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A method for solving the phase problem ab initio in crystal structure studies by neutron diffraction has
been suggested. This method is based on the anomalous scattering of thermral neutrons by certain nuclei.
Using the data collected at two neutron energies, the process of phase determination is carried out in
two steps: (i) the location of the position of the anomalous scatterer and {if) the correlation of the phase
of the structure factor with the phase of the anomalous scatterer. The method gives unigue solution
of the phases. The expressions deduced are general and can be used for X-ray anomalous scattering also.

1. Introduction

Direct methods of sign determination* which are based
on the positivity of scattering matter are not applicabte
to neutron diffraction. Nor can the heavy atom method

" be used, as the scattering lengths of various nuclei do

not differ appreciably. For these reasons the use of
neutron diffraction in crystailography has been re-
stricted to the Iocation and the refinement of position

* See a recent paper by Karle (1966).

of light atoms {from the point of view of X-ray scat-
tering) in a structure for which the main features are
known from X-ray diffraction work. The possibility of
solving the phase problem ab initio in neutron diffraction
studies stems from the fact that some nuclei (e.g. 115Cd,
W5m, 151Eu and 1%'Gd) show anomalous scattering in
the thermal neutron range (Peterson & Smith, 1961,
1962). Ramaseshan {1966) pointed out that anomalous
dispersion effects in neutron scattering are much more
pronounced than in X-ray scattering and hence can be
used effectively in solving the structures provided the
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experimental problems associated with the collection
of data are solved. Thus writing the scattering length in
the form b=by+ 8’ +ib", the ratios &'/by and b’ [by can
be as large as 6 and 10 respectively for #3Cd (¢f tha
X-ray case where: mostly /" [fo~ /" [fox2 0-15).

Fig.1 shows that by suitably choosing the neutron
energy one can get (by+5)/by =7, for 1BCd, ie. a scat-
tering length which is greater than that of other nuclei
by a factor of about 7. This amounts to havmg a heavy
atom in the strocture.

What is perhaps of importance is the fact pointed
out by Ramaseshan (1966) that large anomalous dis-
persion in nuclei like *3Cd, 19Sm, 51Eu and 157Gd can
make it possible to use neutron diffraction for solving
the structure of large molecules. The success of the
anomalous dispersion methods depends on observing
sngnlﬁcant differences, A7, between the intensities of
inverse reflexions Akl and A&l In the case of X-tay
anomalous scattering, the structure of vitamin B,;
mono-acid has been seolved with {47)/{I>=0-06. (>
indicates the root mean square value). If {AI)/{I)~
0-10 is taken as the criterion for a structure that can
be handled by anomalous dispersion methods, it turns
out that a structure containing about 2000 atoms per
H3Cd can be solved.

The aimn of the present paper is to show that by using
the data collected at two neutron energies it is possibie
to locate the position of the anomalous scatterer and
determine the phase unambiguously. The results ob-
tained are general and can be applied to X-ray anom-
alous scattering also. .

2. Determination of the position
of the anomalous scafterer

In handling the phase problem by anomalous disper-
ston methods, the first step is to locate and refine the
position of the ancmalous scatterer {4-scatterer). The
position of A-scatterers which are invariably ‘heavy
atoms’ in the case of X-ray scattering may be deter-
mined by Patterson synthesis, but the location of the
heavy atom vector in a Patterson synthesis becomes
increasingly difficult as the number of light atoms in-
creases. However, in the case of neutron scattering the
A-scatterer need not necessarily be a ‘heavy atom’ for
certain neutron energies and thus location of the 4-
scatterer becomes difficult even in structures of mod-
erate complexity. A method which employs the com-
‘bination of two sets of data collected at two neutron-
energies has been suggasted here for locating the posi-
tion of A-scatterers. The two sets of data are combined
to give [Fal2, the contribution due to the A-scatterer
alone. Obviously, a Patierson synthesis with |F]* will
contain only the 4-scatterer vectors. In effect the meth-
od is similar to those described by Harding (1962},
Kartha & Parthasarathy (1965), Matthews (1966) and
Singh & Ramaseshan (1966) which employ the com-
bination of isomorphous and anomalous dispersion
data. However, the ‘two wavelength method® is super-
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ior to the combination of isomorphous and anoma-
lous data because one does not have to depend on the
availability of isomorphous pairs. Moreover, lack of
exact isomorphism is always a factor to be borne in
mind in choosing the isomorphous pairs.

