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Al&act-The compressible ion approach to repulsion which has been shown 10 work well for the alkali halides (1. 
Phys. Chem. Solids 37, 395 (1976); Curr. Sci. 46, 359 (1977)) has been extended to other cubic ionic crystals. 
Repulsion parameters have been refined for a number of ions and radicals viz., Cu’, Ag+, Tl’, Me. Ca*+. S?. 
Ba*+, Zn’+. Cd*‘, Hg”, Mn”, Fe2+. Co”, Ni’+. Sm”. Eu’+, Yb’*. Pb*+, H-, o’-. S’-, Se’-, Te’-, NH,‘. SH-, 
SeH-, BrO,-. ClOj-, CIO,-, CN-, NH*-, NO,-, BH,-, BF,-, SO,*-, NH’-. Using these parameters, calculations 
have been made on the lattice spacings and compressibilities of a number of perovskite-like crystals of the form 
A+B2+Cj-. The predicted values agree well with experiment. In the case of four crystals viz., LiBaF,, LiBaH,. 
LiEuHj and LiSrH,. there were large discrepancies between the calculated and observed lattice spacings. When 
these crystals were assumed 10 be of the inverse oerovskite structure, calculations showed good agreement with the 
experimental data. 

I. IhTRODWXWN 

The cohesive energy and static properties of ionic crys- 
tals have been of much interest to investigators during 
the last few decades. The attractive interactions in these 
crystals (viz. the electrostatic and dispersion forces) are 
quite well understood so that much of the effort has been 
directed towards computing the repulsive interaction 
(Ref. [ 11 gives a review of the field). 

Recently, the authors proposed a new approach to the 
repulsion in ionic crystals based on a picture of 
compressible ions (2-4). An ion is considered to be a soft 
sphere with an internal energy which is a function of its 
size. This leads to the hypothesis that the repulsion 
between ions arises entirely from the increase in their 
internal energies when compressed. It is also assumed 
that the energy of compression of an ion is local to its 
points of contact with neighbouring ions, so that, for a 
given radius, the internal energy of the ion is propor- 
tional to the number of its neighbours. By explicitly 
postulating an exponential form viz., Ae-‘IP, for the 
compression energy of individual ions, the repulsion 
parameters A and p have been calculated for all the ions 
in the alkali halidesIS]. These parameters have been 
successful in describing many of the static properties of 
these crystals. 

A theoretical justification has not yet been given for 
the basic postulates outlined above. However, there are 
some features in the present approach which are of 
proclicol importance. The repulsion parameters refined 
for an ion using the experimental data on any one crystal 
can be used unaltered in any other crystal of any smc- 
ture in which the same ion occurs. This is in marked 
contrast to most earlier approaches to repulsion[l] in 
which some of the parameters can only be refined with 
experimental data on the very crystal in which one is 
interested. 

The predictive power of the present theory is, 
however, an assertion which still needs to be. tested. It 
has, in a sense, gained some credibility since the 

parameters of the alkali and the halogen ions could be 
used in the alkali halides of both NaCl and high pressure 
CsCl structures. In this paper we present a more 
comprehensive test of the predictive power of the 
theory. After a careful search, the perovskite class of 
crystals was chosen for this purpose. We present here 
calculations on the lattice spacings and the compressi- 
bilities of a number of perovskite-like crystals of the 
form A+B’+C,- using repulsion parameters which were 
refined in other simpler systems. 

The perovskite structure is relatively complex with 
three different types of ions per unit cell and with 
contacts occuring between a variety of pairs of ions. The 
repulsion parameters of the ions, on the other hand, were 
derived from the data on simple binary crystals of the 
NaCI, CsCI, ZnS, CaF2 structures. Moreover, the regime 
of compression of the individual ions in these original 
crystals is often very different from that in the crystals 
studied in this paper. Consequently, the present cal- 
culations appear to be a critical test of our theory, as also 
of its usefulness in crystal physics. 

