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The Argand diagram representation of coherent inelastic scattering (one-phonon process) is presented. 
This is "sed to ;how thar IF(H,q)l ilF(R,@)I in a non-trosymmerric two-atom structure when an 
nnomalous scartrrcr is prtunt xnu t(H,q, i.F(H.41 ctcn in SaCl-t).pr. structure uhen both ;torn 
arc n o m l  rcdtteren. Thn pdpcr dr\.rijej how llhc polu~,;rtion \Lrton o I ' l d l t ~ c ~ . ~ d \ ~ ~  may b: r~pr.ri- 
menlrllv oererminca in 3 crrivrl ccmt:~inlne a nuclide u h i ~ h  scatrcrr thermal neurranr anomlourlv. . ~ ~ - ~ ~  ~~ ~, -~ ~ ~~~ - ...~ ~o - ~ . - ~ ~ ~ - ~  ~ ~ ~ ~ ~~-~ ~ 

The oroccdures for the determination of the oolarization vectors in eentrosvmmetric and nonsentro- 
symmetric structures when they are, in generai, complex and for a Bravais lattice when they are always 
linearly polarized have also been presented. It is shown that the 'phase problem' associated with the 
determination of the initial phase of elliptic motion can, in principle, be solved by using anomalous 
neutron scattering. 

The importance of experimentally determining the 
polarization vectors of lattice waves has been recog- 
nized by many authors (Brockhouse, 1964; Dolling & 
Woods, 1965). Unlike the eigenvalues of the dynamical 
matrix, the components of the polarization vector are 
always linear functions of the elements of the dynamical 
matrix. Thus the determination qf the interatomic 
force constants through the measured frequencies and 
the polarization vectors, provides an advantage over 
the method of non-linear fitting of the dynamical 
equation tothe observed frequencies. In some specially 
simple cases when q, the wave-vector of the lattice 
wave lies in a symmetry plane or is along a symmetry 
axis, the direction of the polarization vector may be 
determined from symmetry considerations. This is 
probably the reason why most of the experiments on 
inelastic scattering are confined to wave propagation 
along a symmetry direction. We shall concern our- 
selves with wave propagaliDn along a general direction 
in the crystal and attempt to obtain the components 
of the polarization vector from the observed intensity 
data. Recently Cochran (1968) suggested the method 
of inelastic Patterson synthesis to extract information 
about the polarization vectors and discussed the 
inherent difficulties involved in interpreting this 
synthesis. Only at q=O, has the synthesis a simple 
interpretatiori. Further, this method requires the col- 
lection of the intensity data of the coherent one-phonon 
scattering near a large number of reciprocal-lattice 
voints and thus wses a number of exoerimenral mob- 
iems. ~amasesh& & Viswanathan (1470) s h a d  that 
the breakdown of Friedel's law in inelastic scattering 
in a crystal which has at least one anomalous scatterer 
can yield information regarding the polarization vectors 
of lattice waves. In thts paper, the relevant experlmentai 
data to be collected and the mode of extracting the 
components of the polarization vector are discussed. 

< 

Further, the Argand diagram representation of the 
coherent one-phonon process in the presence and-ab- 
sence of anomalous neutron scatteringis presented. This 
re~resentalion simnlifies the writine down of the stmc- - 
lure ihct.,rs in complcx struacurcs and h~.lps m viswl- 
iring [he diITcrcnccs in structure factors under various 
experimental conditions. 

2. Anomalous neutron scattering 

Peterson & Smith (1961, 1962) showed that thermal 
neutrons ,are scattered anomalously by some nuclides 
l i e  Cd"', Sm-9, Eu'J' and G d V  leading to the viola- 
tion of Friedel'r law in non-centrosvmmetric structures. 
The anomalous neutron scattering length of an atom 
B bas the form 

where b,, represents the normal scattering length 
while b6 and 6, corresoond to dis~enion terms. A " " 
typical dirpers~on curve ufh' and b' fur CJ1" isgiven in 
Fig. I. b;, is a l ~ a y s  positive whcruls FB ma) take both 
positive and negative values, a behaviour markedly 
different from that in X-ray scattering. In the Figures 
that illustrate this vaver. b: has been taken as positive. 

