_. B:sin}_{.i}z.

Choosing another wavelength for the incident thermal
neutrons so that the dispersion terms & and b"* are
altered and repeating the experiment, we arrive at two
independent equations from which K. A and K. B

can be determined. The same procedufe isTollowed for

two different scattering vectors corresponding to the
interaction with the same phonon. From these six
measurements, we can solve for the six components of
AmdB.

Coherent one-phonon absorption and emission pro-
cesses near a reciprocal-lattice point
Fig. 12 gives the Argand diagram representation of
the phonon absorption and emission processes near a
reciprocal-lattice point. The intensity difference at the
points defined by K and X’ is again associated with the
change in scatterffig vedfors as well as the ellipticity
of the motions of the two atoms. In Fig. 12, ON
represents the structure factor F{K) which is obtained
by addition of the scattering Bfigths for the two
centrosymmetrically related atoms. Similarly OT re-
presents the structure factor £ (K’). From Fig. 12,

AI—I(Q I(g:) =4
x[{](v-é_cos}l_.i—g.?_sinﬂ.f}l
—{K'-Acos!;ls.§+§i.§sin§.z}3]. .

B exp { 2w}

As in the non—centrosymmetric case, the two scarttering
vectors corresponding to the phonon absorption and

Coherent one-phonon process: anomalous scattering .

DETERMINATION OF THE POLATIZATION VECTORS OF LATTICE WAVES

creation processes can be effectively made use of in the
determination of the polarization vector.

% Bravais Lattice
- In the case of a Bravais lattice which has one atom
per unit cell, the efgenvector being real, is linearly
polarized so that only three components are required
to describe the polarization vector, The measurement
of intensity for three different scattering vectors is suf-
" ficient to characterize the polarization vector. The
Argand diagram for the coherent one-phonon scat-
tering in a Bravais lattice is very much simplified as
only one real scattering length is involved.
Table 1 summarizes the discussion giving the com-
ponents of the polarization vector and the mode of
extracting them by anomalous neutron scattering.

! .

‘ Fig. 12, One-phonon absorption and emission processes near
a reciprocal-lattice point - centrosymmetric structure;
eigeavectors complex.

4
\ DAy = OA;—V—Mexp {—WIK. A,
| 0ar= 04y = {— WK . A
g‘ A= z--]}I{elei— MK
b -
A1By= A28y = -g,----exp {—WiK.B,
AVBy'= Azﬂz——]zgexp {— WK .B
-
b
ON=12 77 &P {—W?}
P x[K.AcosH.x—K.BsinH.x],
: O7T=1 —b -exp {— W}
yM

IR AcosH.x+K _Bsinii.x
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Conclusion

The determination of the polarization vectors seems
to involve a number of experimental problems (see
for example, Dolling & Woods, 19635; Brockhouse,
'1964). The recent evaluation of the polarization vector
of the ferroelectric soft mode in KD,PO, by Skalyo,

Frayer & Shirane (1970} is of some interest in this con-
nexion, It is not possible to foresee all the obstacles
that may be encountered when the anomalous scat-

tering technique as proposed in this paper is used for \Pem;so 5. W. &5

determining the polarization vectors. It may be neces-
sary to use lower concentrations of the anomalous!y
scattering isotope in the specimen. However, in view
of the inherent directness of this method, it appears
worth while pursuing this expcrimental a.pproach
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