As a preliminary to the studies on the perovskite-like 
crystals, repulsion parameters had to be refined for a 
variety of monovalent and divalent ions using experimen- 
tal data on various binary crystals. The results of these 
studies are presented in Section 2. During this phase of 
the calculations, it was found that ionic radicals can also 
be treated within the framework of the present theory 
and this is discussed in Section 3. Section 4 details the 
theory of the various lattice interactions in the perov- 
skite structure, in particular the repulsion energy as 
given by the present approach, while Section 5 deals with 
the evaluation of the attractive interactions. In Section 6 
are presented the predicted lattice spacings and 
compressibilities of 31 perovskite-type crystals of the 
form A+B*+Cs-. In the case of four crystals alone, there 
are large deviations from the experimental values. In 
Section 7 it is shown that these discrepancies can be 
reconciled if these crystals are assumed to be of the 
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inverse perovskite form. The Appendix deals with 
certain minor thermodynamic approximations that are 
necessary to carry out the calculations. 

~~~P~ FOR MDN0vAx.m-r 

AND WAcwr IONS 

The equations that were developed for the calculations 

quite unsatisfactory for the crystals con~ning these 
ions. Also, the parameters quoted for Zn”, Cd2’ and 
Hg2’ may not be meaningful since they have been 
refined on an ionic model using the experimental data on 
compounds such as ZnS which are generally believed to 
be quite covalent. 

on the alkali halides[3] can with very slight modifications 
be applied to the crystals of interest here. The refinement 
procedures used in the present studies are just more 
sophisticated versions of the methods outlined in [3]. 
These details are therefore not discussed here. 

For obtaining the repulsion parameters of Ag‘, Cu‘ 
and Tl’, the experimental data (viz. the nearest neigh- 
bour distance and the bulk modulus) on their halides 
were used. Similarly, the repulsion parameters of H’” 
were refined using the data on the alkali hydrides. The 
repulsion parameters refined earlier151 for the halogen 
and alkali ions were directly used unaltered and the 
parameters of only the new ions were refined. The opti- 
mised repulsion parameters are listed in Table 1 along 
with the values used for the alkali and halogen ions 
(included here for completeness). 

At this point it appeared interesting to see whether the 
present theory of repulsion could be extended to ionic 
radicals. The fundamental postulate of our theory is that 
an ion has an internal compression energy which is a 
function of its size. In the case of ionic radicals, there 
are two con~bu~ons to the compression energy; (a) the 
compression of the closed shells of electrons of the 
outermost atoms, similar to the compression energy of 
simple ions, and (b) the energy arising from the 
compression of the covalent bonds in the radical. It may 
still be possible to express the overall compression 
energy of the radical as a simple monotonic function of 
its size. 

A vast body of experimental data exists on crystals 
containing divalent ions. Using this, the repulsion 
parameters of the following divalent ions were refined- 
Mg2+, Ca”, S?, Pa”, Zn**, Cd*+, Hg2’, Mn2’, Fe”, 
co*+, Ni2’, Sm2’, Et?‘, Yb’+, Pb2’. 02-, S2-, Se2-, 
Te’-. The values are listed in Table 1. 

It should be mentioned that the repulsion parameters 
of Ag’ and Hg” are not likely to be refiable because the 
fit between the calculated and observed quantities is 

To test whether this is so, we chose as our first 
example the ammonium radical. Good high pressure data 
are available on NH&l, NH& and NHJ[6,71. We 
choose the same model function, viz. AeTrlp, that was 
used for all the ions studied earher. The refined 
parameters of NH,+ are shown in Table 2. The fit with 
the experimental data is very good-the r.m.s. errors in r 
and d2WJd2 are only 0.52% and 7.31% respectively. 
The fit is surprisingly even better than that obtained in 
the alkali halides151 indicating that the soft sphere ap- 
proach works well for ionic radicals. 

IOIl 

Table 1. Repulsion parameters for monovalent and divaient ions 
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0.3160 
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Table 2. Repulsion parameters for ionic radicals 

*on 4l*r4) PlX, 

NH,’ O.lfO8 I 10 
-4 

0.07820 

w- 0.1759 I: 10 
-7 

0.1545 

S4tr 

Br03- 

c103- 

c10,- 

CN- 

NN2- 

0.1463 I 10-5 0.1190 

0.5821 I 1O-5 0.1200 

0.4614 x lo-’ 0.1186 

0.3489 x 10-q 0.2724 

0.3460 I lo-’ 0.2288 

0.9310 x 10 
-7 

0.1149 

N03- 0.5882 x 10 
-9 

0.2354 

m4- 0.1294 x 10 
-9 

0.2682 

BF4- 

so4-- 

NH-- 

0.2959 x 1o-4 O.lCbB 

0.7213 I ,O-' 0.2038 

0.3258 x 10-l' 0.3954 

Encouraged by this, the repulsion parameters of a 
number of other ionic radicals were determined. The 
refined parameters are listed in Table 2. Unfortunately, 
compressibility data seem to be available for only a few 
crystals containing these radicals viz., KCN, 
Pb(NO&[S], NaCIO, and NaBrOp[7]. Hence, the 
parameters of the radicals other than NH,+, C103-, 
BrO-, NO,- and CN- are not likely to be reliable. 

