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Synopsis

Astrophysical systems such as, the Sun, disc galaxies, clusters of galaxies, accretion discs

etc., possess ordered magnetic field in addition to a random component, which survives

for time scales much larger than the diffusion time scales in those systems, and therefore

are thought to be self–sustained by the turbulent dynamo action. The dynamo action

may be stated as the conversion of kinetic energy into the magnetic energy without any

electric currents at infinity. The mean differential rotation is common in these systems,

e.g., the Sun, the disc galaxies, the accretion discs etc. The standard paradigm involves

amplification of seed magnetic fields, due to non mirror–symmetric (i.e. helical) turbulent

flows through the so called α−effect (Moffatt, 1978; Parker, 1979). It may be noted that

the magnetic field being a pseudovector is inherently non mirror–symmetric and therefore

its generation at certain scale due to the dynamo action is a symmetry breaking process

at that scale, which demands that the flow must host such a quantity which is also non

mirror–symmetric. The quantity α is one such object which is a measure of net or average

kinetic helicity in the flow and it is a pseudoscalar. Only recently the role of mean shear in

the turbulent flow is beginning to be appreciated, as the breaking of mirror–symmetry, so

necessary for large–scale dynamo action, may also come from the background shear flow.

Dynamo action due to shear and turbulence received some attention in the astrophysical

contexts of accretion discs (Vishniac & Brandenburg, 1997) and galactic discs (Blackman,

1998; Sur & Subramanian, 2009). The natural question to be addressed may be posed

as: In the absence of usual α− effect, will it be possible to generate large–scale magnetic
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field just due to the action of mirror–symmetric turbulence in background shear flow on

the seed magnetic field ? This question just posed was simulated in the recent past by

Yousef et al. (2008); Brandenburg et al. (2008). These simulations clearly demonstrated

the growth of large–scale magnetic field due to non–helical stirring at small scale in the

background linear shear flow. This forms the basic motivation for our interest in the

study of the shear dynamo problem in the absence of usual α−effect. In the problems

studied in this thesis, we assume a linear shear flow, and throughout this thesis, we will

deal with the shear parameter non–perturbatively.

Problems studied in the thesis:

Our primary interest is to study the growth of large–scale magnetic fields, due to small–

scale, mirror–symmetric (i.e. non–helical) turbulence in a background linear shear flow.

This problem of the shear dynamo, with no net value of α, turns out to be quite com-

plicated for magnetic fields because they have a pseudovector character. Therefore we

present our investigations by first studying the free and non–helically forced shearing

waves in the background shear flow. Then we present a preliminary application of our

techniques to understand the large–scale mixing of a passive scalar in a non–helical tur-

bulent linear shear flow. The problems just described form part I of this thesis. We

deal with magnetic fields in part II of the thesis. Below, we briefly state the different

problems that were studied:

1. Shearing waves: Shear flows are common and seen in variety of astrophysical

contexts; like differential rotation in disc galaxies, accretion discs around compact objects

etc. The shearing waves are excited in such systems by some random stirring in the

medium, e.g., in disc galaxies the random supernovae (SNe) events stir the differentially

rotating disc and excite shearing waves. Our aim is to understand the large–scale dynamo

action in systems which possess mean shear, and therefore a necessary understanding of

waves in such shearing systems will be useful in our studies related to the large–scale

dynamo action.
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• Exact solutions of the Navier–Stokes equations: We studied the incompressible Navier–

Stokes equations in a background linear shear flow in the absence of any external

forcing. Plane shearing wave solutions were sought whose wave vectors were time

dependent, and these solutions were found to be the exact solutions of the Navier–

Stokes equations.

• Forced stochastic velocity dynamics: Here, we study the dynamics of an incom-

pressible fluid in a background linear shear flow, by solving the externally forced

Navier–Stokes equations in the limit of small fluid Reynolds number. The external

forcing is assumed to be stochastic, as a response to which, the resulting velocity

field is also expected to be stochastic. Our aim is to model non–helical (mirror–

symmetric) turbulence in linear shear flows and therefore we specialize to the case

when the fluid is stirred non–helically.

These shearing waves lead to the mixing of various active and passive variables1 embed-

ded in the medium. Our analysis of non–helically forced stochastic velocity dynamics will

be extremely useful in determining the various transport coefficients of different transport

phenomena (of magnetic fields or passive scalars), which in turn, enable us to comment

on the large–scale dynamo action. As a preliminary application of the techniques devel-

oped here, we next study the problem of passive scalar mixing, before investigating the

difficult problem of the growth of large–scale magnetic field.

2. Passive scalar mixing in shear flows: A passive scalar evolves according to

an advection–diffusion equation, which is much simpler than the induction equation

governing the evolution of magnetic field, and therefore provides a simpler situation

where we can quickly apply our techniques to understand the large–scale mixing of the

passive scalar. As we have developed stochastic forced shearing wave solutions which are

non–helical, because of our ultimate interest in the shear dynamos, we apply the same

solutions of non–helical turbulent flows in background linear shear flows to study the

1The passive variables do not act back on the flow whereas the active variables dynamically affect

the flow.
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mixing of passive scalars. The specific problem that we wish to address is: Under what

conditions does the mean concentration of the passive scalar grow due to the mirror–

symmetric turbulence at small scales, in the background linear shear flow ?

Now we are ready to study the problems related to the magnetic fields, which form

part II of the thesis.

3. The shear dynamo problem: This problem may be viewed in the following way:

In a given background mean shear flow, the kinetic energy is being supplied by stirring

the electrically conducting incompressible fluid in a non–helical fashion, as a result of

which, the magnetic energy at large–scale is seen to grow in time due to the large–scale

dynamo action. This is clearly a process of inverse–cascade in which the energy is being

transferred from small scale to large scale. Our aim is to understand the reason for this

shear dynamo action in the absence of usual α−effect.

The problem of the shear dynamo was first analytically studied in the limit of low

Reynolds numbers and the α−effect was strictly absent. These investigations motivated

us to look for the dynamo action in such systems in the limit when at least the fluid

Reynolds number be below unity, and we performed numerical simulations using the

Pencil Code2 in previously unexplored parameter regimes. Results of our numerical

simulations and the simulations of Brandenburg et al. (2008) in different parameter

regimes provided strong evidence for the non–trivial role of fluctuations in α, which have

zero mean, in the presence of background linear shear flow. This led us to analytically

study the shear dynamo problem where α could be considered as a fluctuating quantity

with zero mean. As argued before by Kraichnan (1976), these fluctuations in α may be

understood in terms of helicity fluctuations. We show analytically that the fluctuations

in α with zero mean together with mean background shear can drive the large–scale

dynamo action.

2See http://www.nordita.org/software/pencil-code.
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Our approach to mean–field theory in shear flows:

Our analytical investigations of the problems discussed above are based on the framework

of mean–field (two–scale), in which, the field variables (e.g. magnetic fields or the passive

scalars) may be split into mean and fluctuating components, where the mean field varies

over scales (spatial and temporal) much larger than the scale of the turbulence (Moffatt,

1978; Krause & Rädler, 1980). Following steps may be taken to study the mean–field

theory in linear shear flows, which we applied to both, the magnetic field and the passive

scalars, and present here the brief summary of the techniques by considering magnetic

field as an example:

(i) Reynolds averaging: Using Reynolds averaging, we split the magnetic field into

mean and fluctuating components. The mean magnetic field is driven by the Curl of

the mean EMF, which is given by the correlation between random velocity field and

the fluctuating magnetic field. To know the mean EMF, it is necessary to determine

the magnetic fluctuations which may be expressed in terms of the mean magnetic

field and the velocity fluctuations. So we develop the equation for the fluctuating

components, which we solve using the shearing coordinate transformation.

(ii) Shearing coordinate transformation: Exploiting the shearing coordinate trans-

formation, we write the Green’s function solution for magnetic fluctuations. This

transformation enable us to explicitly derive the resistive Green’s function for a lin-

ear shear flow, and thus we could write an explicit expression for fluctuating mag-

netic field in terms of random velocity field and the mean magnetic field. Using the

solution for the fluctuating magnetic field, we determine the mean EMF, and note

that the transport coefficients are given in general form in terms of unequal–time

two–point correlators of random velocity field.

(iii) Galilean invariance: The linear shear flow has a basic symmetry relating to mea-

surements made by a special subset of all observers, which are termed as the comov-

ing observers in Sridhar & Subramanian (2009). We prove a result on the Galilean

invariant form of the unequal–time two–point velocity correlators in Fourier space,
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and demonstrate that any general second order correlator of random velocity field,

in terms of which various transport coefficients could be expressed, can entirely be

written in terms of a single entity which we called the velocity spectrum tensor.

We derive the Galilean–invariant expressions for the transport coefficients and the

mean EMF, and express them in terms of the velocity spectrum tensor, which is the

most fundamental quantity to be determined in order to explore various conditions

for the dynamo action.

The knowledge of the velocity spectrum tensor is necessary for further progress leading

to the exploration of conditions for the dynamo action in the parameter regimes that

we worked in, and which will be described shortly. Our analysis of the forced stochastic

velocity dynamics in linear shear flows, described before, enabled us to determine the

desired velocity spectrum tensor in the limit of low fluid Reynolds numbers. It may be

noted that all the analysis presented in this thesis is always non–perturbative in the shear

parameter.

Numerical simulations of the shear dynamo:

We simulate, using the Pencil Code, the shear dynamo problem due to non–helical

stirring at small scales, in a background linear shear flow. We note that all the earlier

numerical experiments done so far have been carried out for both the fluid Reynolds

number (Re) and the magnetic Reynolds number (Rm) above unity. Our analytical

investigations in the limit of low Reynolds numbers motivated us to look for dynamo

action when at least one of Re, Rm is below unity. Two main motivations are: first,

to compare our analytical findings with the results of numerical simulations in similar

parameter regimes; and second, to look for the growth of mean magnetic field in the limit

when Re < 1. The limit of low Re is particularly interesting, as seeing a dynamo action in

this limit would provide enough motivation for further theoretical investigations, which

may focus the attention to this analytically more tractable limit of Re < 1, as compared

to the more formidable limit of Re > 1.
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A brief summary of results obtained:

A short summary of salient results, obtained while studying different problems described

above, is being given below:

• Plane shearing waves: We have constructed a plane shearing wave solution for the

Navier–Stokes equations in linear shear flows. These solutions are also the exact solutions

and we have presented explicit expressions for all three components of the velocity field

in the real form. We demonstrate that, when these shearing modes, also known as the

Kelvin modes, with parallel wavevectors are superposed, they remain exact solutions. We

give, in explicit form, the most general plane transverse shearing wave solution, with any

specified initial orientation, profile and polarization structure, with either unbounded or

shear–periodic boundary conditions.

• Forced stochastic velocity dynamics: We study the dynamics of an incompressible

fluid due to non–helical random stirring in a background linear shear flow in the absence

of Lorentz forces, in the limit of low fluid Reynolds numbers, by solving the corresponding

Navier–Stokes equations. Some of our findings are given below:

(i) We show that non–helical forcing gives rise to non–helical velocity field.

(ii) We determine the velocity spectrum tensor, which was argued above to be the

most fundamental entity, and which needed to be known in order to study various

transport processes of magnetic field & the passive scalars.

(iii) Various time–correlation properties of random velocity field are studied and it is

found, by analyzing the different components of two–time random velocity cor-

reators, that the shear has non–trivial anisotropic effects on the velocity correla-

tors, and hence is expected to lead to anisotropic transport of magnetic fields &

passive scalars.

• Passive scalar mixing in shear flows: The analysis of passive scalar mixing due

to non–helical stirring of an incompressible linear shear flow was done in the limit when

both, the fluid Reynolds number and the Peclet number were below unity. We find the
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possibility of transient amplification of mean concentration of the passive scalar. Just

like everything else in the thesis, this result is non–perturbative in the shear parameter.

• The shear dynamo problem: The shear dynamo problem was analytically studied

in two different ways; one, in which, the α−effect was strictly absent, and the other, in

which, the α was considered to be a fluctuating quantity with zero mean. We have also

performed numerical simulations for this problem. The results may be given as follows:

(i) When α−effect is strictly zero: Some earlier works on the similar problem proposed

that the origin of the large–scale magnetic field in such systems may be explained

by an effect known as the shear–current effect (Rogachevskii & Kleeorin 2003, 2004,

2008).

We formulated the problem of the shear dynamo in the limit of low Reynolds

numbers and concluded that the shear–current effect cannot be responsible for

dynamo action. Our theory is found to be in good agreement with some other

works, esp., with Brandenburg et al. (2008) who computed the magnetic diffusivity

tensor and concluded that the relevant component responsible for the shear–current

effect (η∞21) is of wrong sign and hence cannot give rise to the dynamo action. This

was the natural prediction of our theory.

Thus the main contribution of our studies, in which α was strictly zero, may be

stated as follows: The mean magnetic field cannot grow due to mirror–symmetric

turbulence in the background linear shear flow, at least in the limit when: (a)

both fluid and magnetic Reynolds numbers are below unity; (b) α−effect is strictly

absent (without considering any fluctuations in α); but (c) the shear parameter

can take arbitrary values.

This negative result of no dynamo action prompted us to carry out various numer-

ical simulations when at least one of Re, Rm is below unity.

(ii) Results of numerical studies of the shear dynamo: We demonstrated the large–scale

dynamo action in the limit when Re < 1 and Rm > 1. We performed simulations

in the regime when both (Re,Rm) < 1 to compare the results with our analytical
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calculations done in the similar regime and found a reasonably good agreement. We

also estimated the dynamo number (DαS), which was empirically defined in Bran-

denburg et al. (2008) corresponding to the incoherent alpha–shear mechanism3, for

many simulations, and found that the dynamo number (DαS) is always supercriti-

cal for cases, in which, we see dynamo growth, a result which is in agreement with

Brandenburg et al. (2008)4. This suggested that the incoherent alpha–shear mech-

anism could plausibly be the reason for observed shear dynamo due to non–helical

random stirring in these simulations. Thus our numerical investigations, together

with those of Brandenburg et al. (2008) in different parameter regime, motivated

us to analytically study the problem of dynamo action by assuming fluctuations in

α with no net value in the presence of background linear shear flow.

(iii) When α is a fluctuating quantity with zero mean: By considering temporal fluctu-

ations in the quantity α, with its mean value zero, we demonstrated that the

fluctuations in α with zero mean in conjunction with background shear flow can

give rise to the growth of large–scale magnetic field. Some other conclusions of this

analysis could be stated as:

(a) In the limit of zero shear, we find that only the diagonal components of the

turbulent diffusivity tensor (β∞
mp) survive, which are negative. This leads to the

negative turbulent diffusion of mean magnetic field, which in case of sufficiently

strong α−fluctuations may give rise to the self–excited dynamo action. This

result was first obtained by Kraichnan (1976) who did a similar analysis in

the absence of shear.

(b) The shear leads to cross–coupling of different components of mean magnetic

3A mechanism by which the fluctuations in α with no net value in conjunction with mean shear

might give rise to the large–scale dynamo action in such systems.
4Critical value of DαS (Dcrit

αS ≈ 2.3), above which the dynamo is seen, was empirically determined in

Brandenburg et al. (2008). We show by our analytical investigation of fluctuating α with background

mean shear that this number 2.3 is not unique; we describe it later.
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field with each other through the off–diagonal components of β∞
mp. The diag-

onal components couple each component of mean magnetic field with itself.

The shear makes one of the diagonal components β∞
22 more negative whereas

β∞
11 is independent of the shear.

(c) By deriving the dispersion relation and putting it in a useful form in terms

of three dimensionless parameters, we explored various conditions for the dy-

namo action, and found that the critical conditions could be given by a surface

in three dimensional parameter space. Therefore, the critical value required

by one of the parameters for dynamo action is a function of the remaining

two dimensionless parameters (e.g., Dcrit
αS varies as a function of two other

dimensionless parameters, and hence is not a unique number).

(d) We find that the shear helps in the generation of large–scale magnetic field in

the presence of α−fluctuations. If the fluctuations in α are extremely small,

one can still find growing solutions for the mean magnetic field for sufficiently

large values of shear.

(e) In most numerical simulations that we perform, the fluctuations in α are not

too strong, and hence these alone may not give rise to the dynamo action,

unless supported by the shear.

It is routinely found in the numerical simulations of the shear dynamo that the

quantity α fluctuates in time without having any net value, even when the random

forcing at small scales in these simulations was non–helical, therefore, it seems plausible

that these observed α−fluctuations together with background shear flow could have led

to the growth of large–scale magnetic fields in these simulations, by the mechanisms

described in our analytical calculations of fluctuating α discussed above. The natural

scope for future works related to this problem could be to perform numerical experiments

exploring conditions for the dynamo action, as predicted in our analytical calculation of

α−fluctuations, in which, we suggested that there are three dimensionless parameters,

which, if tuned suitably, can always give rise to the dynamo action.
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Chapter 1
INTRODUCTION

Magnetic fields are ubiquitous and seem to be one of the most pervasive features in the

Universe. Investigations of the origins of magnetic fields in cosmic matter (e.g., the Earth,

the Sun, the Galaxy etc.) started with the work of J. Larmor in 1919 who wondered

about the Solar magnetic field, after the pioneering measurements by G. Hale in 1908, of

Zeeman splittings of the sunspot spectral lines, suggesting the existence of magnetic field

in sunspots (Hale, 1908; Larmor, 1919). From the classical electrodynamics, it is known

that there could be following two possibilities which might give rise to the magnetic field:

(i) the permanent magnetization of condensed matter; and (ii) the electric currents in

electrically conducting fluids. The conditions in most of the astrophysical objects rule

out the permanent magnetization as an option for the origin of associated magnetic field.

Considering a particular example of the Earth, it is known that the temperature of the

Earth’s interior (∼ 5500◦C) is well above the critical temperature, i.e., the Curie point

(∼ 700◦C), at which any ferromagnetic material loses its permanent magnetization.

However, most of the baryonic matter in the Universe exists in the plasma state, which

may be thought of as an electrically neutral fluid as a whole, whose constituents are

ions, electrons and neutrals, in general. Motions in these electrically conducting fluids,

which fill almost the entire Universe, drive electric currents giving rise to the magnetic

fields, but it should be noted that the dynamo action, in which the kinetic energy of

the flow gets converted into the magnetic energy due to the hydromagnetic interactions,

1
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require some seed magnetic field to become operative. Many different mechanisms have

been proposed for the origin of seed magnetic fields (see the reviews (Widrow, 2002;

Brandenburg & Subramanian, 2005) and a recent work (Deshpande & Kumar, 2012) for

the possible origins of the seed field), which lead to fields which are much weaker than the

observed magnetic fields. It is thought that the observed cosmic magnetic fields could

have arisen due to the dynamo amplification of these seed fields. Another possibility that

was suggested to explain the observed magnetic field was the primordial–field hypothesis,

in which, it was considered that the magnetic fields were already present in the matter

which collapsed to form Galaxies, and thus the galaxies carried that signature (Widrow,

2002). This simple idea remained a promising candidate, as the other mechanisms for

generation of magnetic fields were poorly understood at that time due to the non–linear

nature of the hydromagnetic interactions, which are unavoidable in all the astrophysical

systems. While it is possible that the primordial fields could have existed at the time

of birth of the galaxies, it is now clear that no magnetic field could have survived over

the life time of the galaxy due to the turbulent magnetic diffusion, and therefore a self–

sustained dynamo action seems to be the reason behind the observed large and small

scale magnetic fields (Shukurov & Sokoloff, 2008); see also § 1.4 given below.

Advances in the dynamo theory are relatively recent and slow due to the very nature

of the problem being quite difficult, but there have been considerable progress in this area

due to advancements of numerical simulations in the recent past. A detailed treatment

on the subject of astrophysical dynamos can be found in the review by Brandenburg &

Subramanian (2005), where the current topics of dynamos together with its historical

developments and the outlook have been given in a rigorous fashion; see also Branden-

burg, Sokoloff & Subramanian (2012) for relatively more recent review on current status

of turbulent dynamos, where various technical issues related to the large–scale and the

small–scale dynamo action have been discussed.

In this thesis, our primary interest is to study the growth of large–scale magnetic

fields, due to small–scale, mirror–symmetric (i.e. non–helical) turbulence in a background

linear shear flow. Before describing the specific problems that were studied in detail, we
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briefly discuss the fundamental concepts of hydrodynamics, magnetohydrodynamics and

mean–field theory, which will be used throughout the thesis.

1.1 Basics of hydrodynamics

Consider the lab frame in which the position vector is denoted as x, and the time is

denoted as t. The fluid (liquids and gases) is modelled as continuum in which all the

state variables are smoothly varying functions of space. A fluid particle is assumed to

be in local thermodynamic equilibrium and it is assigned with a bulk or mass–weighted

average velocity, v′(x, t), which is smoothly varying function. Thus the state of the

fluid is mathematically described by the knowledge of the flow, i.e. v′(x, t), together

with any two thermodynamic variables, say, pressure (p(x, t)) and density (ρ(x, t)). The

fundamentals of fluid dynamics are discussed in detail in a number of textbooks (see e.g.,

Landau & Lifshitz (1987); Pedlosky (1987); Acheson (1990); Choudhuri (1998)).

1.1.1 Basic equations of hydrodynamics

• Relation between the Lagrangian and the Eulerian derivative : Let Q(x, t) be

some quantity of interest whose variation with respect to time is to be determined. The

rate of change of Q at a fixed position in space is called the Eulerian derivative, denoted

by ∂Q/∂t. The Lagrangian (or the material or the convective) derivative of Q, which

we denote by dQ/dt, may be described by imagining the time derivative of Q as seen

by the one moving with the fluid element with the fluid velocity v′(x, t). The relation

between the two is given by,

dQ
dt

=
∂Q
∂t

+ (v′
· ∇)Q (1.1)

• Mass conservation or the continuity equation : For a fluid of density ρ(x, t), the
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continuity equation is written as,

∂ρ

∂t
+ ∇· (ρv′) = 0 , (1.2)

which using Eqn. (1.1) may be expressed as,

dρ

dt
= −ρ (∇· v′) (1.3)

• Momentum balance or the Navier–Stokes equation : In this thesis, we will be

concerned only with the Newtonian fluids, for which, the viscous stress is proportional

to the rate of change of strain within the fluid, i.e., the velocity gradient. It is due to

the Galilean invariance that the viscous stress can depend only on the gradients of the

velocity field, and not on the velocity field itself. The basic equation of motion governing

the dynamics of a Newtonian viscous fluid is given by the Navier–Stokes equation:

∂v′

∂t
+ (v′

· ∇) v′ = −1

ρ
∇p+ F b + ν∇2v′ +

(
ν

3
+
ζ

ρ

)
∇(∇· v′) (1.4)

where p, F b, ν and ζ represent the pressure, the body force, the coefficient of kinematic

viscosity and the coefficient of bulk viscosity.

• Incompressible (or the isochoric) fluids : Our aim in this thesis will be to under-

stand the behaviour of incompressible fluids (except when we perform numerical simula-

tions presented in Ch. 7, in which case, a weakly compressible fluid has been modelled).

The density of an incompressible fluid does not change, and therefore we can write from

Eqn. (1.3)

∇· v′ = 0 (1.5)

as the condition for incompressibility of the fluid. We note that ∇· v′ represents the rate

of change of volume element of a fluid element, which is why the incompressible fluid

are also sometimes referred to as the isochoric fluids. The flows, in which, the typical

velocities of fluid elements are much smaller than the local sound speed, are known as the

subsonic flows, whereas for supersonic flows, typical velocities of fluid elements are much
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larger as compared to the local sound speed. The subsonic flows could be approximately

considered as incompressible. Thus, using Eqn. (1.5) in Eqn. (1.4), the Navier–Stokes

equation for an incompressible fluid can be written as,

∂v′

∂t
+ (v′

· ∇) v′ = −1

ρ
∇p+ F b + ν∇2v′ (1.6)

We note that the pressure (p) appearing in Eqn. (1.6) can be determined using the

incompressibility condition given in Eqn. (1.5) (by taking the divergence of Eqn. (1.6)

and then solving the resulting Poisson’s equation for the pressure). Therefore, Eqns. (1.6)

and (1.5) are adequate to study the evolution of all the independent dynamical variables

or the unknowns, forming a closed system.

1.2 Basics of magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is a model of the plasma in which we try to understand

the interaction of the magnetic field and the plasma. MHD model is valid under the

following assumptions:

• The plasma is assumed to be sufficiently collisional, so that it can be treated as a

continuum (i.e. fluid-like).

• The plasma is treated as a single fluid in which, any charge imbalance (due to, for

example, thermal fluctuations) within the plasma is ignored. This assumption will

be true if we consider the macroscopic length scales to be much larger than the

Debye shielding length1 and the time scales be much larger than the inverse of the

plasma frequency2.

1The Debye length (λD) is characterized by a length scale above which any charge imbalance is

almost completely screened due to presence of opposite charges. Thus, the plasma can be treated as

charge-neutral when distances larger than λD are considered.
2The plasma frequency (ωP ) describes the frequency of rapid oscillations (known as the Langmuir

waves) of the charge density in the plasma. Thus, considering the time scales much larger than the ω−1

P ,

we can safely ignore the charge separations in the plasma.
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• If v′ be the bulk velocity of a plasma particle at some space–time point and c be the

speed of light, the terms of order v′2/c2, or higher, are ignored, while the terms of

order v′/c are retained in MHD model. Thus, MHD is a non-relativistic reduction

of the plasma dynamics.

1.2.1 Basic equations of MHD

The plasma can carry electric currents due to motions, which produce magnetic fields.

The magnetic fields thus generated exert Lorentz force on the plasma. Therefore, the

Maxwell’s equations of electrodynamics together with the fluid equations, in which we

include the Lorentz forces due to electromagnetic fields, describe the plasma processes

under the simplified MHD model described above.

• Maxwell’s equations : We write below the Maxwell’s equations in Gaussian cgs

units,

1

c

∂B′

∂t
= −∇×E′ ; ∇·B′ = 0

1

c

∂E ′

∂t
= ∇×B′ − 4π

c
J ′ ; ∇·E′ = 4πρe (1.7)

where E′, B′, J ′ and ρe are the electric field, the magnetic field, the current density and

charge density, respectively, all seen in the lab frame.

• Lorentz transformation of electromagnetic fields (non-relativistic approxi-

mation) : Let E′R and B′R be the electromagnetic fields in the rest frame of the plasma,

which is moving with velocity v′(x, t), as seen in the laboratory frame. E′R and B′R

are related to E′ and B′ (the electromagnetic fields in the laboratory frame) by Lorentz

transformation,

E ′R
‖ = E ′

‖ ; B′R
‖ = B′

‖

E′R
⊥ = γ

(
E′

⊥ +
v′

c
×B′

⊥

)
; B′R

⊥ = γ

(
B′

⊥ − v′

c
×E′

⊥

)
(1.8)
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where γ = 1/
√
1− v′2/c2 is the Lorentz factor, and the subscripts ‖ and ⊥ refer to the

directions parallel and perpendicular to v′, respectively. In the MHD model, as described

before, γ approaches unity, and we can write from Eqn. (1.8),

E′R = E′ +
v′×B′

c
(1.9)

• Ohm’s law and the induction equation : Ohm’s law is a model relating, linearly,

the current density with the electromagnetic fields. In the laboratory frame, for non-

relativistic velocities of the plasma, it is expressed as,

J ′ = σ

(
E ′ +

v′×B′

c

)
(1.10)

where σ is the electrical conductivity of the plasma. From Eqns. (1.8) and (1.10), we

can write,

J ′ = σ E′R = J ′R (1.11)

Thus we see that, to order v′/c, the current density remains the same when transformed

from one frame to another. In the high electrical conductivity limit (i.e., σ → ∞), it may

be seen from Eqns. (1.10) and (1.11) that, for a finite J ′, E ′R → 0, implying,

|E′| ≈ |v′|
c

|B′| (1.12)

Therefore the electric field in the plasma rest frame approximately vanishes due to

high electrical conductivity, and in the laboratory frame, the electric field is given by

Eqn. (1.12), which is a small quantity as compared to the magnetic field. This is the

reason that we usually talk about cosmic magnetic field, and the cosmic electric fields are

not so much discussed due to electrical conductivity of the astrophysical plasma being

usually very high.

Eliminating J ′ using Eqn. (1.10) from one of the Eqns. (1.7), we get

η

c2
∂E ′

∂t
+E′ =

η

c
∇×B′ − v′

×B′

c
(1.13)
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where η = c2/(4πσ) is called the magnetic resistivity. The time derivative term (which is

called the displacement current term) may be safely ignored if the relevant time scale over

which the electric field varies is larger than the Faraday time scale, τf = η/c2. For the

ionized plasma, the Faraday time scale may be estimated from, τf ∼ 10−14 T
−3/2
4 s, where

T4 is the temperature of the plasma in units of 104K. For conditions in astrophysical

systems, τf is extremely small quantity, and therefore the displacement current term can

be ignored from the above equations. Under these conditions, we can write the following:

E′ =
η

c
∇×B′ − v′×B′

c
; ∇×B′ =

4π

c
J ′ (Ampère’s law) (1.14)

Using expression for E′ as given in Eqn. (1.14) in one of the Maxwell’s equations

(Eqn. (1.7)), which involves the time derivative of the magnetic field, we get

∂B′

∂t
= ∇× (v′

×B′ − η∇×B′) (1.15)

Equation (1.15) is known as the induction equation which describes the evolution of

magnetic fields in the plasma for a given velocity field (v′). Taking the divergence of

both sides of Eqn. (1.15), we find that ∂(∇·B′)/∂t = 0, and therefore the magnetic field

remains divergence–free at all times, as it must be.

It is important to realize at this point that the magnetic field, which evolves according

to the Eqn. (1.15), acts back on the plasma modifying its velocity field (v′), and therefore,

for a complete description of the plasma, one needs to simultaneously study the evolutions

of both, the magnetic field and the velocity field. If the magnetic resistivity (η) is a

homogeneous quantity, then Eqn. (1.15) may be expressed as

∂B′

∂t
= ∇× (v′

×B′) + η∇2B′ (1.16)

• The momentum equation with the Lorentz force : As mentioned above that

the magnetic field influences the charges in the plasma by exerting the Lorentz forces.

Considering a single charged particle having charge q, we know that the Lorentz force
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on the charge due to the electromagnetic field is F L = q[E′ + (v′×B′)/c]. Let ni be the

number density of ions, each with charge qi, and ne be the number density of electrons.

Let v′
i and v′

e be the bulk velocities of ions and electrons respectively, then the Lorentz

force per unit volume fL = ρeE
′ + (J ′

×B′)/c, where ρe = (qini − ene) is the net charge

density and J ′ = (qiniv
′
i − enev

′
e) is the current density in the conducting fluid. Any

charge imbalance in the plasma decays shorting out the electric field over a time scale of

the order of the Faraday time scale (τf) discussed above, which is usually very small for

higly conducting fluid. Thus the electric part of the Lorentz is ignored as compared to

the magnetic part. This can also be seen as follows: Consider the Gauss’s law relating

E′ with ρe and the Ampère’s law relating B′ with J ′ (ignoring the displacement current

term), and let the scale of variation of both E ′ and B′ be the same, which we denote as

ℓEM , we can write,

|ρeE′|
|(J ′

×B′)/c| =
|E ′2/ℓEM |
|B′2/ℓEM | =

|E ′2|
|B′2| =

v′2

c2
≪ 1 (1.17)

where we have used Eqn. (1.12). Thus we can safely ignore the electric part of the Lorentz

force as compared to the magnetic part in the non–relativistic limit we are interested in.

Thus the momentum balance equation for the fluid element in the presence of Lorentz

force may be written by adding the Lorentz force term on the right hand side of the

Navier–Stokes equation given in Eqn. (1.6):

∂v′

∂t
+ (v′

· ∇) v′ = −1

ρ
∇p+ F b +

J ′
×B′

ρ c
+ ν∇2v′ (1.18)

where ρ in Eqn. (1.18) is the mass density of the fluid (which is assumed to be constant

here due to incompressibility) and J ′ = c (∇×B′)/4π.

1.2.2 Few comments on the induction equation

Considering the induction equation given in Eqn. (1.16), we briefly mention few com-

ments below:

• η = 0 (Ideal MHD) : In this limit the magnetic flux is frozen into the plasma.
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• v′ = 0 : In this limit the inductive term is absent from the induction equation

and the magnetic field monotonously decays due to microscopic (or the Ohmic)

diffusion.

• The finite v′ may act as a dynamo whose formal definition may be stated as : it

is the conversion of kinetic energy into the magnetic energy without any electric

currents at infinity.

• B′ = 0 : The zero magnetic field is a solution of the induction equation and

therefore the existence of finite seed magnetic field is necessary for dynamo to

operate.

1.3 Mean–field theory and turbulent dynamos

Mean–field theory provides a framework in which one can study the evolution of magnetic

field (or other variables) over scales which are separated by the scales of the turbulence

(Moffatt, 1978; Krause & Rädler, 1980). This provides a natural setting for the evo-

lutionary studies of fields which have definite spatial ordering together with a random

component at the scale of random flow, and this framework is also called a two–scale

approach. In mean–field theory, we will solve the Reynolds–averaged equations by suit-

ably defining ensembles (see, Monin & Yaglom (1971, 1975) for rigorous treatments of

statistical concepts in fluid mechanics.)

