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Abstract—The compressible ion approach to repulsion which has been shown to work well for the alkali halides (J.
Phys. Chem. Solids 37, 395 (1976); Curr. Sci. 46, 359 (1977)) has been extended to other cubic ionic crystals.
Repulsion parameters have been refined for a number of ions and radicals viz., Cu*, Ag*, TI*, Mg?*, Ca®*, Sr**,
Ba¥, Zn%*, Cd¥, Hg?*, Mn?*, Fe**, Co?*, Ni**, Sm**, Eu®, Yb*', Pb**, H", 0%, §%°, Se?, Te?>", NH,*, SH™,
SeH™, BrO,~, ClO;", Cl0,”, CN~, NH;~, NOy~, BH,~, BF,", SO2~, NH*". Using these parameters, calculations
have been made on the lattice spacings and compressibilities of a number of perovskite-like crystals of the form
A*B* (5. The predicted values agree well with experiment. In the case of four crystals viz., LiBaF;, LiBaH;,
LiEuH; and LiSrH,, there were large discrepancies between the calculated and observed lattice spacings. When
these crystals were assumed to be of the inverse perovskite structure, calculations showed good agreement with the

experimental data.

1. INTRODUCTION

The cohesive energy and static properties of ionic crys-
tals have been of much interest to investigators during
the last few decades. The attractive interactions in these
crystals (viz. the electrostatic and dispersion forces) are
quite well understood so that much of the effort has been
directed towards computing the repulsive interaction
(Ref. [1] gives a review of the field).

Recently, the authors proposed a new approach to the
repulsion in ionic crystals based on a picture of
compressible ions[2-4]. An ion is considered to be a soft
sphere with an internal energy which is a function of its
size. This leads to the hypothesis that the repulsion
between ions arises entirely from the increase in their
internal energies when compressed. It is also assumed
that the energy of compression of an ion is local to its
points of contact with neighbouring ions, so that, for a
given radius, the internal energy of the ion is propor-
tional to the number of its neighbours. By explicitly
postulating an exponential form viz., Ae "%, for the
compression energy of individual ions, the repulsion
parameters A and p have been calculated for all the ions
in the alkali halides[5]. These parameters have been
successful in describing many of the static properties of
these crystals.

A theoretical justification has not yet been given for
the basic postulates outlined above. However, there are
some features in the present approach which are of
practical importance. The repulsion parameters refined
for an ion using the experimental data on any one crystal
can be used unaltered in any other crystal of any struc-
ture in which the same ion occurs. This is in marked
contrast to most earlier approaches to repulsion{!] in
which some of the parameters can only be refined with
experimental data on the very crystal in which one is
interested.

The predictive power of the present theory is,
however, an assertion which still needs to be tested. It
has, in a sense, gained some credibility since the
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parameters of the alkali and the halogen ions could be
used in the alkali halides of both NaCl and high pressure
CsCl structures. In this paper we present a more
comprehensive test of the predictive power of the
theory. After a careful search, the perovskite class of
crystals was chosen for this purpose. We present here
calculations on the lattice spacings and the compressi-
bilities of a number of perovskite-like crystals of the
form A*B**C,™ using repulsion parameters which were
refined in other simpler systems.

The perovskite structure is relatively complex with
three different types of ions per unit cell and with
contacts occuring between a variety of pairs of ions. The
repulsion parameters of the ions, on the other hand, were
derived from the data on simple binary crystals of the
NaCl, CsCl, ZnS, CaF, structures. Moreover, the regime
of compression of the individual ions in these original
crystals is often very different from that in the crystals
studied in this paper. Consequently, the present cal-
culations appear to be a critical test of our theory, as also
of its usefulness in crystal physics.

As a preliminary to the studies on the perovskite-like
crystals, repulsion parameters had to be refined for a
variety of monovalent and divalent ions using experimen-
tal data on various binary crystals. The results of these
studies are presented in Section 2. During this phase of
the calculations, it was found that ionic radicals can also
be treated within the framework of the present theory
and this is discussed in Section 3. Section 4 details the
theory of the various lattice interactions in the perov-
skite structure, in particular the repulsion energy as
given by the present approach, while Section 5 deals with
the evaluation of the attractive interactions. In Section 6
are presented the predicted lattice spacings and
compressibilities of 31 perovskite-type crystals of the
form A*B**C;". In the case of four crystals alone, there
are large deviations from the experimental values. In
Section 7 it is shown that these discrepancies can be
reconciled if these crystals are assumed to be of the
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inverse perovskite form. The Appendix deals with
certain minor thermodynamic approximations that are
necessary to carry out the calculations.