Many of the ionic radicals studied, such as NO,-, are 
by no means spherical. The present model of spherical, 
compressible ions is, therefore, not likely to be valid for 
them. However, the reasonably good fit between theory 
and experiment raises questions as to why the approach 
works. 

4. TEEmtY FOR PmovamEmPE LATmE3 

We shah now use the repulsion parameters available to 
compute the lattice spacings and compressibilities of 
some perovskite-like compounds. Figure 1 shows a unit 
cell of the cubic perovskite (AXa) structure. The A ions 
are at the cube comers, the B ions at the body centres and 
the C ions at the face centres. We require a knowledge of 
the number of contacts that each ion makes with its 
neighbours and also the distances of these neighbours. 
Using the symbol a for the cubic cell parameter, 

(i) there is one A ion per molecule, having 12C 
neighbours, 88 neighbours and 6A neighbours at dis- 
tances of a/d/2, V3al2 and a respectively, 

(ii) there is one I3 ion per molecule, having 6C neigh- 
hours and 8A neighbours at distances of a/2 and g3a/2 
respectively, and 

(iii) there are 3C ions per molecule, each having 28 
neighbours, 4A neighbours, SC neighbours and a further 
4C neighbours at distances of a/2, a/d/2, a/g2 and a 
respectively. 

In the present theory of repulsion, there are terms of 
the form Ae- tip for each ion o e e y f r v r neighbour with 
which it makes contact, where A and p are the repulsion 
parameters associated with the ion and r is its radius in 
the direction of the neighbour of interest. 

We use the following notation. We call the “radius” of 
an A ion in the direction of a neighbouring B ion as rM. 
Similarly, we define rM, rAc, rEA. rBB, hc, rcA and rCB. 

.A 

In the case of a C ion, since there are two types of C 
neighbours. reel is its “radius” in the direction of the 8 C 
neighbours at a distance of a/d2 and rcc2 is its “radius” 
in the direction of the 4C neighbours at a distance of a. 

Using the structural information summarized above, 
we can now write the lattice energy per molecule as 

Wda)=- 
’ C D : _ ;p - 2 + fj& eerAA’OA + SAA e-‘dpA 

+ 12AA eerAdpA + 8AB e-vA'ps t 6& e-“dpu 
+ ,2& e-TdK + 6& e-‘CNk 

+24&e -~ccI~pc + 12& e-‘cc2’@c, 
(1) 

Here, a is the Madelung constant and C and D are the 
van der WaaIs dipole-dipole and dipolequadrupole in- 
teraction coefficients (Section 5 discusses the calculation 
of these quantities). A, and p,, are the repulsion 
parameters of the A ion, etc. In writing down the repul- 
sion part of the interaction in (I), we have included a 
compression energy term for every contact an ion makes 
with its neighbours. As this is a straightforward exten- 
sion of the basic ideas on which the present theory is 
buiIt(3], we will not discuss it in detail here. 

The energy Wr in (1) is a function of 10 variables viz., 
q. r.&+ rM9 r.40 rB.4, rBC$ rC.& rCB* rCClv rCC2. we now 

identify a number of auxiliary conditions which relate 
the various “radii” among themselves and to the lattice 
spacing a. WL will finally depend on only one variable 
vrz., a. 

