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2.4.1. Introduction

Isomorphous replacement is among the earliest methods to
be employed for crystal structure determination (Cork, 1927).
The power of this method was amply demonstrated in the
classical X-ray work of J. M. Robertson on phthalocyanine
in the 1930s using centric data {Robertson, 1936; Robertson
& Woodward, 1937). The structure determination of strych-
nine sulfate pentahydrate by Bijvoet and others provides an
early example of the application of this method to acentric
reflections (Bokhoven, Schoone & Bijvoet, 1951). The useful-
ness of isomorphous replacement in the analysis of complex
protein structures was demonstraied by Perntz and colleagues
(Green, Ingram & Perutz, 1954). This was closely followed
by developments in the methodology for the application of
isomorphous replacement to protein work {(Harker, 1956;
Blow & Crick, 1959} and rapidiy led to the first ever structure
solution of two related protein crystals, namely, those of
myoglobin and haemoglobin (Kendrew, Dickorson, Strand-
berg, Hart, Phillips & Shore, 1960; Cullis, Muirhead, Perutz,
Rossmann & North, 19615). Since then isomorphons replace-
ment has been the method of choice in macromolecular crys-
tallography and most of the subsequent developments in and
appllcations of this miethod have been concerned with biclogi-
cal mecromolecules, wmainly proteins {Blundeli & Johnson,

1976; McPherson, 1982).

The application of anomalous-scattering effects has often
developed in parallel with that of isomorphous replacement.
Indeed, the two methods are complementary to a substantial
extent and they are often treated together, as in this article.
Although the most important effect of anomalous scattering,
namely, the violation of Friedel’s law, was experimentally
observed as early as 1930 (Coster, Knol & Prins, 1930), two
decades elapsed before this effect was made use of for the
first time by Bijvoet and his associates for the determination
of the absolute configuration of asymmetric molecules as well
as for phase evaluation (Bijvoet, 1949, 1954; Bijvoet, Peerde-
man & van Bommel, 1951). Since then there has been a
phenomenal spust in the application of anomalous-scattering
effects (Srimivasan, 1972; Ramaseshan & Abrahams, 1975;
Vijayan, 1987). A quantitative formulation for the determina-
tion of phase angles using intensity differences between
Friedel equivalents was derived by Ramachandran & Raman
£1956), while Okaya & Pepinsky (1956} successfully developed
a Patterson approach involving anomalous effects. The
anomalous-scattering method of phase determination has
since been used in the structure analysis of several structures,
including those of a complex derivative of vitamin B,, (Dale,
Hodgkin & Venkatesan, 1963) and a small protein (Hendrick-
son & Teeter, 1981). In the meantime, the effect of changes
in the real component of the dispersion correction as a func-
tion of the wavelength of the radiation used, first demonstrated
by Mark & Szillard (1925}, also received considerable atten-

Ramaseshan, 1963). Protein crystallographers have been quick
to exploit anomaulvus-scattering effects (Rossntann, 1961;
Kartha & Parthasarathy, 1965; North, 1965; Matthews, 1966;
Heandrickson, 1979) and, as in the case of the isomorphous
replacement method, the most wuseful applications of
anomalous scattering during the last two decades have been
perhaps in the field of macromolecular crystaliography
(Kartha, 1975; Watenpaugh, Sieker & Jensen, 1975; Vijavan,

1981). In addition to anomalous scattering of X-rays, that of
neutrons was also found to have interesting applications
(Koetzle & Hamilton, 1975; Sikka & Rajagopal, 1975). More
recently there has been a further revival in the development
of anomalous-scattering methods with the advent of synchro-
tton radiation, pardcularly in view of the possibility
of choosing any desired wavelength from a synchratron-
radiation source (Helliwell, 1984).

It is clear from the foregoing that the isomorphous replace-
ment and the anomalous-scattering methods have a leng and
distinguished history. 1t is therefore impossible to do full
justice to them in a comparatively short presentation like the
present ome. Several procedures for the application of these
methods have been developed at different times. Many,
although of considerable historical importance, are not exten-
sively used at present for a variety of reasons. No attempt has
been made to discuss them in detail here; the emphasis is
primarily on the state of the art as it exists now, The available
literature on isomorphous replacement and anomalous scat-
tering is extensive. The reference list given at the end of the
articie is representative rather than exhaustive.

24.2. Isomorphous replacement method
2.4.2.1. Isomorphous replacement and isomorphous addition

Two crystals are said ic be isomorpheus if (a} both have
the same space group and unit-cell dimensions and (&) the
types and the positions of atems in both are the same except
for a replacément of one or more atoms in one structure with
different types of atoms in the other (isomorphous replace-
ment} or the presence of one or more additional atoms in one
of them (isomorphous addition). Consider two crystal struc-
tures with identical space groups and unit-cell dimensions,
one containing N atoms and the other M atoms. The N atoms
in the first structure contain subsets P and Q whereas the M
atoms in the second structure contain subsets P, ', and R.
The subset P is common to beth structures in terms of atomic
positions and atom types. The atomic positions are identical
in subsets Q and @', but at any given atomic position the
atom type is different in @ and Q". The subset R exists only
in the second structure. If Fyy and Fy; denote the structure
factors of the two structures for a given refiection,

Fx=Fs1Fq (2.42.1)

tion. This effect, which is formally equivalent to that of isomor-

phous replacement. was demonstrated to be useful in structure 204 _

determination (Ramaseshan, Venkatesan & Mani, 1957; Fu=Fp+Fo+Fp, (2.4.2.2)
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where the guantities on the right-hand side represent contribu-
tions from different subsets. From (2.4.2.1) and (2.4.2.2) we
have '

Far~Fp=Fy =Fo—Fo+Fp. (24.2.3)

The above equations are illustrated in the Argand diagram
shown in Fig- 2.4.2.1. Fg and Fo would be collinear if all the
atoms in ) were of the same type and those in Q' of another
single type, as in the replacement of chlorine ztoms in a
structure by bromine atoms.

We have a case of ‘isomorphous replacement’ if Fr=0

(Fy =Fq—F,;) and a case of “isomorphous addition’ if Fg =

Fo=0 (Fy =Fg). Once Fy is known, in addition to the
magnitudes of Fy and Fuy, which can be obtained experi-
mentally, the two cases can be treated in an equivalent manner
in reciprocal space. In deference to common practice, the
term ‘isomorphous replacement’ will be used to cover both

cases. Also, in as much as Fpy is the vector sum of Fy and -

Fyr, Fyy and Fyuy will be used synonymously. Thus

Foy=Fupy =Fa+Fs. (2.4.2.4)

2.4.2.2. Single isomorphous replacement method

The number of replaceable (of ‘added”) atoms is usually
small and they generally have high atomic numbers. Their
positions are often determined by a Patterson synthesis of
one type or another (see Chapter 2.3). It will therefore be
assumed in the following discussion that Fy is known. Then
it can be readily seen by referring to Fig. 2.4.2.2 that

o Fhe—Fy—Fh

@y = O ~— COS
~ 2FpFy

=angt@; (2.4.2.5)
when ¢ is derived from its cosine function, it could obviously
be positive of negative. Hence, there are two possible solutions
for ay. These two solutions are distributed symmetrically
about Fy. One of these would correspond to the correct value
of ay. Therefore, in general, the phase angle cannot be unam-
biguously determined using a pair of isomorphous crystals.

The twofold ambiguity in phase angle vanishes when the
structuyres are cenirosymmetric. ¥yy, Fu, and Fy are all real

in centric data and the corfesponding phase angles are 0 or
180°. From (2.4.2.4), we then have

Fes = Fry = Fy. (2.42.6)
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The sign of Fy is already known and the signs of Fyy-and
Fy can be readily determined from (2.4.2.6) (Robertson &
Woodwaxd, 1937).