Let us consider a structure with ny A-scafterers, all
of the same type and ny normal scatterers (N-scatterer)
in the unit ceil. Let the scattering length. of an A-scat-
terer be denoted by

ba=by+b +ib"”
=b(r)+ib(i)
where b(r)=(by+&") and b{i}=5".

The structure factor F,(H) for neutron-cnergy £, (as-
sociated de Broglie wavelength 2, is given by A=
AfY2EM, h is Planck’s constant and M is the mass
of the neutron),

Fi(H)=Fx+Fa+Fy;
where

Fry= 2{," BTy expl2aiH . tny
J=1

Fa= f b(r)T 4 exp 2aiH . ray
=1

..
=b(r) X Ta exp 2niH .r4y,
i=1

since A-scatterers are all of the same type
And

"
F:!’l =bl(i) EA TA} exp 2niH . Tar
J=1

A(A)
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80 1410 08 0O o o5
x10-12 B
&0

20F

16 024 022
E(eV)

Fig.1, The variation of 5" and & for 113Cd with wavelength in
the vicinity of the resonant wavelength. The shaded part
shows the region where E; and E; can be chosen conveniently
so that by(r)=>5,(r). (Ses Appendix.)
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sin28
Try=exp (—BN;' 1}2 ! )
1
sin?8,
Tap=exp ( Baj 2 ! ) .

Now
|F(HY2=F,(H) . F{(H)
=(Fr+Fa+¥) . (Fy+Fy +F/"
—IFNP+IFA:12+IF:{1P+2IFNHFA11 cos ¢
. + 2 F x| EL] cos e+ 2| FarllF4 | cos w
where g, ¢ and y are FyF 4, (angle beiween Fy and
F;p) FaFJ; and ¥ 4 F ; respectively. For only one type
of A-atom, w=90° and &= (90—¢@). Thus
|Fi(EY2=|Ful2+ {B3(r) + B(i) Hx]2
+ 28 1By (r)x| cos p+ 2 Fnib(i} x| sing. (1)

where
ne ,
[x]=1{ % Tascos 2zH .14} - -
J=1
Lr]
+{ X Taysin2zH. I'AJ}Z]*;
J=1
similarly,

P2 =152+ {B(r) + B3 Hixl2
+21Fnlby(rlx] cos g —20Fx|bi(f)Ix} sing . (2)
Similar expressions for V{2 and {F,(H)[2 may be
written and numbered equations (3} and (4) respec-
tively.

Now we define |Fum(H)2 [FulH)I? 45, and 41,

as follows,
| Fomt (B2 =3 F(H + LA UDP
=|Ex2+ {Br)+ B3 Hxl2
+2)Fnlbs(rlxjcos @ (5)
= FENI+E
=|Ful2+{B3(r) + B3(5)} 1 x)?
+2\Exl)lx]| cos ¢ {6)

AI:—[IFa(H)P— [P ()=

[Fra( H)I?

4Fnib(@)lx| sing  (7)

and ﬁlrz“[”:'z(H)P—IFz(FI)P]2

4iFp|bfi)lx]sing . (8)
Combining equations (7) and (8) we get,
A6 AL,
6 T 250
It may be noted that A5/41 = b{i)/b{i)=constant.
Since the absorption is quite different for the two

= 2|Fxild sin p=5 . )

wavelengths, this will provide a check on the accuracy

of the data.

