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This is a flow in which the're is a "reverse transitionu from chaos to  order. 
Flow coming in through the tube at the top is turbulent, as can be inferred 
from the rapid dispersion o f  dye. Flow going out of the coils is laminar: 
a filament o f  dye injected af ter a few turns in the coil does not spread. 
Such reverse transitions are observed in some nonlinear maps. 

Prof  R Narasimha 
D i r e c t o r ,  N a t i o n a l  A e r o n a u t i c a l  Labo ra to ry  

I I wan t  t o  s p e a k  t o d a y  a b o u t  t h e  f l o w  of f l u i d s ;  t o  b e g i n  

w i t h ,  I s h o u l d  p e r h a p s  e x p l a i n  why s o  many p e o p l e  - e n g i n e e r s ,  

m a t h e m a t i c i a n s  a n d  p h y s i c i s t s  - h a v e  s p e n t  t h e i r  w h o l e  l i v e s  

s t u d y i n g  t h e  phenomena t h a t  w e  s e e  w i t h  o u r  u n a i d e d  e y e s  e v e r y  

day a r o u n d  u s .  T r e e s  sway i n  t h e  b r e e z e ,  c l o u d s  f i l l  t h e  s k y ,  

waves  l a s h  t h e  b e a c h ,  f l o o d s  sweep r i v e r s :  n a t u r e  t h e r e f o r e  i s  

f u l l  of a  v a r i e t y  of f l u i d - d y n a a i c a l  phenomena a l l  t h e  way f r o m  

I t h e  v e r y  g e n t l e  ( h a v e  y o u  s e e n  s m a l l  r a i n  d r o p s  s l i d i n g  down a  

I1 s a g g i n g  w i r e ? )  t o  t h e  f i e r c e  ( s u c h  a s  a  c y c l o n e ) .  However ,  

I f l u i d  f l o w s  o c c u r  i n  a r t  a s  w e l l  - o r  t e c h n o l o g y  - a n d  a r e  c r u -  

I c i a 1  i n  a  v a r i e t y  o f  t h e  d e v i c e s  a n d  a p p l i a n c e s  Ghat  a r e  s o  

commonly u s e d  i n  o u r  d a i l y  l i v e s ;  w h e t h e r  i t  i s  f a n s ,  w a t e r  f r o m  

t h e  t a p s  (when i t  i s  a v a i l a b l e )  o r ,  t o  t a k e  more  f a n c y  a p p l i c a -  

t i o n s ,  f l o w  p a s t  a i r c r a f t  a n d  t u r b i n e s  w h i c h  e n a b l e  u s  t o  t r a v e l  

I i n  ways w h i c h  w e r e  unknown a  h u n d r e d  y e a r s  a g o .  What a d d s  t o  t h e  

f a s c i n a t i o n  of t h e s e  p r o b l e m s ,  i n  n a t u r e  a n d  i n  t e c h n o l o g y ,  i s  

t h a t  many of them a r e  t o  t h i s  d a y  u n s o l v e d  a s  p r o b l e m s  i n  phy- 

s i c s .  I t  comes a s  a  g r e a t  s h o c k  t o  many p e o p l e  t o  r e a l i z e  t h a t  

I t h e  a n c i e n t  p r o b l e m  o f  c o n v e y i n g  a  f l u i d  l i k e  w a t e r  f r o m  p o i n t  k 

I t o  p o i n t  B - a  p r o b l e m  e s s e n t i a l l y  s o l v e d  t h o u s a n d s  o f  y e a r s  a g o  

by e x p e r i e n c e ,  and  o n e  s o l v e d  a r o u n d  t h e  t u r n  pf t h e  c e n t u r y  i n  
= 

I t e r m s  of c o d i f i e d  i n f o r m a t i o n  f o r  t e c h n o l o g y  - r e m a i n s  t o  t h i s  

day a  t o t a l l y  u n s o l v e d  p r o b l e m  a s , o n e  i n  s c i e n c e .  By t h i s  I mean 

t h a t  i t  i s  s t i l l  n o t  p o s s i b l e  t o  p r e d i c t ,  b a s e d  s o l e l y  o n . f i r s t  

I p r i n c i p l e s  s u c h  a s  f o r  e x a m p l e  Newton 's  Laws,  how much w a t e r  c a n  

I be  p u s h e d  t h r o u g h  a g i v e n  p i p e  w i t h  a  g i v e n  l o s s  of p r e s s u r e .  