1.3.1 Rules of Reynolds averaging

In a medium, in which the velocity field has a stochastic component at some (small)

scale, all the field variables (e.g., the magnetic field or the passive scalars) will also

show irregular variations in space and time at a similar scale, although they might also

have ‘definite ordering’ at some different (large) scale. The stochastic velocity field may

be assumed as a model representing the turbulence. Consider an ensemble of identical

systems, in which, different members of the ensemble correspond to different realizations
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of fluctuating velocity field. The ‘mean’ of any field variable is defined by taking its

average over the ensemble. Thus any variable can be split into mean and fluctuating

components. Let v′ and B′ be the total velocity and the magnetic field respectively, both

having well–defined mean (denoted by V and B respectively) and fluctuating (denoted

by v and b respectively) components. Denoting by 〈 〉 the ensemble averaging in the

sense of Reynolds, we write below all the Reynolds rules which will be used for averaging

procedures, whenever needed :

v′ = V + v ; 〈v′〉 = V ; 〈v〉 = 0

B′ = B + b ; 〈B′〉 = B ; 〈b〉 = 0

〈〈B′〉〉 = B ; 〈B′
1 +B′

2〉 = 〈B′
1〉+ 〈B′

2〉 = B1 +B2

〈 〈B′
1〉 〈B′

2〉 〉 = B1 B2 ; 〈B b〉 = 0 ;

〈
∂B ′

∂t

〉
=

∂B

∂t
(1.19)

We note that the operator 〈 〉 commutes with the differentiation and the integration

operators; example of commutation with time derivative is shown in Eqn. (1.19).

1.3.2 Equations for ‘mean’ and ‘fluctuating’ magnetic field

Applying the averaging techniques given in Eqn. (1.19) on the induction equation,

Eqn. (1.15), and working out

〈v′
×B′〉 = 〈(V + v)×(B + b)〉 = V ×B + 〈v×b〉

we can write the following two equations describing the evolutions of the mean and the

fluctuating magnetic fields :

∂B

∂t
= ∇× (V ×B + E − η∇×B) (1.20)

∂b

∂t
= ∇× (V ×b+ v×B − η∇×b) +∇×(v×b− E) (1.21)
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where E = 〈v×b〉 is known as the mean electromotive force (EMF), or the turbulent

EMF. As may be seen from Eqn. (1.20) that the mean EMF (E) drives the mean–

field, which depends on the fluctuating components of the velocity and the magnetic

fields. Thus the correlation between the fluctuations give rise to the mean EMF, which

ultimately decides the evolution of mean magnetic field. In order to determine E , for a

given velocity field, we need to solve Eqn. (1.21) for fluctuating magnetic field.

We noted before that the magnetic field affects the dynamics of the flow through the

action of Lorentz forces in the momentum balance equation, Eqn. (1.18). The momentum

balance equation must also be split into the mean and fluctuations by applying Reynolds

rules, and for a full dynamical treatment of the problem of magnetic field generation,

one must study the simultaneous evolution of the magnetic and the velocity field, a task

which is difficult due to presence of nonlinearities, and is mostly studied by numerical

simulations.

Here, we simplify the problem by assuming that the velocity is given, and study the

mean–field and fluctuating field induction equations, Eqns. (1.20) and (1.21), for specific

velocity fields, V and v. This is called the kinematic study of dynamo action.

1.3.3 First order smoothing approximation (FOSA)

Let τv and ℓ be the correlation time and the correlation length of fluctuating velocity

field (with root–mean–squared value vrms), which may be defined as the characteristic

temporal and spatial scales respectively, over which, the fluctuating velocity field does

not vary appreciably. Imagining that the dominant source of b is due to the action of v

on mean–field B (see Eqn. (1.21)), we can assume that the correlation time and length

of b is same as that of v. Considering Eqn. (1.21), we find that the ratio of the terms

∇×(v×b−E) and ∂b/∂t is of order St = vrmsτv/ℓ, and ratio of the term ∇×(v×b−E)

and the resistive term η∇2b is of order Rm = ℓvrms/η, where St and Rm are Strouhal

number and the magnetic Reynolds number respectively.

The last term on the right hand side of Eqn. (1.21) poses the problem of closure, and

is generally ignored under what is known as the “first–order smoothing approximation”
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(FOSA), also known as the “second–order correlation approximation” (SOCA) or the

“quasi–linear approximation, which is valid in the limit when min(St,Rm) ≪ 1 (Moffatt,

1978; Krause & Rädler, 1980; Brandenburg & Subramanian, 2005). In the astrophysically

interesting limit of high magnetic Reynolds numbers, Rm ≫ 1, the term ∇×(v×b−E)

in Eqn. (1.21) can still be ignored in the limit when St ≪ 1, and therefore, under FOSA,

we can write from Eqn. (1.21) by ignoring the mean flow (V ) for simplicity,

∂b

∂t
= ∇× (v×B) (1.22)

This equation may also understood to be derived in the limit of sufficiently small mag-

nitudes of b by noting that all the terms except ∇× (v×B) on the right hand side of

Eqn. (1.21) are linear in b; this argument may be found in Choudhuri (1998). Now the

system of equations are closed and the expression for the mean EMF can be determined

by,

E(x, t) = 〈v×b〉 =

〈
v(x, t)×

∫ t

0

dt′ ∇× [v(x, t′)×B(x, t′)]

〉
(1.23)

which can be expressed in component form, by using the divergence–free condition for

the magnetic field together with the condition of incompressibility for the fluid, as

Ei(x, t) =

∫ t

0

dt′
[
αij(x, t, t

′) Bj(x, t
′) − ηikj(x, t, t

′)
∂Bj(x, t

′)

∂xk

]
(1.24)

where αij(x, t, t
′) and ηikj(x, t, t

′) are the turbulent transport coefficients, which control

the evolution of the mean–magnetic field, and are given by

αij(x, t, t
′) = ǫilk

〈
vl(x, t)

∂vk(x, t
′)

∂xj

〉
; ηikj(x, t, t

′) = ǫilj 〈vl(x, t) vk(x, t′)〉 (1.25)

where ǫijk is the Levi–Civita symbol. In the statistically steady state, and assuming

the isotropy of the transport coefficients, i.e., by taking αij(x, t, t
′) = δijα̂(x, t − t′)

and ηikj(x, t, t
′) = ǫikj η̂t(x, t − t′), it can be shown (Choudhuri, 1998; Brandenburg &
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Subramanian, 2005),

E(x, t) = α(x, t)B(x, t) − ηt(x, t)J(x, t) (1.26)

where J = ∇×B, and α and ηt are given by,

α = −1

3

∫ t

0

dt′ 〈v · (∇×v)〉 ≈ −1

3
τv 〈v · (∇×v)〉

ηt =
1

3

∫ t

0

dt′ 〈v · v〉 ≈ 1

3
τv 〈v · v〉 (1.27)

It may be noted from Eqn. (1.27) that α is a measure of average kinetic helicity and is

a pseudoscalar, and ηt is a measure of average energy density of the fluctuating velocity

field. Using Eqns. (1.26) and (1.27) in Eqn. (1.20), assuming α and ηt to be homogeneous,

and choosing the mean velocity field to be of the form V = Sxêy (where we assume for

the moment that (x, y, z) denote the position vector, t denotes the time, and (êx, êy, êz)

denote the unit vectors in a Cartesian coordinate system), we write the evolution equation

for each component of mean magnetic field in explicit form,

(
∂

∂t
+ Sx

∂

∂y

)
Bx = α

(
∂Bz

∂y
− ∂By

∂z

)
+ (η + ηt)∇2Bx

(
∂

∂t
+ Sx

∂

∂y

)
By = SBxêy + α

(
∂Bx

∂z
− ∂Bz

∂x

)
+ (η + ηt)∇2By

(
∂

∂t
+ Sx

∂

∂y

)
Bz = α

(
∂By

∂x
− ∂Bx

∂y

)
+ (η + ηt)∇2Bz (1.28)

Few general comments on Eqn. (1.28):

• The equation for any component of mean–field depends on other components

through the α−term, thus the presence of α may lead to the cross-coupling dy-

namo, in which, any component of mean–field evolves due to the other components

of mean–field.
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• The ηt−term mimics the role of diffusion and therefore ηt is called the turbulent

magnetic diffusivity.

• Thus, even in the simplest case of isotropic transport coefficients, various com-

ponents can feed each other through the α−effect, and a self–sustained dynamo

action may be achieved.

• The finiteness of α (which is a pseudoscalar) ensures the presence of non mirror–

symmetric property in the flow at certain scale, which is necessary for the genera-

tion of a pseudovector (e.g. the magnetic field).

The generation of magnetic field in the absence of α (i.e., in the non–helical turbulence)

is quite a difficult problem, and one has to consider situations in which the mirror–

symmetry be naturally broken, even without α. Shear flows break the mirror–symmetry

and could provide settings, necessary for the generation of magnetic fields in the absence

of usual α−effect. Dynamo action in the absence of α−effect are called non–helical dy-

namos, and our primary interest in this thesis will be to understand non–helical dynamo

action in background shear flows.

1.4 Necessity of dynamo action

Astrophysical objects usually have very large magnetic Reynolds numbers and the ohmic

resistivity (η) of the plasma in such systems are negligible. In such ideal MHD limit,

the magnetic flux will be frozen to the plasma and will not suffer decay due to Ohmic

diffusion. As shown in Eqn. (1.28) that the turbulent magnetic diffusivity, ηt, adds to η

and it has a similar role to play, i.e., it leads to the turbulent diffusion of the magnetic

field. Astrophysical systems are highly turbulent and therefore ηt is expected to be

dominant, which can be estimated using Eqn. (1.27) (Brandenburg & Subramanian, 2005;

Shukurov & Sokoloff, 2008). It is found that most astrophysical systems have survived

for time scales much larger than the turbulent magnetic diffusion time scale, over which,

any initial magnetic field would have decayed due to the action of the turbulence, hence,
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any magnetic field observed today must have been supported by the dynamo action, say

e.g., by the action of α−effect through which various components of large–scale magnetic

field are coupled leading to the self–sustained scenario of magnetic field generation. We

demonstrate this by considering the interstellar medium (ISM) of Milky Way as an

illustrative example:

Supernovae (SNe) are the main source of turbulence in the interstellar medium (ISM)

and inject energy in the ISM with a typical stirring scale of order, ℓstir ∼ 100 pc; the

turbulent velocity field caused due to SNe stirring is typically of order, vturb ∼ 10 km/s

at the disc mid–plane; a typical scale over which the mean magnetic field varies (LB)

may be taken to be of the order of the scale height of the ionized gas, thus LB ∼ 500 pc.

The correlation time of random velocity field may be estimated as τv ∼ ℓstir/vturb, which

may be used in Eqn. (1.27) to find, ηt ∼ (vturbℓstir)/3. Using the parameter values

just mentioned, it can be obtained that, (i) the turbulent diffusivity, ηt ∼ 1026 cm2/s;

and (ii) the turbulent diffusion time scale (or the decay time scale) of the “large–scale”

magnetic field, tdecay ∼ L2
B/ηt ∼ 5 × 108 yr. Comparing tdecay with the galactic lifetime,

tgalaxy ∼ 1010 yr, we see that tgalaxy ∼ 20 tdecay.

This suggests that any initial magnetic field in the galaxy would have decayed due

to the turbulent diffusion, and the observed magnetic field must have been supported by

the turbulent dynamo action. By doing similar calculations for variety of astrophysical

systems, we conclude that almost all the astrophysical bodies must host a turbulent

dynamo.

1.5 Motivation, aim and the structure of the Thesis

As could be shown in Eqn. (1.28) that the quantity αmay naturally lead to the generation

of large–scale magnetic field, and has been the main quantity of interest for mean–field

generation in the standard dynamo theory. It may be noted that the magnetic field being

a pseudovector is inherently non mirror–symmetric and therefore its generation at certain

scale due to the dynamo action is a symmetry breaking process at that scale, which



CHAPTER 1. INTRODUCTION 17

demands that the flow must host such a quantity which is also non mirror–symmetric.

The quantity α is one such object which is a measure of net or average kinetic helicity in

the flow and it is a pseudoscalar. Only recently the role of mean shear in the turbulent

flow is beginning to be appreciated, as the breaking of mirror–symmetry, so necessary

for large–scale dynamo action, may also come from the background shear flow. Dynamo

action due to shear and turbulence received some attention in the astrophysical contexts

of accretion discs (Vishniac & Brandenburg, 1997) and galactic discs (Blackman, 1998;

Sur & Subramanian, 2009). The natural question to be addressed may be posed as: In

the absence of usual α− effect, will it be possible to generate large–scale magnetic field

just due to the action of mirror–symmetric turbulence in background shear flow on the

seed magnetic field ? This question just posed was simulated in the recent past by Yousef

et al. (2008a,b); Brandenburg et al. (2008). These simulations clearly demonstrated the

growth of large–scale magnetic field due to non–helical stirring at small scale in the

background linear shear flow.

This forms the basic motivation for our interest in the study of the shear dynamo

problem in the absence of usual α−effect. In the problems studied in this thesis, we

assume a linear shear flow, and throughout this thesis, we will deal with the shear

parameter non–perturbatively. Our primary interest is to study the growth of large–

scale magnetic fields, due to small–scale, mirror–symmetric (i.e. non–helical) turbulence

in a background linear shear flow. This problem of the shear dynamo, with no net

value of α, turns out to be quite complicated for magnetic fields because they have a

pseudovector character.

As the main aim is to understand the large–scale dynamo action in systems which

possess mean shear, a necessary understanding of waves in such shearing systems will

be useful in our studies related to the large–scale dynamo action. These shearing waves,

which could be excited in such systems by some random stirring in the medium, e.g.,

in disc galaxies the random supernovae (SNe) events stir the differentially rotating disc

and excite shearing waves, tend to mix the magnetic fields in the medium and might

lead to the large–scale dynamo action in suitable conditions. Thus, while our main focus



CHAPTER 1. INTRODUCTION 18

has always been on the study of the growth of mean magnetic field in such systems,

we studied some other problems as well, which were useful to pursue the shear dynamo

problem. We present our investigations in the following way:

In Ch. 2 we study the incompressible Navier–Stokes equation in a background linear

shear flow in the absence of any external forcing. Plane shearing wave solutions are

sought whose wave vectors are time dependent, and these solutions are found to be the

exact solutions of the Navier–Stokes equations.

Non–helically forced incompressible Navier–Stokes equations in background linear

shear flows are studied in Ch. 3. The forcing is assumed to be stochastic and the forced

shearing wave solutions are obtained by using the shearing coordinate transformation

which are time–dependent, and have close connection with the time–dependent wave

vectors discussed in Ch. 2, which were given in the lab frame. Using the concept of

Galilean invariance in linear shear flow, which is a statement of homogeneity in the

sheared coordinate frame, we study various correlation properties of the random velocity

field. We prove a result on the Galilean invariant form of the unequal–time two–point

velocity correlators in Fourier space, and demonstrate that any general second order

correlator of random velocity field can entirely be written in terms of a single entity

which we call the velocity spectrum tensor. We determine this quantity in this chapter.

It is shown in later chapters that all the transport coefficients of magnetic fields or the

passive scalar could be expressed in terms of this velocity spectrum tensor, and thus the

calculations of this chapter find ready applications in later chapters.

As a preliminary application of our techniques, we try to understand the large–scale

mixing of a passive scalar in a non–helical turbulent linear shear flow. A passive scalar

evolves according to an advection–diffusion equation, which is much simpler than the

induction equation governing the evolution of magnetic field, and therefore provides a

simpler situation where we can quickly apply our techniques to understand the large–

scale mixing of the passive scalar. As we have developed forced shearing wave solutions

which are non–helical, because of our ultimate interest in the shear dynamo problem,

we apply the same solutions of non–helical turbulent flows in background linear shear
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flows to study the mixing of passive scalars. We study this problem in the framework

of mean–field theory, and determine the transport coefficients, which could be expressed

in terms of the velocity spectrum tensor derived in Ch. 3, using which we finally study

the implications for the growth of mean concentration of the passive scalar. This work

is presented in Ch. 4.

Chs. 2, 3 and 4 form the part I of the thesis. Part II, consisting of Chs. 5, 6, 7 and 8,

deals only with the problems related to the magnetic fields. We use various techniques

developed in part I of the thesis to study the evolution of magnetic fields in background

linear shear flow in the absence of usual α−effect.

In Ch. 5 we formulate the kinematic shear dynamo problem, in the limit of small

magnetic Reynolds numbers (Rm) but arbitrary fluid Reynolds number (Re). This may

be thought of as FOSA with finite resistivity. Using the Reynolds averaging, shearing

coordinate transformation and the Galilean invariance, we write the Galilean invariant

expressions for the mean EMF and the turbulent transport coefficients. We find that

the evolution of mean magnetic field is governed by a set of coupled integro–differential

equations. We discuss some important properties of the evolution equation of the mean

magnetic field and demonstrate that our theory reduces to the quasilinear theory of

Sridhar & Subramanian (2009a,b) in the formal limit of zero resistivity. We show that

the natural setting for the integro–differential equation governing mean–field equation

is in sheared Fourier space. Using the result on the form of Galilean–invariant Fourier–

space unequal–time two–point velocity correlators, which is given in the Appendix B, we

express all the integral kernels in terms of a single entity, the velocity spectrum tensor,

which is the fundamental dynamical quantity that needs to be specified, and is pursued

in Ch. 6.

Building on the formulation developed in Ch. 5, we present, in Ch. 6, a theory of the

shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary

values of the shear parameter. We consider the case when the mean magnetic field is

a slowly varying function of time and derive the Galilean invariant expressions for the

mean EMF and the transport coefficients for slowly varying mean field. We make use of
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the results of Ch. 3, where we studied the stochastic velocity dynamics due to non–helical

random stirring of an incompressible fluid in a background linear shear flow in the limit

of low fluid Reynolds number. We prove that when the velocity field is non–helical, the

transport coefficient αil, which characterizes the usual α−effect, vanishes. Specializing

to the case when the mean magnetic field is a function only of the spatial coordinate X3

and time τ , we derive explicit expressions for all components of the magnetic diffusivity

tensor, and discuss the implications for the dynamo action by deriving the dispersion

relation. We demonstrate that the shear–current effect cannot be responsible for dynamo

action at small Reynolds numbers, but for all values of the shear parameter.

In Ch. 7 we simulate, using the Pencil Code, the shear dynamo problem due to

non–helical stirring at small scales, in a background linear shear flow. We note that all

the earlier numerical experiments done so far have been carried out for both the fluid

Reynolds number (Re) and the magnetic Reynolds number (Rm) above unity. Our an-

alytical investigations in the limit of low Reynolds numbers motivated us to look for

dynamo action when at least one of Re, Rm is below unity. Two main motivations

are: first, to compare our analytical findings with the results of numerical simulations

in similar parameter regimes; and second, to look for the growth of mean magnetic field

in the limit when Re < 1. The limit of low Re is particularly interesting, as seeing

a dynamo action in this limit would provide enough motivation for further theoretical

investigations, which may focus the attention to this analytically more tractable limit of

Re < 1, as compared to the more formidable limit of Re > 1. We demonstrate the large–

scale dynamo action in the limit when Re < 1 and Rm > 1. We find a reasonably good

agreement between our analytical findings of Ch. 6 and results of our simulations done in

the limit when (Re,Rm) < 1. Temporal variations in α were observed in numerical sim-

ulations of the shear dynamo, even when the fluid is stirred non–helically (Brandenburg

et al., 2008). We estimate the dynamo number (DαS), which was empirically defined in

Brandenburg et al. (2008) corresponding to the incoherent alpha–shear mechanism3, for

3A mechanism by which the fluctuations in α with no net value in conjunction with mean shear

might give rise to the large–scale dynamo action in such systems.
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many simulations, and found that the dynamo number (DαS) is always supercritical for

cases, in which, we see dynamo growth, a result which is in agreement with Brandenburg

et al. (2008). This suggested that the incoherent alpha–shear mechanism could plausibly

be the reason for observed shear dynamo due to non–helical random stirring in these

simulations.

In Ch. 8 we formulate the shear dynamo problem by considering temporal fluctuations

in α, which have zero mean. Following the arguments of Kraichnan (1976); Sokolov

(1997), we study this problem using the concept of double averaging. Starting with the

usual α2-Ω equation and treating α as a stochastic variable, we develop the equations for

the mean and fluctuating magnetic fields. We derive explicit expressions for mean EMF

and transport coefficients due to α−fluctuations. Considering the case of slowly varying

mean field, we derive expressions for mean EMF and magnetic diffusivity tensor. We then

specialize to the case when the mean–field is a function only of the spatial coordinate X3

and time τ . This reduction is useful for comparisons with earlier works. All components

of the magnetic diffusivity tensor are derived which could be written in terms of the

two–time correlator of fluctuating α. We derive the general expression for the dispersion

relation which could be written in terms of three dimensionless parameters. Implications

for dynamo action are discussed and we show analytically that the fluctuations in α

with zero mean together with mean background shear can drive the large–scale dynamo

action.
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Navier-Stokes Equations: Free and
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Chapter 2
EXACT SOLUTIONS OF THE

NAVIER-STOKES EQUATION: PLANE

SHEARING WAVES

2.1 Introduction

The Navier–Stokes equations are the fundamental equations governing the dynamics

of the Newtonian fluids1. These are a set of inherently nonlinear partial differential

equations, for which, no general solution is known. Exact solutions of the Navier–Stokes

equations have been found only for a few specific problems of the fluid dynamics. Large

number of important and apparently simple fluid dynamical problems, with variety of

boundary conditions, continue to be the central topic of research due to the unavailability

of the exact solutions. Finding any class of ‘new’ exact solutions, for any kind of fluid

dynamical situation, is always extremely useful, and worth pursuing. Although any such

solution must indeed satisfy the Navier–Stokes equations, the phrase “exact solution”

has been given a special meaning in the literature (Wang, 1991; Drazin & Riley, 2006).

It is usually described as following: it must be valid for all spacetime points, and for

1The Newtonian fluids are the ones for which the viscous stress is proportional to the rate of change

of strain, i.e., the velocity gradient, within the fluid.

23
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all values of viscosity; it should be expressible as finite terms of simple, elementary

functions, i.e., it should be an explicit closed–form solution. Infinite–series solutions are

often excluded from the definition of the exact solutions. The exact solutions describe

the fundamental flows and are invaluable, as they usually offer a better understanding

and physical insight, which may be obscured in the approximate or the numerical results.

In the modern era of computational fluid dynamics, when we aim to study complicated

problems using numerical techniques, it is legitimate to question the validity of such

results obtained numerically. The exact solutions, thus, serve as a benchmark to test the

accuracy of various numerical codes and approximate solutions.

In 1986 Craik and Criminale (Craik & Criminale, 1986) presented a class of exact

solutions of the Navier–Stokes equations which were wavelike disturbances in background

shear flows. Since then these solutions have proved extremely useful in the study of

astrophysical and atmospheric fluid dynamics; a very useful collection of exact solutions

can be found in Drazin & Riley (2006). The approach taken in Craik & Criminale

(1986) was a generalization of a century–old method invented by Kelvin (Kelvin, 1887)

to study linearized perturbations of Couette flows; see also Marcus & Press (1977).

These shearing wave solutions, also referred to as Kelvin modes, have time–dependent

wave vectors and amplitudes. This feature makes them extremely useful in local stability

analysis (Lifschitz & Hameiri, 1991; Eckhardt & Yao, 1995). Although a single Kelvin

mode is an exact solution of the full Navier–Stokes (NS) equations, it has been remarked

(Craik & Criminale, 1986) that until about 1965 there seems to be no evidence that this

was so recognized; in fact, the first published mention is as late as 1983 (Tung, 1983).

Moreover, an explicit formula has been published (Kelvin, 1887; Craik & Criminale,

1986) for only one of the three components of the disturbance.

In this chapter, we have studied the incompressible Navier–Stokes equation in a

background linear shear flow, which is unbounded. In § 2.2, we describe the set of

equations being considered. In § 2.3, we construct shearing wave solutions of the Navier–

Stokes equations for all three components of the velocity field of a Kelvin mode, in closed

form using only elementary mathematical functions. These solutions are also the exact
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solutions to the Navier–Stokes equations. We identify a subset of these modes whose

wave vectors — though time–dependent — remain parallel to each other for all time.

These are used to synthesize the most general plane transverse shearing wave, which

can have any specified initial orientation, profile and polarization structure, with either

unbounded or shear–periodic boundary conditions. We present our conclusions in § 2.3.

2.2 The model system

Let (e1, e2, e3) be the unit basis vectors of a Cartesian coordinate system in the labo-

ratory frame. Using notation, x = (x1, x2, x3) for the position vector and t for time,

we write the fluid velocity as (Sx1e2 + v), where S is the rate of shear parameter and

v(x, t) is an incompressible velocity field (i.e. ∇· v = 0), which is assumed to obey

the Navier–Stokes equation expressed below for a fluid of unit mass density without any

external forcing:

(
∂

∂t
+ Sx1

∂

∂x2

)
v + Sv1e2 + (v· ∇) v = −∇p + ν∇2v (2.1)

The pressure, p(x, t), is determined by requiring that Eqn. (2.1) preserve the incom-

pressibility of the flow. Then p satisfies the Poisson equation,

∇2p = −∇· [(v· ∇)v] − 2S
∂v1
∂x2

(2.2)

2.3 Construction of the exact solutions

2.3.1 Sheared plane wave solutions

We seek a single plane wave solution to Eqns. (2.1) and (2.2) of the form,

vk(x, t) = Re {A(k, t) exp [iK(k, t)·x]} ,

pk(x, t) = Re {ψ(k, t) exp [iK(k, t)·x]} , (2.3)
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These single plane waves are also known as single Kelvin modes. The wavenumber (K)

and the amplitudes in the Eqn. (2.3) are explicit functions of time which depend on the

rate of shear. The meaning of k will be made clear in some time. Incompressibility

requires that

K(k, t)·A(k, t) = 0 (2.4)

The nonlinear term, (v· ∇)v, in Eqn. (2.1) vanishes identically due to the form of the

plane waves given in Eqn. (2.3) and the incompressibility condition, Eqn. (2.4), as may

be seen from the following:

(A· ∇) exp [iK(t)·x] = (iK·A) exp [iK(t)·x] = 0 (2.5)

Using Eqn. (2.3) in Eqns. (2.1) and (2.2), we get

∂A

∂t
+ iA

(
x·

∂K

∂t
+ Sx1K2

)
+ SA1e2 = −iKψ − νK2A (2.6)

−K2ψ = −i2SA1K2 (2.7)

Only the terms inside the parentheses in Eqn. (2.6) are x–dependent and hence they

should vanish. This leads to the following form for the time–dependent sheared wavevector

K :

K1 = k1 − Stk2, K2 = k2, K3 = k3 (2.8)

where k = (k1, k2, k3) is a constant wavevector2. Eliminating ψ using Eqn. (2.7) and

following the argument leading to Eqn. (2.8), we find that A satisfies,

∂A

∂t
+ SA1e2 = 2SA1

(
K2K

K2

)
− νK2A (2.9)

2We note that k1, k2 and k3 are constant in time but they can in general be assigned any value and

so they exhaust k1 − k2 − k3 axes. Therefore we write K = K(k, t)
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where K2 = |K|2 =
[
(k1 − Stk2)

2 + k22 + k23
]
. Our aim now is to obtain explicit

solutions for A. To do this, we define a new amplitude variable, a(k, t), by

A(k, t) = G̃ν(k, t)a(k, t) , (2.10)

where G̃ν(k, t) is a Fourier–space viscous Green’s function3,

G̃ν(k, t) = exp

[
−ν
∫ t

0

dsK2(s)

]
= exp

[
−ν
(
k2t − Sk1k2t

2 +
S2

3
k22t

3

)]
. (2.11)

where k2 = (k21 + k22 + k23). It may be noted from Eqn. (2.11) that G̃ν(k, t) is an even

function of k and k3, and it is bounded between 0 and 1. When Eqns. (2.10) and (2.11)

are substituted in Eqn. (2.9), we obtain the following equation for the new velocity

variable, ai(k, t), which may be written compactly as:

∂ai
∂t

− 2S

(
K2Ki

K2
− δi2

2

)
a1 = 0 (2.12)

where Ki = ki − δi1Stk2. It may be noted that the dependence of A(t) on the viscosity,

ν, arises solely through the Fourier–space Green’s function. It is helpful to display, in

explicit form, all three components of Eqn. (2.12):

∂a1
∂t

− 2S

[
(k1 − Stk2) k2

(k1 − Stk2)
2 + k22 + k23

]
a1 = 0 , (2.13)

∂a2
∂t

− 2S

[
k22

(k1 − Stk2)
2 + k22 + k23

− 1

2

]
a1 = 0 , (2.14)

∂a3
∂t

− 2S

[
k2k3

(k1 − Stk2)
2 + k22 + k23

]
a1 = 0 . (2.15)

3See the Appendix A for the most general form of the resistive Green’s function for linear shear

flows, the expression for which has been explicitly given for both, the real space and the Fourier space.

Compare, for instance, Eqns. (2.11) and (A.10).
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Eqn. (2.13) can be solved to get an explicit expression for a1(k, t):

a1(k, t) =
k2

(k1 − Stk2)
2 + k22 + k23

a1(k, 0) , (2.16)

which expression is given in Kelvin (1887). When this is substituted in Eqns. (2.14)

and (2.15), the latter can be integrated to obtain expressions for a2(k, t) and a3(k, t).

However, neither Kelvin nor anyone else, to the best of our knowledge, have published

explicit formulae for these two components.4 Below, we present the solutions for a2(k, t)

and a3(k, t), which could be expressed entirely in terms of elementary functions:

a2(k, t) = a2(k, 0) +

{
k2k23

k2 (k22 + k23)
3/2

[
arctan

(
k1 − Stk2√
k22 + k23

)
− arctan

(
k1√
k22 + k23

)]

− k2k2
k22 + k23

[
k1 − Stk2

(k1 − Stk2)
2 + k22 + k23

− k1
k2

]}
a1(k, 0) , (2.17)

a3(k, t) = a3(k, 0) −
{

k2k3

(k22 + k23)
3/2

[
arctan

(
k1 − Stk2√
k22 + k23

)
− arctan

(
k1√
k22 + k23

)]

+
k2k3
k22 + k23

[
k1 − Stk2

(k1 − Stk2)
2 + k22 + k23

− k1
k2

]}
a1(k, 0) . (2.18)

Incompressibility requires that K(k, t)· a(k, t) = 0, which is guaranteed if the initial

conditions are chosen such that k·a(k, 0) = 0 . Note that K(k, 0) = k. Thus, choosing

a(t = 0) and k to be orthogonal to each other at initial time, ensures that the condition

of incompressibility is preserved for all time, i.e., Ki(k, t)ai(k, t) = kiai(k, 0) = 0. From

Eqns. (2.16)—(2.18), we can see that, at late times, a1(k, t) → 0, whereas both a2(k, t)

and a3(k, t) saturate at non zero values. This happens because the background flow

shears out the a1 component, and generates the a2 and a3 components.

4Marcus & Press (1977) study perturbations of plane Couette flow using Kelvin waves. However,

their analysis is limited to two dimensional perturbations, whereas the shearing waves we consider are

fully three dimensional.
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2.3.2 Velocity field in real form

When Eqns. (2.10), (2.11), (2.16)—(2.18) are substituted in Eqn. (2.3), we obtain the

full velocity field of a single Kelvin mode. Our aim is to express the velocity field in its

explicit real form. To do that, we use the arguments familiar from the discussion of the

polarization of monochromatic plane electromagnetic waves (see, e.g., § 48 of Landau &

Lifshitz (1975)).

Let us define the dimensionless and scale–invariant functions, Fi(Q), as

Fi(Q) =
Q3√

Q2
2 +Q2

3

[
Q3

Q2
δi2 − δi3

]
arctan

(
Q1√

Q2
2 +Q2

3

)
− Q1Qi

Q2
(2.19)

From Eqns. (2.10), (2.11), (2.16)—(2.18) and (2.19), we can compactly write the expres-

sion for A in component form as,

Ai(k, t) = G̃ν(k, t)

{
ai(k, 0) +

k2

k22 + k23
[Fi(K(k, t))− Fi(k)] a1(k, 0)

}
(2.20)

A (or a) in the Eqn. (2.3) or (2.20) is, in general, a complex vector. It’s square is (in

general) a complex number. All the terms on the right hand side of Eqn. (2.20) are real,

except ai(k, 0), which is a complex quantity. Let us assume that the square of a(k, 0)

has argument equal to 2φ (i.e. (a(k, 0))2 = a(k, 0)·a(k, 0) = |(a(k, 0))2|e2iφ), then we

define a complex vector e as

a(k, 0) = e exp [iφ] ; k· e = 0 , (2.21)

whose square, e2 = e· e = |(a(k, 0))2|, is a real quantity. We now express e in explicit

form as,

e = b− ic ; k· b = 0 ; k· c = 0 , (2.22)

where b and c are real vectors orthogonal to k. Since e2 = (b2 − c2 − 2ib· c) has been

chosen to be a real quantity, we must have b· c = 0. In other words, b and c are mutually

orthogonal vectors lying in the plane perpendicular to k. Using Eqns. (2.21) and (2.22),
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we can write the Eqn. (2.20) as,

Ai(k, t) = G̃ν(k, t)

{
(bi − i ci) +

k2

k22 + k23
[Fi(K(k, t))− Fi(k)] (b1 − i c1)

}
(2.23)

Thus the explicit real form of the velocity field of Eqn. (2.3) can be written in component

form as,

vi(x, τ) = G̃ν(k, t)

{[
bi +

k2

k22 + k23
[Fi(K(k, t))− Fi(k)] b1

]
cos [K(k, t)·x+ φ] +

+

[
ci +

k2

k22 + k23
[Fi(K(k, t))− Fi(k)] c1

]
sin [K(k, t)·x+ φ]

}
(2.24)

We choose the directions of b, c and k in such a way that they satisfy the following

k· c = 0 ; eb = ek×ec, (2.25)

where ec, eb and ek are unit vectors along the directions of c, b and k.