The sum of the radii of two ions in contact is equal to 
their distance of separation. When the two ions are of 
diBerent kinds, we obtain three relations of the type 

r- + rBA = d/30/2. (2) 

When the two ions are of the same kind, symmetry 
requires that the “radius” of each be half their separa- 
tion, leading to three more relations of the type 

rM = a/2. (3) 
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Finally, we must use relations describing the condition described as the sum of the following sub-lattices: (a) A 
for the internal equilibrium of the crystal at the points of simple cubic lattice of A’ ions with origin at 000, the ion 
contact of non-identical ions. Considering the AB at the origin being left out; (b) A simple cubic lattice of 
contact. we have B’+ ions with origin at 4;:; (c) Three simple cubic 

lattices of C- ions with origins respectively at ff0, fOf 

aw,. = aw, and 0;:. We can similarly describe the lattice as seen by 

ar,, ah 
(4) a Bz+ Ion or a C- ion. Then, the van der Waais 

which leads to 
coefficients per molecule can be written as 

(5) c = ; Is6ww,A + &(ooo)css 

+ (3&(000) t 6S&O)} ccr + 2S&) CAB + 6S&O)c,c 
There are similar equations for the EC and AC contacts. t W&W cccl (8) 

We thus have nine auxiliary conditions, as a result of 
which WL is implicitly a function of only one variable, D = ;[s,(ooo)d,, + s8(OOO)d~S 
which we take to be a. We are therefore justified in 

talking of the total derivatives dWL(a)/da and 
+ {;s.(OOO, + 6S&O)}dcc + 2S&f)drs + 6S&O)d,, 

d2 Wl.(a)/da’. 
+ 6Ss(tOO)Bcl. (9) 

Differentiating (1) with respect to a and using the 
various expressions above, we get 

The factor of 4 arises as a correction for double counting. 
The sums occuring in (8) and (9) could not be traced in 

the literature and so they were evaluated by direct 
summation. The values obtained are listed in Table 3. 

For the pair interaction coefficients cl2 and d,2, the 

WAC -012~2sy _6&e-a,29C 4V3A, e-,AB,PA 
following variational results [ 10, I11 were used 

--e 
PC PC PA 

W~AA e-.Ac/oA RAE -rgC’pS --e 
PA PB 

(IOU 

(6) 
Differentiating (6) once more with respect to a. we obtain 

d’ 2ae’ 42C 72D 3AA .a/2pA 
G Wr_(P)= -7-7-7+-e 

2P* 

tpcie 
3Ac -a/2v2,y+3ke-a,20c 

PC 

t 
6A* 

PAPA+ Pde 

_-r&PA 

t 6A* 
PA(P.4 + PC) 

e-“‘cIPA 

+ 
3Ae e-‘BC’PB 

PdPB+Pc) 
(7) 

5. Tm ATruAcTtvE INTQtAcTtms 

The Madelung constant has been evaluated for the 
perovskite structure[9). For the case when A is a mono- 
valent cation, B is a divalent cation and C is a mono- 
valent anion, the value of a is 12.3775: 

The van der War& coefficients C and D can be cal- 
culated from the pair coefficients cl2 and d12 as follows. 
Let S.(xyz) represent the sum of I/r” over a simple 
cubic lattice with origin at the fractional coordinates xyz 
(neglect the term at the origin for S.(OOO)). Consider now 
an A’ ion. The rest of the lattice surrounding it can be 

where a, and a2 are the polarizabilities of the two ions 
and N, and N2 are the effective numbers of electrons in 
the two ions participating in the interaction. The values 
of a for the ions of interest to this paper were taken 
from Refs. (14, IS) while values of N were obtained from 

1161. 

6. cALcuLAllows ON Pmovmm cRvscALs 

Most crystals having the perovskite structure are 
oxides of the form AEO, where A and B are respec- 
tively divalent and tetravalent cations. Since we do not 
have the repulsion parameters of tetravalent ions, we are 
not yet in a position to deal with these crystals. 
Fortunately, there are many perovskite-like crystals of 
the form ABC, where A is a monovalent cation, E is a 
divalent cation and C is F, Cl-, Br- or H-. Since we 

Table 3. Lattice sums for the simple cubic lattice 

x Y 2 Si(XYd S6(XYd S*(w) 

0 0 0 - 2.0373 8.40153 6.94516 

3 0 0 - 0.09593 133.813 515.837 

Wquation (IO) has an extra factor of l/3 compared to the 
result in [IO]. This was found necessary in order IO obtain * 3 o - 0.58252 35.7421 65.9615 

reasonable agreement in the alkali halides between the varia- & ) + - 0.80(93 20.6430 25.7016 

tional values and the more accurate values of Mayer[lZ] and 
Hajj(l31. 