R ~ m a s c s h ~ n  (19b6) out that since kB b,,? 
4.S5.0 and bb bB,28,almost two ordcn ufmngnitude 
larger than the :orrespondin2 quantities in X-ray s a t -  
tering, anomalous neutron scattering may well be used 
to sol-ie large structures provided accurate measure- 
ments of the intensitv is oossible. The method of doine 
this uas *ut;~d ou~' by'singh 8r R&&,tlan (1968; 
These techniques used in structural cryst~llagraphy 
may be directly applied lo yli'ld the components ofthc 
polarization vector, since the coherent inelastic scat- 
tering results from the interference of wavelets from = 
crvstal the equilibrium confieuration of which is Der- - 
&bed by a propagating lattice wave. 
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I D-pgon of me p o g h t i w  vmor red -t thk general notation used by Maradudin, s on troll & 

ow-pbown p- Weiss (1963). Consider a crystal with a unit cell having 
r atoms. The position vector of the Kth atom in the lth 

For the discussion that follows, it is necessary to unit cel! is given by 
describe briefly the polarization vector and its relation- 
ship to the coherent one-phonon process. We follow -*=:(O+~K) 

$0 defines the origin of the ith unit ceU relative to 
some origin in the crystal and &) d& the po&on 

n of the Kth atom relative to the cell origin. 'We shall 
confine ourselves to the 'harmonic approximation'. 
Then the equation of motion of the crystal is givm by 

C O  

where u,p=1,2,3 correspond to the three cartesian 
components and I(!) denotes the displacement of the 
xth atom in the ith cell &om the equilibitum configura- 
tion. We seek a solution where the displacements are 
of the form 

1-2 14 uUK)= 2 --.(.In G o )  expi{q. x(t) -wjfe) .  
= * * s  = - . ~ ( 0 )  represents the scalar amplitude, directly related 

to the energy of the mode in t h d  equilibrium, and 
does not enter the dynamical equation. 
the eigenvector of the .Kth atom for 
Thus, the equations of motion could be written as 

Fig, 1. Variation of b'md b" with wavelength for Cdn3 - - e=(~l;)= - 2 D&K'I? ed~'!:), 
*# 

j=1,2 ,... 3r; u,p=1,2,3. 
Y 

D&m'Jql are the elements of the 'dynamical mats3 
which are related to the inter-atomic force constants 
@&OK; 1';Id through the relation, 

@&OK; P-/d)= r/~x 2 DAKK'IP) ; 
\ 

- ,  - - 
x exp-i {q. x(';-')-5(3}. 

L - - 
The coefficients ~&KI;) for a given q and j and for 
merent atoms in the unit cell are regarded .as the 
components of a 3r dimensional vector of unit magni- 

x tude called the 'polarization vector'. The enumeration 
of these coefficients dves us the relative amplitudes of 
the dSerent atoms in the unit cell. 

The eigenvectors satisfy the orthononnality condi- 
tion 

2 e 3 l n  e~(xl:.)=S,,, . 
, - (6) 

Since the elements of the dyuamical matrix are wmplex 
quantities, the eigenvectors are in general complex. 
Only when each atom in the stnrchxe lies at a m e  
of inversion, the dMamical matrix could be trans- 

~ t g .  2. ~ r a g g  rcnexioo- two atom structure: normal scattering. 
formed into a real &metric ma* and the corm 

oA = o A . = ~ *  up {- wA). A B = A , ~ = ~ ~  exp - wB); sponding eigenvectors would be real. The significance 
IfiHII =IF(R)I. of the eigenvectors being complex is that the motion 
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of an aiom under the influence of a lattice wave is {- W,)li_. dB!:) may be considered as the sca t t~ ing  
elliptic. lengths 07 the two atoms for the coherent one-phonon 

We write $KIKI;)=&+~E - - (7) scattering. 

Thus the six components of the real vectors A a?d B 
specify the elliptic motion of a given atom. a two 
atom structure and for q_ in a general direction, we 
require twelve componenl3 to describe completely the 
elliptic motions of the two atoms. At q=O. for all 
structures, the elliptic motion degenerateAnto a linear 
one and the initial phase of motion will be either 0 or 
B The phase difference between the two atoms is 0 
far the acoustic mode and n for the optical made. 