It may be verified that the structure of the mode depends on the dimensionless variable,

St, and the dimensionless parameter, (νk2/S). The spatio–temporal behavior of these

modes is briefly explored through Figs. (2.1) and (2.2). In order to understand its time

variation, it is convenient to measure the velocity components at the origin (i.e., x = 0),

as is done in Fig. (2.1). Fig. (2.1a) corresponds to the case of zero viscosity, (νk2/S) = 0.

In this case G̃ν = 1, and the plots give v(0, t) = Re{a(k, t)}, where we can see the decay

of a1 and the saturation of a2 and a3 discussed above. In Fig. (2.1b), we have chosen

(νk2/S) = −0.1, so that all three components of v(0, t) ultimately suffer viscous decay.

It can be seen that, before this decay, there is transient amplification of v2 and v3, due to

competition between shear and viscosity. For larger values of viscosity (not shown here),

this transient amplification may be absent because the damping can overwhelm shear.

Until now we have considered an unbounded flow. However, in numerical simulations

of the local dynamics of differentially rotating discs in astrophysical systems (Binney &

Tremaine, 2008; Balbus & Hawley, 1998), it is customary to employ “shear–periodic”
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Figure 2.1: Plots of the three components of the velocity field, measured at the origin,

as functions of St. We have chosen k = (1, 1, 1) and a(k, 0) = (1, 0,−1). The bold

lines are for v1(0, t), the dotted for v2(0, t), and the dashed for v3(0, t). Panel (a) is for

the non viscous case, ν = 0, so the velocity components are identical to the amplitudes,

a(k, t), of Eqns. (2.16)—(2.18). Panel (b) corresponds to (νk2/S) = −0.1, and all three

components ultimately suffer viscous decay.

boundary conditions. Let us define sheared coordinates by

xsh1 = x1 , xsh2 = x2 − Stx1 , xsh3 = x3 . (2.26)

These may be thought of as the Lagrangian coordinates of fluid elements that are carried

along by the background shear flow. A function is said to be shear–periodic when it is a

periodic function of (xsh1 , x
sh
2 , x

sh
3 ) with periodicities (L1, L2, L3), respectively. The phase

of the function vk can be written as K(k, t)·x = k·xsh. Therefore, a shear–periodic

Kelvin mode has wave vectors k ∈ (2πm1/L1, 2πm2/L2, 2πm3/L3), where the mi take

any integer values.

2.3.3 Superposition of Kelvin modes

We now use the explicit expressions obtained for the Kelvin modes to construct the most

general plane transverse shearing wave. Let us consider two Kelvin modes, vk(x, t) and
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vk
′(x, t) corresponding to wave vectors k and k′, which are parallel to each other but

could differ in magnitudes. Using Eqns. (2.8), we see that the corresponding sheared

wave vectors, K(k, t) and K(k′, t), are also parallel to each other for all time. Incom-

pressibility implies that vk(x, t) and vk
′(x, t) are perpendicular to K(k, t) and K(k′, t)

for all time. So, if we superpose vk(x, t) and vk
′(x, t), the nonlinear term in the Navier–

Stokes equations vanishes, because the superposed velocity field remains parallel to the

wavefronts. Thus the superposition of an arbitrary number of Kelvin modes, all with

wave vectors parallel to each other, is an exact solution of the Navier–Stokes equations.

Let us choose a unit vector n̂ = (n1, n2, n3), and define the sheared (non–unit) vector

nsh(t) by

nsh
1 = (n1 − Stn2) , nsh

2 = n2 , nsh
3 = n3 . (2.27)

Superposing all Kelvin modes with wave vectors q = qn̂, where −∞ < q < ∞, we

obtain an exact plane–wave solution of the Navier–Stokes equations with wavefronts

perpendicular to nsh(t):

vi(x, t) =

∫ ∞

−∞

dq

2π
G̃ν(qn̂, t) W̃i(q) exp

[
iqnsh(t)·x

]
+

+

[
Fi

(
nsh(t)

)
− Fi(n̂)

n2
2 + n2

3

]∫ ∞

−∞

dq

2π
G̃ν(qn̂, t) W̃1(q) exp

[
iqnsh(t)·x

]

(2.28)

where the dimensionless and scale–invariant functions, Fi(Q), are defined by Eqn. (2.19).

For shear–periodic boundary conditions, the integral over q in Eqn. (2.28) should be

replaced by an appropriate sum. The W̃ (q) are Fourier–space initial conditions corre-

sponding to the a(k, 0) of eqns. (2.16)—(2.18), and must satisfy the incompressibility

condition, n̂· W̃ (q) = 0 . They are determined by the initial profile and polarization

structure of the plane wave. At t = 0, the wavefronts are perpendicular to n̂, so we

write v(x, 0) = W (n̂·x), where n̂·W = 0. Note that the only constraint on the

initial condition, W , is that it is a vector field that is perpendicular everywhere to the

unit vector n̂; otherwise it is a quite arbitrary function of its one argument. Thus, no
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restriction need be placed on the initial profile and polarization structure of the initial

conditions. Given W (y), we can determine W̃ (q) =
∫∞

−∞
dyW (y) exp [−iqy] , and use

this in Eqn. (2.28) to calculate v(x, t).

Eqn. (2.28) is a complete solution for a general plane shearing wave, expressed in

terms of a Fourier integral. However, it is physically more transparent to rewrite the

right side in terms of real–space quantities. To do this, we must introduce the real–

space viscous Green’s function, whose natural definition is with respect to the sheared

coordinates5:

Gν

(
xsh, t

)
=

∫
dk

(2π)3
G̃ν(k, t) exp

[
ik·xsh

]
. (2.29)

Noting that nsh(t)·x = n̂·xsh, we can write the general form of the plane shearing

wave as

vi(x, t) =

∫
d3ξ Gν(ξ, t)Wi

(
n̂· [xsh(t)− ξ]

)
+

+

[
Fi

(
nsh(t)

)
− Fi(n̂)

n2
2 + n2

3

]∫
d3ξ Gν(ξ, t)W1

(
n̂· [xsh(t)− ξ]

)
(2.30)

As an illustrative example let us consider the following initial condition, corresponding to

a polarized wavepacket with wave vector pointing along the x2–axis: n̂ = e2, W1(x2) =

W0 exp [−x22/2σ2] sin kx2 , W2 = 0 , W3(x2) = hW0 exp [−x22/2σ2] cos kx2 , where −1 ≤
h ≤ 1 . The wavepacket is linearly polarized when h = 0, and right/left circularly

polarized when h = ±1; other values of h correspond to different degrees of elliptical

polarizations. At a later time, the wave vector has components nsh
1 = −St , nsh

2 = 1 ,

nsh
3 = 0 . Since both Wi and Gν(ξ, t) are Gaussian functions, the integrals in Eqn. (2.30)

can be performed analytically and v(x, t) evaluated explicitly. We present the results

5The properties of this function are discussed in the Appendix A, where it is shown that it takes the

form of a sheared heat kernel, which is an anisotropic Gaussian function of xsh with time–dependent

coefficients; all the principal axes increase without bound and rotate against the direction of the back-

ground shear.
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Figure 2.2: Evolution of plane transverse shearing wavepackets. The polarization struc-

ture of the velocity field is indicated on some sections of the plane wavefronts. The

parameters values used are S = −1, ν = 1, W0 = 1, σ = 10 and k = 1. (a) and (b) show

Linearly polarized (h = 0) wavepackets at times t = 0 and t = 1. (c) and (d) show Right

circularly polarized (h = 1) at times t = 0 and t = 1.
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graphically in Fig.(2.2) for two cases, one linearly polarized and the other right circularly

polarized. As the wavepackets are sheared, they undergo transient amplification due to

the combined action of shear and viscosity, and at late times suffer viscous damping.

2.4 Conclusion

We have constructed exact solutions of the Navier–Stokes equations with a background

linear shear flow. All three components of the velocity field of the Kelvin modes are given

in closed form using only elementary mathematical functions. An explicit real form of the

velocity field was obtained. It was demonstrated that, when Kelvin modes with parallel

wave vectors are superposed, they remain exact solutions. We give, in explicit form,

the most general plane transverse shearing waves, with any specified initial orientation,

profile and polarization structure, with either unbounded or shear–periodic boundary

conditions. As an illustrative example, we show in Fig. (2.2) the evolution of plane

transverse shearing wavepackets by considering linearly and right circularly polarized

wavepackets. Such solutions represent the local structure of any disturbance in general

shear flows, and can therefore be expected to find many applications in the theory and

simulations of astrophysical and atmospheric flows.



Chapter 3
FORCED STOCHASTIC VELOCITY

DYNAMICS

3.1 Introduction

Shear flows are common and seen in variety of astrophysical contexts; differential rotation

in disc galaxies, accretion discs around compact objects etc. The study of waves and

instabilities in astrophysical shear flows is complex but extremely useful. The shearing

waves are excited in such systems by some random stirring in the medium, e.g., in disc

galaxies the random supernovae (SNe) events stir the differentially rotating disc and

excite shearing waves. These shearing waves lead to the mixing of various active and

passive variables1 embedded in the medium. It will be shown in later chapters that

the shearing waves, which are excited by some random events in shear flows (due to,

for example, SNe in disc galaxies), interact passively with the embedded seed magnetic

field (without spatial ordering) of very small magnitude, and lead to the generation and

growth of ordered magnetic fields by what is known as the dynamo action. Therefore

the study of stochastically forced shear flows is itself an important problem and will be

the focus of the present chapter. Shearing wave solutions for Navier–Stokes equations

1The passive variables do not act back on the flow whereas the active variables dynamically affect

the flow.

36
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without any external forcing were constructed in the last chapter, which were also the

exact solutions.

In this chapter, we study the dynamics of an incompressible fluid in a background

linear shear flow, by solving the externally forced Navier–Stokes equations in the limit

of small fluid Reynolds number. The external forcing is assumed to be stochastic, as a

response to which, the resulting velocity field is also expected to be stochastic, due to the

linear nature of the Navier–Stokes equations in the limit of small fluid Reynolds number.

Our aim is to model non–helical (mirror–symmetric) turbulence in linear shear flows and

therefore we specialize to the case when the fluid is stirred non–helically. There is no a

priori reason to guess that the resulting random velocity field due to non–helical random

forcing will be non–helical. This important issue will also be addressed in this chapter.

As will be seen in subsequent chapters that the transport phenomena of passive scalars

or magnetic fields may be studied by solving the advection–diffusion equation or the

induction equation, and the most fundamental quantities to be determined in order to

compute various transport coefficients are unequal–time two–point velocity correlators.

We study time correlation properties of such a turbulent flow.

In § 3.2, we solve the Navier–Stokes equations in background linear shear flow due

to non–helical forcing in the limit of low fluid Reynolds number. An explicit solution for

the velocity field is presented. Galilean invariance is a basic symmetry of the problem,

which has been discussed in detail in Appendix B. Various two–point unequal time

velocity correlators could be expressed in terms of a single entity, which is called the

velocity spectrum tensor. In § 3.3, we derive the expression for velocity spectrum tensor

in terms of Galilean–invariant forcing statistics. We demonstrate that the non–helical

forcing gives rise to a non–helical velocity field. Various time correlation properties of

the velocity field are discussed in § 3.4. We conclude in § 3.5.
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3.2 Forced velocity dynamics for small Re

Let (e1, e2, e3) be the unit basis vectors of a Cartesian coordinate system in the labo-

ratory frame. Using notation, X = (X1, X2, X3) for the position vector and τ for time,

we write the fluid velocity as (SX1e2 + v), where S is the rate of shear parameter and

v(X, τ) is an incompressible velocity deviation from the background linear shear flow.

We consider the simplest of dynamics for the velocity field by ignoring Lorentz forces,

and assuming that the fluid is stirred randomly by some external means. If the velocity

fluctuations have root–mean–squared (rms) amplitude vrms on some typical spatial scale

ℓ, the fluid Reynolds number may be defined as Re = (vrmsℓ/ν), where ν is the kinematic

viscosity; note that Re has been defined with respect to the fluctuation velocity field, not

the background shear velocity field. In the limit of small Reynolds number (Re ≪ 1),

the nonlinear term in the Navier–Stokes equations may be ignored. Then the dynamics

of the velocity field, v(X, τ), with unit mass density is governed by the randomly forced,

linearized Navier–Stokes equations,

(
∂

∂τ
+ SX1

∂

∂X2

)
v + Sv1e2 = −∇p + ν∇2v + f (3.1)

f (X, τ) is the random stirring force per unit mass which is assumed to be divergence–

free with zero mean: ∇· f = 0 and 〈f〉 = 0 .2 The pressure variable, p, is determined by

requiring that Eqn. (3.1) preserves the condition, ∇· v = 0. Then p satisfies the Poisson

equation,

∇2p = −2S
∂v1
∂X2

(3.2)

It should be noted that the linearity of the Eqns. (3.1) and (3.2) implies that the velocity

fluctuations have zero mean, 〈v〉 = 0 . It is clear from Eqn. (3.2) that p is a non local

function of the velocity field, so it is best to work in Fourier–space.

2〈 〉 denotes ensemble averaging in the sense of Reynolds.
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3.2.1 The Fourier space shearing transformation

Let ṽ(K, τ) be the spatial Fourier transform of v(X, τ), defined by

ṽ(K, τ) =

∫
d3X v(X, τ) exp [−iK·X] ; [K· ṽ(K, τ)] = 0 (3.3)

Using Eqn. (3.3) and taking the spatial Fourier transform of Eqn. (3.1), we can see that

the Fourier transform of the velocity field, ṽ(K, τ), obeys,

(
∂

∂τ
− SK2

∂

∂K1
+ νK2

)
ṽi − 2S

(
K2Ki

K2
− δi2

2

)
ṽ1 = f̃i (3.4)

where f̃i(K, τ) is the spatial Fourier transform of fi. We can get rid of the inhomogeneous

term, (K2∂/∂K1), in Eqn. (3.4) by transforming from the old variables (K, τ) to new

variables (k, t), through the Fourier–space shearing transformation,

k1 = K1 + SτK2, k2 = K2, k3 = K3, t = τ (3.5)

It may be verified using Eqn. (3.5) that the Eqn. (3.4) preserves the incompressibility

condition Kmṽm = 0. We define new velocity and forcing variables, ai(k, t) and gi(k, t),

respectively, by

ṽi(K, τ) = G̃ν(k, t, 0) ai(k, t) (3.6)

f̃i(K, τ) = G̃ν(k, t, 0) gi(k, t) (3.7)

where G̃ν(k, t, 0) is the Fourier–space viscous Green’s function, defined by3

G̃ν(k, t, t
′) = exp

[
−ν
∫ t

t′
dsK2(k, s)

]
(3.8)

3See the Appendix A for a general discussion on the resistive Green’s function, which is given in

both, the real space and the Fourier space. Some general properties have also been discussed.
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Noting the fact thatK(k, s) = (k1−Ssk2, k2, k3) andK2(k, s) = |K(k, s)|2, the viscous
Green’s function can be calculated in explicit form as

G̃ν(k, t, t
′) = exp

[
−ν
(
k2(t− t′) − S k1 k2 (t

2 − t′2) +
S2

3
k22(t

3 − t′3)

)]
(3.9)

We note that G̃ν(k, t, t
′) is a positive quantity which takes values between 0 and 1, and

that it is an even function of k and k3. Also, G̃ν(k, t, t
′) = G̃ν(k, t, s)× G̃ν(k, s, t

′), for

any s. The inverse of the Fourier–space shearing transformation is given as,

K1 = k1 − Stk2, K2 = k2, K3 = k3, τ = t (3.10)

The partial derivatives transform as,

∂

∂Kj

=
∂

∂kj
+ Stδj2

∂

∂k1
;

∂

∂τ
=

∂

∂t
+ Sk2

∂

∂k1
(3.11)

Evolution equation for the new velocity variable ai(k, t) may be written by using Eqns. (3.6),

(3.7), (3.10) and (3.11) in the Eqn. (3.4):

∂ai
∂t

− 2S

(
K2Ki

K2
− δi2

2

)
a1 = gi (3.12)

where K(k, t) = (k1 − Stk2, k2, k3) and K
2(k, t) = |K(k, t)|2 as given by Eqn. (3.10).

It can be verified that Eqn. (3.12) preserves the dot product, Kiai = 0. We also note

that the dependence of the velocities, ṽi(K, τ) on the viscosity ν arises solely through

the Fourier–space Green’s function given by Eqn. (3.9).
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3.2.2 Explicit solution for a(k, t)

It is helpful to display, in explicit form, all three components of Eqn. (3.12):

∂a1
∂t

− 2S

(
K1K2

K2

)
a1 = g1 (3.13)

∂a2
∂t

− 2S

(
K2

2

K2
− 1

2

)
a1 = g2 (3.14)

∂a3
∂t

− 2S

(
K2K3

K2

)
a1 = g3 (3.15)

Then Eqn. (3.13) can be solved to get an explicit expression for a1(k, t). When this is

substituted in Eqns. (3.14) and (3.15), they can be integrated directly to obtain expres-

sions for a2(k, t) and a3(k, t). The forced (or particular) solution, with initial condition

ai(k, 0) = 0 is

ai(k, t) =

∫ t

0

ds gi(k, s) +

∫ t

0

ds [Λi(K(k, t)) − Λi(K(k, s))]
K2(k, s)

K2
⊥

g1(k, s)

(3.16)

where K2
⊥ ≡ K2

2 +K2
3 = k22 + k23 ≡ k2⊥, and the function, Λi, is defined as

Λi(K) = − K1Ki

K2
+

K3

K⊥

[
K3

K2

δi2 − δi3

]
arctan

(
K1

K⊥

)
(3.17)

Eqn. (3.16), together with Eqns. (3.17), (3.6) and (3.7), completely specifies the velocity

field in the Fourier space, ṽi(K, τ). Taking inverse Fourier transform of ṽi(K, τ) gives

us the expression for the velocity field in real space.
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3.3 The velocity spectrum tensor

We wish to determine the unequal–time, two–point velocity correlator, which may be

given by,

〈vi(X, τ) vj(X
′, τ ′)〉 =

∫
d3K

(2π)3
d3K ′

(2π)3
exp [i (K·X −K ′

·X ′)]
〈
ṽi (K, t) ṽ∗j (K

′, t′)
〉

(3.18)

Also, we wish to work out the correlation between the velocity field and its gradient,

which will be useful for our later purposes. This may be given by,

〈vi(X, τ) vjl(X
′, τ ′)〉 =

∂

∂X ′
l

〈vi(X, τ) vj(X
′, τ ′)〉

=

∫
d3K

(2π)3
d3K ′

(2π)3
(−iK ′

l) exp [i (K·X −K ′
·X ′)]×

×
〈
ṽi (K, t) ṽ∗j (K

′, t′)
〉

(3.19)

where vjl(X
′, τ ′) = (∂vj/∂X

′
l). As may be seen from Eqns. (3.18) and (3.19) that the

quantity to be determined, in order to find various real–space correlators between ve-

locities and their gradients, is Fourier–space two–point unequal–time velocity correlator,
〈
ṽi (K, t) ṽ∗j (K

′, t′)
〉
. Our interest is in developing a Galilean invariant statistics of the

stochastic velocity field in the background linear shear flow, which has been discussed in

detail in the Appendix B. It is proved in the Appendix B that a G–invariant Fourier–

space two–point velocity correlator must be of the form given by Eqn. (B.7), which

suggests that the most fundamental object, which needs to be determined in order to

find various velocity correlators, is the velocity spectrum tensor, Πij(k, t, t
′)4. Below we

wish to determine Πij(k, t, t
′) in terms of the forcing.

4See Eqn. (B.8) of the Appendix B for the properties of Πij(k, t, t
′).
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3.3.1 Πjm(k, t, t
′) expressed in terms of the forcing

Our goal is to express the velocity spectrum tensor in terms of the statistical properties

of the forcing. If the forcing is Galilean–invariant, then its two–point correlator should

possess the same general properties (see Eqns. B.7 and B.8 given in the Appendix B) as

the two–point velocity correlator. In other words, we must have,

〈
f̃j(K, τ) f̃ ∗

m(K
′, τ ′)

〉
= (2π)6 δ(k − k′)Φjm(k, t, t

′) (3.20)

where the forcing spectrum tensor, Φjm(k, t, t
′), must satisfy,

Φjm(k, t, t
′) = Φ∗

jm(−k, t, t′) = Φmj(−k, t′, t)

KjΦjm(k, t, st
′) = [kj − St δj1k2] Φjm(k, t, t

′) = 0

K ′
mΦjm(k, t, t

′) = [km − St′ δm1k2] Φjm(k, t, t
′) = 0 (3.21)

We are now ready to use the dynamical solution obtained in § 3.2. Using Eqns. (3.6)

and (3.16), Fourier–space, unequal–time, two–point velocity correlator is given by,
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〈ṽj(K, τ) ṽ∗m(K
′, τ ′)〉 = G̃ν(k, t, 0) G̃ν(k

′, t′, 0) 〈ãj(k, t) ã∗m(k′, t′)〉

= G̃ν(k, t, 0) G̃ν(k
′, t′, 0)

∫ t

0

ds

∫ t′

0

ds′ ×

×
{
〈gj(k, s) g∗m(k′, s′)〉 +

+ [Λj(K(k, t)) − Λj(K(k, s))]
K2(k, s)

K2
⊥

〈g1(k, s) g∗m(k′, s′)〉+

+ [Λm(K(k′, t′)) − Λm(K(k′, s′))]
K2(k′, s′)

K ′ 2
⊥

〈gj(k, s) g∗1(k′, s′)〉+

+ [Λj(K(k, t)) − Λj(K(k, s))] [Λm(K(k′, t′)) − Λm(K(k′, s′))]×

× K2(k, s)K2(k′, s′)

K2
⊥K

′ 2
⊥

〈g1(k, s) g∗1(k′, s′)〉
}

(3.22)

Using Eqns. (3.7) and (3.20), we write

〈gj(k, s) g∗m(k′, s′)〉 =
1

G̃ν(k, s, 0) G̃ν(k
′, s′, 0)

〈
f̃j(K(k, s), s) f̃ ∗

m(K(k′, s′), s′)
〉

=
1

G̃ν(k, s, 0) G̃ν(k
′, s′, 0)

(2π)6 δ(k − k′)Φjm(k, t, t
′) (3.23)
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Using G̃ν(k, t, 0)(G̃ν(k, s, 0))
−1 = G̃ν(k, t, s), Eqns. (3.22), (3.23) and (B.7) give,

Πjm(k, t, t
′) =

∫ t

0

ds

∫ t′

0

ds′ G̃ν(k, t, s) G̃ν(k, t
′, s′)×

×
{
Φjm(k, s, s

′) +

+ [Λj(K(k, t)) − Λj(K(k, s))]
K2(k, s)

K2
⊥

Φ1m(k, s, s
′) +

+ [Λm(K(k, t′)) − Λm(K(k, s′))]
K2(k, s′)

K2
⊥

Φj1(k, s, s
′) +

+ [Λj(K(k, t)) − Λj(K(k, s))] [Λm(K(k, t′)) − Λm(K(k, s′))]×

× K2(k, s)K2(k, s′)

K4
⊥

Φ11(k, s, s
′)

}
(3.24)

When Φjm(k, t, t
′) is real, the forcing may be called non helical. Then Eqn. (3.24) proves

that the velocity spectrum tensor, Πjm(k, t, t
′) is also a real quantity.

The correlation helicity may be defined as,

Hcor(t, t
′) = ǫjlm 〈vj(0, t) vml(0, t

′)〉 = i

∫
d3k [kl − St′δl1k2] ǫljmΠjm(k, t, t

′) (3.25)

where we have used Eqns. (3.10) and (3.19). From the first of Eqns. (B.8), it is clear that

the real part of Πjm(k, t, t
′) is an even function of k, whereas the imaginary part is an odd

function of k. Hence only the imaginary part of Πjm(k, t, t
′) contributes to the correlation

helicity. Therefore, for non–helical forcing, for which Φjm(k, t, t
′) is real, implying that

Πjm(k, t, t
′) is also a real quantity, we see from Eqn. (3.25) that the correlation helicity,

Hcor(t, t
′), vanishes. In other words, non helical forcing of an incompressible fluid at low

Re, in the absence of Lorentz forces, gives rise to a non helical velocity field. This may

not seem like a particularly surprising conclusion, but it is by no means an obvious one,

because at high Re it may happen that Πjm(k, t, t
′) is complex even when Φjm(k, t, t

′) is

real.
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We now specialize to the case when the forcing is not only non helical, but isotropic

and delta–correlated–in–time as well; in this case,

Φjm(k, s, s
′) = δ(s− s′)Pjm(K(k, s))F

(
K(k, s)

KF

)
(3.26)

where K(k, s) = |K(k, s)| , KF = ℓ−1 is the wavenumber at which the fluid is stirred,

Pjm(K) = (δjm −KjKm/K
2) is a projection operator, and F (K/KF ) ≥ 0 is the forc-

ing power spectrum. We substitute Eqn. (3.26) in (3.24), and reduce the double–time

integrals to a single–time integral using,

∫ t

0

ds

∫ t′

0

ds′ δ(s− s′)w(k, s, s′) =

∫ t<

0

dsw(k, s, s) (3.27)

where t< = Min (t, t′). Then the velocity spectrum tensor takes the form,

Πjm(k, t, t
′) =

∫ t<

0

ds G̃ν(k, t, s) G̃ν(k, t
′, s)F

(
K(k, s)

KF

)
×

×
{
Pjm(K(k, s)) +

+ [Λj(K(k, t)) − Λj(K(k, s))]
K2(k, s)

K2
⊥

P1m(K(k, s)) +

+ [Λm(K(k, t′)) − Λm(K(k, s))]
K2(k, s)

K2
⊥

Pj1(K(k, s)) +

+ [Λj(K(k, t)) − Λj(K(k, s))] [Λm(K(k, t′)) − Λm(K(k, s))]×

× K4(k, s)

K4
⊥

P11(K(k, s))

}
(3.28)

which can be completely determined when the forcing power spectrum, F (K/KF ), be

specified. Also note that although Φjm is delta–correlated–in–time, the velocity spectrum

tensor, Πjm, and hence the resulting velocity field is not delta–correlated–in–time. This

may be attributed to the inertia of the fluid particles.
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3.4 Time correlation properties of the fluid velocity

We now discuss some of the simplest statistical properties of the random velocity field.

Let an observer located at the origin of the laboratory frame correlate fluid velocities at

time τ = t and at time τ ′ = t′. The two–point function that measures this quantity may

be written by setting X = X ′ = 0 in Eqn. (3.18) and using Eqn. (B.7),

〈vj(0, τ)vm(0, τ ′)〉 = Rjm(0, t, t
′) =

∫
d3k Πjm(k, t, t

′) (3.29)

where we used d3K d3K ′ = d3k d3k′, as the Jacobian of transformation fromK−variables

to k−variables is unity. It can be proved that, in the long time limit when t → ∞ and

t′ → ∞, Rjm(0, t, t
′) is a function only of the difference, (t− t′). To do this, we need to

manipulate the k–space integral in Eqn. (3.29), and make use of properties of the viscous

Green’s function noted earlier, which are given in detail in the Appendix A. First, we

change from the integration variable, k to K(k, s), which we now write simply as K. In

other words, given K and s, the variable k is given by

k = k(K, s) = (K1 + SsK2, K2, K3)

Then ∫
d3k

∫ t<

0

ds ≡
∫

d3K

∫ t<

0

ds

K(k, t) = (k1 − Stk2, k2, k3) = (K1 + S(s− t)K2, K2, K3) = k(K, s− t)

K(k, t′) = k(K, s− t′)

Working out the exponent of the viscous Green’s function

k2(t− s)−Sk1k2(t
2 − s2) +

S2

3
k22(t

3 − s3) = K2(t− s)−SK1K2(t− s)2 +
S2

3
K2

2 (t− s)3
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which implies that

G̃ν(k, t, s) = G̃ν(K(k, s), t− s, 0) = G̃ν(K, t− s, 0)

G̃ν(k, t
′, s) = G̃ν(K, t′ − s, 0)

Then

Rjm(0, t, t
′) =

∫
d3K F

(
K

KF

)∫ t<

0

ds G̃ν(K, t− s, 0) G̃ν(K, t′ − s, 0)

{
Pjm(K) +

+ [Λj(k(K, s− t)) − Λj(K)]
K2

K2
⊥

P1m(K) +

+ [Λm(k(K, s− t′)) − Λm(K)]
K2

K2
⊥

Pj1(K) +

+ [Λj(k(K, s− t)) − Λj(K)] [Λm(k(K, s− t′)) − Λm(K)]×

× K4

K4
⊥

P11(K)

}
(3.30)

We now discuss some important properties of the velocity correlator Rjm(0, t, t
′) :

1. We can come to some general conclusions about the functional dependence of

Rjm(0, t, t
′) . Let F0 be a typical value of the forcing function, F (K/KF ). Then it

can be verified from Eqn. (3.30) that

Rjm(0, t, t
′) = RZS × R̂jm

(
νK2

F t , νK
2
F t

′ ;
S

νK2
F

)
(3.31)

where the constant

RZS =
4π

3

(
F0KF

ν

)
(3.32)

is a typical value of Rjm in the absence of shear (see Eqn. 3.37 below). The function,

R̂jm, is a dimensionless function of the two dimensionless variables, (νK2
F t) and

(νK2
F t

′), as well as the dimensionless parameter, (S/νK2
F ).
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2. The components R13(0, t, t
′) , R31(0, t, t

′) , R23(0, t, t
′) and R32(0, t, t

′) are all zero.

This happens because, for these values of the indices (j,m), the integrand in

Eqn. (3.30) is an odd function of K3 .

3. It is of interest to look at the behavior of the equal–time correlator, Rjm(0, t, t) ,

as a function of t. By definition, this is symmetric, Rjm(0, t, t) = Rmj(0, t, t). A

related quantity is the root–mean–squared velocity, vrms(t), defined by

v2rms(t) = R11(0, t, t) + R22(0, t, t) + R33(0, t, t) (3.33)

In the long–time limit, we expect both Rjm(0, t, t) and vrms(t) to saturate due to

the balance reached between forcing and viscous dissipation; see Figs. (3.1a–e). Let

v∞rms = limt→∞ vrms(t). We now define useful dimensionless quantities:

Re =
v∞rms

νKF

; Fluid Reynolds number

Sh =
S

v∞rmsKF

; Dimensionless Shear parameter (3.34)

For numerical computations, it is necessary to choose a form for the forcing power

spectrum. A quite common choice, used especially in numerical simulations, is

forcing which is confined to a spherical shell of magnitudeKF . Therefore, whenever

we need to choose a form for the forcing power spectrum, we take it to be,

F

(
K

KF

)
= F0 δ

(
K

KF
− 1

)
(3.35)

For this forcing, in the case of zero shear, Eqn. (3.30) gives,

lim
S→0

Rjm(0, t, t
′) = δjmR

ZS

[
exp

[
−νK2

F (t− t′)
]
− exp

[
−νK2

F (t + t′)
]]

(3.36)
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Figure 3.1: Plots of Rjm(0, t, t) scaled with respect to RZS, and vrms(t) scaled with

respect to
√
RZS. The abscissa in all figures is the dimensionless time variable (νK2

F t).

and the equal–time quantities are,

lim
S→0

Rjm(0, t, t) = δjmR
ZS

[
1 − exp

(
−2νK2

F t
)]

lim
S→0

vrms(t) =

√
3RZS

[
1 − exp (−2νK2

F t)

]
(3.37)

Figs. (3.1a–d) display plots of Rjm(0, t, t) versus t, and Fig. (3.1e) displays vrms(t)

versus t. Some of the noteworthy properties are as follows:

(i) Only the non vanishing components of Rjm, namely R11(0, t, t), R22(0, t, t),

R33(0, t, t), R12(0, t, t) = R21(0, t, t), are plotted. Rjm has been scaled with

respect to RZS of Eqn. (3.32), and vrms has been scaled with respect to
√
RZS.

(ii) From item (1) above and Eqns. (3.34), we can see that Rjm(0, t, t) and vrms(t)

depend on the dimensionless time variable, (νK2
F t), and the dimensionless
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parameter, (S/νK2
F ) = Sh× Re . We choose Sh ≤ 0, i.e., the sign of the rate

of shear (S) is assumed to be negative. For comparison, the expressions in

Eqn. (3.37), giving Rjm(0, t, t) and vrms(t) for the case of zero shear (Sh = 0),

are shown in bold lines in Fig. (3.1).

(iii) All the components of Rjm(0, t, t) are zero at time equal to zero; they grow

and saturate at late times.