The first term in equation {5) gives #ise to N-N peaks
in a Patterson synthesis computed with {Fp (H)]? as
coefficient; the second and third terms give rise to 4-4

and A-N peaks respectively. In order to be able to
locate the 4—A4 peaks it is essential to eliminate 4-V
and N-A peaks which tend to mask 4-4 peaks. Ra-
maseshan (1966) suggested that if the neutron energies
are 0 chosen that & (r)= — b,(r}, then a Patterson func-
tion with [|Fai(H)P 4 |Fr(H)*] as coefficient will
contain only A-A4 and A-N peaks; the background due
to A-N peaks will be eliminated. However, a simple
estimation shows that int a structore containing a large
number of N-atoms, N-N peaks give rise to a back-
ground which is more serfous than that due to A-¥
peaks. It is therefore necessary to eliminate both A—-&
and N-N peaks.

Expression far [xf2 -
We shall now derive an expression for iY[z in terms

of |Emy(ED)|% 1Ema( H)2, 8, Bi(r), 51{f), by{r) and by(i).

Eliminating ¢ between equations (5) and (7) and
using equation (9) we get,

{F x4 = 2L F N Fony (D2 + {630) — BY(E)} |1

FH Fma(H)2 - {61 + B IPP + 8263(r)=0 . (10)
Similarly equations (6), (8) and {9) give, )

PN = 2| P i Fma( FDI2 4 {B3(r) — B3O X1

& B Ema(H)E — {B3(r) 13O Hx 2P + 6265y =0 . (11)

Subtracting equation (11) from {10) gives,
20 F x| M) Fmi(H )2 — | Frnol DI} - {83 () — 53D
—(B3(r) — DAY XA ={| Far (HD 12 — {B3(r) + B 2R
— [ Fma( I~ {B3(r) + B xR + 3 B(r) — B3} -
(12
Now multlplymg equations (5) and (6) by b(r) and '
£(r) respectively and subtracting the resulting equa-
tions we have,
(D20 Fomd (W2 — by (P W F oo H)1] =
{b2rY— BN Fx 24 [BAr){b3(r) + B0)}
~ b (r {830 + G2
Ehmmatmg 1Fn|? between (12) and (13) we have,
Plx*—20Ix2+R=0,

(13)

(14}
where

P ={bi{r)— b{r) PL2{bKI) + B3I}

+{by(r) — bo(r)3 -+ {B30) -

Q= {bu(r) = br) PUF s (H)I* + 1 Frna( )]

+ {b(0) — B3OV H e H P — | Fenn{ HDIZ}

R={|F (N2 | P H12)2+ 82 blr) — Bar)}

It is obvious that P, (2 and R are always positive
and therefore equation (14} will always have two posi-
tive roots |x4)2 and [x_|2 given by

[x:2=Q/F & (02— RF)*/P. (15)

If we substitute by{(r)=h,(i}=0, it is equivalent to

combining isomorphous and anomalous dispersion

data. [n this case equation (15) reduces to equation
{11) of Singh & Ramaseshan {1966).

wBinHp
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Interpretation of two solutions

The physical significance of the two values of |x|
as obtained from equation (14) is that, in general, there
are two sets of values of |x|, |Fx] and ¢ for  given set
of |F(H)?, |F{(H)P, [F(H)? and (FXH)J2. Two pos-
sible values of |Fy| and ¢ can be calculated as follows:

Subtracting equation {6) from (35) we get,

[ Emi (AP~ | P H =

[{B30) + B3(0)} — {B3(r) + B2 }1Ix

or + 2| Filxi{by(r)—bufr)} cos ¢

VFa{ 2 )} cos o £ )=
[{ P (H )P~ | Frnal H )IZ} MGARE-AE))]

~ (B3 + BN [ x P 2B L) — bl . (16)
and from equation (9},
[Fa{ )i sin p(£)=8/2lxy] . (17)

Thus the values of |Fwj and ¢ corresponding to {xu
and |x_] can be obtained from equations (16) and (17).