When the data are acentric, the best one can do is to use
both the possible phase angles simultaneously in a Fourier
synihesis {Bokhoven er al, 1951). This double-phased syn-
thesis, which is equivalent to the isomorphous synthesis of
Ramachandran & Raman (1959), contains the structure and
its inverse whem the replaceable atoms have a centrosymmetric
distribution (Ramachandran & Srinivasan, 1970). When the
distribution is noncentrosymmetric, however, the synthesis
contains peaks corresponding to the structure and gemeral
background. Fourier syntheses computed using the single
isomorphous replacement method of Blow & Rossmanmn
(1961) and Kartha (1961) have the same properties. In this
method, the phase angle is taken to be the average of the two
possible solutions of ay, which is always ay or ay +180°
Also, the Fourier coeificients are muliiplied by cos ¢, follow-
ing arguments based on the Blow & Crick (1959) formulation
of phase svaluation (see Subsection 2.4.4.4). Although Blow
& Rossmann {1961) have shown that this method could vield
interpretable protein Fourier maps, it is rarely used as such
in protein crystallography as the Fourier maps computed using
it usually have unaccepiable background levels (Blundell &
Johnson, 1976).

24.2.3. Multiple isomorphous replacement method

The ambiguity in ay in a noncenirosymmetric crystal can
be resolved only if af least two crystals isomorphous to it are
available (Bokhoven et al, 1951). We then have two equations
of the type {2.4.2.5), namely,

&N = &gk @y

and (2427

N =gk o,

where subseripts 1 and 2 refer to isomorphous crystals 1 and
2, respectively. This is demonstrated graphically in Fig. 2.4.2.3
with the aid of the Harker {1956) construction. A circle is
drawn with Fyy as radius and the origin of the vector diagram
as the centre. Two more circles are drawn with Fuyq and
Fuiez as radii and the ends of vectors ~Fy, and —~Fy,, respec-
tively as centres. Each of these circles intersects the Fyy circle
at two poinfs corresponding to the two possible solutions.
One of the points of inierseciion is common and this point
defines the correct value of a,. With the assumption of perfect
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Fig. 2.4.2.3. Harker construction when two heavy-atom derivatives
are available,

isomorphism and if errors are neglected, the phase circles
corresponding to all the crystals would intersect at a common
pointif a number of isomorphous crystals were used for phase
determination.

2.4.3. Anomalous-scattering methed

2.43.1. Dispersion correction

Atomic scarttering factors are normalty calculated on the
assumption that the binding energy of the electrens in an
atom is negligible compared to the emergy of the incident
X-riys and the distribution of electrons is sphericaily sym-
metric. The transition frequencies within the atom are then
negligibly small compared to the frequency of the radiation
used and the scattering power of each electron in the atom

" is close to that of a free electron. When this assumption is
valid, the atomic scattering factor is a real positive rumber
and its value decreases as the scattering angle increases
because of the finite size of the atom. When the binding energy
of the electrons is appreciable, the atomic scatiering factor at
any given angle is given by

fot i, (2.43.1)

where f; is a real positive number and corresponds to the
atomic scattering factor for a spherically symmetric collection
of free electrons in the atom. The second and third terms are,
respectively, referred to as the real and the imaginary com-
ponents of the ‘dispersion correction’ (IT IV, 1974}, ' is
usually negative whereas f" is positive. For any given atom,
f" is obviously 90° ahead of the real part of the scattering
factor given by

F=h+f" (2432)

The variation of f" and f* as a function of atomic number
for two typical radiations is given in Fig, 2.4.3.1 (Srinivasan,
1972; Cromer, 1965). The dispersicn efiects are pronounced
when an absorption edge of the atom concerned is in the
neighbourhood of the wavelength of the incident radiation.
Atoms with high atomic numbers have several absorption
edges and the dispersion-corraction terms in thelr scattering
factors always have appreciable values. The values of f" and
" do not vary appreciably with the angle of scattering as they
are caused by core electyons confined to a very small volume
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Fig, 2.4.3.1. Variation of (a) " and (b) f" as a function of atomic
mmber for Cu Ke and Mo Ka radiations. Adapted from Fig. 3
of Srinivasan (19732).

around the nucleus. An atom is usually referred to as an
ancomazlous scatterer if the dispersion-correction terms in iis
scaitering factor have appreciable values. The effects on the
structure factors or intensities of Bragg reflections resulting
from dispersion corrections are referred to as' anomalous-
dispersion effects or anomalous-scattering effects.

2.43.2. Violation of Friedel's law

Consider a structure containing N atoms of whick P are
normal atoms and the remaining @ anomalous scatterers. Let
¥, dencte the contribution of the P atoms to the structure,
and Fp and Fg the real and imaginary components of the
contribution of the @ atoms. The relation between the different
contributions to a reflection h and its Friedel equivalent —h
is illustrated in Fig. 2.4.3.2. For simplicity we assume here
that all Q atoins are of the same type. The phase angle of Ff,
is then exactly 90° ahead of that of Fg. The structure factors
of b and —h are denoted in the figure by Fu(+) and ¥y (),
respectively. In the absence of anomalous scattering, or when
the imaginary component of the dispersion correction is zero,
the magnitudes of the two structure factors are equal and
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Fig. 2.4.3.2. Vector diagram iliustrating the vmlahon of Friedel’s law
when F§ # 0.

Frizdel’s law 1s obeyed: the phase angles have equal magni-
tudes, but opposite signs. As can be seen from Fig. 2.4.3.2,
this is o longer true when Fg has a non-zero value. Friedel’s
law is then violated. A composite view of the vector relation-
ship for ik and —h can be obtained, as in Fig. 2.43.3, by
reflecting the vectors corresponding to —k about the real axis
of the vector diagram. ¥, and F; corresponding to the two

reffections superpose exactly, but F do not. Fu{4) and.

Fu(—) then have different magmiudes and phases.

It is easily seen that Friedel’s law is obeyed in cemiric daia
even when anomalous scatterers are present, Fp and ¥y, are
then paralte} to the real axis and ¥} perpendicular to it. The
vector sum of the thiee components is the same for h and —h
It may, however, be noted that the phase angie of the structure
factor is then no longer 0 or 180°. Even,when the structure is
noncenirosymmetric, the effect of anomalous scattering in
terms of intensity dlﬁerences ‘between Friedel equivalents
varies from reflection to reﬂectlon The diiference between
Fu{+) and Fy(—) is zere when ap=eaq or ag+ 180°. The

'
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Fig. 2.4.3.3, A composite view of the vector relationship between
Fol+) and Fu{-).
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difference tends to the maximum possible value (2F}) when
&p =g+ 50°

Intensity differences between Friedel equivalents depend
also on, the ratio (in terms of number and scattering power)
between anomalous and normal scatterers. Differences
obviously do not occur when all the atoms are normal scat-
terers. On the other hand, a structure containing only
anomalous scatterers of the same type also does not give rise
to intensity differences. Expressions for intensity differences
between Friedel equivalents have been derived by Zachariasen
(1965) for the mast general case of a structure containing
normal as weli as different types of anomalous scatierers.
Statistical distributions of such differences under various con-
ditions have also been derived (Parthasarathy & Srinivasan,
1964; Parthasarathy, 1967). It turns out that, with a single
type of anomalous scattersr in the structure, the ratio

A — FR-)

P+ FL(-)
has a maximym mean value when the scattering powers of
the anomalous scatterers and the normal scatterers are nearly
the same (Srinivasan, 1972). Also, for a given ratio between

the scattering powers, the smaller the number of anomalous
scatterers the higher is the mean ratio.

2.4.3.3. Friedel and Bijvoet pairs

The discussion so far has been concerned essentially with
crystals belonging to space groups Pl and PI1. In the cen-
trogymmetric .space group, the crystal and the diffraction
pattern have the same symmetry, namely, an inversion centre.
In P1, however, the erystals are noncentrosymmetric while
the diffraction pattern has an inversion centre, in the absence
of anomalous scattering. When anomalous scatterers are pres-
ent in the structure (K77 0), Friedel’s law breaks down and
the diffraction patiém no longer has an inversion centre. Thus
the diffraction pattern displays the same symmetry as that of
the crystal in the presence of anomalous scattering. The same
is trne with higher-symmetry space groups also. For example,
consider a crystal with space group P222, containing
anomalous scatterers. The magnitudes of Fp are the same for
all equivalent refiections; so are those of Fg and F,. Their
phase angles, however, differ from one equivalent to another,
as can be seen from Table 2.4.3.1. When F% =0, the magni-
tudes of the vector sum of Fp and Fy are the same for all the
equivalent reflections. The intensity pattern thus has point-
group symmetry 2/m 2/ m 2{ m. When F}, # 0, the equivalent
reflections can be e grouped into two sets in terms of their
intensities: hkf, hkI, Bkl and hki; and B, hki, bki, and hkl
The equivalents belongmg to the first group have the same
intenisity; so have the equivalents in the second group. But
the two intensities are different. Thus the symmetry of the
patiern is 222, the same as that of the crystal.