(iv) As the control parameter |Sh|Re increases, R11 begins saturating at values

above that for the case of zero shear (i.e. RZS) and somewhere in the range,

1 < |Sh|Re < 10, the saturation value starts decreasing, dropping below RZS.

(v) As |Sh|Re increases, both R22 and R33 saturate at values above RZS. Of the

three diagonal components, R22 is the largest, R33 is the next largest, and R11

is the smallest component.

(vi) R12 vanishes for the case of zero shear, and saturates at larger positive values

which increase with increasing |Sh|Re.

(vii) The contribution to vrms is dominated by R22.

4. Another property of interest is the long–time behavior of the two–time correlator

Rjm(0, t, t
′) . Without loss of generality, we assume that t ≥ t′. Changing the

integration variable from s to ξ = t′ − s in Eqn. (3.30),

Rjm(0, t, t
′) =

∫
d3K F

(
K

KF

)∫ t′

0

dξ G̃ν(K, t− t′ + ξ, 0) G̃ν(K, ξ, 0)

{
Pjm(K) +

+ [Λj(k(K,−(t− t′ + ξ))) − Λj(K)]
K2

K2
⊥

P1m(K) +

+ [Λm(k(K,−ξ)) − Λm(K)]
K2

K2
⊥

Pj1(K) +

+ [Λj(k(K,−(t− t′ + ξ))) − Λj(K)] [Λm(k(K,−ξ)) − Λm(K)]×

× K4

K4
⊥

P11(K)

}
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On the right side, the variables t and t′ occur only in the combination (t − t′),

except in the upper limit of the ξ–integral. So, in the long time limit when t→ ∞
and t′ → ∞, but (t − t′) is held constant at some finite value, the right side is a

function only of (t− t′). i.e.

R∞
jm(t− t′) ≡ lim

t≥t′→∞
Rjm(0, t, t

′)

=

∫
d3K F

(
K

KF

)∫ ∞

0

dξ G̃ν(K, t− t′ + ξ, 0) G̃ν(K, ξ, 0)

{
Pjm(K) +

+ [Λj(k(K,−(t− t′ + ξ))) − Λj(K)]
K2

K2
⊥

P1m(K) +

+ [Λm(k(K,−ξ)) − Λm(K)]
K2

K2
⊥

Pj1(K) +

+ [Λj(k(K,−(t− t′ + ξ)))− Λj(K)]×

× [Λm(k(K,−ξ))− Λm(K)]
K4

K4
⊥

P11(K)

}
(3.38)

Thus the two–time velocity correlator becomes stationary in the limit of long times,

when a balance has been achieved between stirring and viscous dissipation; as

Figs. (3.2a-e) show, they decay with the time difference, (t − t′). For the case of

zero shear, Eqn. (3.36) gives,

lim
S→0

R∞
jm(t− t′) = δjmR

ZS exp
[
−νK2

F (t− t′)
]

(3.39)

Figs. (3.2a–e) display the five independent components of R∞
jm(t−t′) versus (t−t′);

all of them decay with increasing |t− t′|. For comparison, we have plotted in bold

lines the case of zero shear given in Eqn. (3.39). Of the three diagonal components,

R∞
11 is the least affected by shear, whereas R∞

22 is the most affected by shear. Note

that R∞
12 and R∞

21 look symmetric for small shear, but for large shear they are seen

to be highly antisymmetric.
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Figure 3.2: Plots of R∞
jm(t− t′) scaled with respect to RZS. The abcissa in all figures is

the dimensionless time variable [νK2
F (t− t′)].

3.5 Conclusions

Stochastically forced incompressible shear flows were studied by solving the Navier–

Stokes equations in the absence of Lorentz forces with a background linear shear flow with

external forcing in the limit of small fluid Reynolds numbers. The forcing is assumed to

be non–helical (mirror–symmetric), as our aim is to model the non–helical random flow in

linear shear flows. Taking the Fourier transform of the Navier–Stokes equations and using

the Fourier–space shearing transformation, we develop the Green’s function solutions

for the velocity field. Using the result presented in the Appendix B on the Galilean

invariant Fourier–space two–point velocity correlator, we show that the unequal–time

two–point velocity correlator, and the correlation between the velocity and its gradient,

may be expressed in terms of a single entity, Πjm, which is called the velocity spectrum

tensor. Velocity correlators could be expressed in terms of the forcing correlators, and

noting the fact that the Galilean invariant forcing must also possess the same general
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properties given in the Appendix B for the velocity correlators, we could express the

velocity spectrum tensor in terms of the forcing spectrum tensor, Φjm. We note that

the forcing is non–helical when Φjm is real, and for such a forcing, Πjm is also a real

quantity. Therefore we conclude that non helical forcing of an incompressible fluid at low

Re, in the absence of Lorentz forces, gives rise to a non helical velocity field. We then

specialize to the case when Φjm is not only non–helical, but also isotropic and delta–

correlated–in–time. We show that the resulting velocity field is not delta–correlated–

in–time. This may be attributed to the inertia of the fluid particles. We study some

of the simplest statistical properties of the random flow by deriving expressions for the

velocity correlators measured from the origin of the laboratory frame at two different

times. Such two–point functions were denoted as Rjm(0, t, t
′). The root–mean–squared

velocity could be defined by the trace of the equal–time correlator Rjm(0, t, t). We also

note that the equal–time correlator is symmetric in the indices j andm. Then it is shown

that the two–time velocity correlator becomes stationary in the long–time limit, which

is expected once a balance has been achieved between stirring and viscous dissipation.

We summarize some of the key results below:

1. The non helical forcing of an incompressible fluid at low Re, in the absence of

Lorentz forces, gives rise to a non helical velocity field.

2. For the delta–correlated–in–time forcing, the resulting velocity field is not delta–

correlated–in–time. This may be attributed to the inertia of the fluid particles.

3. Only the diagonal components of Rjm(0, t, t
′) are non–zero in the limit of zero

shear, and for equal–time correlator we find Rjm(0, t, t) = Rmj(0, t, t).

4. Rjm(0, t, t) and vrms(t) depend only on two dimensionless variables, (νK2
F t) and

(S/νK2
F ) = Sh× Re . The contribution to vrms is dominated by R22.

5. All the components of Rjm(0, t, t) are zero at time equal to zero; they grow and

saturate at late times. The non–zero components of Rjm(0, t, t) are R11(0, t, t),

R22(0, t, t), R33(0, t, t) and R12(0, t, t) = R21(0, t, t).
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6. The two–time velocity correlator becomes stationary in the long–time limit (de-

noted by R∞
jm(t− t′)), which is expected once a balance has been achieved between

stirring and viscous dissipation.

7. The non–trivial effects of the shear may be seen from Figs. (3.1) and (3.2).



Chapter 4
PASSIVE SCALAR MIXING DUE TO

TURBULENCE IN A LINEAR SHEAR FLOW

4.1 Introduction

A passive scalar is a substance mixed with the fluid in such a low concentration that it

does not affect the dynamics of the fluid; few examples could be the smoke in the air,

chemicals in the atmosphere, dye diffusing in the turbulent flow etc. The passive scalar is

advected by the flow and exhibits complex dynamical behaviour if the flow be turbulent.

The study of the mixing of a “passive scalar field” due to a turbulent flow is important

in various areas of natural sciences, esp. astrophysics, atmospheric science, engineering

physics, biophysics etc; see the reviews by Shraiman & Siggia (2000); Warhaft (2000);

Falkovich, Gawedzki & Vergassola (2001). It is known that turbulence leads to more

effective mixing of such substances. It has been argued in Shraiman & Siggia (2000)

that the phenomenon of turbulent transport of the passive scalar is closely related to

the ‘turbulence’ itself, which is still an unsolved problem. Whereas the formulation

and the study of the problem of the passive scalar mixing is much simpler, its better

understanding could prove to be insightful for the problems of pure turbulence.

In this chapter, our aim is to understand the evolution of the mean concentration of

the passive scalar, which is “ordered” over larger spatial scales than that of the random

56
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flow, where the background shear flow is assumed to be given. We study this problem

under the framework of “mean–field” theory (Moffatt, 1978; Krause & Rädler, 1980).

Such studies have recently been carried out numerically by Madarassy & Brandenburg

(2010) in which, the transport of the passive scalar was studied in linear shear flow

which was stirred both helically and non–helically. All the components of the turbulent

diffusivity tensor were numerically determined by test–field method1 and it was found

that: shear leads to anisotropic diffusion of the passive scalar significantly modifying

its turbulent transport; and the transport properties are unaffected by the presence of

helicity. There have been previous studies on the evolution of mean concentration of

passive scalar in the absence of background shear (Elperin et al., 2000; Blackman &

Field, 2003).

The shearing waves, excited due to the random stirring of the background shear

flow, were studied in the last chapter. We will show that these shearing waves tend

to effectively mix the embedded passive scalars (and the magnetic fields, which will

be studied in detail in part II of this thesis). In § 4.2 we formulate the problem of

mean–field theory of passive scalar mixing for small Peclet numbers (Pe). Our theory is

non–perturbative in the shear parameter. Using Reynolds averaging, we split the total

concentration into mean and fluctuating components. The equation for fluctuations is

expanded perturbatively in the small parameter, Pe. Using the shearing coordinate

transformation, we write the Green’s function solution for the fluctuating component.

We use the properties of the resistive Green’s function and its Fourier transform, which

has been derived in the Appendix A, to write the explicit expressions for the fluctuations

and the turbulent flux at low Pe. Galilean invariance is a fundamental symmetry of the

problem and is discussed in the Appendix B. In § 4.3 we provide the Galilean invariant

expressions for the turbulent flux at low Pe. In § 4.4 we write the mean–field advection–

diffusion equation in sheared coordinates and note that its evolution is governed by an

integro–differential equation. We then take the limit of slowly varying mean–field, for

which, the integro–differential equation simplifies to the partial differential equation. The

1see Brandenburg et al. (2008) or Ch. 7 of this thesis for a brief discussion on the test–field method.
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transport coefficients are given in general form in terms of the two–point correlators of

the fluctuating velocity field. An explicit expression for the transport coefficients in terms

of the velocity spectrum tensor is given. The velocity spectrum tensor is the fundamental

object which has been determined in Ch. 2. All components of the transport coefficient,

κjm, are evaluated and presented in § 4.5. In § 4.6 we discuss the implications for the

amplification of the mean concentration due to non–helical flows. We then conclude in

§ 4.7.

4.2 Mean–field theory of passive scalar mixing in a

linear shear flow

4.2.1 The limit of small Peclet number Pe

Let (e1, e2, e3) be the unit vectors of a Cartesian coordinate system in the lab frame,

X = (X1, X2, X3) the position vector, and τ the time. The fluid velocity is given by

(SX1e2+v), where S is the rate of shear parameter and v(X, τ) is a randomly fluctuating

velocity field which is incompressible, ∇· v = 0 . Our goal is to develop a mean–field

theory of the mixing of a passive scalar added to the fluid.

We assume that the total concentration, C(X, τ), of the passive scalar obeys the

advection–diffusion equation:

(
∂

∂τ
+ SX1

∂

∂X2

)
C + v· ∇C = κ∇2C (4.1)

where κ is the molecular diffusivity of the passive scalar. The velocity fluctuations could

be deterministic or turbulent, freely generated by instabilities or forced externally. We

assume that the randomly varying fluctuations have zero mean, 〈v〉 = 0 , with root–

mean–squared amplitude vrms on some typical spatial scale ℓ. 〈 〉 denotes ensemble

averaging in the sense of Reynolds. The dimensionless parameter Peclet number may be

defined as Pe = (vrmsℓ/κ); note that Pe has been defined with respect to the fluctuation
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velocity field, not the background shear velocity field.

The passive scalar is mixed by the velocity field; we write C as the sum of a mean,

C(X, τ), and a fluctuating part, c(X, τ):

C = C + c , 〈C〉 = C , 〈c〉 = 0 (4.2)

Applying Reynolds averaging to the Eqn. (4.1), we obtain the following equations gov-

erning the dynamics of the mean and fluctuating components:

(
∂

∂τ
+ SX1

∂

∂X2

)
C = −∇·F + κ∇2C (4.3)

(
∂

∂τ
+ SX1

∂

∂X2

)
c = −v· ∇C + κ∇2c − ∇· [cv − F ] (4.4)

where F = 〈cv〉 is the mean flux density of the passive scalar due to random advection;

we refer to F simply as the turbulent flux. The first step toward solving the problem is

to calculate F and obtain a closed equation for the mean–field, C(X, τ).

When Pe ≪ 1, we can expand c in a series,

c = c(0) + c(1) + c(2) + . . . (4.5)

where c(n) is of order c(n−1) multiplied by the small quantity Pe. The equations governing

the time evolution of these quantities are

(
∂

∂τ
+ SX1

∂

∂X2

)
c(0) = −v· ∇C + κ∇2c(0) (4.6)

(
∂

∂τ
+ SX1

∂

∂X2

)
c(n) = κ∇2c(n) − ∇·

[
c(n−1)v −

〈
c(n−1)v

〉]

for n = 1, 2, . . . (4.7)
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Note that −v· ∇C acts as a source term for c(0), whereas the source term for c(n) is

− ∇·
[
c(n−1)v −

〈
c(n−1)v

〉]
. Once the c(n) have been determined, the mean flux density

can be calculated directly by

F = 〈cv〉 =
〈(
c(0) + c(1) + c(2) + . . .

)
v
〉

(4.8)

Here, we focus on the determination of the lowest order term, c(0). It should be un-

derstood as the First Order Smoothing Approximation, (FOSA). The evolution of c(0) is

governed by Eqn. (4.6) which we will solve and determine the mean flux density. Gen-

eral methods of solving equations such as Eqn. (4.6) are presented in Krause & Rädler

(1980), but we prefer to employ the shearing coordinate transformation because it is di-

rectly adapted to the problem at hand and greatly simplifies the task of writing down

the Green’s function solution. The (X1∂/∂X2) term makes Eqn. (4.6) inhomogeneous

in the coordinate X1. This term can be eliminated through a shearing transformation

to new spacetime variables, given in Eqn. (A.2) of Appendix A. Thus, using Eqns. (A.2)

and (A.3), given in the Appendix A, and defining the new variables:

Ψ(x, t) = C(X, τ) , ψ(x, t) = c(0)(X, τ) , u(x, t) = v(X, τ) (4.9)

we can write Eqn. (4.6) as,

(
∂

∂t
− κ∇2

)
ψ(x, t) = − [um − Stδm2 u1] Ψm (4.10)

where ∇
2 is given by Eqn. (A.4), and Ψm = (∂Ψ/∂xm) . It is important to note that

the new velocities are expanded in the same fixed Cartesian basis of the lab frame:

u = u1e1 + u2e2 + u3e3, where ui(x, t) = vi(X, τ) are component–wise equal to the

old velocities. The Green’s function for an equation of the form of Eqn. (4.10) has been

constructed in the Appendix A. We can write the particular solution of Eqn. (4.10) which
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vanishes at t = 0:

ψ(x, t) = −
∫ t

0

dt′
∫
d3x′Gκ(x− x′, t, t′) [u′m − St′δm2u

′
1] Ψ

′
m (4.11)

where primes denote evaluation at the spacetime point (x′, t′) and the Green’s function

Gκ(x−x′, t, t′) has been given in explicit form in the Appendix A. In the present context,

the quantity µ of the Appendix A takes the role of the molecular diffusivity (κ) of the

passive scalar. Below, we mention some of the properties of the Green’s function which

are discussed in detail in the Appendix A:

Gκ(x, t, t
′) is non–zero only when 0 ≤ t′ < t. (4.12a)

lim
t′→t−

Gκ(x, t, t
′) = δ3(x) (4.12b)

(
∂

∂t
− κ∇2

)
Gκ(x, t, t

′) = 0 (4.12c)

We also note that Gκ has the “reproducibility” property

Gκ(x−x′, t, t0) =

∫
d3x

′′

Gκ(x−x
′′

, t, s)Gκ(x
′′ −x′, s, t0) ; for t0 < s < t . (4.12d)

Defining the spatial Fourier transform of the Green’s function as given in Eqn. (A.8), we

find from Eqns. (4.12a)–(4.12d),

G̃κ(k, t, t
′) is non–zero only when 0 ≤ t′ < t. (4.13a)

lim
t′→t−

G̃κ(k, t, t
′) = 1 (4.13b)

∂ G̃κ

∂t
+ κK2(k, t) G̃κ = 0 (4.13c)

G̃κ(k, t, t0) = G̃κ(k, t, s) G̃κ(k, s, t0) ; for t0 < s < t . (4.13d)

where, in Eqn. (4.13c), K2(k, t) = (k1 − Stk2)
2 + k22 + k23. Also k, being conjugate to

the sheared coordinate vector x, can be regarded as a sheared wavevector. It is now
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straightforward to write down the solution, which is also given in the Appendix A:

G̃κ(k, t, t
′) = exp

[
−κ
∫ t

t′
dsK2(k, s)

]

= exp

[
−κ
(
k2(t− t′)− S k1 k2(t

2 − t′2) +
1

3
S2 k22(t

3 − t′3)

)]
(4.14)

We note that G̃η(k, t, t
′) is a positive quantity which takes values between 0 and 1, and

that it is an even function of k and k3. The real space Green’s function Gκ(x, t, t
′),

which is equivalent to the one derived earlier by Krause & Rädler (1971), can be written

explicitly by taking the inverse Fourier transform of Eqn. (4.14), and is being provided

in the Appendix A. Following Appendix A and the related discussion given in Ch. 5, we

note that it takes the form of an anisotropic, rotated Gaussian in x–space, which may

be referred to as a sheared heat kernel.

4.2.2 The turbulent flux at small Pe

To lowest order in Pe, the mean flux density (or the turbulent flux) is given by F =
〈
c(0)v

〉
= 〈ψu〉 where Eqn. (4.11) for ψ should be substituted. Following standard

procedure, we allow 〈 〉 to act only on the velocity variables but not the mean field;

symbolically, it is assumed that 〈uuΨ〉 = 〈uu〉Ψ. Then the FOSA expression for the

turbulent flux is

Fj = 〈ψ uj〉

= −
∫ t

0

dt′
∫
d3x′Gκ(x− x′, t, t′) [Rjm(x,x

′, t, t′) − St′δm2Rj1(x,x
′, t, t′)]Ψ′

m

(4.15)
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where Rjm is the transport coefficient which is the two–point unequal–time velocity

correlator defined by

Rjm (x,x′, t, t′) = 〈uj(x, t) um(x′, t′)〉 (4.16)

To obtain more specific expressions for the transport coefficients, we need to provide

information on the uu velocity correlators. However, it is physically more transparent

to consider velocity statistics in terms of vv velocity correlators, because this is referred

to the lab frame instead of the sheared coordinates. By definition, from Eqn. (4.9),

um(x, t) = vm(X(x, t), t) (4.17)

where

X1 = x1 , X2 = x2 + Stx1 , X3 = x3 , τ = t (4.18)

is the inverse of the shearing transformation given in Eqn. (A.2). Thus we can write

Rjm (x,x′, t, t′) = 〈vj(X, t) vm(X
′, t′)〉 (4.19)

where X and X ′ are shorthand for

X = (x1 , x2 + Stx1 , x3) , X ′ = (x′1 , x
′
2 + St′x′1 , x

′
3) (4.20)

Eqn. (4.15), together with (4.16) or (4.19), gives the turbulent flux in general form. X

can be thought of as the coordinates of the origin at time t of an observer comoving

with the background shear flow, who was at x at time equal to zero. Similarly, X ′

can be thought of as the coordinates of the origin at time t′ of an observer comoving

with the background shear flow, who was at x′ at time equal to zero. Therefore the

transport properties depend only on the velocity correlators measured by such observers

at the origin of their coordinate system. This fact will have profound consequences for

turbulent mixing when we consider G–invariant velocity correlators in the next section.
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Before discussing the Galilean invariance of the linear shear flow, we derive the form of

turbulent flux for a special case, when the velocity field is “delta–correlated–in–time”.

4.2.3 Delta–correlated–in–time velocity correlator

Although somewhat artificial, it is not uncommon to study dynamo action due to velocity

fields whose correlation times are considered so small that the two–point correlator taken

between spacetime points (R, τ) and (R′, τ ′) is assumed to be

〈vi(R, τ) vj(R′, τ ′)〉 = δ(τ − τ ′) Tij(R,R
′, τ) (4.21)

Incompressibility implies that

∂Tij
∂Ri

= 0 ;
∂Tij
∂R′

j

= 0 (4.22)

Then velocity correlator

〈vi(X, t) vj(X
′, t′)〉 = δ(t− t′) Tij(X ,X ′, t) (4.23)

where X and X ′ can be written in this case as

X = X(x, t) = (x1 , x2 + Stx1 , x3) , X ′ = X(x′, t) = (x′1 , x
′
2 + Stx′1 , x

′
3) (4.24)

Putting Eqns. (4.19) and (4.24) in the Eqn. (4.15) and using the property (4.12b) we

can write

Fj = −Ψm(x, t) [Tjm(X,X, t)− Stδm2Tj1(X,X, t)] (4.25)

Using
∂

∂xm
=

∂

∂Xm
+ Sτ δm1

∂

∂X2
(4.26)
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we write the turbulent flux in terms of the original variables and lab frame coordinates

as

Fj(X, τ) = −Tjm(X, τ)Cm(X, τ) (4.27)

where Cm = (∂C/∂Xm). Thus the turbulent flux Fj does not depend explicitly on the

shear parameter S. Equation (4.27) is identical to the familiar expression in the absence

of background shear. Therefore we conclude that the shear needs time to produce non

trivial effects and it is necessary to consider velocity correlators with non zero correlation

times. Henceforth we shall consider the general case of finite velocity correlation times.

4.3 Galilean invariant velocity statistics

The basic concepts of the Galilean invariance have been given in the Appendix B. Here,

we wish to derive the Galilean invariant expressions for the transport coefficients and

the turbulent flux.

4.3.1 Galilean invariance of the advection–diffusion equation

Let
[
C̃(X̃, τ̃) , C̃(X̃, τ̃) , c̃(X̃, τ̃) , ṽ(X̃, τ̃)

]
denote the total, the mean, the fluctuating

components of the concentration of the passive scalar and the fluctuating velocity field,

respectively, as measured by the comoving observer2. These are all equal to the respective

quantities measured in the lab frame:

[
C̃(X̃, τ̃ ) , C̃(X̃, τ̃) , c̃(X̃, τ̃ ) , ṽ(X̃, τ̃)

]
= [C(X, τ) , C(X, τ) , c(X, τ) , v(X, τ)] (4.28)

Invariance of the total, the mean and the fluctuating components of the passive scalar

in the two frames (i.e. in the lab frame and the comoving frame) is obvious. To see

that the fluctuating velocity fields must be the same, we note from the discussions of

the Appendix B that the total fluid velocity measured by the comoving observer is, by

2See the Appendix B for the concept of the comoving observer, in particular, and the Galilean

invariance, in general.



CHAPTER 4. PASSIVE SCALAR MIXING 66

definition, equal to
(
SX̃1e2 + ṽ(X̃, τ̃ )

)
. This must be equal to the difference between

the velocity in the lab frame, (SX1e2 + v(X, τ)), and (Sξ1e2), which is the velocity of

the comoving observer with respect to the lab frame. Using X̃1 = X1 − ξ1, we see that

ṽ(X̃, τ̃) = v(X, τ).

Using Eqns. (B.2) and (B.3) of the Appendix B, we find that Eqns. (4.1), (4.3)

and (4.4) are invariant under the simultaneous transformations given in Eqns. (B.2)

and (4.28). We note that this symmetry property is actually an invariance under a

subset of the full ten–parameter Galilean group, parametrized by the five quantities

(ξ1, ξ2, ξ3, τ0, S); for brevity we will refer to this restricted symmetry as Galilean invari-

ance, or simply GI.

It is important to note that the lab and comoving frames need not constitute inertial

coordinate systems. The only requirement is that the passive scalar field satisfies the

advection–diffusion Eqn. (4.1).

4.3.2 Galilean–invariant velocity correlators

We derive a Galilean–invariant expression for the transport coefficient, Rjm(x,x
′, t, t′),

given by Eqn. (4.19). We follow the basic ideas of G–invariant velocity correlators dis-

cussed in the Appendix B, and rewrite below the statement of Galilean–invariance of

unequal time two–point velocity correlator:

〈vi(R, τ) vj(R′, τ ′)〉 = 〈vi(R +Xc(ξ, τ), τ) vj(R
′ +Xc(ξ, τ

′), τ ′)〉 (4.29)

for all (R,R′, τ, τ ′, ξ). We want to choose (R,R′, τ, τ ′, ξ) as functions of (x,x′, t, t′) such

that we can use Eqn. (4.29) to simplify the velocity correlators in Eqn. (4.19). We note

that Eqns. (4.20) and (B.1) give

X = Xc(x, t) , X ′ = Xc(x
′, t′) (4.30)
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It is therefore natural to choose

τ = t , τ ′ = t′ (4.31)

Thus the velocity correlator we require can now be written as

〈vi(X, t) vj(X
′, t′)〉 = 〈vi(Xc(x, t), t) vj(Xc(x

′, t′), t′)〉 (4.32)

Comparing Eqn. (4.32) with Eqn. (4.29), we see that if we choose

R = Xc(x, t), R′ = Xc(x
′, t′) (4.33)

then Eqn. (4.32), together with Eqns. (B.1) and (4.29) implies that

〈vi(X, t)vj(X
′, t′)〉 = 〈vi(R, τ)vj(R′, τ ′)〉

= 〈vi(R+Xc(ξ, τ), τ)vj(R
′ +Xc(ξ, τ

′), τ ′)〉

= 〈vi(Xc(x+ ξ, t), t)vj(Xc(x
′ + ξ, t′), t′)〉

Now it is natural to choose

ξ = −1

2
(x+ x′) (4.34)

Then

〈vi(X, τ)vj(X
′, τ ′)〉 =

〈
vi

(
Xc

(
x− x′

2

)
, t

)
vj

(
Xc

(
x′ − x

2
, t′
)
, t′
)〉

= Rij(x− x′, t, t′) (4.35)

where the transport coefficient Rij is defined in Eqn. (4.16) (or (4.19)). We note that

Rij(x, t, t
′) = Rji(−x, t, t′) (4.36)
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4.3.3 Galilean–invariant turbulent flux

As can be seen from Eqn. (4.35) that Rij depend on x and x′ only through the combi-

nation, (x−x′), which arises because of Galilean invariance. We change the integration

variable in Eqn. (4.15) to r = x − x′ and using Eqn. (4.35) in the Eqn. (4.15), the

expression for the turbulent flux can be written as

Fj = − ∂

∂xm

∫ t

0

dt′
∫
d3r Gκ(r, t, t

′) [Rjm(r, t, t
′) − St′δm2Rj1(r, t, t

′)] Ψ(x− r, t′)

(4.37)

where we have used
∂Ψ(x′, t′)

∂x′m
=

∂Ψ(x − r, t′)

∂xm

Using Eqn. (4.26) and arranging the terms in Eqn. (4.37), we can write the Galilean–

invariant expression for the turbulent flux as

Fj = − ∂

∂Xm

∫ t

0

dt′
∫
d3r Gκ(r, t, t

′) Tjm(r, t, t
′)Ψ(x− r, t′) (4.38)

where

Tjm(r, t, t
′) = Rjm(r, t, t

′) + S(t− t′)δm2Rj1(r, t, t
′) (4.39)

4.4 Mean–field advection–diffusion equation

Applying the shearing transformation given in Eqns. (A.2) and (A.3) to the mean–field

Eqn. (4.3), we see that the mean–field, Ψ(x, t), obeys

∂Ψ

∂t
= −∇·F + κ∇2Ψ (4.40)

where

(∇)p ≡ ∂

∂Xp
=

∂

∂xp
− St δp1

∂

∂x2
(4.41)
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We now use Eqns. (4.38) and (4.41) to evaluate ∇·F .

∇·F =
∂Fj

∂Xj

= − ∂2

∂Xj∂Xm

∫ t

0

dt′
∫
d3r Gκ(r, t, t

′) Tjm(r, t, t
′)Ψ(x− r, t′) (4.42)

The differential operator outside the integral in Eqn. (4.42) operates only on the mean–

field, Ψ(x−r, t′), inside the integral. Also, as the differential operator, ∂2/(∂Xj∂Xm), is

symmetric in the dummy indices j and m, the quantity Tjm should also be a symmetric

tensor in the indices j and m. Therefore we symmetrize Tjm by defining the symmetric

tensor T̃jm as

T̃jm =
Tjm + Tmj

2
=

1

2
[Rjm +Rmj + S(t− t′){δm2Rj1 + δj2Rm1}] (4.43)

Thus the correct expression for ∇·F should contain T̃jm inside the integral and we write

it explicitly below

∇·F =
∂Fj

∂Xj

= − ∂2

∂Xj∂Xm

∫ t

0

dt′
∫
d3r Gκ(r, t, t

′) T̃jm(r, t, t
′)Ψ(x− r, t′) (4.44)

Substituting the Eqn. (4.44) in Eqn. (4.40), we obtain an integro–differential equation

governing the evolution of mean–field, Ψ(x, t), valid for arbitrary values of the shear

strength S:

∂Ψ

∂t
= κ∇2Ψ +

∂2

∂Xj∂Xm

∫ t

0

dt′
∫
d3r Gκ(r, t, t

′) T̃jm(r, t, t
′)Ψ(x− r, t′) (4.45)

4.4.1 Advection–diffusion equation for slowly varying mean field

The turbulent flux given in Eqn. (4.38) is a functional of Ψ. When the mean–field is

slowly varying compared to velocity correlation times, we expect to be able to approx-

imate F as a function of Ψ. In this case, the mean–field advection–diffusion equation

would reduce to a partial differential equation, instead of the more formidable integro-

differential equation given by (4.45). Sheared coordinates are essential for the calcula-

tions, but physical interpretation is simplest in the laboratory frame; hence we derive an
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expression for the turbulent flux in terms of C(X, τ).

The first step involves the Taylor expansion of the quantity Ψ occurring in Eqn. (4.38).

We neglect spacetime derivatives higher than the first order ones in the expression for

the turbulent flux (Eqn. (4.38)). As the factor ∂/∂Xm appears outside the integral in

Eqn. (4.38), Taylor expansion of Ψ to the desired order becomes

Ψ(x− r, t′) = Ψ(x, t) − (t− t′)
∂Ψ

∂t
+ . . . (4.46)

We now use the mean–field Eqn. (4.40) to express (∂Ψ/∂t) in terms of spatial derivatives.

The diffusion term can be dropped because it involves second order spatial derivatives.

Let us introduce an ordering parameter, ε≪ 1, and consider F to be O(ε). Then,

∂Ψ

∂t
= O(ε) (4.47)

and Eqn. (4.46) becomes

Ψ(x− r, t′) = Ψ(x, t) + O(ε) (4.48)

We substitute Eqn. (4.48) in (4.38) and write T̃jm instead of Tjm due to the reason

discussed above,

Fj(X, τ) = −κjm
∂C(X , τ)

∂Xm
(4.49)

where we have used Ψ(x, t) = C(X, τ) in order to write the expression in terms of lab–

frame variables. Equation (4.49) provides us the Galilean–invariant expression for the

turbulent flux when the mean–field C(X, τ) is a slowly varying function. The transport

coefficient κjm(τ) is given by,

κjm(τ) =

∫ τ

0

dt′
∫
d3r Gκ(r, t, t

′) T̃jm(r, t, t
′) (4.50)
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Thus the mean–field Eqn. (4.3), which is repeated below,

(
∂

∂τ
+ SX1

∂

∂X2

)
C = − ∂Fj

∂Xj

+ κ∇2C

together with Eqns. (4.49) and (4.50), is a closed partial differential equation (which is

first order in temporal and second order in spatial derivatives).

4.4.2 Velocity correlators expressed in terms of the velocity

spectrum tensor

Our aim is to express the velocity correlators, Rjm(r, t, t
′) and T̃jm(r, t, t

′), in terms of

the velocity spectrum tensor, Πjm(k, t, t
′), which was derived in Ch. 3. To do this, we use

the results derived in the Appendix B, where we show that the G–invariant expression

for Fourier–space two–point velocity correlator is given by Eqn. (B.7). Thus making use

of the Appendix B and Eqns. (4.35) & (3.18), we can write

Rjm(r, t, t
′) =

∫
d3kΠjm(k, t, t

′) exp [ik· r]

T̃jm(r, t, t
′) =

1

2

∫
d3k [Πjm +Πmj + S(t− t′){δm2Πj1 + δj2Πm1}] exp [ik· r]

(4.51)

where we noted that K·X = k·x and K ′
·X ′ = k′

·x′. Using the above expressions

for Rjm and T̃jm in Eqn. (4.50), the transport coefficient κjm(τ) can also be written in

terms of the velocity spectrum tensor.

We note from the analysis of Ch. 3 that the velocity spectrum tensor, Πjm, is given

in terms of the forcing spectrum tensor, Φjm, which requires the knowledge of the forc-

ing power spectrum, F (K/KF ); see Eqns. (3.24) and (3.28). For computation of the

transport coefficients, we always choose the form for F (K/KF ) as given in Eqn. (3.35).