For iHustration computations were made in a hy-
pothetical case with by(ry=2-0, 5,({}=1-0, by{r)=1-0,
b()=1-0, p=60°, [Fy}=4-0 and |} =0-50. These give
|F(H)|=4-972, |[F(H)=4-217, |F,(H)| = 4-686, | F:(H)]|
=3-878. Thus, if we start w1th these as the values of
the observed structure amplitudes we get from equa-
tions {15), (16) and (17) jx4|=3-95, |[Fx(+)|=35-581,
o(+)=175"18" and [x_[=0-50, [Fn(—)|=40, ¢(-)=
60°,

Chaice of the correct solution

The next step is to choose the correct solution of
equation {14). If the structure contains #4 anomalous
scatterers (all of the same type), then |xni?, the maxi-
mum possible value of [x]? is 4 when #4 nuclei scatter
all in phase. Thus if jx}2> r% the only acceptable solu-
tion is [x_[2. If, however, |x:|2< n3, both |x.|? and [x-|2
are acceptable solutions by this criterion. In such cases
the ambiguity remains unresolved.

As the guantity {@*— PR) tends to zero, {x4{? and
|x-|? tend to be equal. One may come across cases
where |x.{? and {x_J? are nearly equal. This makes the
selection of the correct roct difficult. fn such cases it
is better to take Q/P, the mean value of the two roots
for |x|2

Unigue solurion of |x?

If the two nentron-energies are so chosen that &,(r)=
by(r) and B(i)# b,(7) (it is clear from Fig. 1 that such
a choice is certainly possible) then

P={B) - b))
@ = {630~ BV | Fons (D2 ~ [Frea(H)|?)
and  R={|Fm(H)P—|Fm(H)I?} .

This leads to (Q?— RP}=0 and therefore the two

Toots are coincident and are given by,

pxef?=|x-P=Q/P. )

IN CRYSTAL STRUCTURE ANALYSIS. 1

It may be noted that this result* can be obtained
directly by subtracting equation {6) from equation (5).

Owing to the practical difficulty in selecting the
neutron-energies £, and E; for which by(r)=b,(r), one
may have a case b,(r) = b,(r). 1t is rather fortunate that
the factor {f{r}—bxr)} occurs in the expressions of
P, ¢ and R as squares and, therefore, equatlon (17
can be used without introducing much error even if
by(r) and by(r) are slightly different,

As P depends only on the scattering lengths it may
appear that P can be made zero by suitably selecting
E; and E,. In such a case equation (14) will have only
one root jx|*=R/2(Q. However, since P is the sum of
three positive terms, it can be made zero only when
the three terms are separately zero which cannot be
done except in a trivial case E,=E;.

Refinement of the thermal and positional parameters

Once |x] is determined, a Patterson function with
|x|283(r) as coefficients Will give the positions of 4-scat-
terers. A comparison of |x| calculated from the known
positions of A-scatterers with those obtained from
equation (15) will reveal the reflexions for which the
toot has been wrongly chosen. If equation (17} is used
this comparison is not necessary. The values of |x| ob-
tained this way can be used to refine the thermal and
positional parameters of 4-scatterers.

3. Unique solation of the phases

Tt can be easily shown (Ramachandran & Raman,
19356) that the phase 2.4;(H) of the A-scatterer contri-
bution to the structure factor is related to the phase

a(H) of |Fy(H} by,

oy (H)=aq+6,, (18)
{(see Fig.2) where 8, is given by
sin 6y = ALJAF{HF =82 Fi{)lix] (19

and
P E) =B RE)H I —1F L.

8, determined from equation (19) will have two
values #; and (180°—@). Thus there is a twofold am-
biguity in ¢y(H) caleulated from equation (18). In X-ray
anomalous dispersion work this ambiguity has been
resolved by various indirect methods (Ramaseshan,
1963).