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have the repulsion parameters of these ions, we can 
make all the necessary calculations. 

The calculations were carried out as follows. The 
observed value of dWJda was calculated through the 
Hildebrand equation of state [ 171 

dW=(a) -;is=3a’(-P+T) (12) 

where P is the pressure (0 in all cases here), T is the 
temperature, /3 is the thermal expansivity and K is the 
compressibility. The term T/3/K is a small ther- 
modynamic correction and was calculated by means of 
the approximate formula (see the Appendix), 

$ = 6.624 x 10-16g 

where n is the number of ions per molecule and C.G.S. 
units are used for all quantities. The equilibrium lattice 
spacing was then obtained by equating (6) and (12). At 
this value of the lattice spacing, the quantity d2WJda2 
was calculated through eqn (7). Where an experimental 
value of the bulk modulus is available, the true value of 
d2WJda2 was calculated through the derivative of the 

Hildebrand equation viz., 

1291 

d2WL(a) 2 dWL(a) 9a 
da2 =ada+K 

In evaluating (14), the following approximate result (see 
the Appendix) was used. 

It should be noted that the approximations (13) and (1% 
though crude, are not likely to affect the final results to 
any appreciable extent since P is the important term in 
(12) and the quantity 

is small compared to unity. 
Table 4 gives the results obtained on all the perovskite- 

like crystals studied. The fit between the calculated 

Table 4. Predicted values of a and d2 W&)/do* for various crystals in the perovskite structure 

CsCdSr3 

CsCdC13 

C*HSSr3 

C8HSC13 

C ePbBrj 

CSP!Jc13 

CsPbF3 

KCaF3 

KM3 

KCoF3 

KFeF3 

KW3 

KWnF3 

KNiF3 

KZlIF3 

LiS.F3 

LlSaH3 

LiEuH3 

LISrli3 

NH,2OF3 

NH,UnF3 

NH4NlF3 

ffU9F3 

RbCG3 

RbCOF3 

RbFeF3 

Sm9F3 

RMhF3 

TICoF 

3.98 3.969 -0.280 1.806 1.632 1.299 1.507 1.067 0.918 2.642 

4.522 4.575 1.169 2.272 1.610 1.842 1.393 1.267 1.021 2.034 

5.33 5.630 (5.623) 2.770 2.105 1.920 2.061 1.282 1.533 1.297 

5.20 5.328 2.465 2.622 1.992 1.897 1.871 1.272 1.392 _ 1.503 

5.77 5.725 -0.704 3.239 1.666 1.940 2.108 1.395 1.467 1,662 

5.44 5.451 0.195 3.086 1.634 1.923 1.931 1.393 1.332 1.913 

5.874 5.942 1.156 2.772 2.374 I.965 2.216 1.491 1.480 1.180 

5.605 5.655 0.894 2.634 2.263 1.968 2.031 1.483 1.345 1.338 

4.81 4.072 1.286 2.258 1.961 1.908 1.536 1.468 0.967 1.743 

4.371 4.418 1.077 2.063 1.764 1.567 1.557 1.247 0.962 1.995 

4.293 4.364 1.654 2.012 1.7b7 1.555 1.531 1.235 0.947 1.999 

4.069 3.387 -2.009 2.318 1.135 1.466 1.354 0.971 1.023 2.807 

4.122 4.007 -2.790 2.339 1.131 1.470 1.363 0.985 1.019 2.807 

3.973 3.997 0.613 2.216 1.245 1.468 1.358 0.985 1.014 2.591 2.698 

4.190 4.069 -2.877 2.:31 1.193 1.485 1.392 1.026 1.008 2.434 2.727 

4.012 3.933 -1.970 2.319 l.OE7 1.453 1.328 0.931 l.C35 2.868 

4.055 4.099 1.088 2.107 1.443 1.492 1.406 1.011) 0.971 2.476 

3.996 5.006 (25.28) 1.298 3.037 0.977 2.563 1.534 0.969 1.377 

4.023 4.803 (19.39) 1.246 2.913 0.892 2.504 1.547 0.854 0.979 

3.79b 4.5ao (19.34) 1.677 2.246 0.869 2.334 1.431 0.834 1.314 

3.833 4.436 (15.73) 1.310 2.532 0.862 2.275 1.389 0.829 1.190 

4.129 4.030 -2.392 2.319 1.172 1.525 1.325 0.973 1.042 2.909 

4.241 4.103 -3.245 2.324 1.229 1.539 1.363 1.028 1.024 2.916 

4.075 3.983 -2.263 2.326 1.123 1.516 1.300 0.933 1.058 2.979 

3.955 3.059 -2.440 2.005 1.337 1.165 1.543 0.976 0.953 2.789 

4.452 4.458 0.124 2.096 1.764 1.661 1.491 1.252 0.977 2.046 

4.062 4.076 0.351 2.380 1.150 1.582 1.301 0.974 1.064 2.838 

4.174 4.092 -1.966 2.400 1.144 1.585 1.308 0.988 l.oba 2.935 