Few useful dimensionless variables could be defined as: The fluid Reynolds number,
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Re = v∞rms/(νKF ) ; the peclet number, Pe = v∞rms/(κKF ) ; the Schmidt number, Sc = ν/κ ;

the dimensionless Shear parameter, Sh = S/(v∞rmsKF ) . The definition of v∞rms may be

seen from the discussion following Eqn. (3.33) of Ch. 3, and KF is the wavenumber at

which the fluid is stirred.

4.5 Evaluation of κjm for a slowly varying mean–field

It is useful to display the expression for κjm(τ) given by Eqn. (4.50) in terms of velocity

spectrum tensor Πjm. Using Eqn. (4.51) in the Eqn. (4.50) and noting the fact that

Gκ(r, t, t
′) (or G̃κ(k, t, t

′)) is an even function of r (or k), we can write,

κjm(τ) =
1

2

∫ τ

0

dt′
∫

d3k G̃κ(k, t, t
′) [Πjm +Πmj + S(t− t′){δm2Πj1 + δj2Πm1}] (4.52)

where Πlm = Πlm(k, t, t
′), and the indices (i, j) run over values 1 and 2. Here G̃κ(k, t, t

′)

is the Fourier–space resistive Green’s function defined in Eqn. (4.14). The final step in

computing κjm(τ) is to use Eqns. (3.28) and (3.35) for Πjm and F (K/KF ), respectively.

Below we discuss some important properties of κjm(τ) :

(i) The tensor κjm(τ) is symmetric in the indices (j,m).

(ii) The components κ13 and κ23 vanish because, for these values of the indices (j,m),

the integrand in Eqn. (4.52) is an odd function of K3 (or k3). Thus there are only

four non–zero independent components of κjm(τ), namely κ11, κ22, κ33 and κ12,

that we need to compute.

(iii) The κjm(τ) saturate at some constant values at late times; let us denote these

constant values by κ∞jm = κjm(τ → ∞). If the mean field changes over times that

are longer than the saturation time, we may use κ∞jm instead of the time–varying

quantities κjm(τ) for our purposes.
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Figure 4.1: Plots of the saturated quantities κ∞11, κ
∞
22, κ

∞
33 and κ∞12 for Re = Pe = 0.1

and Re = Pe = 0.5, corresponding to Sc = 1 , versus the dimensionless parameter

(−Sh × Re). The two plots have collapsed on each other due to scaling of the functions

as given in Eqn. (4.53).

From Eqns. (4.52), (4.14), (3.28) and (3.35), it can be verified that the saturated values

of the transport coefficients, κ∞jm, have the following general functional form:

κ∞jm = κt0 Re fjm(ShRe , Sc) (4.53)

where the fij are dimensionless functions of two variables and κt0 = (v∞rms/3KF ). Figs. (4.1–

4.3) display plots of the saturated values of the transport coefficients, κ∞11, κ
∞
22, κ

∞
33 and

κ∞12, versus the dimensionless parameter (−Sh × Re). The scalings of the ordinates have

been chosen for compatibility with the functional form displayed in Eqn. (4.53) above.

The plots in Fig. (4.1a–d) are for Sc = 1, but for two sets of values of the Reynolds

number and Peclet number; Re = Pe = 0.1, and Re = Pe = 0.5. Fig. (4.2a–d) are for

Re = 0.1 and Pe = 0.5, corresponding to Sc = 5. Fig. (4.3a–d) are for Re = 0.5 and

Pe = 0.1, corresponding to Sc = 0.2. Some noteworthy properties are as follows:

(i) κ∞11, κ
∞
33 and κ∞12 are always positive.
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Figure 4.2: Plots of the saturated quantities κ∞11, κ
∞
22, κ

∞
33 and κ∞12 for Re = 0.1 and

Pe = 0.5, corresponding to Sc = 5, versus the dimensionless parameter (−Sh × Re).

(ii) κ∞22 changes sign with |Sh|. It starts with positive value at Sh = 0, increases

slightly with increasing values of |Sh|, attains maximum quickly, it then becomes a

decreasing function of |Sh| and becomes negative for large values of |Sh|.

4.6 Slowly varying mean–field dynamics for non–helical

flows

Transport properties of the passive scalar in the presence of background shear flow,

in which the velocity fluctuations are non–helical, have been studied for small Peclet

numbers by explicitly evaluating the transport coefficients. The evolution of the mean–

field, assuming that it changes over times that are longer than the saturation time so

that we can use κ∞jm instead of the time–varying quantities κjm(τ), is given by

(
∂

∂τ
+ SX1

∂

∂X2

)
C = κ∞jm

∂2C

∂Xj∂Xm

+ κ∇2C (4.54)

Equation (4.54) is inhomogeneous in the spatial coordinates so, as before, we find it
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Figure 4.3: Plots of the saturated quantities κ∞11, κ
∞
22, κ

∞
33 and κ∞12 for Re = 0.5 and

Pe = 0.1, corresponding to Pr = 0.2, versus the dimensionless parameter (−Sh × Re).

convenient to work with new variable, Ψ(x, t), and transform Eqn. (4.54) to the shearing

coordinates (x, t) :

∂Ψ

∂t
= κ∞jm

∂2Ψ

∂Xj∂Xm
+ κ∇2Ψ (4.55)

where

∂2

∂Xj∂Xm

=
∂2

∂xj∂xm
− δm1St

∂2

∂xj∂x2
− δj1St

∂2

∂x2∂xm
+ δj1δm1S

2t2
∂2

∂x22
(4.56)

and ∇
2 has been defined in Eqn. (A.4) of the Appendix A. Equation (4.55) is homoge-

neous in x but not in t, so we take a spatial Fourier transform of Eqn. (4.55). Let Ψ̃(k, t)

be the spatial Fourier transform of Ψ(x, t), defined by

Ψ̃(k, t) =

∫
d3xΨ(x, t) exp [−ik·x] (4.57)

Then Ψ̃(k, t) satisfies
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∂Ψ̃

∂t
= −

[
κ∞jmKjKm + κK2

]
Ψ̃ (4.58)

where the vector K(k, t) = (k1−St k2, k2, k3) and K
2 = |K|2 = (k1−Stk2)

2 + k22 + k23 ,

as before. The solution of Eqn. (4.58) can be readily written as

Ψ̃(k, t) = Ψ̃(k, 0) G̃(k, t, 0) (4.59)

where Ψ̃(k, 0) is assumed to be given as an initial condition and G̃(k, t, 0) is the Green’s

function which is zero for t < 0 and is defined for t ≥ 0 by

G̃(k, t, 0) = exp

[
−
∫ t

0

ds
(
κ∞jmKjKm + κK2

)]
(4.60)

In the integrand, Kj = kj − Ssδj1k2 should be regarded as a function of k and s, and

the s–integral performed at fixed k. Then G̃(k, t, 0) can be written as the product of a

microscopic Green’s function, G̃κ(k, t, 0), and a turbulent Green’s function, G̃turb(k, t, 0) :

G̃(k, t, 0) = G̃turb(k, t, 0)G̃κ(k, t, 0)

G̃turb(k, t, 0) = exp [−Tjm(t)kjkm]

G̃κ(k, t, 0) = exp

[
−κ
(
k2t− S k1 k2t

2 +
S2

3
k22t

3

)]
(4.61)

where Tjm(t) is a time–dependent symmetric matrix and depends on κ∞jm which are

known quantities. It is easy to see that

−Tjm(t)kjkm = −t
[
κ∞11k

2
1 + κ∞22k

2
2 + 2κ∞12k1k2 + κ∞33k

2
3

]
+St2

[
κ∞11k1k2 + κ∞12k

2
2

]
−S

2

3
t3
[
κ∞11k

2
2

]

(4.62)

The solution in the original variables, C(X, τ), can be recovered by using the shearing

transformation, Eqn. (A.2), to write (x, t) in terms of the laboratory frame coordinates
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(X, τ) :

C(X, τ) = Ψ(x, t) =

∫
d3k

(2π)3
Ψ̃(k, t) exp (ik·x)

=

∫
d3k

(2π)3
Ψ̃(k, τ) exp (iK(k, τ)·X) (4.63)

Using Eqn. (4.59) and writing Ψ̃(k, 0) = C̃(k, 0), we get

C(X, τ) =

∫
d3k

(2π)3
C̃(k, 0)G̃(k, τ, 0) exp (iK(k, τ)·X) (4.64)

Below we discuss some useful properties of the analysis done in this section:

1. The above solution for C(X, τ) is a linear superposition of shearing waves, of the

form exp (iK(k, τ)·X) = exp [i(k1 − Sτk2)X1 + ik2X2 + ik3X3], indexed by the

triplet of numbers (k1, k2, k3).

2. Whether the waves grow or decay depends on the time dependence of the Green’s

function, G̃(k, t, 0) = G̃turb(k, t, 0)G̃κ(k, t, 0).

3. G̃κ(k, t, 0) is known explicitly and describes the ultimate decay of the shearing

waves (on the long diffusive timescale), although these could be transiently ampli-

fied.

4. G̃turb(k, t, 0) depends on the behavior of Eqn. (4.62). The term linear in t will

dominate at early times while the term proportional to t3 will dominate eventually.

Thus at early times we need one of the eigenvalues of the matrix




κ∞11 κ∞12 0

κ∞12 κ∞22 0

0 0 κ∞33




to be negative for the growth of mean concentration. These eigenvalues are
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λ± =
(κ∞11 + κ∞22)

2
± |κ∞11 − κ∞22|

2

[
1 + 4

(κ∞12)
2

(κ∞11 − κ∞22)
2

]1/2
; λ3 = κ∞33 (4.65)

It is evident that the nonzero values of κ∞12 or negative values of the diagonal ele-

ments of the turbulent diffusion tensor favour growth at early times. Our analysis

of § 4.5 suggests that the quantity κ∞22 indeed becomes negative for large enough

shear whereas κ∞11 and κ∞33 remain positive; this happens because the turbulence

is strongly affected by the background shear and the velocity correlators are not

isotropic. Thus a non-zero k2 seems to be required for growth initially.

At intermediate times, when the t2 term dominates we can always choose shearing

waves with an appropriate sign and magnitude of k1k2 such that St2 (κ∞11k1k2 + κ∞12k
2
2)

is positive, and there is growth of the mean field. On the other hand, all shearing

waves with non-zero k2 will eventually decay, in the long time limit t → ∞, if

κ∞11 > 0, as then the t3 term is negative definite. Thus it seems likely that the

mean concentration of the passive scalar in the presence of background shear can

have a shearing wave solutions which grow for some time if they have non-zero X2

dependence, but which will eventually decay.

4.7 Conclusion

We have formulated the problem of the evolution of mean concentration of passive scalars

which is being evolved by the action of non–helical random flows in the presence of

the background linear shear flow. Our theory is valid for small Peclet numbers and

small fluid Reynolds numbers, but it is non–perturbative in the shear parameter, i.e.,

it is valid for arbitrary values of the shear parameter. We make systematic use of the

shearing coordinate transformation and the Galilean invariance of the linear shear flows.

Using Reynolds averaging, we split the total concentration into mean and fluctuating

components. The mean concentration is driven by the divergence of the turbulent flux of
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the passive scalars, which in turn is determined by the statistics of the random velocity

field. To determine the turbulent flux, we first need to solve for the fluctuating component

of the concentration which may be expressed in terms of the mean concentration and

the fluctuating velocity field. Therefore we develop the equation for the fluctuating

component of the concentration perturbatively in the small parameter, Pe. We use

the shearing coordinate transformation and the resistive Green’s function for the linear

shear flow derived in the Appendix A, to write the formal solution for the fluctuating

field. Then we write explicit expression for the turbulent flux which is given in terms

of unequal–time two–point velocity correlator. As a simple example, we first consider

the case of delta–correlated–in–time velocity correlator and show that the turbulent flux

does not depend on the shear parameter, and the expression thus found is a familiar

expression in the absence of background shear flow. Therefore we conclude that the

shear needs time to produce non trivial effects and it is necessary to consider velocity

correlators with non zero correlation times. To study the effects of the shear on the

transport properties of the passive scalar, we focussed again on the general case of finite

velocity correlation times. The transport coefficients are given in general form in terms

of the unequal–time two–point correlators of velocity fluctuations. Now we make use of

the Galilean invariance, which is a fundamental symmetry of the problem. Making use

of the result on Galilean invariant velocity correlators given in the Appendix B, we write

explicit formula for the Galilean invariant turbulent flux.

Taking the divergence of the G–invariant turbulent flux, we write the evolution equa-

tion, which is an advection–diffusion equation, for the mean–field. We show that the

evolution of mean–field is governed by an integro–differential equation. The advective

term depends on the second order spatial derivative of mean–field and thus exhibits the

properties of the diffusion which is anisotropic. To make further progress, we consider

the limit in which the mean–field is a slowly varying function of both the space and the

time. In this case, the mean–field evolves by the partial differential equation, instead of

more formidable integro–differential equation. We then derive an explicit expression for

the transport coefficient κjm, also known as the turbulent diffusivity tensor, in terms of
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the velocity spectrum tensor which is the fundamental object and has been determined

in Ch. 2. Some important properties of κjm are as follows:

1. κjm is symmetric in the indices (j,m) and has only four non–zero independent

components, which are κ11, κ22, κ33 and κ12. Other components vanish.

2. All the non–zero components of κjm are zero at time τ = 0, and saturate at finite

values at late times, which we denote by κ∞jm.

3. A general functional form for κ∞jm was derived and it was shown that it depends

only on two dimensionless variables, ShRe and Sc. This general functional form is

verified in the Fig. (4.1).

4. The behaviour of all components of κ∞jm as a function of |Sh| are quite different.

This is due to the effect of the shear which make the diffusion highly anisotropic.

5. In the limit of zero shear, all the diagonal components of κ∞jm approach non–zero

values, whereas κ∞12 becomes zero.

6. κ∞11, κ
∞
33 and κ∞12 are always positive, whereas κ∞22 changes sign with |Sh|. It starts

with positive value at Sh = 0, increases slightly with increasing values of |Sh|, at-
tains maximum quickly, it then becomes a decreasing function of |Sh| and becomes

negative for large values of |Sh|; see Figs. (4.1–4.3).

The negative sign of κ∞22 has a noticeable effect on the evolution of the mean con-

centration of the passive scalar. As noted in § 4.6 the negative values of κ∞22 and finite

κ∞12 favour growth of mean concentration of passive scalar at initial times; the growth at

intermediate times can always be guaranteed. At late times the mean concentration will

eventually decay due to positive sign of κ∞11. Thus we report a possibility of transient

amplification of mean concentration of the passive scalar.
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An introduction to the shear dynamo problem

Astrophysical systems like planets, galaxies and clusters of galaxies possess magnetic

fields which exhibit definite spatial ordering, in addition to a random component. The

ordered (or “large–scale”) components are thought to originate from turbulent dynamo

action in the electrically conducting fluids in these objects. The standard paradigm

involves amplification of seed magnetic fields, due to non mirror–symmetric (i.e. helical)

turbulent flows, through the α–effect (Moffatt, 1978; Parker, 1979). Only recently the role

of the mean shear in the turbulent flows is beginning to be appreciated. Dynamo action

due to shear and turbulence has received some attention in the astrophysical contexts of

accretion disks (Vishniac & Brandenburg, 1997) and galactic disks (Blackman, 1998). It

has also been demonstrated that shear, in conjunction with rotating turbulent convection,

can drive a large–scale dynamo (Käpylä, Korpi & Brandenburg, 2008; Hughes & Proctor,

2009).

We are interested in the more specific problem of large–scale dynamo action due to

“non–helical” turbulence with mean shear. Direct numerical simulations now provide

strong support for such a shear dynamo. Yousef et al. (2008a) demonstrated that forced

small-scale non–helical turbulence in non–rotating linear shear flows leads to exponential

growth of large–scale magnetic fields. These findings were later generalized by Yousef et

al. (2008b) to a shearing sheet model of a differentially rotating disk with a Keplerian

rotation profile. The investigations of Brandenburg et al. (2008) demonstrated the shear

dynamo effect for a range of values of the Reynolds numbers and the shear parameter,

and measured all components of the magnetic diffusivity tensor. While the shear dynamo

has been conclusively demonstrated to function, it is not yet clear what makes it work.

This outstanding, unsolved problem has been the focus of our investigations, which is

being presented in chapters 5, 6, 7 and 8.

One possibility that has been suggested is dynamo action due to a “fluctuating α–

effect” in turbulent flows which have zero mean helicities. In this proposal, large–scale

dynamo action derives from the interaction of mean shear with fluctuations of helicity

(Vishniac & Brandenburg, 1997; Sokolov, 1997; Proctor, 2007; Brandenburg et al., 2008;
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Rogachevskii & Kleeorin, 2008; Heinemann, McWilliams & Schekochihin, 2011; Mitra

& Brandenburg, 2012). Another suggestion is that, if even transient growth makes non

axisymmetric mean magnetic fields strong enough, they themselves might drive motions

which could lead to subcritical dynamo action (Rincon et al., 2008). Yet another possibil-

ity that has been suggested is “the shear–current effect” (Rogachevskii & Kleeorin, 2003,

2004, 2008). In this mechanism, it is thought that the mean shear gives rise to anisotropic

turbulence, which causes an extra component of the mean electromotive force (EMF),

leading to the generation of the cross–shear component of the mean magnetic field from

the component parallel to the shear flow. However, there is no agreement yet whether

the sign of such a coupling is favourable to the operation of a dynamo. Some analytic

calculations (Rädler & Stepanov, 2006; Rüdiger & Kitchatinov, 2006) and numerical

experiments (Brandenburg et al., 2008) find that the sign of the shear–current term is

unfavourable for dynamo action. A quasilinear theory of dynamo action in a linear shear

flow of an incompressible fluid which has random velocity fluctuations was presented in

Sridhar & Subramanian (2009a,b). Unlike earlier analytic work which treated shear as a

small perturbation, this work did not place any restriction on the strength of the shear.

They arrived at an integro–differential equation for the evolution of the mean magnetic

field and argued that the shear–current assisted dynamo is essentially absent. It should

be noted that the quasilinear theory of Sridhar & Subramanian (2009a,b) assumes zero

resistivity, and is valid in the limit of small velocity correlation times when the “first

order smoothing approximation” (FOSA) holds.



Chapter 5
THE SHEAR DYNAMO PROBLEM FOR

SMALL MAGNETIC REYNOLDS NUMBERS:

KINEMATIC THEORY

5.1 Introduction

In this chapter we present a kinematic theory of the shear dynamo that is non perturba-

tive in the shear strength, but perturbative in the magnetic Reynolds number (Rm); this

may be thought of as FOSA with finite resistivity. Thus we are not limited to the quasi-

linear limit of small velocity correlation times, and our conclusions are rigorously valid

for velocity fluctuations which have small Rm but arbitrary fluid Reynolds number. In

§ 5.2 we formulate the shear dynamo problem for small Rm. Using Reynolds averaging,

we split the magnetic field into mean and fluctuating components. The equation for the

fluctuations is expanded perturbatively in the small parameter, Rm. Using the shear-

ing coordinate transformation, we make an explicit calculation of the resistive Green’s

function for the linear shear flow. In § 5.3, the magnetic fluctuations and the mean elec-

tromotive force (EMF) are determined to lowest order in Rm. The transport coefficients

are given in general form in terms of the two–point correlators of the velocity fluctua-

tions. Galilean invariance is a basic symmetry in the problem and is the focus of § 5.4.

84
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For Galilean invariant (G–invariant) velocity fluctuations, it is proved that the transport

coefficients, although space-dependent, possess the property of translational invariance in

sheared coordinate space. An explicit expression for the Galilean–invariant mean EMF

is derived. We put together all the results in § 5.5 by deriving the integro–differential

equation governing the time evolution of the mean magnetic field. Some important

properties of this equation are discussed. In particular, it is shown that, in the formal

limit of zero resistivity, the quasilinear results of Sridhar & Subramanian (2009a,b) are

recovered. We also show that the natural setting for the integro–differential equation

governing mean–field evolution is in sheared Fourier space. We prove a result on the

form of the two–point velocity correlator in Fourier space, the derivation of which has

been deferred to the Appendix B; the velocity spectrum tensor and its general properties

are discussed. We then express all the integral kernels in terms of the velocity spec-

trum tensor, which is the fundamental dynamical quantity that needs to be specified.

Summary and conclusions are presented in § 5.6.

5.2 The shear dynamo problem

5.2.1 The small Rm limit

Consider a Cartesian coordinate system with unit vectors (e1, e2, e3) erected on a comov-

ing patch of a differentially rotating disk. Henceforth this will be referred to as the lab

frame and we will use notation X = (X1, X2, X3) for the position vector, and τ for time.

The fluid velocity is given by (SX1e2 + v), where S is the rate of shear parameter and

v(X, τ) is a randomly fluctuating velocity field. The total magnetic field, Btot(X, τ),

obeys the induction equation.

(
∂

∂τ
+ SX1

∂

∂X2

)
Btot − SBtot

1 e2 = ∇×
(
v×Btot

)
+ η∇2Btot (5.1)

It is useful to note that the induction equation is unaffected by a uniform rotation of

the frame of reference. So our coordinate system can refer to an inertial frame, or to
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a comoving patch of a differentially rotating disk. We study a kinematic problem in

this chapter, so will assume that the velocity field is prescribed. We also assume that

the velocity fluctuations have zero mean (〈v〉 = 0), with root–mean–squared amplitude

vrms on some typical spatial scale ℓ. The magnetic Reynolds number may be defined as

Rm = (vrmsℓ/η); note that Rm has been defined with respect to the fluctuating velocity

field, not the background shear velocity field. To address the dynamo problem, we will

use the approach of the theory of mean–field electrodynamics (Moffatt, 1978; Krause

& Rädler, 1980; Brandenburg & Subramanian, 2005). Here, the action of the velocity

fluctuations on some seed magnetic field is assumed to produce a total magnetic field

with a well–defined mean–field (B) and a fluctuating–field (b):

Btot = B + b ,
〈
Btot

〉
= B , 〈b〉 = 0 (5.2)

where 〈 〉 denotes ensemble averaging in the sense of Reynolds. Applying Reynolds

averaging to the induction Eqn. (5.1), we obtain the following equations governing the

dynamics of the mean and fluctuating magnetic fields:

(
∂

∂τ
+ SX1

∂

∂X2

)
B − SB1e2 = ∇×E + η∇2B (5.3)

(
∂

∂τ
+ SX1

∂

∂X2

)
b − Sb1e2 = ∇× (v×B) + ∇× (v×b− 〈v×b〉) + η∇2b

(5.4)

where E = 〈v×b〉 is the mean electromotive force (EMF). The first step towards solving

the problem is to solve Eqn. (5.4) for b, then calculate E and obtain a closed equation

for the mean–field, B(X, τ). In the framework of the above mean–field theory, the shear

dynamo problem may be posed as follows: under what conditions does the equation for

B(X, τ) admit growing solutions ? In particular, are growing solutions possible when

the velocity field is non–helical (i.e. when the velocity field is mirror symmetric) ?

The problem is, in general, a difficult one, but it can be approached perturbatively
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in the limit of small Rm. When Rm ≪ 1, we can expand b in a series,

b = b(0) + b(1) + b(2) + . . . (5.5)

where b(n) is of order b(n−1) multiplied by the small quantity Rm. The equations gov-

erning the time evolution of these quantitites are

(
∂

∂τ
+ SX1

∂

∂X2

)
b(0) − Sb

(0)
1 e2 = ∇× (v×B) + η∇2b(0) (5.6)

(
∂

∂τ
+ SX1

∂

∂X2

)
b(n) − Sb

(n)
1 e2 = ∇×

(
v×b(n−1) −

〈
v×b(n−1)

〉)
+ η∇2b(n)

for n = 1, 2, . . . (5.7)

Note that ∇× (v×B) acts as a source term for b(0), whereas the source term for b(n)

is ∇×

(
v×b(n−1) −

〈
v×b(n−1)

〉)
. Once the b(n) have been determined, the mean EMF

can be calculated directly by

E = 〈v×b〉 =
〈
v×

(
b(0) + b(1) + b(2) + . . .

)〉
(5.8)

In this chapter, we work to lowest order in Rm, so we need to work out only b(0);

Eqn. (5.7) will not be used.

5.2.2 The shearing coordinate transformation

In this chapter we will focus on the determination of the lowest order term, b(0). We

also assume that the fluctuating velocity field is incompressible; i.e. ∇· v = 0. Then

the evolution of b(0) is governed by,

(
∂

∂τ
+ SX1

∂

∂X2

)
b(0) − Sb

(0)
1 e2 = (B· ∇)v − (v· ∇)B + η∇2b(0) (5.9)
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We will now solve this equation for b(0) and determine the mean EMF. General methods

of solving equations such as Eqn. (5.9) are presented in Krause & Rädler (1980), but we

prefer to employ the shearing coordinate transformation because it is directly adapted

to the problem at hand and greatly simplifies the task of writing down the Green’s func-

tion solution. The (X1∂/∂X2) term makes Eqn. (5.9) inhomogeneous in the coordinate

X1. This term can be eliminated through a shearing transformation to new spacetime

variables, given in Eqn. (A.2) of Appendix A. Thus, using Eqns. (A.2) and (A.3), given

in the Appendix A, and defining the new variables, which are component–wise equal to

the old variables:

H(x, t) = B(X, τ) , h(x, t) = b(0)(X, τ) , u(x, t) = v(X, τ) (5.10)

Note that, just like the old variables, the new variables are expanded in the fixed

Cartesian basis of the lab frame. For example, H = H1e1 + H2e2 + H3e3, where

Hi(x, t) = Bi(X, τ), and similarly for the other variables. In the new variables, Eqn. (5.9)

becomes,

∂h

∂t
− Sh1e2 =

(
H·

∂

∂x
− StH1

∂

∂x2

)
u −

(
u·

∂

∂x
− Stu1

∂

∂x2

)
H + η∇2h (5.11)

which can be expressed in component form as

(
∂

∂t
− η∇2

)
hm(x, t) = qm(x, t) (5.12)

where ∇
2 is given by Eqn. (A.4), and

qm(x, t) = [Hl − Stδl2H1] uml − [ul − Stδl2u1]Hml + Sδm2h1 (5.13)

We have used notation uml = (∂um/∂xl) and Hml = (∂Hm/∂xl). Below we discuss the

Green’s function for Eqn. (5.12).
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5.2.3 The resistive Green’s function for a linear shear flow

Equation (5.12) is linear, homogeneous in x and inhomogeneous in t and is similar to

Eqn. (A.1) of the Appendix A for which the general expressions for the Green’s function,

both, in the Fourier and the real space, have been constructed. The general solution of

Eqn. (5.12) can be written in the form,

hm(x, t) =

∫
d3x′Gη(x− x′, t, s) hm(x

′, s)

+

∫ t

s

dt′
∫

d3x′Gη(x− x′, t, t′) qm(x
′, t′) ; for any s < t ,(5.14)

where Gη(x, t, t
′) is the resistive Green’s function for the linear shear flow, which satisfies,

(
∂

∂t
− η∇2

)
Gη(x, t, t

′) = 0 (5.15a)

lim
t′→t−

Gη(x, t, t
′) = δ3(x) (5.15b)

Gη(x, t, t
′) is non–zero only when 0 ≤ t′ < t. (5.15c)

Gη(x−x′, t, t0) =

∫
d3x

′′

Gη(x−x
′′

, t, s)Gη(x
′′ −x′, s, t0) ; for t0 < s < t . (5.15d)

The method of construction of the resistive Green’s function and some of its general

properties are given in detail in the Appendix A. Following the derivation given in the

Appendix A, the spatial Fourier transform of the Green’s function may be written as,

G̃η(k, t, t
′) = exp

[
−η
∫ t

t′
dsK2(k, s)

]

= exp

[
−η
(
k2(t− t′)− S k1 k2(t

2 − t′2) +
S2

3
k22(t

3 − t′3)

)]
(5.16)

where, as per Eqn. (5.15c) above, t > t′ ; K2(k, t) = (k1−Stk2)
2 + k22 + k23; and k, being

conjugate to the sheared coordinate vector x, can be regarded as a sheared wavevector.
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Note also that G̃η(k, t, t
′) is a positive quantity which takes values between 0 and 1, and

that it is an even function of k and k3.

The inverse Fourier transform of Eqn. (5.16) gives the expression for Gη(x, t, t
′),

which may be thought of as a sheared heat kernel given by,

Gη(x, t, t
′) = [4πη(t− t′)]

−3/2

[
1 +

S2

12
(t− t′)2

]−1/2

×

× exp

[
− 1

4η(t− t′)

(
x21
σ2
1

+
x22
σ2
2

+ x23

)]
, (5.17)

which is equivalent to the one first derived in Krause & Rädler (1971). For full derivation

of Eqn. (5.17) and meanings of various terms, please refer to the Appendix A.

We now note some properties of the Green’s function. For convenience we choose the

shear parameter, S, to be negative: then the quantities, f ≥ 0, 0 ≤ θ ≤ π/2, σ1 ≥ 1

and 0 ≤ σ2 ≤ 1 (see Appendix A for the meaning). At fixed t and t′, the Green’s

function is a Gaussian with long axis along x1, short axis along x2, and the intermediate

axis along x3 (see Appendix A for the meaning). To obtain some idea of the behaviour

of the Green’s function, it is useful to plot isocontours in the sheared coordinate space

(x1, x2, x3) at different values of t and t
′. Figure (5.1) displays isocontours in the x1–x2

plane at four different values of t for t′ = 0; we have chosen x3 = 0 and t′ = 0 in the

interests of brevity of presentation. The figure is plotted in shearing coordinates, with

respect to which diffusion is anisotropic and there is no advection. It may be noted that

the Green’s function shows a shearing motion against the direction of the actual shear.

As t increases from zero to infinity, θ (which is the angle the long axis makes with the

x1–axis) increases from 45◦ to 90◦, and all the principal axes increase without bound.
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Figure 5.1: Isocontours of the resistive Green’s function Gη(x, t, t
′) plotted in the x1–x2

plane of the shearing coordinate system, for t′ = 0 at four different values of t. Units

are such that S = −2 ; η = 1. Five isocontours at 90%, 70%, 50%, 30% and 10% of the

maximum value are displayed. Panels (a), (b), (c) and (d) correspond to times t = 1,

t = 5, t = 10 and t = 15.
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5.3 Magnetic fluctuations & mean EMF at small Rm

5.3.1 Explicit solution for h(x, t)

We are interested in the particular solution to Eqn. (5.12) (i.e. the forced solution) which

vanishes at t = 0. This can be written as

hm(x, t) =

∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′) qm(x
′, t′) (5.18)

Substituting the expression for qm from Eqn. (5.13) in Eqn. (5.18), we have

hm(x, t) =

∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′)×

×{[H ′
l − St′δl2H

′
1] u

′
ml − [u′l − St′δl2u

′
1]H

′
ml}

+ Sδm2

∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′) h1(x
′, t′) (5.19)

where primes denote evaluation at spacetime point (x′, t′). The solution is not yet in

explicit form because the last term on the right side contains the unknown quantity

h1(x
′, t′). Thus we need to work out the integral

∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′) h1(x
′, t′) =

∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′)×

×
∫ t′

0

dt
′′

∫
d3x

′′

Gη(x
′ − x

′′

, t′, t
′′

)×

×
{[
H

′′

l − St
′′

δl2H
′′

1

]
u

′′

1l −
[
u

′′

l − St
′′

δl2u
′′

1

]
H

′′

1l

}

where ′′ means evaluation at spacetime point (x
′′

, t
′′

). Note that, on the right side, x′

occurs only in the Green’s functions. So, by using the property given in Eqn. (5.15d),
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the integral over x′ can be performed. Then

∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′) h1(x
′, t′) =

∫ t

0

dt′
∫ t′

0

dt
′′

∫
d3x

′′

Gη(x− x
′′

, t, t
′′

)×

×
{[
H

′′

l − St
′′

δl2H
′′

1

]
u

′′

1l −
[
u

′′

l − St
′′

δl2u
′′

1

]
H

′′

1l

}

The double–time integrals can be reduced to single–time integrals because of the following

simple identity. For any function f(x, t), we have

∫ t

0

dt′
∫ t′

0

dt
′′

∫
d3x

′′

f(x
′′

, t
′′

) =

∫ t

0

dt
′′

∫
d3x

′′

f(x
′′

, t
′′

)

∫ t

t′′
dt′

=

∫ t

0

dt
′′

(t− t
′′

)

∫
d3x

′′

f(x
′′

, t
′′

)

=

∫ t

0

dt′ (t− t′)

∫
d3x′ f(x′, t′)

where in the last equality we have merely replaced the dummy integration variables

(x
′′

, t
′′

) by (x′, t′). Then we have

∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′) h1(x
′, t′) =

∫ t

0

dt′ (t− t′)

∫
d3x′Gη(x− x

′′

, t, t
′′

)×

× {[H ′
l − St′δl2H

′
1] u

′
1l − [u′l − St′δl2u

′
1]H

′
1l}

Therefore the forced solution to Eqn. (5.12) can finally be written in explicit form as

hm(x, t) =

∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′) [u′ml + S(t− t′)δm2u
′
1l]×

× [H ′
l − St′δl2H

′
1]

−
∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′) [H ′
ml + S(t− t′)δm2H

′
1l]×

× [u′l − St′δl2u
′
1] (5.20)
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This gives the magnetic fluctuation to lowest order in Rm.