, The differentia1 cross section for one-phenon scat- 
tering, with the usual notion, is given by 

where 

. . .. 
5 Fig. 3. Biagg reflexion - two  atom structure airh atom B, an 

exp {- W,)K . &A[:) exp { i H  . x"(A)) anomalous scaiterer. OA=br  exp {-  W.<). AB=ba0 x - - - - = P .  u p ( -  WB).  BB'=b'a exp ( -  W B )  and B'B"=bi xenp 
(- W B ) ;  IF(H)IT: IF(R)I. 

bB . ~ . + - - exp {- W,J K . ~(BI:) E X ~ . { ; H .  XO(B)} / ---_ _ _ 
v MB = = = = 

I 

x 4a~+a,(dl TTq-HI. - 9 s  .. 
.(a) 

. . . - 
$A) and'.rqB) represent the equilibrium 'position 
%tors of ti% two atoms A and B in the unit cell. b, 
and b, denote the coherent scattering lengths of the two 
nuclei respectively. The positive sign represents the 
phonon creation process whereas the negative sign 
represents the annihilation process. The two 6 func- 
tions represent the conservation of energy and crystal 
momentum during the scattering process. &=$- is 
the scattering vector or the momentum transfer vecfor. 
H is a reciprocal-lattice vector. The scattering vector 
rasoc ia ted  with R satisEes the momentum conserva- 
Fon  law P 

g=FI+q. 
s = P 

(8a) 

From equation (8) it is clear that we can define an 
inelastic stmchlre factor, F ( 9 ,  given by - 

Fig. 4. One-phonon scattering in a non-ceotrorymmetiiis slruc- 

=P {- WA)K_.5Al:) exp {ig. ' ( A ) )  
ture: normal scattering 

- - - b* j O P = - - - u p { - w ~ ) K . P .  

I VIM., 

+ Aexp {- w,}K. :(BIT) eexp ji?. X O ( B ) ) .  pa= - VMB i G 
exp {- FV.~)  K . Q, 

I'M.. 
j bn 

Thus K .  eJA17) and K . $ 8 4 )  reprerent the proba- ; V R =  i'Mn { W s ) K . R  
bi,: - - C ~ Y  ampfitudes for %=-phonon scattering so that j and nS= _ b c e X p  ( -  K ; , K .  s :  K, ,=  IFt8,1 (bAllIMA~ expj - W,jE . 9Alf)  ;rni (bBll'.tfa) Y cap , l/Mn - ,- 
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4. A r g d  diagram represeotation: non-eenuosymmeirie r 
structures 

4.1  1 
Bragg reficexion: normal ~d mromalous scarrering 1 

I 
Fig. 2 gives the Argand diagram For a Bragg re- 

flexion in a non-centrosymmetric structure containing 
twoatoms per unit 4, both being normal scatteren 
for neutrons. The reciprocal-lattice venon H-and q 
represent the r&xions from the plancs (hki) z d  (h* 
respectively. In Figz.2 

OA=b, exp{-W,} and AB=b, exp {- Wd) 
where 6, and bz are the n o d  scattering lengths of 
the two atoms. exp {- W,} and exp {- WB} are the 
Deby-Waller factors for the two atoms. In X-ray 
crystallographic practice, it is the cbnvention to reflect 
the Argand diagram of F(@ about the real axis to 
facilitate the &mparison o f  F ( m  and F(@. We shall R 

follow this convention in this pzper. FroKFig 2, it is 
clear that /Fp/=lF@l, leading to Friedel's law. Fi& 
3 represents e situation when the atom B in the stluc- 
ture becomes an anomalous scanercr for thermal Fig. 6. Interactioa with ae optieai phonon - atom B, .a 

neutrons. The scattering length of atom B is given by 
equation(1). In Fig. 3, BE'=b" exp {- W,} and I T B =  1 

i 

i . . 
b-z 

\ RR"= RK'= -mp {- 5f'e)K. R: 
+' i 

F O I + I F ~ I .  ! . . . . - -. 

b; exp.{- WJ. Since the relative phasc of (b*+G) 
and b; is independent of the m,Itering vectors H and 
fk, we get IFOI#IF@)I leading to the breakdown of 
Friedel's law.. 