Table 2.4.3.1. Phase angles of different. components of the
structure factor in space group P222

Phase angle {*) of
Reflection ¥p - Fg | O
hKE Rk
Eklfi, e ap ag KWt e,
hkI, Bkt ;
hiL BT —er —%o 0-aq
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In general, under conditions of anomalous scattering,
equivalent reflections generated by the symmetry elements in
the crystal have intensities different from those of equivalent
reflections generated by the introduction of an additional
inversion centre in normal scattering. There have been sugges-
tions that a reflection from the first group and another from
the second group should be referred to as a ‘Bijvoet pair’
instead of a ‘Friedel pair’, when the two reflactions are not
inversely related. Most often, however, the termns are used

synonymously. The same practice will be followed in this
article,

2.4.3.4. Determination of absolute configuration

The determination of the absolute configuration of chiral
molecules has been among the most important applications
of anomalous scattering. Indeed, anomalons scattering is the
only effective method for this purpose and the method, first
used in the early 1950°s (Peerdeman, van Bommel & Bijvoet,
1951), has been extensively employed in structural crystai—
lography (Ramaseshan, 1963; Vos, 1975).

Many motecules, partlcularly blologlca]ly important ones,
are chirai in that the molecular structure is not superimposable
on its mirror image. Chirality (handedness) arises primarify
on account of the presence of asymmetric carbon atoms in
the molecule. A tetravalent carbon is asymmetric when the
four atoms (or groups) bonded to it are all different from one
another. The substitnents can then have two distinct arrange-
menis which are mirror images of (or related by inversion to)
each other. These optical isomers of enantiomers have the
same chemical and physical properties except that they totate

the plane of polarization in opposite directions when polarized ~

light passes through themn. It is not, however, possible to
calculate the sign of optical rotation, given the exact spatial
arrangement or the “absolute configuration® of the molecule.
Therefore, one capnot distinguish between the possible enan-
tiomorphic configurations of a given asymmetric molecule
from measurements of optical rotation. This is also true of
molecules with chiralities generated by overall asymmetric
seometry instead of the presence of asymmetric carbon atoms
in them.

Normal X-ray scattering does not distinguish between enanﬂ
tiomers. Two structures. A (x;, ¥, z) and B (—x;, -, —z)
(j=1... N} obviously produce the same diﬁracﬁon pattern
on account of Friedel’s law. The situation is, however, different
when anomalous scatterers are present in the structure. The
intensity diffcrence between reflections h and —b, or that
between members of any Bijvoet pair, has the same magnitude,
but opposite sign for structures A and B. If the atomic coordin-
ates are knowm, the intensities of Bijvoct pairs can he readily
calculated. The absclute configuration can then be deter-
mined, Le. one can distinguish between A and B by comparing
the calculated intensities with the observed ones, for a few
Bijvoet pairs with pronounced anomalous sffects.

2.4.3.5. Determination of phase angles

An important application of anomalous scattering is in the
determination of phase angles using Bijvoet “differences
(Ramachandran & Raman, 1956; Peerdeman & Bijvoet, 1956).
From Figs. 2.4.3.2 and 2.4.3.3, we have
F”2+2FN

o cos 6

Fi(+)=F% (24.3.3)

and

Fl{—)Y=Fu+F5—-2FuF}cos 8. (2.4.3.4)
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Then

Ful+)—Fr(-)
4Fy ’g_,

cos § = (2.43.5)

In the above equations Fy may be approximated to
[Frn{+)+ Fn(—)1/2. Then @ can be evaluated from (2.4.3.5)

except for the ambiguity in its sign. Therefore, from Fig.
2.4.3.2, we have
fp=a,+orE, (2.43.6)

The phase angle thus has two possible values symmetrically

- distributed about Ff,. Anomalous scatterers are usually heavy

atoms and their positions can most often be determined by
Patterson methods. ¢, can then be calculated and the two
possible values of aN for each reflection evaluated using
(2.4.3.6).

In practice, the twofold ambignity in phase angles can often
be resolved in a relanve]y straightforward manner. As indi-
cated earlier, anomalous scatterers usually have relatively high
atomic numbers. The ‘heavy-atom’ phases calculated from
their positions therefore contain ),useful information. For any
given reflection, that phase angle’which is closer to the heavy-
atom phase, from the two phases calculated using (2.4.3.6),
may be taken as the correct phase angle. This method has
been successfully used in several structure determinations
including that of a derivative of vitamin B (Dale et &l 1963).
The same method was also employed in a probabilistic fachion
in the structure solution of a small protein {Hendrickson &
Teéter, 1981). A method for obtaining a nnique, but approxi-

mate, solution for phase angles from (2.4.3.6) hes also been

suggested (Srinivasan & Chacko, 1970), An accarate unigque
solution for phase angles can be obtained if one collects two
sets of intensity data using two different wavelengths whish
have different dispersion-correction terms for the anomalous
scatterers in the structure. Two eqnations of the type (2.4.3.6)
are then available for each reflection and the solution common
to both is obviously the correct phase angle. Different types
of Patterson and Fourier syatheses can also be employed for
structure sclution using intensity differences between Bijvoet
equivalents {(Srinivasan, 1972; Okaya & Pepinsky, 1956;
Pepinsky, Okaya & Takeuchi, 1957).

An interesting situation occurs when the replaceable atoms
in a pair of isomorphous structures are anomalous scatterers.
The phase angles can then be uniquely determined by combin-
ing isomorphous replacement and anomalous-scattering
methods. Such situations normally occur in protein crystal-
lography and are discussed in Subsection 2.4.4.5.

24.3.6. Anomalous scattering without phase change

The phase determination, and hence the structure solution,
outlined above relies on the imaginary component of the
dispersion correction. Variation in the rea! component can
also be used in structure analysis. In early applications of
anomalous scattering, the real component of the dispersion
correction was made use of to distinguish between atoms of
nearly the same atomic numbers (Mark & Szillard, 1925;
Bradley & Rodgers, 1934). For example, copper and
manganese, with atomic numbers 29 and 23, respectively, are
not easily distinguishable under normal X-ray scattering.
However, the real components of the dispersion correction
for the two elements are —1.129 and —3.367, respectively,
when Fe Ke radiation is used {IT IV, 1974). Therefore, the
difference between the scaftering factors of the two elements
is accentuated when this radiation is used. The difference is
more pronounced at high angles as the normal scattering




2.4.

factor fails off comparatively rapidly with increasing scattering
angle whereas the dispersion-correction term does not.

The structure determination of ¥KMnO, provides a typical
example for the use of anomalous scattering without phase
change in the determination of a centrosymmetric structure
{Ramaseshan, Venkatesan & Manpi, 1957; Ramaseshan & Ven-
katesan, 1957). ' and " for manganese for Cu Ke radiation
are —0.568 and 2.808, respectively. The corresponding values
for Fe Ko radiation are —3.367 and 0.481, respectively (IT IV,
1974). The data sets collecied using the two radiations can
now be treated as those arising from two perfectly isomor-
phkous crystals. The intensity differences between a reflection
in one set and the corresponding reflection in the other are
obviously caused by the differences in the dispersion-correc-
tion tgrms. They can, however, be considered formally as
intensity differences involving data from two perfectly isomor-
phous crysials. They can be used; as indeed they were, to
determine the position of the manganese ion through am
appropriate Patterson synthesis {see Subsection 2.4.4.2} and
then to evaluate the signs of structure factors using {2.4.2.6)
when the structure is centrosymmpetric. When the structure is
noncentrosymmetric, a twofold ambiguity exists in the phase
angles in a manner apalogous o that in the isomorphous
replacement tethod. This ambiguity can be removed if
the structure contains two different subsets of atoms Q1 and
Q2 which, tespectively, scatter radiations Ay, and Ag,
anomalously. Data sets can then be collecied with A, which
is scattered normally by all atoms, Agy and Ag;. The three
sets can be formally treated as those from three perfectly
lSOmorthuS siructures and the phase determminaiion eﬁected
using (2.4.2.7) (Ramaseshan, 1963).