2. REPULSION PARAMETERS FOR MONOVALENT
AND DIVALENT IONS

The equations that were developed for the calculations
on the alkali halides[3] can with very slight modifications
be applied to the crystals of interest here. The refinement
procedures used in the present studies are just more
sophisticated versions of the methods outlined in [3].
These details are therefore not discussed here.

For obtaining the repulsion parameters of Ag*, Cu’
and T1°, the experimental data (viz. the nearest neigh-
bour distance and the bulk modulus) on their halides
were used. Similarly, the repulsion parameters of H"
were refined using the data on the alkali hydrides. The
repulsion parameters refined earlier[5] for the halogen
and alkali ions were directly used unaltered and the
parameters of only the new ions were refined. The opti-
mised repulsion parameters are listed in Table 1 along
with the values used for the alkali and halogen ions
(included here for completeness).

A vast body of experimental data exists on crystals
containing divalent ions. Using this, the repulsion
parameters of the following divalent ions were refined—
Mg™*, Ca®, Sr**, Ba®", Zn**, Cd**, Hg**, Mn?*, Fe**,
Co™, Ni**, Sm*, Fu*", Yb*, Pb**, 0*, §*, Se?",
Te?". The values are listed in Table 1.

It should be mentioned that the repulsion parameters
of Ag” and Hg®" are not likely to be reliable because the
fit between the calculated and observed quantities is
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quite unsatisfactory for the crystals containing these
ions. Also, the parameters quoted for Zn**, Cd®* and
Hg** may not be meaningful since they have been
refined on an ionic model using the experimental data on
compounds such as ZnS which are generaily believed to
be quite covalent.

3. REPULSION PARAMETERS FOR IONIC RADICALS

At this point it appeared interesting to see whether the
present theory of repulsion could be extended to ionic
radicals. The fundamental postulate of our theory is that
an ion has an internal compression energy which is a
function of its size. In the case of ionic radicals, there
are two contributions to the compression energy; (a) the
compression of the closed shells of electrons of the
outermost atoms, similar to the compression energy of
simple ions, and (b) the energy arising from the
compression of the covalent bonds in the radical. It may
still be possible to express the overall compression
energy of the radical as a simple monotonic function of
its size.

To test whether this is so, we chose as our first
example the ammonium radical. Good high pressure data
are available on NH.CI, NHBr and NH.[6,7]. We
choose the same model function, viz. Ae™ ", that was
used for all the ions studied earlier. The refined
parameters of NH.* are shown in Table 2. The fit with
the experimental data is very good-—the r.m.s. errors in r
and d*W,/dr* are only 0.522% and 7.31% respectively.
The fit is surprisingly even better than that obtained in
the alkali halides{5] indicating that the soft sphere ap-
proach works well for ionic radicals.

Tabie 1. Repulsion parameters for monovalent and divalent ions

Ion A {erg) P(:) 1on Alerg) !’(:)
ut 0.1544x1077 0.04158 co*t 0.9939x1011 0.01737
Nat 0.1211x1077 0.0%029 att 0.1251x10%2 0.01656
kt 0.5600x10"" 0.1078 sa’t 0.3309x10° 0.04081
ant 0.3980x10™> 0.08883 gu’t 0.3412x10% 0.03370
cst 0.5604x10™° 0.09977 o 0. 1106x30° 0.02944
cu’ 0.1222x10%3 0.01542 pott 0.2814x10™% 0.08017
agt 0.3404x10° 0.05481
't 0.7386x10~° 0.1001

F- 0.7506x10710 0.2152
wgtt  0.93939x10 0.03051 c1” 0.2958x10™" 0.2240
ca't  o.1e71x10”¢ 0.07017 ar” 0.3724x10~7 0.2352
sr't 0.3433x107° 0.07441 1 0.4407x10"° 0.2538
gatt  0.1997x107° 0.09917 W 0.1604x10"1° 0.3150
za't o.1362x1072 0.04713
ca't  o.3410x107° 0.07645 o™ 0.5135x107 10 0.3160
we't  0.6079x10%% 0.01630 5= 0.3343x10~10 0.3431
wntt 0.29a1x10%° 0.,01733 se”" 0.6243x30" 10 0.3877
rett  o.7395x10%° 0.01515 Te™" 0.1071x10"7 0.3770
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Table 2. Repulsion parameters for itonic radicals

lon Alerg) p(5)