4 afl Cohereiit one-pho~n prapss: m d  smtterbrg 
For a general q, the two amma in the unit a l l  

demi  elliptic motions. We write the eigenvectors of 
the two atoms as 

6AIAll)=P+iQ 
and 

e(BI2=R+iS. I (9) 

0 

Fig. 5. One-phonun ratteriog - atom B, an anomalous $at - /  
e r a .  ! P, Q, R and S are real vectors and thus &ve cam- 

(ba,+b'.) 
QR- - e r p  (- Wa} K . R, ! ponens are required to describe completely their 

I/Ma ! elliptic motions. The polarization vector, V(;), which 
(be ibs) i is normalized to unit magnitude is a column matrix 

RS= - L a p  (- WB)K. S, given by 
i/M. rh+wl 1 

6. 
SR"= S P =  ~ S X P  (- Wa)K. R 

VMa j 
and R..S..= PS'= BexP (- Wn)K. S: 

V M B  
IF<K)#IF(E)I. 
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The ~or~ lp l t t t  .m~mrration olhese twelve components 
gives us the rehrive amplirudn and phaes o i  the rwo 
atoms in b e  c n ~ t  cell. The iniual u k e  of the cllrntic " 1  
motir~n is detcmuncd by lhc ma&tudc of the inicr- 
atomic farces and hence cannot be durcrmined hy sym.. 
mxry considcrations. From equation (9'). u,c gcr i 

&.dAl:)=&.gf exp {&I21 K K  Q, 
'and K . ~ B I : ) = K .  V X P  {.in/ kC. 5 (10) 

s. - - - - - - 
Fig. 4. represents the Argan6 diagram for one-phonon 
scattering. F@ represents the structure factor for 
coherent one-wonon process corresponding to the 
point defined b y s o n  the 'scattering surface'. From the 
relation (Sa), it is c!ear that the point defined by L o n  
the scattering snll^ace is associated with the lattice 
wave of wave-vector& Fo? 4, the eigenvectcn of the 
two atoms are comol conlnE?tes of the corres~ondine . - - 
quantities for signifying that the sensc ofdcs~ription 
c,f the clliprl. &I r ~ o w  bc in rhr: opposlte dirrstian. 
That is biB. *. One-phonon absorpt;on and emission procerm 

(1 recipr-I-lauicc point - cigenvffto~~ r-I. 
bn OP=- ,,MA u p  (- WAW. P, 

Thus the structure factor for g is the complex con- \ bs 
jugate of that for K so that t g  intensity is equal at , PR' -- UP (- WBJK. R, 
these two points o 8 h e  scattering surface. VMB 

ba j PR.= --cxp(- WB;K.. R: 
1. )IMB 
I X ~ P =  H . xo(A), X'PR=YPR.=H. ro(B); 

iF(H,s)l f lR(H.P)I. 
~. . ~ ~ . -. 

h.3 @ Coherent one-phonon process: anomalou scorterlrg 
The presence of aaomalons scattering causw an 

intensity difference at the points defined by & and.g 
on the scattering surface. Fig. 5 gives the ~ r ~ a n %  
diagram for the one-phonon process where atom B is . 
an anomalous scatterer. The elliptic motion of the 

(0) atom B gives rise to two scattering lengths for coherent 
inelastic scattering as represented by QR and RS in the 
Figure. Associated with each of these scattering lengths 
there will be acomponent due to anomalous scattering 
ahead in phase by z/2. Thus, in the Argand diagram, 
S R  and RS" are the two anomalous scattering. 
lengths associated with QR and RSrespectively. From 
the diagram one sees that u to the point S, there is 
symmetry between K a n d i ,  reflexians. For the re- 
flexion & the comp%ents7ZS and S R  add as they 
are in tKsame phase whereas for E, the component 
R S  is subtracted from SR" as thflare in opposite 
phases. A similar asymmetry occurs for the component 
K"S" also. That is JF(K)I[F@$[. The expressions for 

(6) i the intensity a t z  a n d g o n  t e scattenug surface can 
,g. 7. Schematic diagram oc the conservarioh te wnffen dowz from the diagram. Apart 

(4 8cncm, case l K + ~ . i ,  w specia is; IK:.IK,I. from a constant factor, we have 
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x {K.PsinH.@(B)-@(A) 

- K . Q cos H . xo(B) -xo(A))] , 

- K .  QcosH.@(B)-*(A)} 
+-a K.S{K.PcosH.xqB)-xyA) 

+ K . Q sin H . xO(B)-@(A)}]. 