5.3.2 Explicit expression for the mean EMF

To lowest order in Rm, the mean EMF is given by E =
〈
v×b(0)

〉
= 〈u×h〉, where

Eqn. (5.20) for h should be substituted. The averaging, 〈 〉, acts only on the velocity

variables but not the mean field; i.e. 〈uuH〉 = 〈uu〉H etc. After interchanging the

dummy indices (l, m) in the last term, the mean EMF is given in component form as

Ei(x, t) = ǫijm 〈ujhm〉

=

∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′)
[
α̂il(x, t,x

′, t′) + S(t− t′)β̂il(x, t,x
′, t′)

]
×

× [H ′
l − St′δl2H

′
1]

−
∫ t

0

dt′
∫

d3x′Gη(x− x′, t, t′) [ η̂iml(x, t,x
′, t′) − St′δm2 η̂i1l(x, t,x

′, t′)]×

× [H ′
lm + S(t− t′)δl2H

′
1m]

(5.21)

Here, (α̂ , β̂ , η̂ ), are transport coefficients, which are defined in terms of the uu velocity

correlators by

α̂il(x, t,x
′, t′) = ǫijm 〈uj(x, t) uml(x

′, t′)〉

β̂il(x, t,x
′, t′) = ǫij2 〈uj(x, t) u1l(x′, t′)〉

η̂iml(x, t,x
′, t′) = ǫijl 〈uj(x, t) um(x′, t′)〉 (5.22)
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It is also useful to consider velocity statistics in terms of vv velocity correlators, because

this is referred to the lab frame. By definition, from (Eqn. 5.10),

um(x, t) = vm(X(x, t), t) (5.23)

where

X1 = x1 , X2 = x2 + Stx1 , X3 = x3 , τ = t (5.24)

is the inverse of the shearing transformation given in Eqn. (A.2). Using

∂

∂xl
=

∂

∂Xl
+ Sτ δl1

∂

∂X2
(5.25)

the velocity gradient uml can be written as

uml ≡ ∂um
∂xl

=

(
∂

∂Xl
+ Sτ δl1

∂

∂X2

)
vm = vml + Sτ δl1 vm2 (5.26)

where vml = (∂vm/∂Xl). Then the transport coefficients are given in terms of the vv

velocity correlators by

α̂il(x, t,x
′, t′) = ǫijm [〈vj(X, t) vml(X

′, t′)〉 + St′ δl1 〈vj(X, t) vm2(X
′, t′)〉]

β̂il(x, t,x
′, t′) = ǫij2 [〈vj(X, t) v1l(X

′, t′)〉 + St′ δl1 〈vj(X, t) v12(X
′, t′)〉]

η̂iml(x, t,x
′, t′) = ǫijl 〈vj(X, t) vm(X

′, t′)〉 (5.27)

where X and X ′ are shorthand for

X = (x1 , x2 + Stx1 , x3) , X ′ = (x′1 , x
′
2 + St′x′1 , x

′
3) (5.28)

Equation (5.21), together with (5.22) or (5.27), gives the mean EMF in general form.

X can be thought of as the coordinates of the origin at time t of an observer comoving

with the background shear flow, who was at x at time equal to zero. Similarly, X ′ can

be thought of as the coordinates of the origin at time t′ of an observer comoving with
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the background shear flow, who was at x′ at time equal to zero.

5.4 Galilean–invariant velocity statistics

5.4.1 Galilean invariance of the induction equation

The induction equation, Eqn. (5.1), for the total magnetic field — and also Eqns. (5.3)

and (5.4) for the mean and fluctuating components — have a fundamental invariance

property relating to measurements made by a special subset of all observers, called

comoving observers in Sridhar & Subramanian (2009a,b). As this is an important concept

with far reaching consequences, we describe it in detail in Appendix B.

Let
[
B̃tot(X̃, τ̃) , B̃(X̃, τ̃) , b̃(X̃, τ̃) , ṽ(X̃, τ̃)

]
denote the total, the mean, the fluctu-

ating magnetic fields and the fluctuating velocity field, respectively, as measured by the

comoving observer. These are all equal to the respective quantities measured in the lab

frame:

[
B̃tot(X̃, τ̃) , B̃(X̃, τ̃) , b̃(X̃ , τ̃) , ṽ(X̃, τ̃)

]
=
[
Btot(X, τ) ,B(X, τ) , b(X, τ) , v(X, τ)

]

(5.29)

That this must be true may be understood as follows: Magnetic fields are invariant under

non–relativistic boosts, so the total, mean and fluctuating components of the magnetic

fields must be the same in both frames. To see that the fluctuating velocity fields must

be the same, we note from the discussions of the Appendix B that the total fluid velocity

measured by the comoving observer is, by definition, equal to
(
SX̃1e2 + ṽ(X̃, τ̃)

)
. This

must be equal to the difference between the velocity in the lab frame, (SX1e2 + v(X, τ)),

and (Sξ1e2), which is the velocity of the comoving observer with respect to the lab frame.

Using X̃1 = X1 − ξ1, we see that ṽ(X̃, τ̃) = v(X, τ).

Using Eqns. (B.2) and (B.3) of the Appendix B, we find that Eqns. (5.1), (5.3) and

(5.4) are invariant under the simultaneous transformations given in Eqns. (B.2) and

(5.29). This symmetry property is actually an invariance under a subset of the full

ten–parameter Galilean group, parametrized by the five quantities (ξ1, ξ2, ξ3, τ0, S); for
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brevity we will refer to this restricted symmetry as Galilean invariance, or simply GI.

It is important to note that the lab and comoving frames need not constitute inertial

coordinate systems. One of the main applications of our theory is to the shearing sheet,

which is a local description of a differentially rotating disk. In this case the velocity

field will be affected by Coriolis forces. The only requirement is that the magnetic field

satisfies the induction Eqn. (5.1).

5.4.2 Galilean–invariant velocity correlators

In the low Rm limit, we require only the two–point velocity correlators appearing in

Eqn. (5.27). We derive Galilean–invariant expressions for all the relevant velocity cor-

relators. Following the basic ideas of G–invariant velocity correlators discussed in the

Appendix B, we rewrite below the statements of Galilean–invariance of unequal time

two–point velocity correlator and the correlation between velocities and their gradients

(see Eqns. (B.5) and (B.6) given in the Appendix B):

〈vi(R, τ) vj(R′, τ ′)〉 = 〈vi(R+Xc(ξ, τ), τ) vj(R
′ +Xc(ξ, τ

′), τ ′)〉

〈vi(R, τ) vjl(R′, τ ′)〉 = 〈vi(R+Xc(ξ, τ), τ) vjl(R
′ +Xc(ξ, τ

′), τ ′)〉 (5.30)

for all (R,R′, τ, τ ′, ξ). We want to choose (R,R′, τ, τ ′, ξ) as functions of (x,x′, t, t′) such

that we can use Eqn. (5.30) to simplify the velocity correlators in Eqn. (5.27). We note

that Eqns. (5.28) and (B.1) give

X = Xc(x, t) , X ′ = Xc(x
′, t′) (5.31)

It is therefore natural to choose

τ = t , τ ′ = t′ (5.32)
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Thus the velocity correlators we require can now be written as

〈vi(X, t) vj(X
′, t′)〉 = 〈vi(Xc(x, t), t) vj(Xc(x

′, t′), t′)〉

〈vi(X, t) vjl(X
′, t′)〉 = 〈vi(Xc(x, t), t) vjl(Xc(x

′, t′), t′)〉 (5.33)

Comparing Eqn. (5.33) with Eqn. (5.30), we see that if we choose

R = Xc(x, t), R′ = Xc(x
′, t′) (5.34)

then Eqn. (5.33), together with Eqns. (B.1) and (5.30), implies that

〈vi(X, t)vj(X
′, t′)〉 = 〈vi(R, τ)vj(R′, τ ′)〉

= 〈vi(R+Xc(ξ, τ), τ)vj(R
′ +Xc(ξ, τ

′), τ ′)〉

= 〈vi(Xc(x+ ξ, t), t)vj(Xc(x
′ + ξ, t′), t′)〉

Similarly

〈vi(X, t)vjl(X
′, t′)〉 = 〈vi(Xc(x+ ξ, t), t)vjl(Xc(x

′ + ξ, t′), t′)〉 (5.35)

Now it is natural to choose

ξ = −1

2
(x+ x′) (5.36)

Then

〈vi(X, τ)vj(X
′, τ ′)〉 =

〈
vi

(
Xc

(
x− x′

2
, t

)
, t

)
vj

(
Xc

(
x′ − x

2
, t′
)
, t′
)〉

= Rij(x− x′, t, t′) (5.37)
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Similarly,

〈vi(X, τ)vjl(X
′, τ ′)〉 =

〈
vi

(
Xc

(
x− x′

2
, t

)
, t

)
vjl

(
Xc

(
x′ − x

2
, t′
)
, t′
)〉

= Qijl(x− x′, t, t′) (5.38)

We note that symmetry and incompressibility imply that

Rij(r, t, t
′) = Rji(−r, t′, t)

Qijj(r, t, t
′) = 0 (5.39)

5.4.3 Galilean–invariant mean EMF

The transport coefficients are completely determined by the form of the velocity correla-

tor. Using Eqns. (5.37) and (5.38) in Eqns. (5.27) and noting the fact that the velocity

correlators defined above are functions only of (x−x′), t and t′, we can see that the GI

transport coefficients,

α̂il(x, t,x
′, t′) = ǫijm [Qjml(x− x′, t, t′) + St′ δl1Qjm2(x− x′, t, t′)]

β̂il(x, t,x
′, t′) = ǫij2 [Qj1l(x− x′, t, t′) + St′ δl1Qj12(x− x′, t, t′)]

η̂iml(x, t,x
′, t′) = ǫijlRjm(x− x′, t, t′) (5.40)

The transport coefficients depend on x and x′ only through the combination, (x − x′),

which arises because of Galilean invariance. We can derive an expression for the G–

invariant mean EMF by using Eqns. (5.40) for the transport coefficients in Eqn. (5.21).

We also change the integration variable in Eqn. (5.21) to r = x − x′. The integrands
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can be simplified as follows:

α̂il(x, t,x
′, t′) [H ′

l − St′δl2H
′
1] = ǫijm [Qjml + St′ δl1Qjm2] [H

′
l − St′δl2H

′
1]

= ǫijmQjml(r, t, t
′)Hl(x− r, t′)

β̂il(x, t,x
′, t′) [H ′

l − St′δl2H
′
1] = ǫij2 [Qj1l + St′ δl1Qj12] [H

′
l − St′δl2H

′
1]

= ǫij2Qj1l(r, t, t
′)Hl(x− r, t′)

[ η̂iml − St′δm2 η̂i1l]H
′
lm = ǫijl [Rjm(r, t, t

′) − St′δm2Rj1(r, t, t
′)]Hlm(x− r, t′)

[ η̂im2 − St′δm2 η̂i12]H
′
1m = ǫij2 δl1 [Rjm(r, t, t

′) − St′δm2Rj1(r, t, t
′)]Hlm(x− r, t′)

Define

Cjml(r, t, t
′) = Qjml(r, t, t

′) + S(t− t′)δm2Qj1l(r, t, t
′)

Djm(r, t, t
′) = Rjm(r, t, t

′) − St′δm2Rj1(r, t, t
′) (5.41)

The mean EMF can now be written compactly as

Ei(x, t) = ǫijm

∫ t

0

dt′
∫

d3r Gη(r, t, t
′)Cjml(r, t, t

′)Hl(x− r, t′)

−
∫ t

0

dt′
∫

d3r Gη(r, t, t
′) [ǫijl + S(t− t′)δl1ǫij2]×

×Djm(r, t, t
′)Hlm(x− r, t′) (5.42)
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5.5 Mean–field induction equation

5.5.1 Mean–field induction equation in sheared coordinate space

Applying the shearing transformation given in Eqns. (A.2) and (A.3) to the mean–field

equation, Eqn. (5.3), we see that the mean–field, H(x, t), obeys

∂Hi

∂t
− Sδi2H1 = (∇×E)i + η∇2Hi (5.43)

where

(∇)p ≡ ∂

∂Xp

=
∂

∂xp
− St δp1

∂

∂x2
(5.44)

We note that the divergence condition on the mean magnetic field can be written as

∇·H ≡ ∂Hp

∂Xp
= Hpp − StH12 = 0 (5.45)

It may be verified that Eqn. (5.43) preserves the condition ∇·H = 0 . We now use

Eqns. (5.42) and (5.44) to evaluate ∇×E .

(∇×E)i = ǫipq
∂Eq
∂Xp

= ǫipq

(
∂

∂xp
− St δp1

∂

∂x2

)
Eq

= ǫipqǫqjm

∫ t

0

dt′
∫

d3r Gη(r, t, t
′)Cjml(r, t, t

′)
[
H ′

lp − St δp1H
′
l2

]

−
∫ t

0

dt′
∫

d3r Gη(r, t, t
′)Djm(r, t, t

′) [ǫipqǫqjl + S(t− t′)δl1ǫipqǫqj2]×

×
[
H ′

lmp − St δp1H
′
lm2

]

where H ′
i = Hi(x−r, t′). Expanding ǫipqǫqjm = (δij δmp − δim δjp), the contribution from

the C term is

(∇×E)Ci =

∫ t

0

dt′
∫

d3r Gη(r, t, t
′) [Cipl(r, t, t

′)− Cpil(r, t, t
′)]×

×
[
H ′

lp − Stδp1H
′
l2

]
(5.46)
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Evaluating the D term is a bit more involved. Again, we begin by expanding ǫipqǫqjl =

(δij δlp − δil δjp). Then we get

(∇×E)Di =

∫ t

0

dt′
∫

d3r Gη(r, t, t
′)Dpm(r, t, t

′)×

×
{
H ′

ipm − Stδp1H
′
i2m + S(t− t′)δi2

[
H ′

1pm − Stδp1H
′
12m

]}

−
∫ t

0

dt′
∫

d3r Gη(r, t, t
′)Dim(r, t, t

′)
[
H ′

ppm − St′H ′
12m

]
(5.47)

The second integral vanishes because the factor in [ ] multiplying Dim is zero: to see this,

differentiate the divergence–free condition of Eqn. (5.45) with respect to xm. We can

now use Eqns. (5.46) and (5.47) to write (∇×E) = (∇×E)C + (∇×E)D. Substituting

this expression in Eqn. (5.43), we obtain a set of integro–differential equation governing

the dynamics of the mean–field, H(x, t), valid for arbitrary values of the shear strength

S:

∂Hi

∂t
− Sδi2H1 = η∇2Hi +

∫ t

0

dt′
∫

d3r Gη(r, t, t
′) [Ciml(r, t, t

′)− Cmil(r, t, t
′)]×

× [Hlm(x− r, t′) − Stδm1Hl2(x− r, t′)]

+

∫ t

0

dt′
∫

d3r Gη(r, t, t
′)Djm(r, t, t

′)×

× [Hijm(x− r, t′) − Stδj1Hi2m(x− r, t′) +

+S(t− t′)δi2 {H1jm(x− r, t′)− Stδj1H12m(x− r, t′)}]

(5.48)

We note some important properties of the mean–field induction Eqn. (5.48):

1. The Djm(r, t, t
′) terms are such that (∇×E)i involves only Hi for i = 1 and i = 3,

whereas (∇×E)2 depends on both H2 and H1. The implications for the original

field, B(X, τ), can be read off, because it is equal to H(x, t) component–wise (i.e
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Bi(X, τ) = Hi(x, t)). Therefore, in the mean–field induction equation, the “D”

terms are of such a form that: (i) the equations for B1 or B3 involve only B1 or

B3, respectively; (ii) the equation for B2 involves both B1 and B2.

2. Only the part of Ciml(r, t, t
′) that is antisymmetric in the indices (i,m) contributes.

We note that it is possible that the “C” terms can lead to a coupling of different

components of the mean magnetic field. To investigate this, it is necessary to

specify the statistics of the velocity fluctuations.

3. In the formal limit of zero resistivity, η → 0, the resistive Green’s function,

G(x, t, t′) → δ(x). Then the mean–field induction equation simplifies to

∂Hi

∂t
− Sδi2H1 =

∫ t

0

dt′ [Ciml(0, t, t
′)− Cmil(0, t, t

′)]×

× [Hlm(x, t
′) − Stδm1Hl2(x, t

′)]

+

∫ t

0

dt′Djm(0, t, t
′) [Hijm(x, t

′) − Stδj1Hi2m(x, t
′) +

+S(t− t′)δi2 {H1jm(x, t
′)− Stδj1H12m(x, t

′)}]

(5.49)

which is identical to that derived in Sridhar & Subramanian (2009a,b).

5.5.2 Mean–field induction equation in sheared Fourier space

Equation (5.48) governing the time evolution of the mean field may be simplified further

by taking a spatial Fourier transform. Let us define

H̃(k, t) =

∫
d3xH(x, t) exp (−ik·x) (5.50)
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and the quantities,

Ĩiml(k, t, t
′) =

∫
d3r Gη(r, t, t

′)Ciml(r, t, t
′) exp (−ik· r)

J̃jm(k, t, t
′) =

∫
d3r Gη(r, t, t

′)Djm(r, t, t
′) exp (−ik· r) (5.51)

Both Ĩiml(k, t, t
′) and J̃jm(k, t, t

′) are to be regarded as given quantities, because they

are known once the velocity correlators have been specified. Taking the spatial Fourier

transform of Eqn. (5.48), we obtain,

∂H̃i

∂t
− Sδi2H̃1 = −ηK2H̃i + iKm

∫ t

0

dt′
[
Ĩiml(k, t, t

′)− Ĩmil(k, t, t
′)
]
H̃l(k, t

′)

−kmKj

∫ t

0

dt′ J̃jm(k, t, t
′)
[
H̃i(k, t

′) + S(t− t′)δi2H̃1(k, t
′)
]

(5.52)

where K(k, t) = (k1 − St k2, k2, k3) and K2 = |K|2 = (k1 − Stk2)
2 + k22 + k23 . Once

the initial data, H̃(k, 0), has been specified, Eqns. (5.52) can be integrated in time to

determine H̃(k, t). Whereas these equations are not easy to solve, we note some of their

important properties:

1. Only the part of Ĩiml(k, t, t
′) that is antisymmetric in the indices (i,m) contributes.

2. The time evolution of H̃(k, t) depends only on H̃(k, t′) for 0 ≤ t′ < t, not on

the values of H̃ at other values of k. Thus each k labels a normal mode whose

amplitude and polarization are given by H̃(k, t), the time evolution of which is

independent of all the other normal modes.

3. When we have determined H̃(k, t), the magnetic field in the original variables,

B(X, τ), can be recovered by using the shearing transformation, Eqn. (A.2), to
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write (x, t) in terms of the lab frame coordinates (X, τ):

B(X, τ) = H(x, t) =

∫
d3k

(2π)3
H̃(k, t) exp (ik·x)

=

∫
d3k

(2π)3
H̃(k, τ) exp [iK(k, τ)·X] (5.53)

where we have used K·X = k·x. Thus B(X, τ) has been expressed as a su-

perposition of the normal modes, each of which is a shearing wave, whose spatial

structure is given by

exp [iK(k, τ)·X] = exp [i {(k1 − Stk2)X1 + k2X2 + k3X3}] (5.54)

For non–axisymmetric waves, k2 6= 0 and, as time progresses, the shearing wave

develops fine-structure along the X1–direction with a time–dependent spatial fre-

quency equal to (k1 − Stk2).

5.5.3 The integral kernels expressed in terms of the velocity

spectrum tensor

We have derived the integral equation satisfied by the mean magnetic field, to lowest

order in Rm; in sheared coordinate space it is given by Eqns. (5.48), and in sheared

Fourier space it is given by Eqns. (5.52). One can proceed to look for solutions if the

integral kernels are known. This means that either the pair [Ciml(r, t, t
′) , Djm(r, t, t

′)]

or the pair
[
Ĩiml(k, t, t

′) , J̃jm(k, t, t
′)
]
needs to be specified. Here we show that all these

integral kernels can be expressed in terms of a single entity, which is the velocity spectrum

tensor, Πij(k, t, t
′), derived earlier in Ch. 3.

It may be noted from the Appendix B that the Galilean invariance of velocity correla-

tors stated in Eqn. (5.30) is most compactly expressed in Fourier–space, where we show

that the G–invariant expression for Fourier–space two–point velocity correlator is given

by Eqn. (B.7). We first work out Rjm(r, t, t
′) and Qjml(r, t, t

′) in terms of Πjm(k, t, t
′).
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Using the results of the Appendix B, we may write from Eqns. (5.37) & (5.38):

Rjm(r, t, t
′) =

〈
vj

(
Xc

(r
2
, t
)
, t
)
vm

(
Xc

(
−r

2
, t′
)
, t′
)〉

=

∫
d3K

(2π)3
d3K ′

(2π)3
〈ṽj (K, t) ṽ∗m (K ′, t′)〉 ×

× exp
[
i
(
K·Xc

(r
2
, t
)
−K ′

·Xc

(
−r

2
, t′
))]

(5.55)

Qjml(r, t, t
′) =

〈
vj

(
Xc

(r
2
, t
)
, t
)
vml

(
Xc

(
−r

2
, t′
)
, t′
)〉

=

∫
d3K

(2π)3
d3K ′

(2π)3
(−iK ′

l) 〈ṽj (K, t) ṽ∗m (K ′, t′)〉 ×

× exp
[
i
(
K·Xc

(r
2
, t
)
−K ′

·Xc

(
−r

2
, t′
))]

(5.56)

Substituting for Xc from Eqn. (B.1), we can write the phase

K·Xc

(r
2
, t
)
−K ′

·Xc

(
−r

2
, t′
)

= (k + k′) ·
r

2
(5.57)

where k and k′ are defined in Eqns. (B.12) of the Appendix B. Therefore,

Rjm(r, t, t
′) =

∫
d3kΠjm(k, t, t

′) exp [ik· r]

Qjml(r, t, t
′) = −i

∫
d3k [kl − St′δl1k2] Πjm(k, t, t

′) exp [ik· r] (5.58)

Using Eqns. (5.41) we can write the real–space integral kernels, Cjml(r, t, t
′) andDjm(r, t, t

′),
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as

Djm(r, t, t
′) = Rjm(r, t, t

′) − St′δm2Rj1(r, t, t
′)

=

∫
d3k [Πjm(k, t, t

′)− St′δm2 Πj1(k, t, t
′)] exp [ik· r]

Cjml(r, t, t
′) = Qjml(r, t, t

′) + S(t− t′)δm2Qj1l(r, t, t
′)

= −i

∫
d3k [kl − St′δl1k2] [Πjm(k, t, t

′) + S(t− t′)δm2Πj1(k, t, t
′)] exp [ik· r]

(5.59)

Using Eqns. (5.51) we can express the Fourier–space integral kernels, Ĩjml(k, t, t
′) and

J̃jm(k, t, t
′), as

J̃jm(k, t, t
′) =

∫
d3k′ G̃η(k − k′, t, t′) [Πjm(k

′, t, t′)− St′δm2 Πj1(k
′, t, t′)]

Ĩjml(k, t, t
′) = −i

∫
d3k′ G̃η(k − k′, t, t′) [k′l − St′δl1k

′
2] ×

× [Πjm(k
′, t, t′) + S(t− t′)δm2Πj1(k

′, t, t′)] (5.60)

Thus, we have expressed the integral kernels in terms of the velocity spectrum tensor,

Πjm(k, t, t
′), which is the fundamental dynamical quantity that needs to be known before

the integro–differential equation for the mean magnetic field can be solved.

5.6 Conclusions

We have formulated the problem of large–scale kinematic dynamo action due to tur-

bulence in the presence of a linear shear flow, in the limit of small magnetic Reynolds

number (Rm) but arbitrary fluid Reynolds number. The mean–field theory we present

is non perturbative in the shear parameter, and makes systematic use of the shearing
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coordinate transformation and the Galilean invariance of the linear shear flow. Using

Reynolds averaging, we split the magnetic field into mean and fluctuating components.

The mean magnetic field is driven by the Curl of the mean EMF, which in turn must be

determined in terms of the statistics of the velocity fluctuations. In order to do this it is

necessary to determine the magnetic fluctuations in terms of the mean magnetic field and

the velocity fluctuations. So we develop the equation for the fluctuations perturbatively

in the small parameter, Rm. Using the shearing coordinate transformation, we make an

explicit calculation of the resistive Green’s function for the linear shear flow. From the

perturbative scheme it is clear that the fluctuations can be determined to any order in

Rm. Here we determine the magnetic fluctuations and the mean EMF to lowest order

in Rm. The transport coefficients are given in general form in terms of the two–point

correlators of the velocity fluctuations. At this point we make use of Galilean invari-

ance, which is a fundamental symmetry of the problem. For Galilean invariant velocity

statistics we prove that the transport coefficients, although space-dependent, possess the

property of translational invariance in sheared coordinate space. An explicit expression

for the Galilean–invariant mean EMF is derived.

We put together all the results in § 5.5 by deriving the integro–differential equation

governing the time evolution of the mean magnetic field. Some important properties of

this equation are the following:

1. Velocity fluctuations contribute to two different kinds of terms, the “C” and “D”

terms, in which first and second spatial derivatives of the mean magnetic field,

respectively, appear inside the spacetime integrals.

2. The “C” terms are a generalization to the case of shear, of the “α” term familiar

from mean–field electrodynamics in the absence of shear. However, they can also

contribute to “magnetic diffusion”; see discussion below. Likewise, the “D” terms

are a generalization to the case of shear, of the “magnetic diffusion” term familiar

from mean–field electrodynamics in the absence of shear. It must be noted that

the generalization is non perturbative in the shear strength.
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3. In the mean–field induction equation, the “D” terms are of such a form that: (i)

the equations for B1 or B3 involve only B1 or B3, respectively; (ii) the equation for

B2 involves both B1 and B2. Therefore, to lowest order in Rm but to all orders

in the shear strength, the “D” terms cannot give rise to a shear–current assisted

dynamo effect.

4. In the formal limit of zero resistivity, the quasilinear theory of Sridhar & Subrama-

nian (2009a,b) is recovered. In this case, the “C” terms vanish when the velocity

field is non helical. However, this may not be the case when the resistivity is non

zero. Whether the “C” terms give rise to such a shear–current–type effect depends

on the form of the velocity correlators, which will be strongly affected by shear and

highly anisotropic; hence it is difficult to guess their tensorial forms a priori and it

is necessary to develop a dynamical theory of velocity correlators – see below for

further discussion.

5. Sheared Fourier space is the natural setting for the mean magnetic field; the nor-

mal modes of the theory are a set of shearing waves, labelled by their sheared

wavevectors.

6. We prove a result (given in the Appendix B) on the form of the two–point velocity

correlator in Fourier space; the velocity spectrum tensor and its general properties

are discussed. The integral kernels are expressed in terms of the velocity spectrum

tensor, which is the fundamental dynamical quantity that needs to be specified to

complete the integro–differential equation description of the time evolution of the

mean magnetic field.

The physical meaning of the “C” and “D” terms becomes clear in the limit of a slowly

varying magnetic field, when the integro–differential equation reduces to a partial dif-

ferential equation (Singh & Sridhar, 2011). Then we encounter the well–known α–effect

and turbulent magnetic diffusion (η), albeit in tensorial form. The “C” terms alone con-

tributes to α, whereas both “C” and “D” terms contribute to magnetic diffusion. When

the velocity field is non helical, the velocity spectrum tensor is real, and the tensorial
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α coefficient vanishes; this result is true for arbitrary values of the shear parameter.

The “C” terms can, in principle, contribute to a shear–current effect, through the off–

diagonal components of the diffusivity tensor (which couple the streamwise component

of the mean magnetic field with the cross–stream components). It turns out that these

off–diagonal components depend on the microscopic resistivity in such a manner that

they vanish when the microscopic resistivity vanishes. This result is consistent with the

results of Sridhar & Subramanian (2009a,b). To deal with the case when the microscopic

resistivity does not vanish, it is necessary to provide our kinematic development with a

dynamical model for the velocity field. Singh & Sridhar (2011) show that, for forced non

helical driving at low fluid Reynolds number, the sign of the off–diagonal terms of the

diffusivity tensor does not favour the shear–current effect. This conclusion agrees with

those reported in Rädler & Stepanov (2006); Rüdiger & Kitchatinov (2006); Branden-

burg et al. (2008), even if our results are limited to low Reynolds numbers. If we seek a

different explanation for the dynamo action seen in numerical simulations, the “fluctu-

ating α–effect” still remains a promising candidate. α itself is described by second–order

velocity correlators, so to describe fluctuations of α, it is necessary to deal with either

fourth–order velocity correlators or products of two second–order velocity correlators.

This requires extending our perturbative calculations by at least two higher orders, a

task which, while tractable, is beyond the scope of the present investigation.



Chapter 6
THE SHEAR DYNAMO PROBLEM FOR

SMALL FLUID AND MAGNETIC REYNOLDS

NUMBERS

6.1 Introduction

In the present chapter, we extend the work presented in previous chapter (Ch. 5) by

giving definite form to the statistics of the velocity field; specifically, the velocity field

is assumed to obey the forced Navier–Stokes equation, in the absence of Lorentz forces.

The dynamics of the stochastic velocity field due to non–helical forcing in the presence of

the background linear shear flow has been presented in detail in the Ch. 3. The velocity

spectrum tensor (Πjm) and various time correlation properties of the fluctuating velocity

field, v, which were derived and discussed in detail in Ch. 3 will be extremely useful for

the formulation of this chapter. Thus, in the present chapter, our main focus will be

to compute various transport coefficients for the shear dynamo problem, by essentially

using the formulation developed in Ch. 5. Taking the limit of slowly varying mean

magnetic field, together with the definite form of the fluctuating velocity field given in

Ch. 3, enables us to determine the transport coefficients for the shear dynamo problem

at small Reynolds numbers.

111
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In § 6.2, we derive the expression for the mean EMF for the case of a mean magnetic

field that is slowly varying in time. Thus the mean–field induction equation, which is

an integro–differential equation in the formulation of Ch. 5 now simplifies to a partial

differential equation. This reduction is an essential first step to the later comparison

with the numerical experiments of Brandenburg et al. (2008). Explicit expressions for

the transport coefficients, αil and ηiml, are derived in terms of the two–point velocity

correlators. Using results from Ch. 3, we could express the relevant two–point, unequal–

time velocity correlators, and hence the transport coefficients, in terms of the velocity

spectrum tensor. This tensorial quantity is real when the velocity field is non helical;

we are able to prove that, in this case, the transport coefficient αil vanishes. In § 6.3 we

specialize to the case when the mean–field is a function only of the spatial coordinate X3

and time τ ; this reduction is necessary for comparison with the numerical experiments

of Brandenburg et al. (2008). Explicit expressions are derived for all four components

of the magnetic diffusivity tensor, ηij(τ) , in terms of the velocity power spectrum; the

late–time saturation values, η∞ij , have direct bearing on the growth (or otherwise) of the

mean magnetic field. Comparisons with earlier work—in particular Brandenburg et al.

(2008)—are made, and the implications for the shear–current effect are discussed. We

then conclude in § 6.4.

6.2 Mean–field electrodynamics in a linear shear flow

Following the same notation as given in Ch. 5, let (e1, e2, e3) be the unit basis vectors of a

Cartesian coordinate system in the laboratory frame. Using notation, X = (X1, X2, X3)

for the position vector and τ for time, we write the fluid velocity as (SX1e2+v), where S

is the rate of shear parameter and v(X, τ) is an incompressible and randomly fluctuating

velocity field with zero mean. The mean magnetic field, B(X, τ), obeys the mean–field

induction equation given by Eqn. (5.3) and the fluctuating magnetic field obeys Eqn. (5.4)

to lowest order in Rm. In Ch. 5, the general expressions were provided for the fluctuating

magnetic field and the mean EMF (see Eqns. (5.20) and (5.42)) under Galilean invariant
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formulation, and the implications for the evolution of the mean magnetic field were

discussed in § 5.5. Below, we construct a model to study the shear dynamo problem at

small Reynolds numbers, in the limit of slowly varying mean magnetic field.

6.2.1 The mean EMF for a slowly varying magnetic field

The mean EMF given in Eqn. (5.42) is a functional of Hl and Hlm. When the mean–

field is slowly varying compared to velocity correlation times, we expect to be able to

approximate E as a function of Hl and Hlm. In this case, the mean–field induction

equation would reduce to a set of coupled partial differential equations, instead of the

more formidable set of coupled integro–differential equations given by (5.43) and (5.42).

Sheared coordinates are essential for the calculations, but physical interpretation is sim-

plest in the laboratory frame; hence we derive an expression for the mean EMF in terms

of B(X, τ).

The first step involves a Taylor expansion of the quantities, Hl and Hlm, occurring

in Eqn. (5.42) for the mean EMF. Neglecting spacetime derivatives higher than the first

order ones, we have

Hl(x− r, t′) = Hl(x, t) − rpHlp(x, t) − (t− t′)
∂Hl(x, t)

∂t
+ . . .

Hlm(x− r, t′) = Hlm(x, t) − (t− t′)
∂Hlm(x, t)

∂t
+ . . . (6.1)

We now use the mean–field induction Eqn. (5.43), to express (∂H/∂t) in terms of spatial

derivatives. Let L be the spatial scale over which the mean–field varies. When the

mean–field varies slowly, L is large and the contributions from both the resistive term

and the mean EMF are small, as is shown below. Let ℓ and vrms be the spatial scale and

root–mean–squared amplitude of the velocity fluctuations. The resistive term makes

a contribution of order (ℓ/L)2Rm−1, which we now assume is much less than unity.