2.43.7. Trestment
refinernent

of anomalous scattering in  Structure

The effect of anomalous scatiering needs to be taken into
acceunt in the refinement of structures containing anomalous
scatterers, if accurate atomic parameters are reguired. The
effect of the real part of the dispersion correction is largely
confined to the thermal parameters of anomalous scatterers.
This effect can be eliminated by simply adding f” to the normat
scattering factor of the anomalous scatterers.

The effects of the imaginary component of the dispersion
correction are, however, more complex. These effects conld
lead to serious errors in positional parameters when the space
group is polar, if data in the entire diffraction sphere are not
used (Ueki, Zalkin & Templeton, 1966; Cruickshank &
McDaonald, 1967). For example, accessible data in a hemi-
sphere are normally used for X-ray analyiis when the space
group is P1. If the hemisphere has say!h positive, the x
coordinates of all the atoms would be in error when the
structure contains anomalous scatterers. The sitnation in other
polar space groups has been discussed by Cruickshank &
MecDonald (3967), In general, in the presence of anomalous
scattering, it is desirable to coilect data for the complete
sphere, if accurate structural parameters are required
(Srinivasan, 1972).

Methods have been derived to correct for dispersion effects
in observed data from cenirosymmeiric and noncentrosym-
metric crystals (Patterson, 1963). The methods are empirical
and depend npon the refined parameters at the stage at which
corrections are applied. This is obviously an unsatisfactory
situation and it has been suggested that the measured structure
factors of Bijvoet equivalents should instead be treated as
independent observations in structure refinement (Thers &
Hamilton, 1964).. The effect of dispersion corrections needs
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to be taken into account to arrive at the correct scale and

temperature factors also (Wilson, 1975; Gilli & Cruickshank,
1973).

244, Ysomorphous veplacement and anomalous scattering in
protein erystallography

2.4.4.1. Protein heavy-aiom derivatives

Perhaps the most spectacular applications of isomorphous
replacement and anomalous-scattering methods have been in
the structure solution of large biological macremolecules,
primarily proteins. Since its first successful applieation on
myoglobin and haemoglobm the 1somorphous replacement
methed, which is often used im conjunction with the
anomalous-scattering method, has been employed in the sol-
ution of scores of proteins. The application of this method
involves the preparaticn of protein heavy-atom derivatives,
i.e. the attachment of heavy atoms like mercury, uranium, and
lead or chemical groups coutaining them, to protein crystals
in a coherent manner without changing the conformation of
the molecules and their crystal packing. This is only rarely
possible in ordinary crystals as the molecules in them are
closely packed. Protein crystals, however, contain large sol-
vent regions and isomorphous derivatives can be prepared by
replacing the disordered solvent molecules by heavy-atom-
containing groups without disturbing the ongma] afrangement
of protein molecules.

2.4.4.2. Determination of heavy-atom parameters

For any given reflection, the structure factor of the native
protein crystal {Fy), that of a heavy-atom derivative (Fyg),
and the contribution of the heavv atoms in that derivative
(Fy) are related by the equation

Fup =Fn+Fg. (2.44.1)

.The value of Fy depends not onty on the positional and
thermal parameters of the heavy atoms, but also on their
occupancy factors, because, at a given position, the heavy
atom may not often be present in all the unit cells. For
example, if the heavy atom is present at a given position in

-only half the unit cells in the crystal, then the occupancy
factor of the site is said to be 0.5. )

For the successful determination of the heavy-atom par-
ameters, as also for the subsequent phase determination, the
data sets from the nafive and the derivative crystals should
have the same relative scale. The different data sets should
also have the same overall temperature factor, Different scal-
ing procedures have been suggested (Blundell & Johnsen,
1976) and, among them, the following procedure, based on
Wilson’s (1942) statistics, appears to be the most feasible in
the early stages of structure analysis.

Assuming that the data from the native and the derivative

crystals obey Wilson's statistics, we have, for any range of
sin? 8/A%,

2 2
In {Z'_if ”’} =In KN+ZBN%29

T (24.42)
and
, R
In {Z———~f P oS ”1} =lo Kpgy +2Brp— " sin’ 8 (2443)
{Fm) a2

where fi; and fiy refer to the atomic scattering factors of
protein atoms and heavy atoms, respectively. Ky and Kygy
are the scale factors to be applied to the intensities from the
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native and the derivative crystals, respectively, and By and
By the temperature factors of the respective structure factors.
Normally one would be able to derive the absolute scale factor
and the teruperature factor for both the data sets from (2.4.4.2)
and (2.4.4.3) using the well known Wilsor plot. The data from
protein crystals, however, do not follow Wilson®s statistics as
protein molecules contain highly non-random features. There-
fore, in practice, it is difficult to fit a straight line through the
points in 2 Wilson plot, thus rendering the parameters derived
from it unreliable, (2.4.42) and (2.4.4.3) can, however, be
used in a different way. From the two equations we obtain

" {zﬁwzﬁg_ (F1) }

S5 (Fh
o i2g -
=In (}Nf) +2(Bugr — Bw) i‘%w . (24.4.4)

The effects of structural non-randomness in the crystals
obvigusly cancel out in (2.4.4.4). When the left-hand side of
(2.4.4.4) is plotted against (sin® 8)/ A itis called a comparison
or difference Wilson plot. Such plots vield the ratio between
the scales of the derivative and the native data, and the
additional temperature factor of the derivative data. Initially,
the number and the occupancy factors of heavy-atom sites
age unknown, and are roughly estimated from intensity
differences to evaluate Y. f %U These estimates usually undergo
considerable revision in the course of the determination and
the refinement of heavy-atom parameters.

At first, heavy-atom positions are most often determined
by Patterson syntheses of one type or another. Such syntheses
are discussed in some detail elsewhere in Chapter 2.3. They
are therefore discussed here only briefly,

Equation (2.4.2.6) holds when the data are centric. Fyy 1s
usually small compared to Fy and Fuy, and the minus sign
is then relevant on the left-hand side of (2.4.2.6). Thus the
difference between the magnitudes of ¥y and ¥, which can
be obtained experimentally, normally gives a correct estimate
of the magnitude of Fy for most reflections. Then a Patterson
symthesis with {Fyer — Fiy)” as coefficients corresponds to the
distribution of vectors between heavy atoms, when the data
are cenfric. But proteins are made up of r-amino acids and
hence cannot orystallize in centrosymmetric space groups.
However, many proteins crystallize in space groups with cen-
trosymmetric projections. The ceniric data corresponding to
these projections can then be used for determining heavy-atom
positions through a Patterson synthesis of the type outlined
above. :

The situation is more complex for three-dimensional acen-
tric data. It has been shown {Rossmann, 1961) that

(Frg — Fn Y == Fr co5” (ep — ota1) (2.4.4.5)
when Fy is small compared to Fyy and Fy. Patterson syn-
thesis with (Fygy — Fiv)? as coefficients would, therefore, give
an approximation to the heavy-atom vector distribution. An
isomorphous differenice Patterson synthesis of this type has
been used extensively in protein crystallography to determine
heavy-atom positions. The properties of this synthesis have
been extensively studied {Ramachandran & Srinivasan, 1970,
Rossmann, 1960; Phillips, 1966; Dodson & Vijayan, 1971}
and it has been shown that this Patferson synthesis would
provide a good approximation to the heavy-atom vector distri-
bution even when Fy is large compared to Fy {Dodson &
Vijayan, 1971).

As indicated earlier (see Subsection 2.4.3.1), heavy atoms
are always anomalous scatterers, and the structure factors of

any given reflection and its Friede} equivalent from a heavy-
atom derivative have unequal magnitudes. If these structure
factors are denoted by Fyg(+) and Fyu(—) 2ud the real
component of the heavv-atom coniributions (including the
real component of the dispersion correction) by Fy, then it
can be shown (Kartha & Parthasarathy, 1965) that

(%) than) - R

= F2 stn® (oo — @5 ), (2.4.4.6)

where k= (f; +f &)/ f%. Here it has been assumed that ail
the anomalous scatterers are of the same type with atomic
scattering factor fz and dispersion correction terms [y and
f%. A Patterson synthesis with the left-hand side of {2.44.6)
as coefficients would also yield the vector distribution corre-
sponding to the heavy-atom positions {Rossmann, 1961;
Karthz & Parthasarathy, 1965). However, Frg{+) — Fup(—)
is a small difference between two large quantities and is liable
to be In considerable error. Patterson syntheses of this type
are therefore rarely :used {0 determine heavy-atom positions.