The answer is of course known, but cannot yet be predicted with- 

out recourse to testing. Some clever analysis reduces the amount 
I 

1 
of testing required to answer the question, but the need for 

I 

I testing cannot be eliminated yet. 

Why is it that, with all the spectacular advances that have 

I taken place in a variety of branches of science, this ancient 

problem still remains unsolved? There are several reasons for 

it but the most basic is that the equations governing the flow 

of such fluids - discovered more than 150 years ago and named 

after Navier and Stokes - are non-linear. And our understanding 

of the behaviour of non-linear phenomena is still in many ways 

rudimentary. One of the characteristics of the particular non- 

linear system describing the flow of fluids is that under a 

great variety of situations, and in fact we can say in general, 

the motion of fluids exhibits a complex combination of order and 

chaos. What we mean by these terms will I hope become clearer as 

we go along, but to this day there is no satisfactory method of 

handling systems with this intimate mixture of order and chaos. 

Some features of this mixture are indeed visible to all of us. 

For example we all know how one can argue endlessly about the 

shape of clouds; are they totally chaotic or is there a hidden 

order in the shapes we see? This question, which is something 
\ 

I that children play with, is actually at the very heart, I be- 

lieve, of problems in fluid flow. Using the most sophisticated 

instrumentation available today, and investigating flows far 

slmpler than a cloud in the controlled conditions of a labora- 
I 

tory, we still have to face exactly the same basic question, 

Before we proceed to see the implications of this combina- 

tion let us first look at the simpler e limits of the problem and 

begin with flows which exhibit consi-derable order. 

Figure 1 shows some examples: the degree of order seen in 

these flows is extraordinary. And the question immediately is 

why and how such order arises. The question becomes very inte- 

resting especially if we start from the molecular point of view. 

We know that fluids in general, and gases in particular, involve 

molecules which are in disordered motion; how do all these mole- 

cules in such disordered motion suddenly 'cooperate' to produce 

the kind of patterns that we see in these flows? 

The molecular line of enquiry is one that has in fact been 

pursued by some people, but the fluid dynamicist's viewpoint is 

rather different. He generally takes the view that while of 

course it is important to explain everything eventually in terms 

of molecules in a wide variety df problems including most of the 

fluid flows that he handles, it is not essential to do so. The 

basic argument for this viewpoint is that fluids with widely 

different molecular structure, for example air and water, show 

essentially the same kind of behaviour under equivalent condi- 

tions. What determines the equivalence of different conditions 

was a question which was answered a little more than a hundred 

years ago by Reynolds in the case of relatively simple fluids. 

Investigating the flow of water in a pipe Reynolds demonstrated 

that there are two kinds of motion possible - he called them 

direct and sinuous, we now call them laminar and turbulent - a 

distinction that is very easy to make when you open any water 

tap. If the opening is very small we know that water usually 

comes out as a smooth glassy jet. If the opening is increased, 



the surface loses its smoothness and the water begins to move in 

a very irregular way, traditionally called turbulent, now more 

fashionably called chaotic. Reynolds showed that whether the 

motion is laminar or turbulent does not depend individually on 

the fluid or on the size of the pipe or on the velocity, but on 

a combination of properties which has since come to be known as 

the Reynolds Number, defined as 

where V is the fluid velocity, D is the diameter of the pipe and 

V is the kinematic viscosity of the fluid. Reynolds found that 

if this number exceeded something like 2 3 0 0  the flow could be- 

come turbulent, whereas below this number the flow remained 

laminar, 

Going back to the question of ordered motion, the fluid 

dynamicist's answer proceeds on the following lines. If the 

Reynolds Number is extremely low, then the fluid motion is 

smooth, regular, and steady if boundary conditions are sceady; 