4.095 4.087 -0.2jl 2.276 1.264 1.584 1.306 0.990 1.053 2.745 

4.250 4.144 -2.485 2.383 1.206 1.596 1.335 1.029 1.043 2.757 

4.138 4.040 -2.364 2.372 1.127 1.587 1.269 0.973 1.047 2.883 

1.803 9.02 

1.544 9.10 
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values of the lattice spacings and the experimental 
values[16, 17) is reasonably good, the r.m.s. error being 
1.80%. Experimental values of compressibility are listed 
by Hearman[8] for only two crystals viz., KMnFp and 
KMgK. For these two cases, there is excellent 
agreement between the measured and calculated values 
of d*WJda’. This is a gratifying result when we 
consider the fact that all the repulsion parameters used in 
this study were refined in simpler systems and have been 
transferred unaltered to the present complex system. 

Table 4 lists the “radii” of the various ions in the 
direction of their various neighbours. A study of these 
emphasizes the asymmetric compression of the ions 
which is a basic characteristic of the present theory[4]. 
The halogen ions, e.g. are very much more compressed in 
the direction of their B neighbours than in the direction 
of their A neighbours. Moreover, the “radius” of Br- in 
the direction of the Pb*’ neighbours in CsPbBr, is 
1.480 A and the corresponding “radius” of Cl- in 
CsPbC& is 1.345 A, whereas the average “radius” of Br- 
in the alkali halides is about 1.90 A and that of Cl- is 
about 1.75 A[$ It should be remembered that the 
respulsion parameters of Br- and Cl- were determined 
entirely from the data on the alkali halides where they 
exist with these larger “radii”. Our ability to use the 

same parameters even when the ions are in such 

compressed states as in the crystals considered here 

indicates that the parameters we have refined have a wide 

range of validify. This is rather heartening. 
Another point to be noted is that we have studied 

compounds containing such ions as Ag’ and He*’ which 
do not seem to fit in very well with the present ionic 
approach (Section 2). In spite of this fact, we find that 
the repulsion parameters that were obtained earlier for 
these ions are quite successful when applied to the 
perovskite-type crystals AgZnK, CsHgBr, and CsHgCI,. 
A possible explanation is that the sizes of these ions are 
predicted reasonably well, however unreliable their 
repulsion parameters may be, and so the lattice spacings 
of the corresponding perovskite-type crystals are in 
reasonable agreement with the experimental values. As a 
corollary, we feel that the values of d* WJda2 predicted 
for these crystals are not reliable. 

tA fifth crystal viz., CsCdBr,, also shows a discrepancy which, 
however, we are unable to explain. The experimental situation 
may bear further investigation. 

7. cM4wLATloNs ON INYmsE P5tovslllTE 
SruucnJRE CRYsrAls 

Table 4 shows that the calculated values of the lattice 
spacings of LiBaR, LiBaH3, LiEuHa and L&H, do not 
agree with experiment,t being 15-25% too high. It was 
therefore suspected that these crystals may be of the 
inverse perovskite structure, i.e. with the divalent ions at 
the cube comers (Fig. 1). The necessary theory for such 
a structure is easily developed and eqns (I), (6) and (7) 
can be used, provided A and B are systematically inter- 
changed. 

The Madelung constant for the inverse perovskite 
structure could not be located in the literature. It was 
evaluated to be 10.9177 by methods similar to those 
described in Section 5. The relevant lattice sums S,(xyz) 
have been discussed by Naor[20] and are listed in Table 
3. The van der Waals coefficients can be calculated by 
relations similar to (8) and (9). 