It is interesting to note (Kartha & Parthasarathy, 1965) that
addition of (2.4.4.5) and (2.4.46) readily leads:to

k 2 A
(Fnp — FN)_z"" (E) [Fung(+)— FNH(A).]Z =Fy. (2447

Thus, the magnitude of the heavy-atom contribution can be
estimated if intensities of Friedel equivalemts have been
measvred from the derivative crystai. Fyy is then not readily
available, but to a good approximation

Frg =[Fua{t) T Fop(-)172. (2.4.48)

A different and more accurate expression for estimating Fy
from isomorphous and anomalous differences was derived by
Matthews (1956). According to a stil more accurate
expression derived by Singh & Ramaseshan (1966},

Fi= Fomt Fau—2FuFu c0s (ay —ang)
= F%@H+F?Ui2FNHFN
% (1 =4k Frir (+) — Fa{=3)/2Fe V2. (2449)

The lower estimate in (2.4.4.9) is relevant when loy — anu| <
90° and the upper estimate is relevant when | oy — aag > 90°
The lower and the upper estimates may be referred to as Fy
and Fiyg, respectively. It can be readily shown. (Dodson &
Vijayan, 1971) that the lower estimate would represent the
correct vatue of Fyr for a vast majority of reflections. Thus,
a Patterson synthesis with Fo, . as coefficients would yield
the vector distribution of heavy ators in the derivative. Such
a synthesis would normally be superior to those with the
left-hand sides of (2.4.4.5) and (2.44.6) as coeflicients.
However, when the level of heavv-atom substitution is low.
the anomalous. differences are also low and susceptible to
large percentage errors. In such a situation, a synthesis with
{ Forr — Fo ) a5 coefficients is likely to yield better results than
that with Fiy, p as coeficients {Vijayan, 1981).

Direct methods employing different methodologies have
also been used successfully for the determination of heavy-
atom positions (Navia & Sigler, 1974). These methods,
developed primanly for the analysis of smaller structures,
have mot yet been suceessful in a priori analysis of protein
structures. The very size of protein structures makes the proba-
bility relations uvsed in these methods wezk. In addition, data
from protein crystals do not normally extend to high enough
angles to permit resolution of individual atoms in the structure
and the feasibility of using many of the currently popular

270




24,

direct-method procedures in such a situation has been a topic
of much discussion. The heavy atoms in proiein derivative
crystals, however, are small in number and are normally
situated far apart from one another. They are thus expected
to be resolved even whén low-resolution X-ray data are used.
In most applications, the magnitndes of the differences
between Fuyy and Fpy are formally considered as the ‘observed
structure factors’ of the heavv-atom distribution and conven-
tional direct-method procedures are then applied to them.

Once the heavy-atom parameters in one or more derivatives
have been determined, approximate protein phase angles,
ay's, can be derived using methods described later. These
phase angles can then be readily used to determine the heavy-
atom parameters in 2 new derivative employing a dlﬁcrence
Fourier synthesis with coefficients

{Frgr — Fre) ep (i) (2.44.10)

Such syntheses are 2lso used to confirm and to improve upon
the information on heavy-atom parameters obtained through
Patierson or direct methods. They are obviously very powerful
when centric data corresponding to centrosymmetric projec-
tions are used. The svathesis yields satisfactory results even
when the data are acentric although the difference Fourier
technique becomes progressively less powerful as the level of
heavy-atom substitution increases (Dodson & Vijavan, 1971).

While the positional parameters of heavy atoms can be
determined with a reasonable degree of confidence using the
above-mentioned methods, the corresponding temperature
and occupancy factors cannoi. Rough estimates of the latter
are usnally made from the strength and the size of appropriate
peaks in difference syntheses. The estimated values are then
refined, along with the positional parameters, using the
techniques ocutlined below,

2443, Refinement of heavy-atom parameters

The least-squares method with different types of minimiz-
ation functions is used for refining the heavy-atom parameters,
including the occupancy factors. The most widely used
method (Dickerson, Kendrew & Sirandberg, 1961; Muirhead,
Cox, Mazzarella & Perutz, 1967; Dickerson, Weinzierl &
Palmer, 1968) involves the minimizaticn jof the function

¢ =X w(Fny —Fn+Fed)’, {2.4.411)

where the summation is over all the reflections and w is the
weight factor dssociated with-each reflection. Here Fg is the
observed magnitude of the structure factor for the particutar
derivative and Fp, +Fy is the calculated structure factor. The
latter obviously depends upon the protein phase angle ay,
and the magnitude and the phase angle 'of Fy which are in
turn dependent on the heavy-atomn parameters. Let us assume
that we have three derivatives A, B, and C, and that we have

already determined the heavy.atom parameters HA, HB,, and
HC,. Then,

Fua =,FHA(HAi) i
Fyp= FHB(HBi) '
FHC = FHC(HC.')-

A set of approximate protein phase angles is first calculated,
employing methods described later, making use of the
uarefined heavy-atom parameters. These phase angles are
used to construce Fy +F,, for each derivative. (2.4.4.11) is
then minimized, separately for each derivative, by varying
HA; for derivative A, HB; for derivative B, and H(,; for
derivadive C. The refined valnes of HA,, HB,, and HC, are

{24.417)

ISOMORPHOUS REPLACEMENT AND ANOMALOUS SCATTERING

subsequently used to calculate a new set of protein phase
angles. Alternate cycles of parameter réfinement and phase-
angle caleulation are carried out until convergence is reached.
The progress of refinement may be monitored by computing
an R factor defined as {Kraut, Sieker, High & Freer, 1962)

E |FNH _IFN +FH”
Fun

The above method has been successfully used for the
refinement of heavy-.atom parameters in the X-ray analysis of
many proteins. However, it has one major drawback in that
the refined parameters in ong derivative are dependent on
those in other derivatives through the calculation of protein
phase angles. Therefore, it is important to ensure that the
derivative, the heavy-atom parameters of which are being
refined, is omitted from the phase-angle calculation {Blow &
Matthews, 1973). Even when this is done, serious problems
might arise when different derivatives are related by common
sites. In practice, the occupancy factors of the common sites
tend to be overestimated compared to those of the others
(Vijayan, 1981; Dodson & Vijayan, 1971). Yet another factor
which affects the occupancy factors is the accuracy of the
phase angles. The inclusion of poorly phased reflections tends
to result in the underestimation of ocoupancy factors. It is
therefore advisable to omit from refinement cycles reflections
with figures of merit less than a minimum threshold value or
to assign a weight proportional to the figure of merit (as
defined later) to each term in the minimization function {Dod-
son & Vijayan, 1971; Blow & Matthews, 1973).

If anomazlouvs-scattering data from derivative erystals are
available, the values of Fy can be estimated using (2.4.4.7)
or (2.4.4.9) and these can be used as the ‘observed’ magnitudes
of the heavy-atom contributions for the refinement of heavy-
atom parameters, as has been done by many workers {Waten-
paugh er al, 1975; Vijayan, 1581; Kartha, 1965). If (2.4.4.9)
is used for estimating Fy, the minimization function has the
form

Ry = (2.44.13)

¢ =% w(Fue—Fg). L(24414)

The progtess of refinement may be monitored using a
reliability index defined as
Fyl '

| Fas—
PR -l iy
¥ Fare

The major advantage of using Fuy z’s in refinement is that
the heavy-atom parameters in each derivative can now be
refined independently of all other derivatives. Care should,
however, be taken to omit from calculations all reflections for
which Frepe is likely to be the correct estimate of Fy. This
can be achieved in practice by excluding from leasi-squares
calculations all reflections for which Fy has a valoe less
than the maximom expected value of Fy; for the given deriva-
tive (Vijayan, 1981; Dodson & Vijayan, 1971).