there is no particular associated pattern of motion. As the 

Reynolds number increases, however, there is a stage at which 

the flow becomes unstable and spontaneously there is a 

generation of certain ordered patterns in the flow, some 

examples of which are shown in Figure 1. As the Reynolds Number 

increases further, these patterns break down and the flow event- 

ually becomes irregular and turbulent. Figure 2 shows some exam- 

ples of how disordered the motion can appear to be. 

Just exactly how does the kind of highly ordered motion of 

which we have seen examples break down into chaotic motion? 

There seems to be no unique way in which this happens. Figure 3  

gives some examples of intermediate stages in the transition 

from order to chaos. In some cases, the basic waves characteri- 

sing instability seem to produce new instabilities. One conjec- 

ture, due originally to Landau, is that there is a succession of 

instabilities; each time the flow goes unstable it leads to the 

possibility of new modes of instability and as this keeps on ad 

infiniturn we eventually get choatic motion. No such infinite 

sequence has actually been observed; however there are cases in 

which the primary instability leads to a secondary instability, 

and the secondary to a tertiary. Fluid dynamicists often like to 

distinguish between two basic modes of transition; one that may 

be called hard or fast and another whicti may be called slow or 

soft. In the latter type the flow goes through a range of insta- 

bilities, possibly starting with the onset of a new state of 

steady motion. In the hard type, at the point of instability the 

I flow is already unsteady, and as it gets more and more unsts- 

i ble, for example as Reynolds Number increases, the flow eventu- 

I ally breaks down rather rapidly into chaotic motion. In the case 

I of the flow past a flat surface, for example, which we can think 

I of as an idealization of an aircraft wing or a fan blade, the 
I 

question has in fact been of long standing. How rapid is the 

transition from laminar to turbulent flow in such a case? In 

1 9 3 5 ,  Prandtl, one of the greatest fluid dynamicists of this 

1 century, said that transition occupied an appreciabLe extent but 

I 
the point of transition on the plate oscillated with time. Four 

7 

1 years later Dryden, another well-known scientist, agreed that 

the transition point oscillated with time but suggested that 



transition was abrupt. What measurements show is that although 

the point at which the flow goes chaotic is relatively well defi 
I 

-ned the time it takes for the flow to become fully turbulent 1 

can be very substantial. Figure 4 shows how the fraction of time 

during which the flow is turbulent, called intermittancy, varies 

downstream in flow past a flat plate. As one can see, the inter- 

mittency goes from zero to one and can often cover a substantial t 
part of the surface. 

The equations governing fluid flow are so complicated that 

there is no case, not even the most idealised one we can think 

of, where all the stages of this transition process can be 

quantitatively described. Even computer simulations, using the 

biggest computers now available, have not been able to achieve 

this sort of description. There has therefore been an attempt by 

many scientists to look at the behaviour of equatlons which 

mimic fluid flow, although they may not represent it 

realistically. One such attempt was made by Burgers many years 

ago but it turned out on closer examination that the equation 

that was intended to simulate turbulence did not do this at all 

but rather described shock waves; in other words a model devised 

for turbulence was one for poise. 

One of the most influential of these models has been the 

one set up by Lorenz in 1962. Lorenz was concerned with the 

problem of predicting weather and proceeded to make a highly 

idealised model for the kind of convective flow that is so com- 

mon in the atmosphere. He was aware of the radical simplifica- 

tions that he was making, but neyertheless the behaviour of the 

solutions of the equations constructed was so strange that he 

thought, quite rightly, that it would repay attention. Hrs equa- 

tions are reproduced below. 