' 0.1¢98 x 107° 0.07820
SH™ 0.17%9 x 1077 041543
SeH™ 0.1463 x 1072 0.1190
Bro,” 0.5821 x 107° 0.1200
cloy™ 0.4614 x 107° 0.1186
clo,” 0.3489 x 10~° 0.2724
cN 0.3460 x 10~7 0.2288
NH,™ 0.9310 x 1077 0.1149
NOy” 0.5882 x 10”7 0.2354
8H,” 0.1294 x 10~° 0.2682
BF,~ 0.2959 x 107* 0.1068
$0, 0.7213 x 10™° 0.2838
WHT 0.3298 x 10710 0.3954

Encouraged by this, the repulsion parameters of a
number of other ionic radicals were determined. The
refined parameters are listed in Table 2. Unfortunately,
compressibility data seem to be available for only a few
crystals containing these radicals viz., KCN,
Pb{(NO,),(8], NaClO; and NaBrO;[7]. Hence, the
parameters of the radicals other than NH,*, ClOs~,
BrO;~, NO;~ and CN™ are not likely to be reliable.

Many of the ionic radicals studied, such as NOs~, are
by no means spherical. The present model of spherical,
compressible ions is, therefore, not likely to be valid for
them. However, the reasonably good fit between theory
and experiment raises questions as to why the approach
works.

4. THEORY FOR PEROVSKITE-TYPE LATTICES

We shall now use the repulsion parameters available to
compute the lattice spacings and compressibilities of
some perovskite-like compounds. Figure 1 shows a unit
cell of the cubic perovskite (ABC;) structure. The A ions
are at the cube corners, the B ions at the body centres and
the C ions at the face centres. We require a knowledge of
the number of contacts that each ion makes with its
neighbours and also the distances of these neighbours.
Using the symbol a for the cubic cell parameter,

(i) there is one A ion per molecule, having 12C
neighbours, 8B neighbours and 6A neighbours at dis-
tances of a/v/2, V/3a/2 and a respectively,

(ii) there is one B ion per molecule, having 6C neigh-
bours and 8A neighbours at distances of a/2 and v/3a/2
respectively, and

(iii) there are 3C ions per molecule, each having 2B
neighbours, 44 neighbours, 8C neighbours and a further
4C neighbours at distances of a/2, a/\/2, a/\/2 and a
respectively.

In the present theory of repulsion, there are terms of
the form Ae™" for each ion for every neighbour with
which it makes contact, where 4 and p are the repulsion
parameters associated with the ion and r is its radius in
the direction of the neighbour of interest.

We use the following notation. We call the “‘radius” of
an A ion in the direction of a neighbouring B ion as ras.
Similarly, we define Taas Tac, I'BA,s I'BB, TBC, TCA and Tcs.

1289

O ¢
Fig. 1. Cubic unit cell of the Perovskite structure. In crystals of

interest to the present paper, A is a monovalent cation, B is a
divalent cation and C is a monovalent anion.

In the case of a C ion, since there are two types of C
neighbours, 7cc, is its “‘radius” in the direction of the 8 C
neighbours at a distance of a/\/2 and rcc: is its “radius”
in the direction of the 4C neighbours at a distance of a.

Using the structural information summarized above,
we can now write the lattice energy per molecule as

2

Wi(a)=— % - ;C; -f. +6A €T ANPA L BA , € TABIPA
+12A,€7"AT°A 4 8A, €7 BAPE 4 64, €T BCPB
+124¢ e-'c.«'ﬂc +6Ac e—'csh’c
+24Ac e cciiec 4 12Ac e rccalac, )

Here, a is the Madelung constant and C and D are the
van der Waals dipole-dipole and dipole-quadrupole in-
teraction coefficients (Section 5 discusses the calculation
of these quantities). A, and p. are the repulsion
parameters of the A ion, etc. In writing down the repul-
sion part of the interaction in (1), we have included a
compression energy term for every contact an ion makes
with its neighbours. As this is a straightforward exten-
sion of the basic ideas on which the present theory is
built{3], we will not discuss it in detail here.

The energy W, in (1) is a function of 10 variables viz.,
@, Tan, TaB: Tac, T8a, Tac, Tca, Ica, Tcch, Tec2- We now
identify a number of auxiliary conditions which relate
the various *radii” among themselves and to the lattice
spacing a. W, will finally depend on only one variable
viz., a.