A major problem associated with this refinement method
is concerned with the effect of experimental errors on refined
parameters. The values of Fuyy(+) - Fyg(~) are often com-
parable to the experimental ervors associated with Fogr(+)
and Fru(—). In such a situation, even random ermrors in
Fyu{+) and Fyp(—) tend to increase systematically the
observed difference between them {Dodson & Vijayan, 1971).
In (2.4.4.7) and (2.4.49), this difference is multiplied by k or
k/2, a quantity much greater than unity, and then squared.
This could lead to the systematic overestimation of Fyig’s
and the consequent overestimation of occupancy factors. The
situation can be improved by employing empirical values of

(24415}
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k, evaluated using the relation (Kartha & Parthasarathy, 1965;
Matthews, 1966}

23 [Frer — Ful
Y|P (Y= Fryu ()]

for estimating Fy; g or by judiciously choosing the weighting
factors in (2.4.4.14) (Dodson & Vijayan, 1971). The use of 2
inodified form of Fuy £, artived at through statistical consider-
ations, along with appropriate weighting factors, has also been
advocated (Dodson, Evans & French, 1975).

When the data are centric, (2.4.4.9) reduces to

Fy=

- Here, again, the lower estimate mosi often corresponds to the
correct value of Fg. (2.4.4.17) does not involve Fyy(+)—
Frp(—) which, as indicated earlier, is prone to substantial
error. Therefore, Fj’s estimated using centric data are more
reliable than those estimated using acentric data., Com-
sequently, centric reflections, when available, are extensively
used for the refinement of heavy-atom parameters. It may also
be noted that in conditions under which Fyy corresponds
to the correct estimate of Fg, minimization functions (2.4.4.11)
and (2.4.4.14) are identical for centric data.

A Patterson function correlation method with 2 minimiz-
ation function of the type '

=1 wl(Fuy —Fy ¥~ F4T

was among the earliest procedures Suggested for heavy-atom
parameter refinement (Rossmann, 1960). This procedure
would obviously work well when centric refiections are used.

k= (2.4.4.16)

Fpy = Foge

A modified version of this procedure, in which the origins of

the Patterson functions are removed from the correlation, and
centric and acentric data are treated separately, has been
proposed recently (Terwilliger & Eisenberg, 1983).

24.4.4. Treatment of errors in phase evaluation: Blow and Crick
Jormulation

~ Asshown in Subsection 2.4.2.3, ideally protein phase angles
can be evaluated if two isomorphous heavy-atom derivatives
are available. However, in practice, conditionis are far from
ideal on accoumt of several factors such as imperfect
isomorphism, errors in the estimation of heavy-atom param-
eters, and the experimental errors in the measurement of
intensity from the native and the derivative crystals. It is

therefore desirable to use as many derivatives as are available’

for phase determination. When isomorphism is imperfect and
errors exist in data and heavy-atom parameters, none of the
circles in a Harker diagram would intersect at a single point;
-instead, there would be a distribution of intersections, such
as that iHlustrated in Fig. 2.4.4.1. Consequently, a2 unique
solution for the phase angle cannot be deduced.

The statistical procedure for computing protein phase
angles using muliiple isortorphous replacement (MIR} was
derived by Blow & Crick {1939). In their treatment, Blow and
Crick assume, for mathematical convenience, that all errors,
including those arising from imperfect isomorphism, could
be considered as residing in the magnitudes of the derivative
structure factors only. They further assume that these errors
could be described by a Gaussian distribution. With these
simplifying assumptions, the statisiical procedure for phase
determination could be derived in the following manner.

Consider the vector diagram, shown in Fig. 2.4.4.2, for a
reflection from the ith derivative for an arbitrary value a for
the protein phase angle. Then, ’

Dyl@) = [Fi+ Fly+ 2FFe cos (ag - a)]7 (24.419)
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Fig. 2.4.4.1. Distributjon of intersections in the Harker construction
under nen-ideal conditions,

o 4
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Di

Fig. 2.4.4.2, Vector diagram indicating the calculated structure
factor, Dyp(a), of the ith heavy-atom derivative for an arbitrary
value o for the phase angle of the structure factor of the native
proiein.

‘I « corresponds to the true protein phase angle ay, then Dy

coincides with Fyp. The amount by which Dg(e) differs
from Fpgy, namely,

Eim(a} = Frn _Dﬂs(ﬂ_’), (2.4.4.20)

is a measure of the departure of o from ay, £ is called the
lack of closure. The probability for o being the correct protein
phase angle could now be defined as

Pia)= N exp [~ £h:da)/2E7], (24.421)

where N, is the normalizatior constant and E; is the estimated
r.m.s. error. The methods for estimating E; will be outlined
later. When several derivatives are used for phase determina-
tion, the total probability of the phase angle o being the
protein phase angle would be :

Pla)=]] Pla)=N exp {*z [5%{5(0!)/25?]}, (2.4.4.22)

where the summation is over all the derivatives. A typical
distribution of P(a) plotted around & circle of unit radius is
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E

Fig. 2.4.4.3. The probability distribution of the protein phase angle.
The peint P is the centroid of the distribution.

shown in Fig. 2.4.4.3, The phase angle corresponding to the
highest value of P{a) would obviously be the most probable
" protein phase, ey, of the given refiection. The most probable
electron-density distribution is obtained if each Fy is associ-
ated with the corresponding aay, in a Fourier synthesis.
Blow and Crick suggested a different way of using the
probability distribution. In Fig. 2.4.4.3, the centroid of the
probability distribution is denoted by P, The polar coordinates
of P are m and «g, where m, a fractional pesitive number
with a maximum value of unity, and ay are referred to as the
‘figure of mert’ and the ‘best phase’, respectively. One can
then compute A ‘best Fourier with coefficients

mFy exp (ing).

The best Fourier is expected to provide an electron-density
distribution with the lowest r.m.s..ervor. The figure of merit
apnd the best phase are usually calculated using the equations

m cos ap =Z Ple;) cos {a,—)/g Pley)

L (2.4.423)
m sin ag =3, Ple) sin (a:)/F Pla),

where P(w;) are calculated, say, at 5° integrvals {Prickerson et
al, 1961). The figure of merit is statistically interpreted as the
cosing of the expected error In the calculated phase angle and
it is obviously & measure of the precision of phase determina-
tion. In general, m is high when ay, and dp are close to each
other and low when they are far apart. . .
. : : BT .

2443, Use of anomalous scattering in. ph}zse evaluation
When anomalous-scattering data have been collected from
derivative crystals, Fug(+) and Fuy(—) can be formally
treated as arising from two independent derivatives, The corre-
sponding Harker diagram is shown in Fig. 2.4.44. Thus, in
principle, protein phase angles can be determined using a
single derivative when anomalous-scattering effects are also
made use of. It is interesting to note that the information
obfained from isomoiphous differences, Fyy — Fy, and that
obtained from anomalous differences, Foyy(+)— Frg (=), are
complementary. The isomorphous difference for any given
reflection is a maximum when ¥, and Fy are paraltel or
antiparallel. The anomalous difference is then zero, if all the
. anomalous scatterers are of the same type, and a,, is deter-
miined uniquely on the basis of the isomorphous difference.

£

Fig. 2.44.4. Harker consiruction using anomalous-scattering data
from a single derivative.

The isomorphous difference decreases and the anomalous
difference increases as the inclination between Fyy and Fy
increases. The isomorphous difference tends to be small and
the anomalouns difference tends to have the maximum possible
value when Fy and F;; are perpendicular to each other. The
anomalous difference then has the predomirant influence in
deiermining the phase angle.

Although isomorphous and anomalous differences have a
compiementary role in phase determination, their magnitudes
are obviously unequal. Therefore, when Fuy (+) and Fru ()
arg treated as arsing from two derivatives, the effect of
anemalous differences on phase determination would be only
marginal as, for any given reflection, Fig(+)— Fyul(~) is
usually much smatler than Fyy — Fy. However, the magnitnde
of the error in the anomalous difference would normally be

~much smaller than that in the corresponding isomosphous

difference. Firstly, the former is obviously free from the effects
of imperfect isomorphism. Secondly, Fyy(+) and Frge(—)
are expecied to have the same systematic errors as they are
measured from the same crystal. These errors are eliminated

" in the difference between the two quantities. Therefore, as

pointed out by North (1965), the trm.s. error used for
anomalous differences should be much smaller than that used
for isomorphous differences. Denoting the r.m.s. emor in
amomalous differences by E’, the new expression for the’
probability distribution of protein phase angle may be written
as ‘
'P(a)= N, exp[—£k(a)/2E2]

xexp{—[4H,— AH,..(a)*/2EP, (2.4424)
where o . :
) AH; = Fnpi(+) — Frer{—)
and

AH; @) = 2F 7y sin (0p — agy).
Here a; is the phase angle of Dy, {e) [se¢ (2.4.4.19) and Fig.
2.4.4.2). AH, {«) is the anomalous difference caleylated for’

the assumed protein phase angle e Fyz, may be taken as the
average of Fy,(+) and FNH,—(—} for caleulating £,(a} using

{2.4.4.20).