K = l0Y - lox , 

P = - Y - x z + r x ,  

= XY - ( 8 / 3 ) Z  , 

where 

( )  L o .  d t  

The three unknowns in these equations in some sense represent 

the amplitude of the convective motion, of the kind of which an 

example was given in Figure 1. The numbers in the model repre- 

sents the conditions of the flow; and the most important of 

these is the parameter r, which stands for the Rayleigh number 

that plays the same role in the convection problem as the Rey- 

nolds number does in the pipe flow problem. Lorenz ~ n ~ e g r a t t d  

the equations of motion on a computer and showed that at r=28, 

i.e. when the Rayleigh number was 28 times the value at which 

convection rolls first appeared, the solution appeared erratic 

as shown in Figure 4 .  Ironically the original equations to dhich 

Lorenz was providing an approximation have been found not to 

exhibit the kind of chaotic behaviour found in the simplified 

systems! Nevertheless the results that Lorenz obtained from his 

system have in recent years profoundly influenced the way we 

look at the possible mechanisms by which an ordered motion beco- 

mes chaotic. 

Even the solutions of these simpl.ified equations turned out 

to be so hard to analyse that a further simplification was thou- 

ght to be needed. This was obtained by looking at the peaks in 

the solution; and it led to the discovery that each peak was 



uniquely determined by the previous peak, in the manner shown in 

Figure 5 .  Note however the crucial fact that a given peak does 

not determine uniquely the previous peak! This has provided the 

key to an enormous amount of research in recent years. For here 

we have a connection made between the original partial differen- 

tial equations governing the problem, through the simplified 

non-linear ordinary differential equations that were constructed 

out of them, to a simple kind of mapping that we have discovered 

between the peaks. Once these connections are seen, it has been 

realised that it may be worthwhile to look at just the maps 

themselves. There is the extraordinary possibility that the 

behaviour of such simple maps hides in it the behaviour of comp- 

licated fluid flows. 

It is in fact astonishing how such simple maps have been 

able to teach us about the behaviour of a wide variety of sys- 

tems and in particular about chaotic behaviour. Physicists and 

mathematicians have in recent years discovered an enormous vari- 

ety of results concerning such simple maps. Let us in fact look 

at a very simple one. Figure 6 shows what is called a 'tent' 

map. It is symmetric about the midpoint and works in the range 0 

to 1 ,  and has a fold at the top. This fold is absolutely cru- 

cial. It is very easy to start with a given number and obtain 

successive numbers in the sequence using this map. The astonish- 

ing thing about the map is that any given initial point determi- 

nes uniquely 'all future numbers in the sequence; note however 

that any given number at any given stage does not uniquely de- 

termine the previous sequence of numbers leading to it, for the 

simple reason that the mapping function folds over at the peak. 

8 

It is not very difficult to show with this completely determi- 

nistic map that the correlation between two successive numbers 

in the sequence is zero, and that any number is just as probable 

as any other number in a long sequence of these numbers. What we 

mean when we say the correlation is zero is that if we look at 

the sequence of numbers, we would be unable to distinguish them, 

by any known statistical procedure, from a sequence of random 

numbers. To make this more specific we can agree to denote 911 

numbers in the sequence which fall between 0 and 0.5 by H ,  and 

those that fall between 0.5 and 2 . 0  by T. And we order the 

sequence in terms of Hs and Ts. We will then find that the sequ- 

ence of Hs and Ts from the map cannot be distinguished from the 

heads and tails obtained by tossing a coin. In other words, we 

have here a completely deterministic system whose results how- 

ever are for all practical purposes indistinguishable from what 

is known as stochastic behaviour, i.e. they appear "random". 

This kind of example is, I feel sure, going to affect pro- 

foundly our view of statistics, let alone fluid behaviour. Any 

undergraduate course in engineering, especially on systems 

theory, starts by making a distinction between deterministic 

processes and stochastic processes. Examples of the kind that I 

have just described show that the distinction cannot be sustai- 

ned; a process can be entirely deterministic and still appear 

stochastic. I say appear stochastic, but the more basic question 

can be raised: is it possible that the processes that we consi- 

der stochastic are in fact deterministic; but only governed by 

the kind of non-linear procedure which is caricaLured in this 

simple example? 