The sum of the radii of two ions in contact is equal to
their distance of separation. When the two ions are of
different kinds, we obtain three relations of the type

Tan + I'pa = \/3(1/2. (2)

When the two ions are of the same kind, symmetry

requires that the “radius™ of each be half their separa-
tion, leading to three more relations of the type

rM=a/2. (3)
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Finally, we must use relations describing the condition
for the internal equilibrium of the crystal at the points of
contact of non-identical ions. Considering the AB
contact, we have

aWL - GWL
rap B drea “
which leads to
'sa _TaB ABPA
BA_TAB
Pu Pa AAPB . ©)

There are similar equations for the BC and AC contacts.

We thus have nine auxiliary conditions, as a result of
which W, is implicitly a function of only one variable,
which we take to be a. We are therefore justified in
talkking of the total derivatives dW,(a)/da and
d*W,(a)lda’.

Differentiating (1) with respect to a and using the
various expressions above, we get

9_67‘_ + §g _ 3AA —anpA

d
da Wila)= T
PA

_6V2Ac em2V2ec _ﬁe—anoc _4/3A4 e TABIPA

Pc Pc Pa
_ M e rAciPa _ _318_ e 'BCPB
Pa P8 '

(6)
Differentiating (6) once more with respect to g, we obtain

2
& W)= 28 20 e+
A

+3Ac ~arvaee | 3Ac —anec
+—xe +—3e
Pc Pc

6AA -
4———A _ e'ABloA
Pa(pa + ps)
..__6f"— e rAacliea
pA(pA +pc)
3As —rgcieg
2B ) 7
pe(ps + pc) M

5. THE ATTRACTIVE INTERACTIONS

The Madelung constant has been evaluated for the
perovskite structure[9]. For the case when A is a mono-
valent cation, B is a divalent cation and C is a mono-
valent anion, the value of « is 12.3775.

The van der Waals coefficients C and D can be cal-
culated from the pair coefficients ¢y, and d,, as follows.
Let S.(xyz) represent the sum of 1/r" over a simple
cubic lattice with origin at the fractional coordinates xyz
(neglect the term at the origin for S,(000)). Consider now
an A” ion. The rest of the lattice surrounding it can be

tEquation (10) has an extra factor of 1/3 compared to the
result in {10]. This was found necessary in order to obtain
reasonable agreement in the alkali halides between the varia-
tional values and the more accurate values of Mayer(12] and
Hajj{13].
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described as the sum of the following sub-lattices: (a) A
simple cubic lattice of A* ions with origin at 000, the ion
at the origin being left out; (b) A simple cubic lattice of
B>* ions with origin at 333; (c) Three simple cubic
lattices of C~ ions with origins respectively at 330, 303
and 035. We can similarly describe the lattice as seen by
a B* ion or a C ion. Then, the van der Waals
coefficients per molecule can be written as

€ = 3 154(000)C.x + S000)cs

+ {356(000) + 6 S¢(330)} Ccoc + 2S6(333) Can + 6S6(330)Cac
+686(:00) cac]  (8)

D= %[s.,(oooyi“ + S(000)dss

+{355(000) + 6Sa(330)}dcc + 2Ss(333)dap +6Ss(330)dac
+6S5(:00)dac].  (9)

The factor of 3 arises as a correction for double counting.
The sums occuring in (8) and (9) could not be traced in
the literature and so they were evaluated by direct
summation. The values obtained are listed in Table 3.
For the pair interaction coefficients ¢\ and d,,, the
following variational results[10, 11] were used

c =l eh a2
T
N, N,
ay 112 az 12732
AL [(N,) +(®)]
8m '2[ +20(0:.&; e ¢_x£]
YR NNz) N

where a, and a; are the polarizabilities of the two ions
and N, and N; are the effective numbers of electrons in
the two ions participating in the interaction. The values
of a for the ions of interest to this paper were taken
from Refs. [14, 15) while values of N were obtained from
[16]).

(10t

(1

6. CALCULATIONS ON PEROVSKITE-LIKE CRYSTALS

Most crystals having the perovskite structure are
oxides of the form ABO; where A and B are respec-
tively divalent and tetravalent cations. Since we do not
have the repulsion parameters of tetravalent ions, we are
not yet in a position to deal with these crystals.
Fortunately, there are many perovskite-like crystals of
the form ABC, where A is a monovalent cation, B is a
divalent cation and C is F~, CI-, Br™ or H™. Since we

Table 3. Lattice sums for the simple cubic lattice

x y z Sl(xyz) Selxyz)  Sglxyz)

0 0 0 - 2.8372 8.40153 6.94576
¥ 0 - 0.09593 133,813 515.837
3 % [¢] - 0.58252 35.7421 65.9615%
> ¥ ¥ ~ 0.80193  20.6430 25.7816
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have the repulsion parameters of these ions, we can
make all the necessary calculations.