Using Eqn. (5.42), we can verify that ∇×E contributes terms of five different orders;
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(ℓ/L), (ℓ/L)(Sℓ/vrms), (ℓ/L)
2, (ℓ/L)2(Sℓ/vrms) and (ℓ/L)2(Sℓ/vrms)

2. These are all small

when (ℓ/L) and (ℓ/L)(Sℓ/vrms) are both much smaller than unity. That we must have

(ℓ/L) ≪ 1 is natural from the familiar case of zero shear. The presence of shear introduces

an additional requirement that (ℓ/L)(Sℓ/vrms) ≪ 1. We now define the small parameter,

µ ≪ 1, to be equal to the largest of the three small quantities, (ℓ/L)2Rm−1 ≪ 1,

(ℓ/L) ≪ 1 and (ℓ/L)(Sℓ/vrms) ≪ 1. Then,

∂Hl

∂t
= Sδl2H1 + O(µ) (6.2)

and Eqns. (6.1) give,

Hl(x− r, t′) = Hl(x, t) − rpHlp(x, t) − S(t− t′)δl2H1 + O(µ)

Hlm(x− r, t′) = Hlm(x, t) − S(t− t′)δl2H1m + O(µ) (6.3)

We substitute Eqn. (6.3) in (5.42) to get,

Ei(x, t) = ǫijmHl(x, t)

∫ t

0

dt′
∫

d3r Gη(r, t, t
′) [Cjml(r, t, t

′) − S(t− t′) δl1Cjm2(r, t, t
′)]

− ǫijmHlp(x, t)

∫ t

0

dt′
∫

d3r rpGη(r, t, t
′) Cjml(r, t, t

′)

− ǫijlHlm(x, t)

∫ t

0

dt′
∫

d3r Gη(r, t, t
′) Djm(r, t, t

′) + O(µ2) (6.4)

The final step is to rewrite the above expression in terms of the original magnetic field

variable, using,
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Hl(x, t) = Bl(X, τ)

Hlm(x, t) ≡ ∂Hl(x, t)

∂xm
=

(
∂

∂Xm
+ Sτδm1

∂

∂X2

)
Bl(X, τ) (6.5)

Therefore, for a slowly varying magnetic field, the mean EMF is given by,

Ei = αil(τ)Bl(X, τ) − ηiml(τ)
∂Bl(X, τ)

∂Xm
(6.6)

where the transport coefficients are given by,

αil(τ) = ǫijm

∫ τ

0

dτ ′
∫

d3r Gη(r, τ, τ
′) [Cjml(r, τ, τ

′) − S(τ − τ ′) δl1Cjm2(r, τ, τ
′)]

ηiml(τ) = ǫijp

∫ τ

0

dτ ′
∫

d3r [rm + Sτδm2r1]Gη(r, τ, τ
′)Cjpl(r, τ, τ

′) +

+ ǫijl

∫ τ

0

dτ ′
∫

d3r Gη(r, τ, τ
′) [Djm(r, τ, τ

′) + Sτδm2Dj1(r, τ, τ
′)] (6.7)

Then the mean–field induction equation, Eqn. (5.3), together with Eqns. (6.6) and (6.7),

is a closed partial differential equation (which is first order in temporal and second order

in spatial derivatives). Now we wish to compute these transport coefficients with the

help of techniques and results developed in earlier chapters, which enables us to study

the evolution of mean magnetic field.

6.2.2 Transport coefficients expressed in terms of the velocity

spectrum tensor

The expressions for the transport coefficients, αil(τ) and ηiml(τ), given in Eqn. (6.7),

involve the quantities Cjml(r, τ, τ
′) and Djm(r, τ, τ

′), which have been expressed, in

Eqns. (5.59), in terms of a single entity, which is the velocity spectrum tensor, Πjm(k, t, t
′).
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We rewrite below all the relevant velocity correlators, given before by Eqns. (5.58) and

(5.59), in terms of Πjm(k, t, t
′)

Rjm(r, t, t
′) =

∫
d3kΠjm(k, t, t

′) exp [ik· r]

Qjml(r, t, t
′) = −i

∫
d3k [kl − St′δl1k2] Πjm(k, t, t

′) exp [ik· r]

Djm(r, t, t
′) =

∫
d3k [Πjm(k, t, t

′)− St′δm2 Πj1(k, t, t
′)] exp [ik· r]

Cjml(r, t, t
′) = −i

∫
d3k [kl − St′δl1k2] [Πjm(k, t, t

′) + S(t− t′)δm2Πj1(k, t, t
′)] exp [ik· r]

(6.8)

Using the above expressions for Djm and Cjml in Eqns. (6.7), the transport coefficients

αil(τ) and ηiml(τ) can also be written in terms of the velocity spectrum tensor. In Ch. 3

of the thesis, we explicitly determined Πij(k, t, t
′) by considering non–helical random

stirring of an incompressible fluid with background linear shear flow in the absence of

the Lorentz forces in the limit of low fluid Reynolds number (Re). We also noted in

Eqn. (3.25) and the discussion following Eqn. (3.25) of Ch. 3 that the correlation helicity

of the flow due to such a non–helical random forcing vanishes in the limit of low Re.

From the first of the Eqns. (B.8), we can see that the real part of Πjm(k, t, t
′) is an

even function of k, whereas the imaginary part is an odd function of k. For the non–

helical random forcing of our interest, which has been considered in Ch. 3, we find that

Πjm(k, t, t
′) is a real quantity; see the discussion following Eqn. (3.24). Therefore in this
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case,

Qjml(r, t, t
′) =

∫
d3k [kl − St′δl1k2] Πjm(k, t, t

′) sin [k· r]

Cjml(r, t, t
′) =

∫
d3k [kl − St′δl1k2] [Πjm(k, t, t

′) + S(t− t′)δm2Πj1(k, t, t
′)] sin [k· r]

(6.9)

are both odd functions of r. Since the resistive Green’s function, Gη(r, t, t
′), is an even

function of r (as may be seen from Appendix A), we see that the integrand of the

expression for αil(τ), given by first of Eqns. (6.7), is an odd function of r, and therefore

this implies that the transport coefficient αil(τ) vanishes.

Also, we note from the analysis of Ch. 3 that the velocity spectrum tensor, Πjm, is

given in terms of the forcing spectrum tensor, Φjm, which requires the knowledge of the

forcing power spectrum, F (K/KF ); see Eqns. (3.24) and (3.28). For computation of the

transport coefficients, we always choose the form for F (K/KF ) as given in Eqn. (3.35).

Few useful dimensionless variables could be defined as: The fluid Reynolds number,

Re = v∞rms/(νKF ) ; the magnetic Reynolds number, Rm = v∞rms/(ηKF ) ; the magnetic

Prandtl number, Pr = ν/η ; the dimensionless Shear parameter, Sh = S/(v∞rmsKF ) . The

definition of v∞rms may be seen from the discussion following Eqn. (3.33) of Ch. 3, and

KF is the wavenumber at which the fluid is stirred.

6.3 Predictions and comparison with numerical ex-

periments

We have already established that the transport coefficient αil = 0 when the stirring is

non helical. The other transport coefficient ηiml can be calculated by the following steps:

(i) Computing the velocity spectrum tensor, Πjm, using Eqns. (3.28) and (3.35).

(ii) Using this in Eqn. (6.8) to compute the velocity correlators Cjml and Djm.
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(iii) Substituting these correlators in the second of Eqns. (6.7).

We also seek to compare our analytical results with measurements of numerical simula-

tions, which use the test–field method (Brandenburg et al., 2008). In this method, the

mean–magnetic field is averaged over the coordinates X1 and X2. So we consider the

case when the mean magnetic field, B = B(X3, τ). The condition ∇·B = 0 implies

that B3 is uniform in space, and it can be set to zero; hence we have B = (B1, B2, 0).

Thus, Eqn. (6.6) for the mean EMF gives E = (E1, E2, 0), with

Ei = − ηij(τ) Jj ; J = ∇×B =

(
−∂B2

∂X3
,
∂B1

∂X3
, 0

)
(6.10)

where 2–indexed magnetic diffusivity tensor ηij has four components, (η11, η12, η21, η22),

which are defined in terms of the 3–indexed object ηiml by

ηij(τ) = ǫlj3 ηi3l(τ) ; which implies that ηi1(τ) = − ηi32(τ) , ηi2(τ) = ηi31(τ)

(6.11)

Equation (6.10) for E can now be substituted in Eqn. (5.3). Then the mean–field induc-

tion becomes,

∂B1

∂τ
= − η21

∂2B2

∂X2
3

+ (η + η22)
∂2B1

∂X2
3

∂B2

∂τ
= SB1 − η12

∂2B1

∂X2
3

+ (η + η11)
∂2B2

∂X2
3

(6.12)

The diagonal components, η11(τ) and η22(τ), augment the microscopic resistivity, η,

whereas the off–diagonal components, η12(τ) and η21(τ), lead to cross–coupling of B1

and B2.
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6.3.1 The magnetic diffusivity tensor

We now use our dynamical theory to calculate ηij(τ). From Eqns. (6.11) and (6.7), we

have

ηij(τ) = ǫlj3 ηi3l(τ)

= ǫlj3ǫipm

∫ τ

0

dτ ′
∫

d3r r3Gη(r, τ, τ
′)Cpml(r, τ, τ

′) +

+ δij

∫ τ

0

dτ ′
∫

d3r Gη(r, τ, τ
′) D33(r, τ, τ

′) (6.13)

Thus the “D” terms contribute only to the diagonal components, η11 and η22. This is

the expected behaviour of turbulent diffusion, which we now see is true for arbitrary

shear. Using Eqn. (6.8), the velocity correlators Cpml and D33 can now be written in

terms of Πjm. After some lengthy calculations, the ηij(τ) can be expressed in terms of

the velocity spectrum tensor by,

ηij(τ) = 2η

∫ τ

0

dτ ′
∫

d3k G̃η(k, τ, τ
′) (τ − τ ′) k3

[
δj2(k1 − Sτ ′k2) − δj1k2

]
×

×
[
δi1 {Π23 − Π32 − S(τ − τ ′)Π31} + δi2 {Π31 − Π13}

]
+

+ δij

∫ τ

0

dτ ′
∫

d3k G̃η(k, τ, τ
′) Π33 (6.14)

where Πlm = Πlm(k, τ, τ
′), and the indices (i, j) run over values 1 and 2. Here G̃η(k, τ, τ

′)

is the Fourier–space resistive Green’s function defined in Eqn. (5.16). The final step in

computing ηij(τ) is to use Eqn. (3.28) for the velocity spectrum tensor, Πlm together

with Eqn. (3.35). It should be noted that the first term, which is contributed by the

“C” terms, vanishes when η vanishes. Thus the off–diagonal components of the magnetic
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diffusivity tensor, η12 and η21 are non zero only when the microscopic resistivity, η, is

non zero. Using Eqns. (6.14), (5.16), (3.28) and (3.35), together with the definitions of

various dimensionless parameters defined below Eqn. (6.9), it can be verified that the

functional dependence of ηij(τ) assumes the following general form,

ηij(τ) = ηZS η̂ij (νK
2
F τ ; ShRe ; Pr)

1 + χ(Sh ; Re ; Pr)
(6.15)

where the constant

ηZS =
4π

3

F0

ν(η + ν)KF
(6.16)

is a typical value of ηij(τ) in the absence of shear. η̂ij are dimensionless functions which

depend on the dimensionless variable, (νK2
F τ), and the two dimensionless parameters,

Pr and ShRe. χ is a dimensionless function of three dimensionless parameters, Sh, Re

and Pr. For the case of zero shear, Eqn. (6.14) gives,

lim
S→0

ηij(τ) = δij η
ZS

{
1 +

2ν

η − ν
exp

[
−(η + ν)K2

F τ
]
− η + ν

η − ν
exp

[
−2νK2

F τ
]
}

(6.17)

Panels (a–d) in the Figure (6.1) display plots of ηij(τ) versus νK
2
F τ for a range of values

of the shear parameter, Sh, and for fixed values, Re = Rm = 0.1. Some noteworthy

properties are as follows:

(i) The ηij have been scaled with respect to ηZS of Eqn. (6.16). For comparison, we

have plotted in bold lines ηij(τ) for Sh = 0, as given by Eqn. (6.17).

(ii) All the components of ηij are zero at τ = 0, and saturate at finite values at late

times.

(iii) The behavior of the diagonal components, η11 and η22, is remarkably similar. On

the other hand, the off–diagonal components, η12 and η21, show very different

behavior as functions of τ and Sh.

(iv) When |Sh| is not too large, η12 is negative. But at larger |Sh| the behavior of
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Figure 6.1: Plots of ηij(τ) scaled with respect to ηZS. The abcissa in all figures is the

dimensionless time variable (νK2
F τ). Bold line is for Sh = 0, Bold–dashed line is for

Sh = −1, Bold–dotted line is for Sh = −5 and the Fine–dotted line is for Sh = −10.

η12(τ) is more interesting. It starts at zero for τ = 0, becomes negative, reaches a

minimum and begins increasing, ultimately saturating at a positive value.

(v) The behavior of η21 is simpler: it seems to be always positive, and saturates at

larger values for larger |Sh|.

The ηij(τ) saturate at some constant values at late times; let us denote these constant

values by η∞ij = ηij(τ → ∞). If the mean magnetic field changes over times that are longer

than the saturation time, we may use η∞ij instead of the time–varying quantities ηij(τ)

in Eqn. (6.12). Looking for solutions B ∝ exp [λτ + iK3X3], we obtain the dispersion

relation,

λ±
ηT K2

3

= −1 ± 1

ηT

√
η∞21

(
S

K2
3

+ η∞12

)
+ ǫ2 (6.18)

given in Brandenburg et al. (2008), where the new constants are defined as,
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Figure 6.2: Plots of the saturated quantities ηt, η
∞
12 and η∞21 for Re = Rm = 0.1 and

Re = Rm = 0.5, corresponding to Pr = 1 , versus the dimensionless parameter (−ShRe).

The bold lines are for Re = Rm = 0.1, and the dashed lines are for Re = Rm = 0.5 .

ηt =
1

2
(η∞11 + η∞22) , ηT = η + ηt , ǫ =

1

2
(η∞11 − η∞22) (6.19)

Exponentially growing solutions for the mean magnetic field are obtained when the

radicand in Eqn. (6.18) is both positive and exceeds η2T .

From Eqns. (6.14), (5.16), (3.28), (3.34) and (3.35), together with the definitions of

various dimensionless parameters defined below Eqn. (6.9), it can be verified that the

saturated values of the magnetic diffusivities, η∞ij , have the following general functional

form:
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Figure 6.3: Plots of the saturated quantities ηt, η
∞
12 and η∞21 for Re = 0.1 and Rm = 0.5,

corresponding to Pr = 5, versus the dimensionless parameter (−ShRe).

η∞ij = ηTRe
2 fij(ShRe ,Pr)

1 + χ(Sh,Re,Pr)
, (6.20)

where the fij are dimensionless functions of two variables, and χ is a dimensionless

function of three variables. Figures (6.2–6.4) display plots of ηt, η
∞
12 and η∞21 , versus the

dimensionless parameter (−ShRe). The scalings of the ordinates have been chosen for

compatibility with the functional form displayed in Eqn. (6.20) above. These plots should

be compared with Figure (3) of Brandenburg et al. (2008). However, it should be noted

that we operate in quite different parameter regimes; we are able to explore larger values

of |Sh|, whereas Brandenburg et al. (2008) have done simulations for larger Re and Rm.

The plots in Figure (6.2a–c) are for Pr = 1, but for two sets of values of the Reynolds
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Figure 6.4: Plots of the saturated quantities ηt, η
∞
12 and η∞21 for Re = 0.5 and Rm = 0.1,

corresponding to Pr = 0.2, versus the dimensionless parameter (−ShRe).

numbers; Re = Rm = 0.1, and Re = Rm = 0.5. Figure (6.3a–c) are for Re = 0.1 and

Rm = 0.5, corresponding to Pr = 5. Figure (6.4a–c) are for Re = 0.5 and Rm = 0.1,

corresponding to Pr = 0.2. As may be seen from Eqn. (6.20), the ratio, (η∞12/η
∞
21), is a

function only of the two dimensionless parameters, (ShRe) and Pr. In Figure (6.5) we

plot this ratio versus (−ShRe) for all the cases considered in Figures (6.2–6.4). Some

noteworthy properties are as follows:

(i) We see that ηt is always positive. For a fixed value of (−ShRe), the quantity

ηt/(ηTRe
2) increases with Pr and, for a fixed value of Pr, it increases as (−ShRe)

increases from zero (which is consistent with Brandenburg et al. (2008)), attains

a maximum value near (−ShRe) ≈ 2, and then decreases while always remaining
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Figure 6.5: Plots of the ratio (η∞12/η
∞
21) versus the dimensionless parameter (−ShRe)

for all the cases considered in Figures (6.2–6.4). The bold line is for the two cases

corresponding to Pr = 1, the dashed–dotted line is for Pr = 5, and the dotted line is for

Pr = 0.2.

positive.

(ii) As expected, the behaviour of η∞12 is more complicated. It is zero for (−ShRe) = 0,

and becomes negative for not too large values of (−ShRe). After reaching a mini-

mum value, it then becomes an increasing function of (−ShRe) and attains positive

values for large (−ShRe). Thus the sign of η∞12 is sensitive to the values of the con-

trol parameters. This may help reconcile, to some extent, the fact that different

signs for η∞12 are reported in Rüdiger & Kitchatinov (2006) and Brandenburg et al.

(2008).
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(iii) As may be seen, η∞21 is always positive. This agrees with the result obtained in

Brandenburg et al. (2008), Rädler & Stepanov (2006) and Rüdiger & Kitchatinov

(2006).

(iv) At first sight η∞12 and η∞21 appear to have quite different behaviour. However, closer

inspection reveals certain systematics: as Pr increases, the overall range of values

increases, while their shapes shift leftward to smaller values of (−ShRe). From

Eqn. (6.20), it is clear that the ratio (η∞12/η
∞
21) is a function only of the two variables,

(ShRe) and Pr. As Figure (6.5) shows, this ratio is nearly a linear function of

(ShRe), whose slope increases with Pr.

(v) The magnitude of the quantity, χ(Sh,Re,Pr), that appears in Eqn. (6.20), is much

smaller than unity. So ηt/(ηTRe
2), η∞12/(ηTRe

2) and η∞21/(ηTRe
2) can be thought

of (approximately) as functions of (−ShRe) and Pr. This is the reason why, in

Figure (6.2), the bold and dashed lines lie very nearly on top of each other.

6.3.2 Implications for dynamo action & the shear–current ef-

fect

The mean magnetic field has a growing mode if the roots of Eqn. (6.18) have a positive

real part. It is clear that the real part of λ− is always negative. So, for the growth of the

mean magnetic field, the real part of λ+ must be positive. Requiring this, we see from

Eqn. (6.18) that the condition for dynamo action is,

η∞21S

η2TK
2
3

+
η∞12η

∞
21

η2T
+

ǫ2

η2T
> 1. (6.21)

In Figure (6.6) we plot the last two terms, (η∞12η
∞
21/η

2
T ) and (ǫ2/η2T ), as functions of

(−ShRe), for all the four cases, Re = Rm = 0.1 ; Re = Rm = 0.5 ; Re = 0.1,Rm = 0.5

and Re = 0.5,Rm = 0.1 . As may be seen, the magnitudes of both terms are much smaller

than unity, so they are almost irrelevant for dynamo action. Hence, there is growth of

the mean magnetic field only when the first term, (η∞21S/η
2
TK

2
3 ) , exceeds unity. This
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is possible for small enough K2
3 , so long as (η∞21S) is positive. However, we see from

Figures (6.2–6.4) that η∞21 is always positive, implying that the product (η∞21S) is always

negative. Therefore the inequality of (6.21) cannot be satisfied, and the mean–magnetic

field always decays, a conclusion which is in agreement with those of Brandenburg et al.

(2008), Rädler & Stepanov (2006) and Rüdiger & Kitchatinov (2006). We can understand

the above results more physically. Let us assume that |K3| is small enough, and keep

only the most important terms in Eqn. (6.12). Then we have,

∂B1

∂τ
= − η∞21

∂2B2

∂X2
3

+ . . . ,
∂B2

∂τ
= SB1 + . . . , (6.22)

where we have used the saturated values of the magnetic diffusivity. If we now look

for modes of the form B ∝ exp [λτ + iK3X3], we obtain the dispersion relation, λ± =

±K3

√
η∞21S. So it is immediately obvious that λ+ is real and positive — i.e. the mean

magnetic field grows — only when the product (η∞21S) is positive. However, this product

happens to be negative, and the mean magnetic field is a decaying wave.

The above results have direct bearing on the shear–current effect (Rogachevskii &

Kleeorin, 2003). This effect refers to an extra contribution to the mean EMF which is

perpendicular to both the mean vorticity (of the background shear flow) and the mean

current. From Eqn. (6.10), we see that, in our case, the relevant term is the contribution,

−η∞21J1, to E2. As Figures (6.2–6.4) show, the diffusivity, η∞21 is non zero only in the

presence of shear, so the word shear refers to this. The word current refers to J1, the

cross–field component of the electric current associated with the mean–magnetic field 1.

The shear–current effect would lead to the growth of the mean magnetic field (for small

enough K3), if only the product (η∞21S) is positive. However, as we have demonstrated,

this product is negative, so the shear–current effect cannot be responsible for dynamo

action, at least for small Re and Rm, but for all values of the shear parameter.

1Shear also makes an additional contribution through the SB1 contribution to (∂B2/∂τ), which

accounts for the product (η∞21S) playing an important role. However, this is just the well–known physical

effect of the shearing of cross-shear component of the mean magnetic field to generate a shear–wise

component; it does not have any bearing on the word shear in the phrase shear–current effect.
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Figure 6.6: Plots of (ǫ2/η2T ) and (η∞12η
∞
21/η

2
T ) versus the dimensionless parameter (−ShRe)

for all the four cases considered in Figures (6.2–6.4). The bold lines are for Re =

Rm = 0.1 ; the dashed lines are for Re = Rm = 0.5 ; the dashed–dotted lines are for

Re = 0.1,Rm = 0.5 and the dotted lines are for Re = 0.5,Rm = 0.1 .

6.4 Conclusions

Building on the formulation of Ch. 3 and 5, we have developed a theory of the shear

dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values

of the shear parameter. Our primary goal is to derive precise analytic results which can

serve as benchmarks for comparisons with numerical simulations. A related goal is to re-

solve the controversy surrounding the nature of the shear–current effect, without treating

the shear as a small parameter. We began with the expression for the Galilean–invariant

mean EMF derived in Ch. 5, and specialized to the case of a mean magnetic field that
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is slowly varying in time. This resulted in the simplification of the mean–field induc-

tion equation, from an integro–differential equation to a partial differential equation.

This reduction is the first step to the later comparison with the numerical experiments

of Brandenburg et al. (2008). Explicit expressions for the transport coefficients, αil and

ηiml, were derived in terms of the two–point velocity correlators which, using results from

Ch. 5, were then expressed in terms of the velocity spectrum tensor. Then we proved

that, when the velocity field is non helical, the transport coefficient αil vanishes; just like

everything else in our approach, this result is non perturbative in the shear parameter.

Considering the forced, stochastic dynamics for the incompressible velocity field at

low Reynolds number, developed in Ch. 3, the velocity spectrum tensor was calculated

in terms of the Galilean–invariant forcing statistics. For non helical forcing, the velocity

field is also non helical and the transport coefficient αil vanishes, as noted above. We

then specialized to the case when the forcing is not only non helical, but isotropic and

delta–correlated–in–time as well. We considered the case when the mean–field was a

function only of the spatial coordinate X3 and time τ ; the purpose of this simplification

was to facilitate comparison with the numerical experiments of Brandenburg et al. (2008).

Explicit expressions were derived for all four components, η11(τ), η22(τ) η12(τ) and η21(τ),

of the magnetic diffusivity tensor, in terms of the velocity spectrum tensor. Important

properties of this fundamental object are as follows:

1. All the components of ηij are zero at τ = 0, and saturate at finite values at late

times, which we denote by η∞ij .

2. The off–diagonal components, η12 and η21, vanish when the microscopic resistivity

vanishes.

3. The sign of η∞12 is sensitive to the values of the control parameters. This may

help reconcile, to some extent, the fact that different signs for η∞12 are reported in

Rüdiger & Kitchatinov (2006) and Brandenburg et al. (2008).

We derived the condition — the inequality (6.21) — required for the growth of the

mean magnetic field: the sum of three terms must exceed unity. It was demonstrated that
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two of the terms are very small in magnitude, and hence dynamo action was controlled

by the behaviour of one term. i.e. the mean magnetic field would grow if (η∞21S/η
2
TK

2
3)

exceeds unity. This is possible for small enough K2
3 , so long as (η∞21S) is positive. How-

ever, we see from Figures (6.2–6.4) that η∞21 is always positive, implying that the product

(η∞21S) is always negative. Thus the mean–magnetic field always decays, a conclusion

which is in agreement with those of Brandenburg et al. (2008), Rädler & Stepanov

(2006) and Rüdiger & Kitchatinov (2006). We then related the above conclusions to the

shear–current effect, and demonstrated that the shear–current effect cannot be respon-

sible for dynamo action, at least for small Re and Rm, but for all values of the shear

parameter.



Chapter 7
NUMERICAL STUDIES OF DYNAMO

ACTION IN A TURBULENT SHEAR FLOW

7.1 Introduction

This chapter is focussed on various numerical simulations that we have performed to

study the shear dynamo problem due to non–helical turbulence. In previous chapters,

we have developed a necessary analytical framework for the shear dynamo problem and

studied its transport properties in the limit of low Reynolds numbers, but arbitrary

shear parameter. Although our results presented so far, resolve some controversies in

this field, it is still not established what really causes such a shear dynamo. Some recent

works based on the fluctuating alpha effect predict the growth of mean-squared magnetic

field, i.e., the second moment, in the limit of small Reynolds numbers (Heinemann,

McWilliams & Schekochihin, 2011; Mitra & Brandenburg, 2012; McWilliams, 2011). As

our interest has always been focused on the evolution of mean–magnetic field, and not

on the mean–squared field, we have not explored the possibility of growth of higher

moments of the mean–magnetic field in our analytical calculations. The motivation

to study such problems come mainly from numerical simulations, as discussed before.

However, it should be noted that all the earlier numerical experiments have been carried

out for both the fluid Reynolds number (Re) and the magnetic Reynolds number (Rm)

131
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above unity. Naturally, most of the theoretical studies have focussed their attention in

the regime where (Re, Rm) > 1, the limit for which rigorous theory explaining the origin

of the shear dynamo is yet to come. In Chs. 5 and 6, we make conclusive statements

in the limit of Rm < 1, in which Ch. 5 is valid for arbitrary fluid Reynolds number,

whereas Ch. 6 also assumes Re < 1. To better understand the shear dynamo problem

in non–helical settings, it seems necessary to perform numerical experiments in different

parameter regimes; namely, when both (Re, Rm) < 1, when Re > 1 and Rm < 1, when

Re < 1 and Rm > 1. Simulations in these limits have never been reported before. Thus,

there are two main motivations to perform numerical experiments in these previously

unexplored parameter regimes: first, to compare our analytical findings with the results

of numerical simulations in similar parameter regimes; and second, to look for the growth

of mean magnetic field in the limit when Re < 1. The limit of low Re is particularly

interesting, as seeing a dynamo action in this limit would provide enough motivation

for further theoretical investigations, which may focus the attention to this analytically

more tractable limit of Re < 1, as compared to more formidable limit of Re > 1.

In this chapter, we present numerical simulations for the shear dynamo problem which

can be broadly classified in following three categories: (i) The simulations are done when

both Re and Rm are less than unity. This is done for comparison with earlier analytical

work, presented in Ch. 6; (ii) possibility of dynamo action is explored when Re > 1 and

Rm < 1; (iii) finally we perform simulations for the shear dynamo problem in the limit

when Re < 1 and Rm > 1. We have used Pencil Code 1 for all the simulations presented

in this chapter and followed the method given in Brandenburg et al. (2008). In § 7.2 we

begin with the fundamental equations of magnetohydrodynamics in a background linear

shear flow. We then consider the case when the mean–magnetic field is a function only

of the spatial coordinate x3 and time t. We briefly describe the transport coefficients

and discuss the test field method. Few important details of the simulation have been

presented. In § 7.3, we put together all the results in three parts, namely, part A, part

B and part C corresponding to the three categories discussed above. We also make

1See http://www.nordita.org/software/pencil-code.
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comparisons with our analytical works presented in earlier chapters. In § 7.4, we have

estimated the fluctuations in the transport coefficients to investigate the reason for the

observed dynamo action. In § 7.5, we present our conclusions.

7.2 The model and numerical set up

Let (e1, e2, e3) be the unit basis vectors of a Cartesian coordinate system in the labo-

ratory frame. Using notation x = (x1, x2, x3) for the position vector and t for time, we

write the total fluid velocity as (Sx1e2 + v), where S is the rate of shear parameter and

v(x, t) is the velocity deviation from the background shear flow. Let Btot be the total

magnetic field which obeys the induction equation. We have performed numerical simu-

lations using the Pencil Code which is a weakly compressible MHD code, so we consider

velocity field v to be compressible and write the momentum, continuity and induction

equations for a compressible fluid of mass density ρ satisfying the isothermal equation

of state as follows:

(
∂

∂t
+ Sx1

∂

∂x2

)
v + Sv1e2 + (v· ∇)v = −1

ρ
∇P +

J tot
×Btot

ρ
+ F visc + f (7.1)

(
∂

∂t
+ Sx1

∂

∂x2

)
ρ+ (v· ∇)ρ = −ρ∇· v (7.2)

(
∂

∂t
+ Sx1

∂

∂x2

)
Btot − SBtot

1 e2 = ∇×(v×Btot) + η∇2Btot (7.3)

where F visc = ν∇2v +
[
ν
3
+ ζ

ρ

]
∇(∇· v), f is the random stirring force per unit mass

and J tot = (∇×Btot)/µ0. ν, ζ , µ0 and η represent the coefficient of kinematic viscosity,

coefficient of bulk viscosity, magnetic permeability and magnetic diffusivity respectively,

all assumed to be constant here.

Our aim is to investigate the case of incompressible magnetohydrodynamics in a

background linear shear flow for a non–helical forcing. In order to do that with Pencil
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Code, we limit ourselves to the cases for which the root–mean–squared velocity, vrms,

is small compared with the sound speed, making the Mach number very small. In this

case the solutions of compressible equations approximate the solutions of incompressible

equations. When the velocity field v is incompressible (or weakly compressible), the

viscous term in Eqn. (7.1) becomes F visc = ν∇2v (this is true also in the absence of

variable compression) and the right hand side of continuity equation vanishes.

7.2.1 Mean–field induction equation

Various transport phenomena have traditionally been studied in the framework of mean–

field theory (Moffatt, 1978; Krause & Rädler, 1980; Brandenburg & Subramanian, 2005).

Applying Reynolds averaging to the induction Eqn. (7.3) we find that the mean magnetic

field, B(x, t), obeys the following (mean–field induction) equation:

(
∂

∂t
+ Sx1

∂

∂x2

)
B − SB1e2 = ∇×E + η∇2B (7.4)

where η is the microscopic resistivity, and E is the mean electromotive force (EMF),

E = 〈v×b〉, where v and b are the fluctuations in the velocity and magnetic fields. The

mean EMF is, in general, a functional of the mean magnetic field, Bl, and its first spatial

derivative, Blm = (∂Bl/∂xm), to the lowest order. For a slowly varying mean magnetic

field, the mean EMF can approximately be written as a function of Bl and Blm; see

(Brandenburg et al., 2008; Singh & Sridhar, 2011):

Ei = αil(t)Bl(x, t) − ηiml(t)
∂Bl(x, t)

∂xm
(7.5)

where αil(t) and ηiml(t) are the transport coefficients.

7.2.2 Transport coefficients

Previous studies have shown that αil = 0 so long as the stirring is non–helical (Branden-

burg et al., 2008; Sridhar & Subramanian, 2009a,b; Sridhar & Singh, 2010; Singh & Srid-

har, 2011). To simplify further, the mean–magnetic field is averaged over the coordinates
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x1 and x2. So we consider the case when the mean magnetic field, B = B(x3, t). The

condition ∇·B = 0 implies that B3 is uniform in space, and it can be set to zero; hence

we have B = (B1, B2, 0). Thus, Eqn. (7.5) for the mean EMF gives E = (E1, E2, 0),
with

Ei = − ηij Jj ; J = ∇×B =

(
−∂B2

∂x3
,
∂B1

∂x3
, 0

)
(7.6)

where 2–indexed magnetic diffusivity tensor ηij has four components, (η11, η12, η21, η22),

which are defined in terms of the 3–indexed object ηiml by

ηij = ǫlj3 ηi3l ; which implies that ηi1 = − ηi32 , ηi2 = ηi31 (7.7)

Equation (7.6) for E can now be substituted in Eqn. (7.4). Then the mean–field induction

equation becomes,

∂B1

∂τ
= − η21

∂2B2

∂x23
+ (η + η22)

∂2B1

∂x23

∂B2

∂τ
= SB1 − η12

∂2B1

∂x23
+ (η + η11)

∂2B2

∂x23
(7.8)

The diagonal components, η11 and η22, augment the microscopic resistivity, η, whereas

the off–diagonal components, η12 and η21, lead to cross–coupling of B1 and B2. We note

that the ηij are in general time–dependent but we consider here the saturated values

denoted by η∞ij in Singh & Sridhar (2011).