9 



We will not pursue the implications for statistics here, 

but come back to turbulence. It is interesting now to speculate 

that the transition to irregular behaviour that we have noted is 

in fact nothing other than the kind of stochastic behaviour that 

the simple model exhibits. Spurred by this possibility, a series 

of results have been proved in recent years about such maps, and 

in fact it has become. a small field on its own. The advantage of 

maps is that, unlike that the Navier-Stokes equations, theorems 

can be stated and proved; and the validity of these theorems can 

be checked on the computer; furthermore many theorems that can- 

not be proved can be suggested by computer experiments. One such 

result that has attracted considerable attention everywhere is 

due to Feigenbaum, who noticed that such maps had certain uni- 

versal characteristics. These characteristics are summarised in 

two numbers which basically describe the relation between the 

parameter values at successive bifurcations of the solutions of 

the map. For the maps themselves, these nuibers can be computed 

to extraordinary accuracy, and are in fact now widely known. The 

fascinating question is whether we can now make the connection 

backwards from the map to the fluid flow, and expect to find the 

same numbers operating in the fluid flow problems. For example 

can the Rayleigh number at which the flow becomes chaotic in the 

convection problem be related to the Rayleigh number at which 

the first instability appears in the same way that the value of 

our parameter in the map at which chaotic solutions appear is 

related to the primary instability revealed in the map? 

' X  
-Y 

The experimental evidence here is still somewhat ambiguous. 

It is true that the sequence of numbers observed in certain 

experiments closely ulimic the Feigenbaum sequence. It is still 

however not possible to state categorically that that is in fact 

the way that chaos appears in either the convection flow or any 

other problem. 

A different suggestion has been made by Ruelle & Takens. 

They propose that in a variety of systems chaos does not appear 

after the infinite sequence of bifurcations that Feigenbaum has 

described, or the infinite sequence of instabilities that Landau 

originally proposed. They show that in a wide variety of sys- 

tems, chaos can appear at the end of three bifurcations. This 

they do by proving that in certain systems what is known as a 

strange attractor appears at the end of three bifurcations. The 

nature of such attractors is illustrated in Figure 7 ,  in parti- 

cular for the Lorenz system. The idea of a strange attractor can 

be described in simplified terms as follows. Suppose we take a 

cup of coffee, stir it and let go, then usually the flow comes 

to rest after a while. That is, the stable state of motion for 

the conditions of this familiar fluid-dynamical problem is one 

of rest. To put this result in a little bit of jargon the state 

of rest is an attractor for this problem, that is to say all 

states tend towards the state of rest eventually. There are 

other systems in which the solution eventually is not one of 

rest but rather one of oscillation. A wire galloping in wind or 

a pipe carrying water that some times produces surges or hunting 

are examples of such phenomena; these are known as limit cycles, 

and have the property that no matter where you start your mo- 

tion, eventually the system settles down to one of steady oscil- 

lation. Both of these are attractors; the state of rest is an 



attractor of zero dimension and the limit cycles are attractors 

of dimension 1. We can also have an attractor of dimension 2. In 

state space, this would correspond to a torus or an object sha- 

ped like a donut. Here the state of the system, if it can be 

thought of as an ant crawling on the surface, is described by 

trajectories which could go either around the donut on its major 

circumference, so to speak, or around the smaller circumference. 

What Ruelle & Takens showed was that beyond these three possibi- 

lities there was a fourth one and that is that the point deno- 

ting the state of the system wanders for ever without lying on 

any particular surface, possibly getting quite close to previous 

positions at various times but never staying close to any posi- 

tion or cycle. It is suggested that the kind of turbulent motion 

that we often see in fact represents such a strange attractor of 

the Navier-Stokes equations. The Lorenz system showed one of the 

first such strange attractors, although it was not called that 

at the time that Lorenz made his studies; the nature of the 

strange attractor in the space of the variables X, Y and Z in 

the equations is shown in Figure 8. 