The results obtained on LiBaFX, LiBaHJ, LiEuHp and 
LiSrH,, assuming them to be of the inverse perovskite 
structure, are shown in Table 5. The fit in lattice spacing 
is seen to be much improved over that obtained in Table 
4, strongly supporting the idea that these four crystals 
are indeed inverse perovskite types. 

The lattice energies in the two structure types were 
calculated using eqn (I). For instance, for LiBaF,. the 
energy turned out to be -720.7 Kcal/mole in the perov- 
skite structure and -789.3 Kcal/mole in the inverse 
perovskite structure, suggesting that this crystal is more 
stable in the inverse perovskite form. It is satisfying that, 
using our theory, both the lattice spacing calculation and 
the energy calculation strongly support the hypothesis 
that LiBaR prefers the inverse perovskite structure. 

The relative stability of the perovskite and inverse 
perovskite forms cannot be predicted on the basis of 
packing alone. This is because the electrostatic inter- 
action is much stronger in the former, as can be seen by 
its higher value of a. Thus, a more loosely packed 
perovskite structure could be more stable than a more 
tightly packed inverse perovskite structure. Table 6 com- 
pares the predicted lattice spacings and binding energies of 
all the crystals in both the perovskite and inverse perovsk- 
ite structures. The crystal NaMgF, is of particular interest 

here. We notice that the theory predicts a smaller value 
of the lattice spacing and hence a more compact packing 
for this crystal in the inverse perovskite structure. Still, 
its binding energy is only -803.8 Kcal/mole in the 

Table 5. Predicated values of a and d' W,(a)/da' for some crystals in the inverse perovskite stroctore 

LlBaF, 3.¶96 4.055 1.485 1.055 2.457 0.732 1.296 1.649 1.218 2.477 

LIB.“3 4.c23 4.1.6 3.049 1.070 2.512 0.738 1.335 1.674 1.267 1.499 

LIEU3 3.796 3.887 2.459 1.370 1.998 0.723 1.222 1.478 1.272 1.902 

LiW3 3.833 3.918 2.207 I.149 2.2.4 0.724 1.233 1.494 1.276 1.636 

Root ..a” rqurr. .rror 2.367 

Y..n .bsolut* .rror 2.300 
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Table 6. Predicted lattice spacings and binding energies of various crystals in the perovskite and inverse perovskite 

structures 
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*9zQFj 

ChF3 

CGdBr3 

CwZdCI3 

CsHgBr3 

CWCl3 

C nPbBr3 

C*Pkcl3 

C8PbF) 

.I;‘=3 

KCdF, 

KCoF3 

KFeF3 

KhF3 

we3 

KYlF3 

KZnF3 

LIB*3 

LiB .H3 

LlW3 

LISHi3 

YH,CaF3 

YHpF, 

lfH4UF3 

ffJl9F3 

RbhF3 

RbCOF) 

RW4F3 

RbY9F3 

Rkw3 

1 lCoF3 

3.98 3.969 -0.280 4.133 3.039 -904.8 -769.3 

4.522 4.575 1.169 5.390 19.20 -738.2 -597.4 

5.33 5.630 5.623 6.516 22.25 -664.0 -506.5 

5.20 5.328 2.465 6.223 19.67 -6n9.7 -529.7 

5.77 5.725 -0.784 6.430 12.31 -677.7 -510.4 

5.44 5.451 0.195 6.188 14.75 -710.3 -532.7 

5.374 5.942 1.156 6.496 10.60 -636.3 -509.5 

5.605 5.655 0.894 6.205 10.70 -666.2 -531.7 

*.a1 4.372 1.296 5.373 11.71 -754.4 -601.0 

4.371 4.418 1.077 4.520 3.411 -n15.a -639.8 

4.293 4.364 1.654 4.510 5.060 -823.1 -6?5.5 

4.069 3.987 -2.009 4.47. 9.959 -905.1 -696.3 

4.122 4.007 -2.790 4.474 0.543 -902.0 -696.3 

3.373 3.397 0.613 4.476 12.66 -900.3 -6?6.3 

4.190 4.069 -2.077 4.477 6.860 -839.7 -696. I 

4.012 3.933 -1.9?0 4.472 11.47 -915.6 -696.4 

4.055 4.099 1.088 4.477 10.40 -a78.9 -697.4 

3.996 5.006 25.28 4.055 1.485 -720.7 -791.3 

4.023 4.803 19.39 4.146 3.049 -707.5 -729.9 

3.796 4.530 19.34 3.803 2.459 -761.1 -771.7 

3.833 4.436 15.73 3.918 2.207 -7bo.a -761.5 

4.129 4.030 -2.392 4.772 15.35 -901.2 -669.4 

4.241 4.103 -3.245 4.773 12.55 -837.2 -668.3 

4.075 3.983 -2.263 4.771 17.09 -910.7 -669.4 