Here it has been shown that the usc of data collected
attwo neuiron energies yields a unique solution of «y ().

Referring to Fig.2, ¢ and #, are related by,

{Fail/fsin (p—8)=|Fy(H)i/sin g .
sin (p— O} = F.q|/iF(H ) sin @ .

or
20)

* The authors are grateful to the referee for drawing their
attention to the fact that when AWr)="5x(r), a difference even
Patterson {unction {Okaya, Saito & Pepinsky, 1955) aiso leads
to similar results
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Re
Fig.2. Argand diagram representing F(H) and F(H).
~

Combining equations (19) and (20) we get
cos 8,=[¢ cot ¢/2|x|+|Fa|JIF(H)] . (21
Equations (5), (6) and (9} can be combined to give
cot ¢ =[{| Fm(H W2 — | Fagl H )2} — {(B3(r) + 63(D)
= (B3r) + BENNEA{bu(r) — o)} . (22)
On substituting the value of cot ¢ from equation
(22) in equation (21) we have,

cos 8=

In case 5,(r)=bs(r), equations (5) and (6} give,
NFo{ H )2 — Fana{ HDIE = {B3() — B3(0) 2
and equation {23) reduces to,

_ A + B3 x| + 2| Fail

cos &, 2N (H)] .
Since sin #; and cos §; are known from equations

(19} and (23) respectively, #; and hence «((H) is known.
Similarly o,(F) can also be obtained.

(29

4. Conclusion

Thus we see that combination of the data collected at
two neutron-gnergies makes it possible to determine
and refine the thermal and positional parameter of the
anomalous scatterer in large molecules - a process
which is normally difficult. Further, the phases of the
reflexions can be determined unambiguously.

The author’s thanks are due to the referee for his
helpful comments.

APPENDIX

It has been shown in § 2 that if £, and E; are so chosen
that &;(ry=by(ry="5(ry and b{§) # b«(i), | x|? can be deter-
mined uniguely. A method has been indicated to cal-
culate such pairs of E, and E,.

Measurement of the scattering and absorption cross-
section of 113Cd and. ¥8m (Brockhouse, 1933) shows

{Fmi(H)P— | Fro H W2}~ {(03(r) + 510N — (BA) -+ BRONIE
2{bi{r) — U FENNIX]

that the one-level Breit-Wigner formula is valid. It can
be shown from the one-level Breit-Wigner theory that,
e n(E—Fo) )
(E-Ep+T4

gwiolal’
(E—Ey+I%4"

where g is a spin weighting factor, w is the isotopic
abundance, which is unity for a resonant isotope, A
is the wavelength at resonance divided by 2r, I, is the
neutron width, I”is the total width, £ is the energy of
measurement and £, the resonance energy. Substituting
the numerical values (Brockhouse, 1953) for various
parameters in equations (i) and (i} we get
y o AME—E)
T AE—EF+B

b'=%
and

b =h(i)=1 (i)

and
C

(E—Ep+R’
where A, B, C and Ey, have values respectively 0-278 x
10-12, 0-0032, 1:565 % 10-2* and 0-178 eV for 1*Cd and
0-250 % 10-12, 0-0014, 0-920 10— and 0096 eV for
1498m.

The two sets of values of E for which by(r}=5.{r) =¥’
can be calculated from the equations

b=

[Fal .
= . 23
FH)| (23)
(Eram )=
and 01398 + [{0-139/57}2 — 0-0034]* for 113Cd
(Evo— Eo)=

0-125/6 +1{0-125/h'}2 - 0-0014]* for '¥°Sm
It is clear from Fig.1 that such a pair, E; and £,
can be chosen on erther side of the resonance energy
(Eq=0-178). However, the smaller-energy side (the
shaded region) is preferable to the greater-energy side
because of the convenient working wavelength and the
large flux of neutrons from the pile. This region cor-
esponds to the X.ray wavelength range from Mo Kx
o Fe Ko
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