The calculations were carried out as follows. The
observed value of dW /da was calculated through the
Hildebrand equation of state[17]

dWe(a) . of . T8
le) —3a2( P+ K) 12)

where P is the pressure (0 in all cases here), T is the
temperature, B is the thermal expansivity and K is the
compressibility. The term T7TB/K is a small ther-
modynamic correction and was calculated by means of
the approximate formula (see the Appendix),

snT

TB = 6.624x 10~ (13)

where n is the number of ions per molecule and C.G.S.
units are used for all quantities. The equilibrium lattice
spacing was then obtained by equating (6) and (12). At
this value of the lattice spacing, the quantity d*>W,/da®
was calculated through eqn (7). Where an experimental
value of the bulk modulus is available, the true value of
d*W,/da® was calculated through the derivative of the
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Hildebrand equation viz.,

dZWL(a) 2dW,_(a) 90
da> a4 da 'K

<[l (Gr), &G 00

In evaluating (14), the following approximate result (see
the Appendix) was used.

7l (7). & (Gp) ) --omwarotgr

It should be noted that the approximations (13) and (15),
though crude, are not likely to affect the final results to
any appreciable extent since P is the important term in
(12) and the quantity

(GRS

K
(N
is small compared to unity.

Table 4 gives the results obtained on all the perovskite-
like crystals studied. The fit between the calculated

.;nKT

(15)

Table 4. Predicted values of a and d>Wy(a)/da® for various crystals in the perovskite structure

Crystal 2l
Calcul~

acg) Messures Salowi 2ttt R gy B xyolh) e xgoh) rey(R) dhyy (/2 ci0ensen®
lated eren-
ce(%)
AQZnF, 3.98 3,969 -0,280 1.806 1,632 1,299 1.507 1.067 0.918 - 2.642 -
CsCaFy 6.522 4.375 1.169 2.272 1.670 1.842 1.393 1.267 1.021 - 2.054 -
cscdsr, 5433 5.630 (5.623) 2.770 2.105 1.920 2.061 1.282 1.533 = 1.297 =
CsCdcly  5.20 5.329 2.465 2.622 1,992 1.897 1.871 1.272 1,392 = 1.503 -
CsHigBr, 5477 $.725 -0.784 3,289 1,668 1,940 2,108 1,395 1,467 = 1,662 o
CaligCl, 5.44 5.451 0.195 3.086 1.634 1,923 1.931 1.393 1,332 - 1.913 -
CePbBry 5,874  5.942 1.156 2,772 2.374 1.985 2.216 1.491 1.480 1.180 -
GsPBCl, 5.605  5eb55 0.894 2,634 2,263 1.968 2,031 1.483 1.345 - 1,338
CsPbF 4.81 4.872 1.236 2.258 1.961 1.508 1,536 1.468 0,967 = 1,743 -
KGaF 4 4.370 4.418 1.077 2,063 1,764 1.567 1,557 1.247 0,962 = 1,995 -
KGdF 5 4.293 4,364 1,654 2,012 1,767 1.555 1,531 1.235 0.947 - 1.999 -
KCoF 4,069 3,987 -2.009 2.318 1,135 1.466 1.3%4 0.971 1,023 - 2.807 -
KE eF 4,122 4,007 ~2.790 24339 1.131 10470 1.363 0.985 1.619 - 2.807 -
KMF 5 3.973  3.997 0.613 2,216 1.245 1,468 1.358 0.985 1.014 2,591 2,698 4,14
KM 5 4.190  4.069 ~2.877 2.:31 1.193 1.485 1,392 1.026 1.008 2.434 2,727 12,06
KNSF 4.012  3.933 -1.570 2.319 1.087 1.453 1.328 0.931 1.035 - 2.868 -
KZnF 4,055  4.099 1.088 2,107 1.443 1,492 1.406 1.078 0,971 = 2.47 =
LiBaF, 3.996  5.006 (25.28) 1.298 3.037 0,977 2.563 1.534 0,969 = 1.377 -
LiBaHy 4.023 4.803 (19.39) 1,246 2,913 0.892 2.504 1.547 0.854 0.979 -
LiEuH, 3.796  4.530 (19.34) 1.677 2,246 0.869 2,334 1.431 0.834 - 1.314
LiSTH, 3.833 4.436 (15.73) 1.310 2.532 0.862 2,275 1.389 0.829 - 1.190 -
NH,GOF, 4,120 4,030 ~2.392 2.319 1,172 1,525 1.325 0.973 1,042 - 2,909 -
NH MnF 4,261 4,103 -3.245 2,324 1,229 1,539 1,363 1.028 1,024 - 2.816 -
NHMIF, 4,075 3.983 -2.263 2.326 1.123 1,516 1.300 0.933 1.058 - 2.979 -
NaMgF, 3.955  3.859 -2.440 2,005 1,337 1.185 1.543 0.976 0,953 - 2.789 -
RbCaF, 4.832  4.4%8 0.124 2,096 1.764 1,661 1,491 1,232 0.977 - 2.046 -
RBCOF 4.062  4.076 0.351 2.380 1.150 1,582 1.301 0.974 1.064 = 2,838 -
RDF eF 4,174 4,092 -1.966 2,400 1,144 1,585 1,308 0.988 1.058 - 2.83% -
RbMF 4.095 4,087 -0.251 2.276 1.264 1,584 1.306 0.990 1.053 = 2.745 -
RbMAF 4.250  4.144 -2.485 2.383 1.206 1.596 1.335 1.029 1,043 = 2.757 =
TICoF, 4.138 4,040 -2.364 2.372  1.127 1.587 1.269 0.973 1.047 - 2.883 -
root mean square error 1.803 9.02
Mean absoluts error 1.544 s.10