2.4.4.6. Estimarion of r.m.s. error

Perhaps the most important parameters that control the
reliability of phase evaluation using the Blow and Crick
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formulations are the isomorphous ran.s. error F; and the
anomalous r.m.s. error E{. For a given derivative, the sharp-
ness of the peak in the phase probability distribution obviousty
depends upon the value of E and that of E’ when anomalous-
scattering data have also been used. When several derivatives
are used, an overall underestimation of ran.s. errors leads to
artificially sharper peaks, the movement of ap-towards oy,
and deceptively high figures of merit. Opposite effects result
when E’s are overestimated. Underestimation or overestima-
tiont of the r.m.s. error in the data from a particular derivative
leads to distortions in the relative contribution of that detiva-

tive_to the overall phase probability distributions, It is

therefore important that the r.m.s. error in each derivative is
correctly estimated.

Centric reflections, when present, obviously provide the
best means for evaluaiing E using the expression

E?=Y {|Fngr = Fn| - En /. (2.4.4.25)
"

As suggested by Blow & Crick (1959), values of E thus

estimated can be used Tor acentric reflections as well. Once

a set of approximate protein phase angles is available F; can

be calculated as the r.m.s. lack of closure corresponding to .

op [ie. e=ag in (2.44.20)] (Kartha, 1976). E! can be
similarly evalpated as the r.m.s. difference between the
observed anomaleus difference and the anomalous difference
calculated for ay [see (2.4.4.24}]. Normally, ‘the value of E}
is about 2 third of that of E; {North, 1965).

A different method, outlined below, can also be gsed to
evaluate E and E’ when anomalous scaftering is present
(Vijayan, 1981; Adams, 1968}. From Fig. 2.4.2.2, we have

cos fr= (F§VH + F}{ - F%‘J)/2FNHFH (2.4-"}-26)

and

Fy=Fun+ Fy—2FuuFy cos 3, (2.4.427)

where ¢ = ey — cey. Using arguments similar to those used
in deriving {2.4.3.5), we obtain

sin = [ Fag(+) - Fan(-)1/4FwuFh.  (24.4.28)

If Fup is considered to be equal to [Fyp(+)+ Fay{—)1/2,
we obtain from (2.4.4.28)

Frup{+) — Fup(—)=2F} sin ¢ (2.4.479)

We obtain what may be called 4, if the magnitude of ¢ is
determined from (2.4.4.26) and the quadrant from (2.4.4.28).
Similarly, we obtain #,,, if the magnitude of ¢ is determined
from (2.4.4.28) and the quadrant from (2.4.4.26). Ideally, v,
and ., should have the same value and the difference
between them is a measure of the errors in the data. Fy
obtained from (2.4.4.27) using 4,,, may be considered as its
calculated value (Fue,). Then, assuming all errors to lie in
Fp, we may write

E*=3 (Fyx—Fye)/n. (2.4.430)

Similarly, the caleulated anomaious difference (AH, ) n'iay
be evaluated from (2.4.4.29) using dy,,. Then

E? =T [|Fpn{+) ~ Fun ()|~ AHF/ n. (24.431)
"
If all errors are assumed to reside in Fy, E can be evaluated
in yet another way using the expression

B =% (Fug — Fu )/ m (24.432)

2. RECIPROCAL SPACE IN CRYSTAL-STRUCTURE DETERMINATION

2.4.47. Suggested modifications to Blow and Crick formulation
and the inclusion of phase information from other sources

Modifications to the Blow and Crick procedure of phase
evaluation have been suggested by several workers, although
none represent a fundamental departure from the essential
features of their formulation. In one of the modifications
(Cullis, Muirhead, Perutz, Rossmann & North, 1961a;
Ashida, 1976), all E's are assumed to be the same, but the
lack-of-closure error £y, for the ith derivative is measured as
the distance from the mean of all intersections between phase
circles 1o the point of intersection of the phase circle of that
derivative with the phase circle of the native protein. Alterna-

" tively, individual values of E, are retained, but the lack of

closure is measored from the weighted mean of all inter-
sections (Ashida, 1976). This is obviously designed to undo
the effects of the unduly high weight given to Fy in the Blow
and Crick formulation. In another modification (Raiz &
Andreeva, 1970; Eihstein, 1977), suggested for the same pur-
pose, the Fy and Fyg, circles are treated as circular bands,
the width of each{band being related to the error in the
appropriate structure factor.” A comprehensive set of
modifications suggested by Green {1979) treats different types
of errors separatelyl In particular, errors arising from imper-
fect isomorphism are treated in a comprehensive manner,
Although the isomorphous replacement method still
remains the method of choice™for the ab initio determination
of protein structures, additional items of phase information
from other sources are increasingly being used to replace,

_-supplement, or extend the information obtained through the

*" application of the isomorphous replacement. Methods have

been developed forthe routine refinement of protein stractures
(Watenpaugh, Sieker, Herriot & Jensen, 1973; Huber et al,
1974; Sussmann, Halbrook, Chureh & Kim, 1977; Jack &
Levitt, 1975; Isaacs & Agarwal, 1978; Hendrickson & Konnert,
1980} and they provide a rich.source of phase information.
However, the nature of the problem and the inherent limita-
tions of the Foutler technique are such that the possibility of
refinement yielding misleading results exists (Vijayan, 19804,
b). It is therefore sometimes desirable to combine the phases
obtained during refinement with the original isomorphous
replacement phases. The other sources of phase information
include molecular replacement (see Chapter 2.3), direct
methods (Hendrickson & Karle, 1973; Sayre, 1974; de Rango,
Mauguen & Tsoucagis, 1975) and different types of electron-
density modifications (Hoppe & Gassmamn, 1968; Collins,
1975, Schevitz, Podjarny, Zwick, Hughes & Sigler, 1981; Bhat
& Blow, 1982; Agard & Stroud, 1982; Cannillo, Obertt &
Ungaredti, 1983; Raghavan & Tulinsky, 1979; Wang, 1985).

The problem of combining isoworphous replacement
phases with those cbtained by other methods was first
addressed by Rossmann & Blow (1961). The problem was
subsequently examined by Hendrickson & Lattman (1970)
and their method, which involves a modification of the Blow
and Crick formuiation, is perhaps the most widely used for
combining phase information from different sonrces.

The Blow and Crick procedure is based on an assumed
Gaussian ‘lumped’ error in Fyy, which leads to a lack of
closure, &mla), in Fiyy defined by (2.4.420). Hendrickson
and Lattman make an equally legitimate assumption that the
lumped error, again assumed to be Caussian, is associated

‘with Fa- Then, as in {2.4.4.20}, we have

lf”m(ﬂ’) :F;;vm_ iﬁ(ﬂf),

where £7ie) is the lack of closure associated with Fayy, for
an assumed protein phase angle «. Then the probability for

(2.4.433)
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o being the correct phase angle can be expressed as

P{a)= N, exp [-&1H{a)/2ET], {2.4.4.34)

where EY is the r.m.s. error in Fiy;, which can be evaluated
using methods similar to those emploved for evaluating £;.
Hendrickson and Laitman have shown that the exponent in
the probability expression (2.4.4.34) can be readily expressed
as a linear combination of five terms in the following manner,

~&@)/2EP = K, + A; cos a+ B, sin @+ C, cos 2a

+ D, 5in 2a, (2.4.4.35)

where K, A, B, C, and D; are constants dependent on
Fu, Fys, Fug, and E{. Thus, five constants are encugh to
store the complete probability distribution of any reflection,
Expressions for the five constants have been derived for phase
information from anomalous scattering, tangent formuta, par-
tial structure,-and molecular replacerhent. The combination
of the phase information from all saurces can then be achieved
by simply taking the total value of each constant. Thus, the
total probability of the protein phase angle being « is given by

Play=1] P{o})= Nexp (Z K, +Y A,cosa+y B sina
N 5 L) 5

+¥Y C,co82e+y, D, sin2« |,

{2.4.436)
where K, A, efc, are the constanis appropriaie for the sth
source and N is the nommalization constant.