Although these new view points are exciting and promise 

fresh insights into the problem of the development of chaos in 

fluid flows, we must remember that there are many difficulties - 

some of them not even faced yet by the new approaches. Let me 

just give two examples of the inadequacy of current models. The 

first is that in all of these models chaos develops at low fre- 

quencies, i.e. by the appearance of amplitudes at sub-harmonics 

of a basic fundamental frequency. But in all turbulent shear 

flows, a characteristic feature is the appearance of high fre- 

end does not explain how the high frequency oscillations that 

characterise t-urbulent flow arise. A second problem is that in 

most of these theories the critical value of the parameter, like 

the Reynolds or Rayleigh number, at which the onset of chaos is 

predicted, does not depend on external disturbances. On the 

other hand we know from observations extending over many decades 

now that there is no unique critical value for the parameter, 

but rather that the value of this parameter depends strongly on 

the external disturbances in the flow. For example although it 

is difficult to maintain turbulent flow below' a Reynolds number 

of about 2300 in a flight, laboratory studies have shown that if 

due care is taken, the critical Reynolds number at onset of 

chaos can be increased to something like lo5. That is a factor 

of 50. A similar factor operates in transition on a flat plate, 

where the Reynolds number can vary from less than lo5 to some- 

thing like < 5 x lo6. 

We are right now in the process of formulating models which 

we hope will include these basic features of chaos in fluid 

flows. How far such models can go and what light they will 

eventually throw on the problem is something which i.s still a 

very open question, but it is certainly something which should 

be very exciting to pursue. 



Figure 1: Convection rolls in a horizontal layer o f  fluid when lower plate 
is hotter than the upper plate. The curves in the diagram are density contours: 
in the absence of convection they would have been a series o f  parallel lines. 

Figure 2A: Flow over a very hot surface, showing convective motion that 
is highly turbulent or chaotic. 

Figure 28: Typical velocity fluctuation in a turbulent flow. 

Figure 3A: Patterns produced on frozen cyclohexane when a layer o f  the sub- 
stance is hot enou&h at the bottom t o  liquefy it. There is considerable order 
in all these flows, 'but crystallographers will note anrious types o f  dislocations 
marring the symmetry o f  the patterns. 
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Figure 3B: How much order and how much chaos? These diagrams present 
three sets o f  gmphs showing the variation o f  temperature in space and time 
in convective flow between two horizontal plates, as the bottom plate is 
mode hotter. The top traces, at the lowest temperature differential, exhibit 
considerable order. How much order is there in the bottom ones? 
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Fi ure 4A One route from order to  chaos is through the formation o f  'spotsr w turbulence, which are islands of chaos in a laminar sea, moving with the 
flow and generally growing in size. In flow past a flat plate such turbulent 
spots are heart-shaped, as shown in this figure, and move within the confines 
o f  a fairly well-defined cone lying on the surface. Spots tend to  be born at 
some critical location on the surface, making the appearance o f  chaos rather 
sudden, but take appreciable distances to grow to  such sizes that the laminar 
sea is completely covered by them. 
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Figure 45: The 'internittency',  which is the frcction o f  time that the flow 
is turbulent, increases gruduolly from zero to unity. The extent of the transition 
zone is generally comparable to that o f  !orninar flow, but is relutively larger 
at lower Reynolds numbers. 
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Figure 5: Typical solution o f  the Loren2 equations, showing "chaotic" behaviour.. 