x {K . P cos H . xo(B)-x"(A) Choosing a second wavelength for the incident t h e m 1  
neutrons so that the dispersion terms b i  and b> are 
altered and repeating the experiment at  K and& we 
eet two more indeoendent eauations. Thi?~ true onlv 
if the value o f  bi/(ba0-t b;) J not the same for the twb 

Y wavelengths: From these four independent equations, 
s the unknowns K . P K Q K . R and g.2 can be 

found. Now w&&i&i &e%e~stic sdtteiing near 
other reciprocal-lattice points corresponding to the 
interaction with the same phonon (i.e. phonon of same 
energy and ) Repeaung the experiment for two dif- 
ferent scatte%g vectors, we obtain twelve independent 
equations from which all the components of r, 9, g 

s and S can be extracted. Thus the determinatio5 6ftE 
r e a l s d  imaginary components of a d  eigenvector is 
equivalent to solving the 'phase problem' associated 
with the initial phase of the elliptic motion. 

(d) Interncrion with on opticnlphonon 
For the optical phonon with KO, the initial phase 

difference between the two at a x. The eigen- 
vectors are real for this mode for all crystal structures. 
Fig. 6 $ves the relevant Argand diagram. The expres- 
sions for the intensity at K and 
simplified if the eigenvectorare r 

0 

Fig. 9. One-phonon absorption and emission proc-s exp {-2WA} (K . P)f 
i a mip1-I Iattim point - sipnvectors complex. 

, 
1' ES= B exp (- W B J K . .  S ;  Since K .  P and 5 .  R are the only two unknowns, 

%'ME measuEmGt at ankwavelength determines them. 
X ~ P =  H. xO(A), x ' ~ R = x ' @ R ' = H .  *(A'); Choosing two different scattering vectors and con- 

IF(H,QI+IF(H,UL sidering the interaction with the same phonon, the six 
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components characterizing the vectors P and Kcan be 
extracted. Thus, in cases, where the v~bratiins are 
linearly polarized (real eigenvectors) expressions for 
I and A1 get considerably simplified and only six 
measurements are required to characterize the polar- 
ization vector. 

h.5 Ic) Cohercnr one-phonon absorption and emi~sion pro- 
cesses near a reciprocal lattice point 
(i) Eigenuectors r e d  
The phonon creation and annihilation processes 

near a reciprocal lattice point defined by H are char- 
acterled by the conservation laws, 

r =&-b=gs. 
K'=k -k=%+H. 
I d s -  - - 

A schematic diagram expressinpinpthese momentum con- 
servation laws is eiven in F i e  7W. It is clear from the - - . .  
diagram thzt h e  scattering vectors wrrrsponding to 
phonnn creation and mnriulation pro:nses, arc dif- 
ferent. That is IN is ditTerent i r on  (K'I and diK6renlly 
oriented with &%D& to the eieenvff9ors so that the 
cross sections at  &e points K &d g o n  the scattering 
surface are different. " 

The intensity f o r s a n d  Ereflexions (see Fig. 8) are 
given by the equations - 

b.& t- 2 - - exp {-(FVA+ WB)} 
l/M,MB 

Making use of the momentum conservation laws, we 
get 

b: exp {-ZW,) 
At= I(K)--I(K') =4 - - q . P H . P  - - MA = = =  I; 

x @.Pq.R+q.PH.R)cosH.xO(B)-5qA). - = = =  - E - c =  - - -  - - 
AI=Oonly when H r P = H . ~ = o o r ~ .  P=q.R=O. 

Sic C =  E =  C ;  

-~ ---~ ~ ~. 
Fig. 10. One-phonon scattering in a ~cnuosypmclric struc-; 

tore - normal scattering. 
b 

OAr- OAz- - - u p  {- WJK. A, I/M 

b * b ~  26 +z--- ~ X P  {-(wA+ WB)) ! OM= --srp {- W)K . A tor H . r, 
I/M 

I 
I/MlMB 26 ! i MN=-cxp{-FYJK.B<nW.x. x s. P K' . R_cos:H. xO(B)-c(A). ! I'M 
= t F _  = =  - G ~ 

.. - .- 
- ... ~ - - 

Table 1. Componenfs of the polmizafion neetor and the mode of extracting them by anornolous neutron scattering / 
Number of components Number of wave- Number of scattering : 