JPCS Vol. 39, No. 12--D
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values of the lattice spacings and the experimental
values[16, 17] is reasonably good, the r.m.s. error being
1.80%. Experimental values of compressibility are listed
by Hearman[8] for only two crystals viz.,, KMnF, and
KMgFs. For these two cases, there is excellent
agreement between the measured and calculated values
of d*Wi/da®. This is a gratifying result when we
consider the fact that all the repulsion parameters used in
this study were refined in simpler systems and have been
transferred unaltered to the present complex system.

Table 4 lists the “radii” of the various ions in the
direction of their various neighbours. A study of these
emphasizes the asymmetric compression of the ions
which is a basic characteristic of the present theory[4].
The halogen ions, e.g. are very much more compressed in
the direction of their B neighbours than in the direction
of their A neighbours. Moreover, the “radius™ of Br™ in
the direction of the Pb®* neighbours in CsPbBr; is
1480 A and the corresponding ‘‘radius” of CI™ in
CsPbCl, is 1.345 A, whereas the average “radius” of Br~
in the alkali halides is about 1.90 A and that of Cl” is
about 1.7SA[5). It should be remembered that the
respulsion parameters of Br™ and Cl~ were determined
entirely from the data on the alkali halides where they
exist with these larger “radii”. Qur ability to use the
same parameters even when the ions are in such
compressed states as in the crystals considered here
indicates that the parameters we have refined have a wide
range of validity. This is rather heartening.

Another point to be noted is that we have studied
compounds containing such ions as Ag* and Hg”* which
do not seem to fit in very well with the present ionic
approach (Section 2). In spite of this fact, we find that
the repulsion parameters that were obtained earlier for
these ions are quite successful when applied to the
perovskite-type crystals AgZnF,, CsHgBr; and CsHgCl,.
A possible explanation is that the sizes of these ions are
predicted reasonably well, however unreliable their
repulsion parameters may be, and so the lattice spacings
of the corresponding perovskite-type crystals are in
reasonable agreement with the experimental values. As a
corollary, we feel that the values of d>*W,/da® predicted
for these crystals are not reliable.

tA fifth crystal viz., CsCdBr;, also shows a discrepancy which,
however, we are unable to explain. The experimental situation
may bear further investigation.
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7. CALCULATIONS ON INVERSE PEROVSKITE
STRUCTURE CRYSTALS

Table 4 shows that the calculated values of the lattice
spacings of LiBaF,, LiBaH,, LiEuH; and LiSrH, do not
agree with experiment,t being 15-25% too high. It was
therefore suspected that these crystals may be of the
inverse perovskite structure, i.e. with the divalent ions at
the cube corners (Fig. 1). The necessary theory for such
a structure is easily developed and eqns (1), (6) and (7)
can be used, provided A and B are systematically inter-
changed.

The Madelung constant for the inverse perovskite
structure could not be located in the literature. It was
evaluated to be 10.9177 by methods similar to those
described in Section 5. The relevant lattice sums S,(xyz)
have been discussed by Naor[20] and are listed in Table
3. The van der Waals coefficients can be calculated by
relations similar to (8) and (9).