Figure 6: Relation between successive maxima in the variable Z in the Lorenz 
equations. I f  you enter on the horizontal cixis with any particular maximum, 
the wlue  of the next maximum in the solution is given by the. fojPed curve. 
An idealization of this folded curve is the triangular 'tent'  map, also shown. 
Such 'maps' are defined by the relation Xn+l = f (X,) ,  n = 0,1,2 ... For the 
tent map, 



I n t e r m i t t e n t  P e r i d d i c a l  and 
Aper iod ica l  O s c i l l a t i o n s  

Chaot ic  A t t r a c t o r  

CANTOR 'BOOK'  
EDGE OF ATTRACTOR 

- 
ENDVIEW 

S P I N E  OF 
CANTOR BOOK 

0 : STATE OF REST 

4 : F I X E D  P O I N T S  

Figure 8: A sketch of the Lorenz strange attractor. The state o f  the system 
wanders endlessly on the attractor, getting arbitrarily close to  previous posi- 
tions but never stayinq close. Once the state moves away from rest, it is 
sucked towards one of the fixed points but is eventually flung away from 
i t ,  to  be sucked by the other fixed point, in turn flung away from i t ,  and 
so on. Near the origin the attractor resembles a book-like object with infini- 
tely many sheets of zero thickness, constituting a Cantor set.  I f  the attroc- 
tor is chopped into bits of given size, an6 the areas o f  the bits added up, 
it is found that the sum increases more rapidly than the square o f  the (linear) 
size o f  each piece, and (of course) less rapidly than the cube. The attractor 
therefore is an object with a fractional dimension (approximately 2.06 in the 
Lorenz case). 

Fiqure 7: The nature o f  the solutions of the Lorenz equation, showing behaviour 
characteristic of strange attractors.. 



ABOUT THE MEMORIAL LECTURE 

C.V. Raman Memorial Lectures have been instituted by the 
Indian Institute of Science Alumini Association (Bangalore) and 
these lectures are organised in alternate years. 

Sir Chandrasekhar Venkata Raman, Nobel Laureat-e, was born 
on 7 November 1888 in Thiruvanaikkaval village near Trichinopoly 
in Tamil Nadu. He matriculated at the age of 11 and won a 
scholarship for higher studies at the Presidency College, 
Madras. He passed his B.A. and M.A. examinations in the first 
class winning gold medals in English and Physics. He appeared 
for the All India Competitive Examinations which existed in 
those days for prestigeous positions in the Finance Department 
and passed the examination at the top of the list. While working 
in the Finance Department at Calcutta as an Assistant Accountant 
General, he was attracted by a sign at 210, Bowbazaar Street, 
Calcutta, which read 'Indian Association for the Cultivation of 
Science', established by Mr. Amrit La1 Sircar, a man of vision. 
Dr Raman was given all the facilities of the Association which 
started off his scientific career. Very soon Dr Raman's 
outstanding contributions resulted in Sir Asutosh Mukherjee, the 
Vice-chancellor of the Calcutta University offering him the 
Palit Chair of Physics. Dr Raman accepted it read~ily, 
relinguising a very lucrative position in the Finance 
Department. Under his dynamic leadership, the Indian Association 
became a leading centre for research on scattering of light by 
liquids,, x-rays by liquids and the viscosity of liquids. The 
systematic investigations culminated in the discovery of Raman 
Effect in February/March 1928 for which he was awarded the Nobel 
Prize in 1930. 

In 1933, he joined the Institute as its Director and 
founded the Department of Physics. Till his retirement in 
January 1949, his main preoccupation was the physics of diamond 
and problems in crystal physics and many outstanding 
contributions were made by him and his students. Besides being 
an outstanding physicist of the country, he had the innate 
ability to discover the best in :he students who approached him 
and encouraged them to make significant contributions, and one 
may even say that that his dynamic leadership was responsible 
for the creation of a large number of physicists in this 
country. Till the very end of his life, even after his 
retirement from the Indian Institute of Science, at the Raman 
Research Institute, he dedicated himself to work on crystal 
physics, colour and vision. 

The first lecture in this series was delivered by 
Dr S Ramaseshan on 3 Xarch 1978 on 'C.V.Raman', the second 
lecture by Dr Sukh Dev on 3 March 1980 on 'Research and Develop- 
ment in chemical industry', and the third lecture by Prof C N R 
Rao on 'Man, Minerals and Microscopes'. 