Nwnber of atoms of the Iengthl to be . -om for I 
per unit ~iololarintion wed for the .which aperimenh ' 

Number Stmcc~ro e l l  vector thermal neuuonr, are to be performed ! 
1 Nonsenuo- 2 (~1) 12 (elliptic 2 3 

1. svmmetric oolarilation) 

Brawin 1 
lattice 

(6) 6 (linear 
polarizalion) 

(a) 6 (elliptic 
~olarization) 

(b) 3 (linear 
polarizarion) 
3 
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Th~s  condition corresponds to a highly symmetric case 
when the lattice wave is propagating normal to H, 
Then the intensity at the two points defined by K  aiia 
K' is equal. This special case is given in Fig. 7(b). 
%us one gets h e  iesult that even in rock salt-type 
structures where the eigenvectors are always real, the 
intensity for K andKlC on rhe scattering surface should 
be diffccrent." - 
(ii) Ei~en-oesfors complex 

When the eigenvectors are complex signifying el- 
liptic motions, we have the following relations - 

g-412=$*(AI:)=p+ia -~ 
and .. e ( ~ l : ) = g ( ~ l j j = ~ ; i i ~ .  . - - - 

Thus for the phonon absorption process, the imaginary 
component 6. leads the real component g.g  in 
phase by z/2*wh '+ e for the emission process K' QTags 
X' . g i n  phase by 7712. Then the intensitylhiEsSnce 
%ween K and -K! reflexions arises from two causes. 
Firstl.1, t% scatgSng vectors for the two processes 
are different and hence the cross sections are different. 
There is a further intensity difference, swing to the 
elliptic motions of the atoms. Fig. 9 repremts the 
Argand diagram for phonon absorption and"cieation 
processes when both the atoms in thg structure are 
dcscaibing elliptic motions. 

As noted earlier, determination of the pblarization 
vector reouires measurements :o be made for three ~ -~~ ~ ~ ~~ 

differcut scattering vzctors. Since the phonon absorp 
tion and emission processes around a reciproul-lattice 
point correspond to two different scattering rectors, 
measurements ?xocnd hvo reciprocal-lattics poiats, 
are sufficient for the determination of the polarization 
vector. 

5. Centra-symmehie strudores 

5.1~ Coherent one-phonon process: normal scattering 
Consider a centrosymmetric structure with two 

atoms per unit cell, where the centre of inversion does 
\ I not coincide with the atomic positions. Under the, 

infuence of a lattice wave, except in symmetry direc- 
tions, the two atems describe motion along identical 
ellipses hut in opposite sense. That is, the eigenvectors 
for the t w o  centrosymmetrically-related atoms, are 

0 
complex conjugates of one another. 

Fig. 11. One-phanan wanering - alon 5, 
ScattCKCT. 

b' 
&A,-= B 2 A i =  -cxp {- W)K. A, w 

where K and Z are the two centrosvmmetricallv related 
atoms in the unit cell. Let a_ and$ denote tde equili- 
b r i m  position vecton of thSe twratoms. We write 

< K I ~ = $ +  - is, 
Fig 10 represents the Argand diagram for coherent , one phonon process in a centtosymmetric structure 

when both the atomsarenotrnalscatterersforneuhons. 
The scattering lengths (b/)JM) exp {- W)IS, &corre- 
sponding to the real part of the eigenvecfor7an be 
added for K and Z atoms, to give the resultant scat- 
tering length OM along the real axis. The wmponents 
(b/VM) exp {- WIK . Bwhich arise owing to ellipti- 
city can again be &&or x and Z atams to give the 
resultant MN along the real axis which is opposite lo 
phase with respect to OM. Further the same diagram 
holds gbod for the reflexion %? also, because K . x= 
R . t and I$ .s=g. %and IVCFIKJ. That is IF@= 
V@l - - -  - - - - , - ~ -  - 

b" i 462 
NS= z - cxp (- W)K. B sin H . r; 1 I(K)=I(%?)=-exp {-2W; w .  $~osEJ.x 

VM z = M  - - - - 
1 

If(K)I = ~F(R)I .  -- ~/---- 
- K . B S ~ ~ H . X ] ~  =< = -  
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whcre b reprcsenll the normal scattering length <,f the crearian processes can be c~ectivcly made use of in the 
atom. determination of the polarization vector. 