The results obtained on LiBaF;, LiBaH;, LiEuH; and
LiSrH,, assuming them to be of the inverse perovskite
structure, are shown in Table 5. The fit in lattice spacing
is seen to be much improved over that obtained in Table
4, strongly supporting the idea that these four crystals
are indeed inverse perovskite types.

The lattice energies in the two structure types were
calculated using eqn (1). For instance, for LiBaF;, the
energy turned out to be —720.7 Kcal/mole in the perov-
skite structure and -789.3 Kcal/mole in the inverse
perovskite structure, suggesting that this crystal is more
stable in the inverse perovskite form. It is satisfying that,
using our theory, both the lattice spacing calculation and
the energy calculation strongly support the hypothesis
that LiBaF; prefers the inverse perovskite structure.

The relative stability of the perovskite and inverse
perovskite forms cannot be predicted on the basis of
packing alone. This is because the electrostatic inter-
action is much stronger in the former, as can be seen by
its higher value of a. Thus, a more loosely packed
perovskite structure could be more stable than a more
tightly packed inverse perovskite structure. Table 6 com-
pares the predicted lattice spacings and binding energies of
all the crystals in both the perovskite and inverse perovsk-
ite structures. The crystal NaMgF; is of particular interest
here. We notice that the theory predicts a smaller value
of the lattice spacing and hence a more compact packing
for this crystal in the inverse perovskite structure. Still,
its binding energy is only —803.8 Kcal/mole in the

Table 5. Predicated values of a and d>W,(a)/da® for some crystals in the inverse perovskite structure

L)

Crystal Neaswred Calculated Differ- :AB(R) ’BA(x) !AC(X) ’CA(R) rBC(X) rca(g) dan (D5 2
(ABCa) ence(X) Frusl esg/coh)
LtBnFa 3.996 4,095 1.48% 1.0%% 2,437 0,732 1.296 1.649 1.218 2,477
LXBAN3 4,C23 4.146 3.049 1.078 2.%12 0.738 1.33% 1.674 1.287 1.499
LlEuMJ 3.796 3.889 2.45%9 1.370 1.998 0.723 1.222 1.478 1.272 1.302
LiStMJ 3.833 3.918 2.207 1.149 2.244 (0.724 1.23% 1.494 1.276 1.636
Root mean squpre error 2.367

Mean absolute error 2.300
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Table 6. Predicted lattice spacings and binding energies of various crystals in the perovskite and inverse perovskite

structures
Crystal Measured Celculated 3 9] Binding energy (Kcal/mole)
2 (B
Parovskite Difference Inverse Difference Perovakite Inversse
; 4 perovskite ) perovskite
AQZHF3 3.98 3.769 -0.280 4,133 3.839 -304.8 ~769.3
ClClF3 4,322 4,575 1.169 5.390 19,20 -798.2 -597.4
ClCdBra 5,33 5.630 9,623 6.516 22.2% -664.0 ~508.3
Clcdcla 5.20 3.328 2,465 6.223 19.67 -699.7 -52847
CIHQBI‘] 5,77 9.72% «0,784 6,430 12.31 -677.7 -510.4
c.Hqus 5,44 5.45]) 0.19% 6.188 14,75 «710.3 -532.7
CleBta 5.374 3.3%42 1.1%6 6.436 10.60 -636.3 -509.%
Cl'bcl:s 5.60% 5,655 0.894 6.20% 10.70 ~666,2 -531.7
Cl’bfs 4.31 4,372 1,296 3.3713 11.71 =-754,4 -601.0
'KC.FS 4,371 4,418 1.077 4.%20 3,411 -81%.3 -639.8
KCdFa 4.293 4.364 1.65%4 4,%10 5.060 -823.3 «675.3
KCOFS 4,069 3.987 -2.009 4,474 9.9%3 -303.1 -696.3
KFOFs 4,122 4,007 -2.790 4.474 8.%43 =902.0 «696.3
K”QF3 3.7973 3.397 0.813 4.476 12,56 =900.3 ~676.,3
unFa 4.130 4,069 -2,877 4,477 6.860 -839.9 -696.1
KNIFJ 4.012 3.933 =1,970 4.472 11.47 ~91%.6 =-696.4
KZH.F3 4,099 4.099 1.088 4,477 10.40 -378.3 ~637.4
LiB.FJ 3,996 5.006 25.28 4,0%% 1,485 =720.7 -783.3
LiBlNJ 4,023 4.803 19.39 4.146 3.049 «707.3 -728.3
Lll\ﬂa 3,796 4,530 19.34 3.889 2.4%9 =-761.1 -771.7
Llsr"a 3,833 4,436 13,73 3.%18 2,207 -760.3 -761.%
NH‘CG:, 4.129 4,030 -2.392 4,772 15.55 -301.2 =668, 4
NH4."F3 4,241 4.103 =3.245 4,773 12.5% -837.2 -663.3
IM‘les 4,073 3.983 -2.263 4,771 17.09 -910.7 -663,4
llﬂqFa 3,9%% 3.8%% -2.440 3.319 ~3.443 -924,7 -303.8
Rbcnfa 4,452 4.453 0.124 4.904 10.15 -812.4 -651.96
RbCoFa 4,062 4,076 0.351 4.8%0 20.38 ~892.4 -651.6
Rw.Fa 4.174 4,092 -1.966 4,890 17.16 -889.) -651.6
RNqFa 4,095 4.087 =0.201 4.390 19.43 -888.1 -651.7
RblnFs 4.2%0 4.144 -2.489 4.89] 15.09 -379.7 -651.6
TlcoFs 4,138 4,040 -2.364 4.789 15.73 -301.8 -662.7
inverse  perovskite structure whereas it is already concluded from our calculations that LiBaF,