2.44.8. Fourier representation of anomalous scatlerers

it is often useful to have a Fourier representation of only
the anomalous scaiterers in a protein. The imaginary com-
ponent of the electzon-density distribution cbviously provides

such a representation. When the structure is known and 7 (+)

and Fy(—) have been experimentaily determined, Chacko &
Srimivasan (1970) have shown that this representation is
cbtained in a Fourier synthesis with i{¥ () +F%(—)]/2 as
coefficients, where T%(-), whose magnitude is Fpy(-), is the
complex conjugate of Fy(+). They also indicated a method
for calculating the phase angles of Fy(+) and F%(—). It has
been shown (Hendrickson & Sheriff, 1987) that the Bijvoet-
difference Fourier synthesis proposed earlier by Kraut (1968)
is an approximation of th;‘true fmaginary component of the
electron dem;lty The imaginary. synthems can be usefyl in
1demifymg miner anomalous-scattering cemires when the
major centres are known and also in providing an independent
check on the locations of anomalous scatterers and in distin-
puishing between anomalous scatierers with nearly equat
atomic pumbers {Sherifi & Hendrickson, 1987; Kitagawa,
Tanaka, Hata, Katsube & Satow, 1987). :

2.4.5. Anomalons sﬂﬁering of neutrons and syncheotron
radiation. The multiwavelength methbod

The multiwavelength anomalous-scattering method (Rama-
seshan, 1982) relies on the variation of dispersion correction
terms as a function of the wavelength used. The success of
the method therefore depends upon the size of the correction
terms and the availability of incident beams of comparable
intensities at different appropriate wavelengths. Thus,
although this method was used as early as 1957 {Raraseshan,
Venkatesan & Mani, 1957) as an aid to structure solution
employing characteristic- X-rays, it is, as outlined below,

ISOMORPHOUS REPLACEMENT AND ANOMALOUS SCATTERING

ideally suited in strwctural work employing neutrons and
synchrotron radiation. In prnciple, y-radiation can also be
used for phase determination {Raghavan, 1961; Moon, 1961}
as the anomalous-scattering effects in y-ray scattering could
be very large; the wavelength is also easily tunable. However,
the intensity obtainahle for y-rays is several orders lower than
that obtainable from X-ray and neutron sources, and hence
y-ray anomalous scattering is of hardly any practical value
in structural analysis.

2.4.5.1. Neutron anomalous scattering

Apart from the limitations introduced by experimental fac-
tors, such as the need for large crystals and the comparatively
low flux of neutron beams, there are two fundamental reasons
why neutrons are less suitable than X-rays for the ab initio
determination of crystal structures. First, the neutron scatter-
ing lengths of differeni nuclei have comparable magnitudes
whereas the atomic form factors for X-rays vary by two orders
of magnitude. Therefore, Patterson techniques and the related
heavy-atom method are much less suitable for use with
newiron diffraction data than with X-ray data. Secondly,
newiron scattering lengths could be positive or negative and
hence, in general, the positivity criterion (Kade &
Hauptmann, 1930) or the squarability criterion (Sayre, 1952)
does not hold good for nuclear density. Therefore, the direct
miethods based on these criteria are not strictly applicable to
structure analysis using neutron data, although it has been
demenstrated that these methods could be successfully used
in favourable situations in neutron crystallography (Sikka,
1969). The anomalous-scattering method is, however, in prin-
ciple more powerful in the newtron case than in the X-ray
case for ab initio structure determination,

Thermal neutrons are scatiered anomalously at appropriate
wavelengths by several nuclei. In a manner analogous to
(2.4.3.1), the neutron scatiering length of these nuclet can be
wreitten as

: byt b’ +ib"=b+ib". (2.4.5.1)

The correction terms b’ and b” are strongly wavelength depen-
dent. In favourable cases, b’/ by and b”/ b, can be of the order
of 10 whereas they are small fractions in X-ray anomalous
scatiering. In view of this pronounced anomalous effect in
neutron scattering, Ramaseshan {1966) suggested that it could
be used for structure solution. Subsequently, Singh & Rama-
seshan (1968) proposed a two-wavelength method for unigue
structure analysis using neutron diffracon. The first part of
the method is the determination of the positions of the -
anpomalous scatterers from the estimated values of Fy. The
method employed for estimating Fy, is analogous to that using
(2.44.9) except that data collected at two appropriate
wavelengths are used instead of those from two isomorphous
crystals. The second stage of the two-wavelength method
involves phase evaluation. Referring to Fig. 2.4.3.2 and i ina
manner analogous to (2.4.3.5), we have

sin ¢ _Fn(h) - Fial)
! AF Fh,

where i = oy — g and subscript 1 refers to data collected at
wavelength Al. Singh and Ramaseshan showed that cos g,
can also be determined when data are available at wavelength
Al and A2 We may define

- (2.45.2)

= [F(+)+ F3(D))/2 (2.45.3)
and we have from (2.4‘3.3}, (2.43.4), and (2.4.5.3)
Fn ={F%L—~FEP7, (2.4.5.4)
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Then,
cos i, = Foi = Fr—{(B0+ ) —(B3+ B2 | Fy,
! 2(by~ by) Fay x Fy,’
(2.4.5.5)

where x Is the magnitude of the temperature-correcied
geometrical part of Fg. ¢ and hence anq can be calculated
using (2.4.5.2) and (2.4.5.5). oy, can also be obtained in a
similar nianner.

During the decade that followed Ramaseshan’s suggestion,
neutron anomalous scattering was used to solve half a dozen
crystal structures, employing the nmiltiple-wavelength
methods as well as the methods developed for stracture deter-
mination using X-ray anomalous scattering {Koetzle & Harmil-
ton, 1975; Sikka & Rajagopzl, 1975; Flook, Freeman & Scud-
der, 1977). It has also been demonstrated that measurahle
Bijvoet differences conld be obtained, in favourable situations,
in neutron diffraction patterns from protein crystals (Schoen-
born, 1975). However, despite the early promise held out by
neutron anomalous scattering, the method has not been as
successful as might have been hoped. In addition to the need
for large crystals, the main problem with using this method
appears to be the time and expense involved in data collection
(Koetde & Hamilton; 1975).

24.52. Anomalous seattering of synchrotron radiation

The most sighificant development int Tecent years in relation
to anomalous scattering of X-rays has been the advent of
synehrotron radiation {Helliwell, 1984). The advantage of
using synchrotron radjation for making anomalous-scattering
measurements essentially arises out of the tunability of the
wavelength. Unlike the characteristic radiation from conven-

tional X-ray scurces, synchrotron radiation has a smooth
spectrum and the wavelength to be used can be finely selected.
Accurate measurements have shown that values in the neigh-
bourhood of 30 electrons could be obtained in favourable
cases for f' and f" (Templeton, Templeton, Phillips &
Hodgson, 1980; Templeton, Templeton & Phizackerley, 1980;
Templeton, Templeton, Phizackerley & Hodgson, 1982).
Schemes for the optimization of the wavelengths to be used
have also been suggested (Narayan & Ramaseshan, 1981).
Interestingly, the anomalous differences obtainable using syn-
chrotron radiation are comparable in magnitude to the isomor-
phous differences normally encountered in protein crystal-
lography. Thus, the|use of anomalous scattering at several
wavelengths would dbviously eliminate the need for employ-
ing many heavy-atom derivatives. The - application’ of
ancmalous - scattering ' of synchrotron - radiation for
macromolecular stricture analysis is still in its infancy.
However, the resuits obtained so far in this area have been
encouraging (Helliwell, 1985). Intensity measurements from
macromolecular X-ray diffraction patterns using synchrotron
radjation have so ifar primarily relied upon oscillation
photography {Amdt & Wonacott, 1977). This method is not
particularly seitable for accurately evaluating anomalous
differsnces. Much higher levels of accuracy are expected to
be achieved with the vse of area detvctors (Arndt, 1986).
Anomalous scattering, in combination with area detectors, is
expected to develop into a major tool in macromolecular
crystallography.
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