.S& , . . 
Coherent one-plronon process: &omalour scattering Brmair Latnce 

The ellipses characterizing the motions of the two -.In the case of a Brawis lattice which has one atom 
atoms being identie, only six components are re- per unit cell, the eigenvector being real, is linearly 
quired to iharacterize the polarization vector. For thc polarized so that only three components are required 
neexion K associated with the phonon wave-vector q, to describe the polarization vector. The measurement 
one has tijcadd the contributions of both the -tr@ of intensity for three ditrerent scattering vectors is suf- 
symnettically related atoms. This leads to perfect sym- ' ficient to characterize the polarization vector. The 
metry between K and&eEexions, so that the intensities Argand diagram for the coherent one-phonon scat- 
at these two flnts <the scattering surface are equal tering in a Bravais lattice is very much simplified as 
even for anomalous scattering. Fig. 11 gives the Argand only one real scattering length is involved. 
diagram for a cenfrosymmettic structure in the pres- Table 1 summarizer the discussion giving the com- 
mce of anomalous scattering The various scattering ponents of the polarization vector and the mode of 
length for x and it stoms can be added so as to give a extracting them by anomalous neutron scattering. 

,.. scattering length along the real axis and another com- 
k ponent along the imaginary axis. From Fig. 11. 

Choosing another wavelength for the incident thermal 
neutrons so that the discersion terms b' and b" are 
a lbcd  and repeating the experiment, we m v e  sr two 
independent equations from which K. A_ and K .  & 
can be dctennincd The same procedurF is-ToIl~wca f3T 
two different scattering vectors mrresponding to the 
interaction with the same ~honon. From these six 
measurements, we can solve for the six components of 
5 and z. - - 

I iiz (CI Coherent one-phonon absor~tion rmd emission ~ r o -  
, 
n* 

d ~d ,- - 
cesses near a iec&rocal-larfiee pofru j Fig. 12: one-phonon absorption and emission procases ncrr 

Fig. 12 gives the ~ r ~ a n d  diagram represeritation of L a reciprocal-iarrice point - ~enrroryrnm~riic rtrucrl:ic: 
the ~honon  absorntion and emission ~rocesses near a ! cigcnvcc~ois compicx. 

reci&ocal-lattice hint .  The intensity -difference at the 6 
points defined by K and K' is again associated with the OAl = OA2= -cxP (- W)K. A, 

change in ratterfhk ve&s as well as the ellipticity 
I/M 

b of the motions of the two atoms. In Fig. 12, Oh' j oh,,= oa,'= - - e x p  i- W)V. A. 
represents the structure factor F m )  which is obtained ! y ~ f  
by addition of the scattering Bgths for the two i b 
centrosymmeuically related atoms. Similarly OT re- A2B2= i--c'p ( -  W)K.B,  

i. M 
presents the structure factor F m 3 .  From Fig. 12, 

L A,'B,'= - -  b erp (- WJK' . B. 

P exp { - 2 ~ 1 .  Q I/hi 
AI=IQ-1%3=4 

M b 
O.Y= 2 ,ern (- Wl 

VM " ' 

x[Q.A_cosg.x_-g.BsinH.xJ 
w - 1 x[K.AcosH.r-K.BsinH.rl. 

- { K ' . A c o s H . x ; ~ . B _ s i n H . ~ ' I .  - - -  - b or= 2 .- ... cxp {- W )  
As in the non-centrosymmebic case, the two scattering . . VM 
vectors corresponding to the phonon absorption and x [ K ' . A c o r t l . x + K ' . B r i n H . r I  
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The determination of the polarization vectors seems. 
to involve a number of experimental problems (see 
for example, Dolling & Woods, 1965; Brockhouse, 
1964). The recent evaluation of the polarization vector 

o f  the fmoelectrio soft mode in KD,W, by Skalyo, 
Frayer & Shirane (1970) is of some interest in this con. 
nexion. It is not possible to foresee all the obstacles 
that may be encountered when the auomalous scat- 
tering technique as proposed in this paper is used for 
determining the polarization vectors. It may be neas- 
sary to n% lower concentrations of the anomalously 
scattering isotope in the specimen. However, in new 
of the inherent directness of this method, it appears 
worth while pursuing this experimental approach. 
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for *&iigions rt$yiud w ~ t h  him. .- 

\- .. 