—924.7 Kcal/mole in the perovskite structure. On the
other hand, in LiSrH,, the lattice spacing in the inverse
perovskite structure is substantially smaller than in the
perovskite structure, but the two binding energies are
nearly equal. On the basis of our theory, we can say that
for LiSrH, the inverse perovskite structure is only
marginally more stable. The possibility of making such
comparisons and predictions greatly enhances the value
of the present theory. Table 6 shows that in all cases, the
calculated binding energies correctly predict the
experimentally observed structure to be energetically the
more stable one.

Among the four inverse perovskite crystals listed in
Table 4, LiBaF, has been experimentally shown[21] to
be inverse perovskite. This has been done by measuring
the intensities of its X-ray powder lines and comparing
them with the values expected for the two structures. In
fact, we became aware of this work only after we had

should be inverse perovskite. In the other three cases,
viz., LiBaH;, LiEuH,; and LiSrHs, the respective
authors{22, 23] only conjecture that the inverse perov-
skite structure is likely. The X-ray powder patterns
cannot resolve the ambiguity because the scattering
factors of Li* and H™ are nearly identical and negligibly
small compared to that of the divalent cations. The
present calculations summarized in Table 6 clearly in-
dicate that these crystals should be of the inverse
perovskite structure. In the case of LiSrH, alone the
binding energies in the two structures are nearly equal
and we are unable to predict the structure unequivocally.
However, the calculated lattice spacings resolve the
ambiguity. Neutron diffraction experiments would be
able to identify the structures of all these crystals and it
would be interesting to see how well they agree with our
theoretical predictions.

The fact that the calculated binding energies of LiSrH,
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in the two structures are so close together implies that
this crystal may transform under the action of tempera-
ture or pressure. Calculations are under way to ap-
proximately predict the conditions under which such a
transformation is likely to occur. Experiments along
these lines would be quite interesting.

Acknowledgement—The authors wish to thank Rajaram Nity-
ananda for helpful discussions.
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APPENDIX

Some thermodynamic approximations
Consider the Gruneisen's constant y

y= ! Al
C\/K ( )

where V is the volume per molecule, B is the thermal expan-
sivity, C, is the specific heat per molecule at constant volume
and K is the compressibility. It is experimentally known that y is
almost constant over a wide range of temperature. We assume
here that y is independent of pressure and that all crystals have
the same value of y which is taken to be 1.6 based on the data
available for the alkali halides. We also assume that C, is equal
to the classical value

CV =3nk (A2)
where n is the number of ions per molecule and & is the
Boltzmann constant. Equation (Al) then leads to

6

%=6.624x 10712, (A3)

where a’ is V, the volume per molecule and all quantities are
measured in C.G.S. units.
Further we know from thermodynamics that

Ky __ ﬁ) 4
(3T)p (aP T (A4)
Using (A1) we see that
3B =£(&) - AS
(ap)r k\ep), Bk (A3)

Thus we obtain the result that

T{(), -5(2%) }- -a7 - -sepax10-w2K
K{(ar), K\oP )+~ BT = -6624x 107 .

(A6)