3.955 3.859 -2.440 3.al9 -3.443 -924.7 -ao3.8 

4.452 4.451) 0.124 4.904 10.15 -812.4 -651.6 

4.062 4.076 0.351 4.090 20.38 -092.4 -651.6 

4.174 4.092 -1.966 4.090 17. lb -989.3 -651.6 

4.095 4.087 -0.201 4.a90 19.43 -899.1 -651.7 

4.250 4.144 -2.485 4.831 15.09 -a79.7 -651.6 

4.138 4.040 -2.364 4.709 15.73 -901.9 -662.7 

inverse perovskite structure whereas it is 
-924.7 Kcal/mole in the perovskite structure. On the 
other hand, in LiSrH3, the lattice spacing in the inverse 
perovskite structure is substantially smaller than in the 
perovskite structure, but the two binding energies are 
nearly equal. On the basis of our theory, we can say that 
for LiSrH3 the inverse perovskite structure is only 
marginally more stable. The possibility of making such 
comparisons and predictions greatly enhances the value 
of the present theory. Table 6 shows that in all cases, the 
calculated binding energies correctiy predict the 
experimentally observed structure to be energetically the 
more stable one. 

Among the four inverse perovskite crystals listed in 
Table 4, LiBaK has been experimentally shown[21] to 
be inverse perovskite. This has been done by measuring 
the intensities of its X-ray powder lines and comparing 
them with the values expected for the two structures. In 
fact, we became aware of this work only after we had 

already concluded from our calculations that LiBaFl 
should be inverse perovskite. In the other three cases, 
viz., LiBaHs, LiEuHa and LiSrHp, the respective 
authors[22.23) only conjecrure that the inverse perov- 
skite structure is likely. The X-ray powder patterns 
cannot resolve the ambiguity because the scattering 
factors of Li’ and H- are nearly identical and negligibly 
small compared to that of the divalent cations. The 
present calculations summarized in Table 6 clearly in- 
dicate that these crystals should be of the inverse 
perovskite structure. In the case of LiSrHp alone the 
binding energies in the two structures are nearly equal 
and we are unable to predict the structure unequivocally. 
However, the calculated lattice spacings resolve the 
ambiguity. Neutron diffraction experiments would be 
able to identify the structures of all these crystals and it 
would be interesting to see how well they agree with our 
theoretical predictions. 

The fact that the calculated binding energies of L&Ha 
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in the two structures are so close together implies that 
this crystal may transform under the action of tempera- 
ture or pressure. Calculations are under way to ap- 
proximately predict the conditions under which such a 
transformation is likely to occur. Experiments along 
these lines would be quite interesting. 
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Some thermodynamic approximations 
Consider the Gruneisen’s constant Y 

(Al) 

where V is the volume per molecule, fi is the thermal expan- 
sivity, C. is the specific heat per molecule at constant volume 
and K is the compressibility. It is experimentally known that y is 
almost constant over a wide range of temperature. We assume 
here that y is indepcodent of pressure and that all crystals have 
the same value of y which is taken to be I.6 based on the data 
available for the alkali halides. We also assume that C, is equal 
to the classical value 

Cv = 3nk (A2) 

where n is the number of ions per molecule and k is the 
Boltxmaon constant. Equation (Al) then leads to 

; = 6.624 x IO-r6; (A3) 

where II’ is V, the volume per molecule and all quantities are 
measured in C.G.S. units. 

Further we know from thermodynamics that 

(3,=-c-% 
Using (Al) we see that 

(A4) 

(AS) 

Thus we obtain the result that 