7.2.3 Test field method

We use test field method to determine the quantities ηij introduced above. The procedure

has been described in detail in Brandenburg et al. (2008) (see also references therein). A

brief description of the method is as follows: Let Bq be a set of test–fields and E
q be the

EMF corresponding to the test field Bq. Subtracting Eqn. (7.4) from Eqn. (7.3), we get
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the evolution equation for the fluctuating field b. With properly chosen Bq and the flow

v, we can numerically solve for the fluctuating field bq. This enables us to determine E
q

which can then be used to find ηij using E q
i = − ηij J

q
j where J q = ∇×Bq.

There could be various choices for the number and form of the test fields which

essentially depends on the problem that one is trying to solve. For our purposes, let us

choose the test fields denoted as Bqc defined by,

B1c = B (cos[kx3], 0, 0) ; B2c = B (0, cos[kx3], 0) (7.9)

where B and k are assumed to be constant. Using Eqn. (7.9) in the expression E q
i =

− ηij J
q
j , we find the corresponding mean EMF denoted by E

qc as,

E1c
i = ηi2Bk sin[kx3] ; E2c

i = −ηi1Bk sin[kx3] ; i = 1, 2 (7.10)

Zeros of sin[kX3] provide singular solutions for ηij as can be seen from Eqn. (7.10). To

avoid this difficulty, we further consider the following set of test field denoted as Bqs

defined by,

B1s = B (sin[kx3], 0, 0) ; B2s = B (0, sin[kx3], 0) (7.11)

where B and k are assumed to be constant as before. Using Eqn. (7.11) in the expression

E q
i = − ηij J

q
j , we find the corresponding mean EMF denoted by E

qs as,

E1s
i = −ηi2Bk cos[kx3] ; E2s

i = ηi1Bk cos[kx3] ; i = 1, 2 (7.12)

Using Eqns. (7.10) and (7.12) we can write,

ηi1 = − 1

Bk

(
E2c
i sin[kx3]− E2s

i cos[kx3]
)

ηi2 =
1

Bk

(
E1c
i sin[kx3]− E1s

i cos[kx3]
)
; i = 1, 2 (7.13)
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Thus from the Eqn. (7.13) we can determine the unknown quantities ηij. For homoge-

neous turbulence being considered here, ηij need to be independent of x3, therefore, the

apparent dependence on x3 through the terms sin[kx3] and cos[kx3] in Eqn. (7.13) have

to be compensated by x3−dependent Ei’s given by Eqns. (7.10) and (7.12).

7.2.4 Boundary conditions

We use “shear–periodic” boundary conditions to solve Eqns. (7.1–7.3) in the same manner

as given in Brandenburg et al. (2008). Shear–periodic boundary conditions have been

widely used in numerical simulations of a variety of contexts. Simulations of local patch of

planetary rings Wisdom & Tremaine (1988), local dynamics of differentially rotating discs

in astrophysical systems Balbus & Hawley (1998); Binney & Tremaine (2008), nonlinear

evolution of perturbed shear flow in two–dimensions with the ultimate goal to understand

the dynamics of accretion disks Lithwick (2007), the shear dynamo Brandenburg et al.

(2008); Yousef et al. (2008a,b); Käpylä, Korpi & Brandenburg (2008) etc serve to be few

examples. We provide below a brief explanation of shear–periodic boundary conditions.

Let us define sheared coordinates by

xsh1 = x1 , xsh2 = x2 − Stx1 , xsh3 = x3 . (7.14)

These may be thought of as the Lagrangian coordinates of fluid elements that are carried

along by the background shear flow. A function is said to be shear–periodic when it is a

periodic function of (xsh1 , x
sh
2 , x

sh
3 ) with periodicities (L1, L2, L3), respectively. Specifically,

the Eqns. (7.1–7.3) are solved in a box of size L1×L2×L3 which is subjected to periodic

boundary conditions in the x2− and x3−directions and shear–periodic (or “shifted–

periodic”) boundary condition in the x1−direction. Letting f to be a shear–periodic

function, we can write explicitly,
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f(x1, 0, x3) = f(x1, L2, x3)

f(x1, x2, 0) = f(x1, x2, L3)

f(0, x2, x3) = f(L1, (x2 + StL1)[modulo L2]
, x3) (7.15)

where

(x2 + StL1)[modulo L2]
= x2 + StL1 +mL2 (7.16)

In Eqn. (7.16) m can take any integer value. This is done to ensure that the right hand

side of Eqn. (7.16) always lies inside the box in the direction of shear, i.e., x2−direction

for the present case. Thus the identity 0 ≤ (x2 + StL1)[modulo L2]
≤ L2 is satisfied at all

times.

7.2.5 Random stirring

The random forcing function f in Eqn. (7.1) is assumed to be mirror–symmetric, ho-

mogeneous, isotropic and delta–correlated–in–time. Further, we assume that the vector

function f is solenoidal and the forcing is confined to a spherical shell of magnitude

|kf | = kf where the wavevector kf signifies the energy–injection scale (lf = 2π/kf) of

turbulence. This can be approximately achieved by following the method described in

Brandenburg et al. (2008), which is briefly outlined here. Simulations have been per-

formed in a cubic box of size L×L× L (i.e., L1 = L2 = L3 = L) in which the forcing f

at each time step is a single plane wave proportional kf×a where the wavevector kf is

randomly chosen from a set of precalculated vectors, the procedure for which has already

been implemented in the code and a is an arbitrary random unit vector not aligned with

kf . Average value of moduli of these wavevectors is what we call kf described above.

The properties as described above that f should possess can be achieved if the size of the
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box is much larger as compared to the forcing–scale, i.e., kf/K ≫ 1 where K = 2π/L.

The background turbulence becomes almost statistically steady for acceptable values of

kf/K if the averaging is done over long times, in which case the quantities which have

been averaged over x1− and x2−directions show smaller and smaller fluctuations in x3−
direction and t, which would otherwise have shown more pronounced fluctuations.

We note that although the random forcing f is delta–correlated–in–time, the resulting

fluctuating velocity field v will not be delta–correlated–in–time (this is due to the inertia

as has been pointed out in Brandenburg et al. (2008)). This has been rigorously proved

in Singh & Sridhar (2011) in the limit of small fluid Reynolds number, the limit which

we aim to explore in the present manuscript. Another important fact to note is that in

the limit of small Re the non–helical forcing has been shown to give rise to non–helical

velocity field in the reference Singh & Sridhar (2011); whether this is true even in the

limit of high Re has not been proved yet. Thus performing the simulation in the limit

Re < 1 with non–helical forcing guarantees the fact that the fluctuating velocity field is

also non–helical.

7.3 Results

We have explored following three parameter regimes: (i) Re < 1 and Rm < 1; (ii) Re > 1

and Rm < 1; (iii) Re < 1 and Rm > 1. All the results obtained in numerical simulations

for various parameter regimes are being presented. As noted earlier, the ηij are in general

time–dependent but we are considering only the saturated values, η∞ij . For discussions

concerning ηij we define new quantities as given in earlier works:

ηt =
1

2
(η∞11 + η∞22) , ηT = η + ηt (7.17)

We now define various dimensionless quantities: The fluid Reynolds number, Re =

vrms/(νkF ) ; the magnetic Reynolds number, Rm = vrms/(ηkF ) ; the Prandtl number,

Pr = ν/η ; the dimensionless Shear parameter, Sh = S/(vrmskF ) . Symbols used in these

definitions have usual meanings.
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Figure 7.1: Plots, comparing the results of the simulations with our theory presented

in Ch. 6, of the saturated quantities ηt, η
∞
12 and η∞21 for Re = Rm ≈ 0.16, and Re =

Rm ≈ 0.46, corresponding to Pr = 1, versus the dimensionless parameter (−ShRe). The

lines (‘bold’ and ‘dashed’) correspond to the theory, whereas the symbols (‘◦’ and ‘×’)

correspond to the simulations. The ‘bold’ lines and the symbols ‘◦’ are for Re = Rm ≈
0.16, whereas the ‘dashed’ lines and the symbol ‘×’ are for Re = Rm ≈ 0.46.

PART A: Re < 1 and Rm < 1

It is a necessary step to compare the numerical results obtained in this parameter

regime with the earlier analytical work in which the general functional form for the

saturated values of magnetic diffusivities, ηij , was predicted (see Eqn. (6.20) and related

discussion in Ch. 6).

Figures (7.1–7.3) display plots of ηt, η
∞
12 and η∞21 , versus the dimensionless parameter

(−ShRe), which demonstrate the comparison of the results from a direct numerical sim-

ulation with 643 mesh points with our theoretical results obtained in Ch. 6. The scalings
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Figure 7.2: Plots, comparing the results of the simulations with our theory presented

in Ch. 6, of the saturated quantities ηt, η
∞
12 and η∞21 for Re ≈ 0.13 and Rm ≈ 0.64,

corresponding to Pr ≈ 5, versus the dimensionless parameter (−ShRe). The bold lines

correspond to the theory, whereas the symbol ‘◦’ correspond to the simulations.

of the ordinates have been chosen for compatibility with the functional form displayed in

Eqn. (6.20) of Ch. 6. However, it should be noted that we have performed simulations for

values of (−ShRe) upto about 0.7, whereas we have been able to explore the larger values

of (−ShRe) in our analytical computations, as given in Ch. 6. The plots in Fig. (7.1a–c)

are for Pr = 1, but for two sets of values of the Reynolds numbers; Re = Rm ≈ 0.16

(the ‘bold’ lines represent the theory and the symbols ‘◦’ represent the simulations), and

Re = Rm ≈ 0.46 (the ‘dashed’ lines represent the theory and the symbols ‘×’ represent

the simulations). Figure (7.2a–c) are for Re ≈ 0.13 and Rm ≈ 0.64, corresponding to

Pr ≈ 5 (the ‘bold’ lines represent the theory and the symbols ‘◦’ represent the simula-

tions). Figure (7.3a–c) are for Re ≈ 0.13 and Rm ≈ 0.025, corresponding to Pr ≈ 0.2

(the ‘bold’ lines represent the theory and the symbols ‘◦’ represent the simulations).
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Figure 7.3: Plots, comparing the results of the simulations with our theory presented

in Ch. 6, of the saturated quantities ηt, η
∞
12 and η∞21 for Re ≈ 0.13 and Rm ≈ 0.025,

corresponding to Pr ≈ 0.2, versus the dimensionless parameter (−ShRe). The bold lines

correspond to the theory, whereas the symbol ‘◦’ correspond to the simulations.

Some noteworthy properties are as follows:

(i) As may be seen from Fig. (7.1), that the symbols ‘◦’ and ‘×’ (also the bold and

dashed lines) lie very nearly on top of each other. This implies that ηt/(ηTRe
2),

η∞12/(ηTRe
2) and η∞21/(ηTRe

2) are (approximately) functions of (−ShRe) and Pr.

Therefore the magnitude of χ in Eqn. (6.20) should be much smaller than unity.

This was predicted in Ch. 6, and thus our numerical findings are in good agreement

with our theoretical investigations.

(ii) We see that ηt is always positive. For a fixed value of (−ShRe) the quantity

ηt/(ηTRe
2) increases with Pr, and for a fixed value of Pr, it slowly increases with
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Figure 7.4: Time dependence of the root–mean–squared value of the total magnetic

field [scaled with respect to Beq] versus the dimensionless parameter (t vrms kf). The

bold line is for Re ≈ 0.128, Rm ≈ 0.643 (corresponding to Pr ≈ 5.0), kf/K = 10.03

and Sh ≈ −1.545; the dashed line is for Re ≈ 0.16, Rm ≈ 0.16 (corresponding to

Pr ≈ 1.0), kf/K = 10.03 and Sh ≈ −1.237; and the dashed–dotted line is for Re ≈ 0.127,

Rm ≈ 0.025 (corresponding to Pr ≈ 0.25), kf/K = 10.03 and Sh ≈ −1.560.

(−ShRe) (which is consistent with Brandenburg et al. (2008)). An excellent agree-

ment between our numerical findings and the theory presented in Ch. 6 may be

seen from top panels of Figs. (7.1–7.3).

(iii) The quantity η∞12 approaches the value zero in the limit when (−ShRe) is nearly

zero. In the numerical simulation, it is seen to be increasing with (−ShRe) for a

fixed value of Pr, and for a fixed value of (−ShRe) it increases with Pr. η∞12 is

expected to behave in a more complicated way. Different signs of η∞12 are reported

in Brandenburg et al. (2008) and Rüdiger & Kitchatinov (2006), whereas both

signs have been predicted in our calculations. The differences between the theory
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and the simulations may be inferred from panels (b) of Figs. (7.1–7.3).

(iv) As may be seen from the bottom panels of Figs. (7.1–7.3), that, η∞21 is always

positive. This agrees with the results obtained in earlier works (Brandenburg et

al., 2008; Rädler & Stepanov, 2006; Rüdiger & Kitchatinov, 2006). Once again,

the agreement between our numerical findings and our theoretical investigations of

Ch. 6, for this crucial component of the diffusivity tensor is remarkably good2.

Further, we show the time dependence of root–mean–squared value of the total mag-

netic field (Brms) in Fig. (7.4), which explicitly demonstrates the decay of Brms for

following three sets of values of control parameters: (i) Re ≈ 0.128, Rm ≈ 0.643

(corresponding to Pr ≈ 5.0; shown by the bold line), Sh ≈ −1.545; (ii) Re ≈ 0.16,

Rm ≈ 0.16 (corresponding to Pr ≈ 1.0; shown by the dashed line), Sh ≈ −1.237; and

(iii) Re ≈ 0.127, Rm ≈ 0.025 (corresponding to Pr ≈ 0.25; shown by the dashed-dotted

line), Sh ≈ −1.560. Results shown in Fig. (7.4) are from a direct numerical simulation

with 643 mesh points and kf/K = 10.03.

PART B: Re > 1 and Rm < 1

We explored this parameter regime for completeness in order to investigate the dy-

namo action when Rm < 1 whereas Re > 1. Kinematic theory of shear–dynamo problem

(see Ch. 5) was developed which is valid for low magnetic Reynolds number but places no

restriction on the fluid Reynolds number. We computed all relevant components of the

magnetic diffusivity tensor using test–field method and also investigated the possibility

of dynamo action. We summarize all our results for Re > 1 and Rm < 1 in detail in

Table I.

We find no evidence of dynamo action in this particular parameter regime where

Re > 1 and Rm < 1. This is shown clearly in Fig. (7.5), in which we plot the time de-

pendence of root–mean–squared value of the total magnetic field (Brms) and demonstrate

2As discussed in Ch. 6, the sign of η∞21 has a direct bearing on the shear–current effect, and this being

positive suggests that the shear–current effect cannot be responsible for dynamo action, at least in the

range of parameters explored.
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Figure 7.5: Time dependence of the root–mean–squared value of the total magnetic field

[scaled with respect to Beq] versus the dimensionless parameter (t vrms kf). The bold line

is for Re ≈ 24.57, Rm ≈ 0.614 (corresponding to Pr ≈ 0.025), kf/K = 5.09 and Sh ≈
−0.118; the dashed line is for Re ≈ 22.40, Rm ≈ 0.448 (corresponding to Pr ≈ 0.02),

kf/K = 5.09 and Sh ≈ −0.128; the dashed–dotted line is for Re ≈ 43.17, Rm ≈ 0.863

(corresponding to Pr ≈ 0.02), kf/K = 3.13 and Sh ≈ −0.177; and the dashed–dots

line is for Re ≈ 36.54, Rm ≈ 0.365 (corresponding to Pr ≈ 0.009), kf/K = 3.13 and

Sh ≈ −0.209

.
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Table 7.1: Summary of the simulations for Re > 1 and Rm < 1.

Run Re Rm kf/K −Sh Ma3 Grid ηt/(ηTRe
2) η12/(ηTRe

2) η21/(ηTRe
2) Comments

A 5.50 0.14 10.03 0.136 0.110 643 0.000366 0.000044 0.0000279 No dynamo

B 4.63 0.70 10.03 0.014 0.139 643 0.006845 0.000174 0.0000764 No dynamo

C 4.69 0.70 10.03 0.057 0.141 643 0.007000 0.000628 0.0003048 No dynamo

D 4.83 0.73 10.03 0.103 0.145 643 0.007247 0.001224 0.0005103 No dynamo

E 5.63 0.84 10.03 0.141 0.169 643 0.006654 0.002330 0.0006008 No dynamo

F 41.14 0.82 3.13 0.186 0.258 643 0.000110 0.000017 0.0000092 No dynamo

G 48.40 0.41 3.13 0.186 0.258 643 0.000025 0.000003 0.0000021 No dynamo

the absence of dynamo action in this parameter regime. Figure (7.5) shows results from

direct simulation with 643 mesh points for the following four sets of parameter values:

(i) Re ≈ 24.57, Rm ≈ 0.614, kf/K = 5.09, Sh ≈ −0.118 (shown by the bold line); (ii)

Re ≈ 22.40, Rm ≈ 0.448, kf/K = 5.09, Sh ≈ −0.128 (shown by the dashed line); (iii)

Re ≈ 43.17, Rm ≈ 0.863, kf/K = 3.13, Sh ≈ −0.177 (shown by the dashed–dotted line);

and (iv) Re ≈ 36.54, Rm ≈ 0.365, kf/K = 3.13, Sh ≈ −0.209 (shown by the dashed–dots

line).

PART C: Re < 1 and Rm > 1

We now report our analysis concerning the growth of mean magnetic field in a back-

ground linear shear flow, with non–helical forcing at small scale, for the case when Re < 1

and Rm > 1. All the simulations presented in this part are performed with 1283 mesh

points. This is a particularly interesting regime for the following reasons: (i) it is an im-

portant fact to note that in the limit of small Re the non–helical forcing has been shown

to give rise to non–helical velocity field (see the discussion below Eqn. (3.24) in Ch. 3);

whether this is true even in the limit of high Re has not been proved yet. Thus perform-

ing the simulation in this limit (i.e., Re < 1) with non–helical forcing guarantees the fact

that the fluctuating velocity field is also non–helical ; (ii) For low Re the Navier–Stokes

Eqn. (7.1) can be linearized and thus it becomes analytically more tractable problem, as
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Figure 7.6: Time dependence of the root–mean–squared value of the total magnetic field

Btot and spacetime diagrams of B1(x3, t) and B2(x3, t) [all scaled with respect to Beq]

from a direct simulation with Re ≈ 0.378, Rm ≈ 15.135 (corresponding to Pr ≈ 40.0),

kf/K = 3.13 and Sh ≈ −1.01, versus the dimensionless parameter (t vrms kf). The

top panel shows the initial exponential growth of mean magnetic field which saturates

with time. The other two panels demonstrate the episodes of large scale feature in the

x3−direction, especially in the B2 component.
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Figure 7.7: Time dependence of the root–mean–squared value of the total magnetic field

Btot and spacetime diagrams of B1(x3, t) and B2(x3, t) [all scaled with respect to Beq]

from a direct simulation with Re ≈ 0.833, Rm ≈ 24.976 (corresponding to Pr ≈ 30.0),

kf/K = 3.13 and Sh ≈ −0.23, versus the dimensionless parameter (t vrms kf). The

top panel shows the initial exponential growth of mean magnetic field which saturates

with time. The other two panels demonstrate the episodes of large scale feature in the

x3−direction, especially in the B2 component.
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Figure 7.8: Time dependence of the root–mean–squared value of the total magnetic field

Btot and spacetime diagrams of B1(x3, t) and B2(x3, t) [all scaled with respect to Beq]

from a direct simulation with Re ≈ 0.641, Rm ≈ 32.039 (corresponding to Pr ≈ 50.0),

kf/K = 5.09 and Sh ≈ −0.60, versus the dimensionless parameter (t vrms kf). The

top panel shows the initial exponential growth of mean magnetic field which saturates

with time. The other two panels demonstrate the episodes of large scale feature in the

x3−direction, especially in the B2 component.
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compared to the case of high Re. Such solutions have been rigorously obtained without

the Lorentz forces in Navier–Stokes equation and have been presented in Ch. 3. So it

appears more reasonable to develop a theoretical framework in the limit, Re < 1 and

Rm > 1 before one aims to have a theory which is valid for both (Re, Rm) > 1. Such

thoughts motivated us to perform numerical experiment in this limit to look for the dy-

namo action. Figures (7.6–7.8) display the time dependence of root–mean–squared value

of mean magnetic field B and spacetime diagrams of B1(x3, t) and B2(x3, t) for three

different combinations of Re and Rm. We have scaled the magnetic fields in Figs. (7.6–

7.8) with respect to Beq where Beq = (µ0〈ρv2rms〉)1/2. Scalings in these Figures have been

chosen for compatibility with Figs. (7) and (8) of Brandenburg et al. (2008). Below we

list few useful points related to the dynamo action when Re < 1 and Rm > 1 based on

careful investigation of Figs. (7.6–7.8):

(i) Top panels of Figs. (7.6–7.8) clearly show the growth of Brms demonstrating the

shear dynamo due to non–helical forcing (B2
rms = 〈B2〉 + 〈b2〉, where B and b are

the magnitudes of the mean and fluctuating magnetic fields respectively). Thus

the Brms−field may grow either due to B or b, or due to both B and b.

(ii) Denoting the magnetic diffusion time scale as τη = (ηk2f)
−1 and eddy turn over time

scale as τedd = (vrmskf)
−1, we write τη = (Rm) τedd. The magnetic fields in these

simulations survive for times, say t = 320 τedd, which for Rm ≈ 32 (corresponding

to Fig. (7.8)) implies, t = 10 τη, i.e., ten times the diffusion time scale. This is a

clear indication of the dynamo action as the magnetic fields survive much longer

than the magnetic diffusion time scale.

(iii) Spacetime diagrams in Figs. (7.6–7.8) reveal that the mean magnetic fields start

developing only after times which are few times the magnetic diffusion time scale

(τη).

(iv) Although the mean magnetic field starts developing at much later times, Brms starts

growing at earlier times. The possibility of the growth of mean–squared field, with

no net mean magnetic field at these early times, cannot be ruled out.
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It is instructive to know the magnitude of magnetic power at different length scales

in the simulations and study its evolution in time. Although the forcing is done at a

single length scale, a typical kinetic energy spectrum has a peak at the stirring scale

with significantly less power at other length scales (e.g., see dashed lines in various

panels of Fig. (7.9)). We display in Fig. (7.9) the energy spectra obtained in one of

the three simulations (for different combinations of the control parameters, all with

Re < 1), corresponding to the one shown in Fig. (7.8). Thus Figs. (7.8) and (7.9) show

results obtained from one particular simulation with 1283 mesh points, Re ≈ 0.641,

Rm ≈ 32.039, kf/K = 5.09 and Sh ≈ −0.60. Few noteworthy points are discussed below

in detail:

(i) Initially the magnetic power is very small as compared to the kinetic power and it

is mainly concentrated at large k−values (i.e. small length scales), as may be seen

from panel (a) of Fig. (7.9). Also, there is essentially no magnetic power at large

scales at the initial stage of the simulation.

(ii) The strength of the total magnetic field decreases upto certain time due to dissi-

pation (compare panels (a) and (b) of Fig. (7.9)), before it starts building up due

to dynamo action.

(iii) From the top panel of Fig. (7.8), we see that the root–mean–squared value of the

total magnetic field starts growing due to dynamo action (B2
rms = 〈B2〉 + 〈b2〉,

where B and b are the magnitudes of the mean and fluctuating magnetic fields

respectively). As the Brms−field may grow either due to B or b, or due to both

B and b, it seems necessary to understand this in more detail. From Fig. (7.9), it

may be seen that the magnetic energy grows at all scales once it starts growing up

till it saturates.

(iv) The small scale field grows faster, which averages out to zero, and hence does not

show up in the spacetime diagrams of Fig. (7.8). This is generally referred to as

the fluctuation dynamo. The growth rate changes and becomes smaller after the
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Figure 7.9: Panels (a–f) show magnetic (bold line) and kinetic (dashed line) energy

spectra from a direct simulation (presented above in Fig. (7.8), in which the forcing was

non–helical with Re ≈ 0.641, Rm ≈ 32.039, kf/K = 5.09 and Sh ≈ −0.60) for different

values of (t vrms kf).
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fluctuation dynamo saturates (which happens at t vrms kf ≈ 150 in Fig. (7.8) and

the corresponding power spectrum at that time is shown in panel (d) of Fig. (7.9)).

(v) Although there is non–zero magnetic energy in the large scales when t vrms kf ≈ 150

(see panel (d) of Fig. (7.9)), we begin to see some features in the spacetime diagrams

of the mean magnetic field (shown in Fig. (7.8)) only beyond t vrms kf ≈ 150. Thus,

it is possible that B = 0 while 〈B2〉 be finite.

(vi) The mean magnetic field starts developing beyond t vrms kf ≈ 150 (which is about

five times the magnetic diffusion time scale) which saturates at t vrms kf ≈ 330 (see

Fig. (7.8)) after which the magnetic energy essentially stops evolving at all length

scales, as may be seen from Fig. (7.9).

(vii) When the magnetic energy saturates at some value, we see significant magnetic

power at the largest scale.

It may be seen from the top panels of Figs. (7.6–7.8) that Brms shows exponential growth.

We denote the initial exponential growth rate of Brms as γ. It is evident from Fig. (7.10)

that the dimensionless growth rate (γ∗ = γ/(vrmskf)) appear to scale as γ∗ ∝ −Sh in

the range of parameters explored in this work. This result is in agreement with (Yousef

et al., 2008a; Brandenburg et al., 2008; Heinemann, McWilliams & Schekochihin, 2011;

Richardson & Proctor, 2012).

7.4 Investigating the reasons for observed dynamo

action

We have demonstrated in the last section that the dynamo action is possible in a back-

ground linear shear flow due to non–helical forcing, when the magnetic Reynolds num-

ber is above unity, whereas the fluid Reynolds number is below unity (i.e., Re < 1

and Rm > 1). Earlier works have shown dynamo action in such systems when both

(Re, Rm) > 1. It is still not clear what causes such shear dynamo to operate due to
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Figure 7.10: Plot of dimensionless initial growth rates, γ∗ = γ/(vrmskf ), of Brms (corre-

sponding to the cases when Re < 1 and Rm > 1) versus −Sh. The ‘+’ symbols denote

results from direct simulations whereas the bold line shows the slope of the linear trend

corresponding to γ∗ ∝ −Sh.

non–helical turbulence. In this section, we try to estimate the effects of fluctuations of

turbulent transport coefficients, which might have implications for the observed dynamo

action in these numerical simulations. Estimating the magnitude and effects of these

fluctuations, which are being presented below, have been motivated by some earlier ana-

lytical and numerical works (Kraichnan, 1976; Moffatt, 1978; Vishniac & Brandenburg,

1997; Sokolov, 1997; Silant’ev, 2000; Proctor, 2007; Brandenburg et al., 2008).

7.4.1 Fluctuating α−effect & incoherent alpha-shear dynamo

In 1976, Kraichnan discussed the possibility of fluctuations in scalar alpha with zero

mean (Kraichnan, 1976), which together with large scale shear could possibly give rise

to the dynamo action in the mirror–symmetric turbulence (Vishniac & Brandenburg,

1997; Sokolov, 1997; Silant’ev, 2000; Proctor, 2007). As the coefficient ‘α’ (which, in
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general, is a tensorial quantity αil as may be seen from Eqn. (7.5)) is, by definition,

an averaged quantity, it requires some extra care to imagine the fluctuations in such

quantities. The α−fluctuations should be viewed as the fluctuations in the turbulent

helicity, which will be argued and discussed in detail in the next chapter, as we have

pursued the problem of fluctuating turbulent helicity in context to the shear dynamo

problem, analytically.

Following Brandenburg et al. (2008), we estimate the fluctuations in each component

of αil which, together with mean shear, might drive the dynamo action by what is known

as the incoherent alpha–shear mechanism. The procedure to investigate the incoherent

alpha–shear dynamo may be given as follows:

(i) There seem to be a dimensionless parameter, DαS, known as the dynamo number,

which is defined as,

DαS =
αrms
22 |S|
η2T K

3
(7.18)

where ηT has been defined in Eqn. (7.17) and K is the smallest finite wavenumber

in the X3−direction. It has been determined numerically in Brandenburg et al.

(2008), that the condition for the growth of mean magnetic field is

DαS > Dcrit
αS ; where Dcrit

αS ≈ 2.3 (7.19)

(ii) To measure the magnitude of the fluctuations in αil as found in our test–field

simulations, in order to estimate αrms, we do the following:

(a) A typical time series of transport coefficients shows variations of the quantity

around some mean value. These variations are not to be confused with the

fluctuating transport coefficients.

(b) The values of each components of αil, when averaged over the whole time

series, approach zero for long enough time series, for non–helical turbulence.

(c) The whole time series can be split into multiple bins with suitably chosen

width.
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(d) Now we find the average value of αil in each bin. If the averages thus com-

puted for each bin take different values, these quantities are understood to be

fluctuating, although averaged over some sufficiently long times.

(e) We find the probability density function (PDF) of each component of αil which

appears like Gaussian in all the cases we have investigated. The Gaussian

nature of the PDFs are also seen in Brandenburg et al. (2008).

(f) αrms
22 can now be estimated by αrms

22 =
√

〈(α22)2〉, where 〈〉 denotes the average
of the binned–averaged quantities.

(iii) Our aim now will be to determine DαS corresponding to various simulations we

have performed in different regimes of the control parameters, discussed in the last

section.

7.4.2 Estimation of the dynamo numbers for variety of simula-

tions

We have computed the dynamo number defined by Eqn. (7.18) using the test–field sim-

ulations, which were performed for various regimes of the control parameters, we are

interested in. We summarize our results in the Table (7.2).

As may be seen from Table (7.2) that the growth of mean magnetic field is always

associated with cases for which the dynamo number exceeds its critical value, i.e., when

DαS > Dcrit
αS where, Dcrit

αS ≈ 2.3. Some noteworthy properties are as follows:

(i) In the cases where both (Re, Rm) < 1 (runs (b), (e) and (f) which are shown

in red in Table (7.2)), we do not see the dynamo action, but the corresponding

dynamo numbers have been found to be below the critical value. Therefore, we

cannot conclude that the dynamo action is impossible in this parameter regime;

larger values of the dynamo numbers in this parameter regime need to be explored

before reaching any conclusion. We tried to run simulations aiming to explore

larger dynamo numbers when both (Re, Rm) < 1, but it could not be done due to

limitations of the pencil code.
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Table 7.2: Summary of simulations with various dynamo numbers and its implications.

Run Re Rm kf/K −Sh Ma4 Grid DαS Comments

(a) 41.20 0.82 3.13 0.186 0.258 643 0.0106 No dynamo

(b) 0.76 0.57 1.54 2.78 0.0701 1283 0.0125 No dynamo

(c) 4.65 0.69 10.03 0.0285 0.139 643 0.0207 No dynamo

(d) 4.99 0.75 10.03 0.133 0.150 643 0.0827 No dynamo

(e) 0.47 0.47 10.03 1.27 0.0235 643 0.2002 No dynamo

(f) 0.73 0.91 10.03 0.41 0.0727 1283 0.34 No dynamo

(g) 1.04 41.66 3.13 0.367 0.13 1283 2.341 Dynamo

(h) 1.79 89.51 5.09 0.215 0.0911 1283 2.443 Dynamo

(i) 0.85 25.50 5.09 0.226 0.129 1283 3.05 Dynamo

(j) 0.75 33.60 10.03 0.236 0.0674 1283 11.22 Dynamo

(k) 0.59 29.47 5.09 0.66 0.03 1283 11.45 Dynamo

(ii) We do not find any evidence of dynamo action for cases when Re > 1 and Rm < 1

(runs (a), (c) and (d) which are shown in red in Table (7.2)), but even in these

cases, the corresponding dynamo numbers are below the critical value. So, one

needs to explore larger values of DαS before reaching any conclusion, which could

not be done using the pencil code.

(iii) Dynamo action was seen when DαS was just above its critical value (see the runs

(g) and (h) shown in green in Table (7.2)), for both of which, Re is just above unity

whereas Rm is much larger than unity).

(iv) For the cases in which Re < 1 and Rm > 1, we see the growth of large–scale

magnetic field (see the runs (i), (j) and (k) shown in green in Table (7.2)), and the

corresponding dynamo numbers were always found to be above Dcrit
αS .

(v) To further establish the dependence of observed dynamo action on the dynamo

number, DαS, we investigated a particular case more carefully. We chose the run (k)
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of Table (7.2), in which we see the growth of mean magnetic field, andDαS = 11.45.

Keeping everything else same, we changed the value of the shear parameter, which

in turn affects the value of DαS through the linear dependence of DαS on |S| (see
Eqn. (7.18)). First, we reduce |S| by a factor 10, which makes DαS ten times

smaller, and it becomes subcritical. In this case, the Brms just decays in time.

Second, we reduce |S| by a factor 4 compared to its original value of case (k).

In this case, DαS becomes marginally supercritical (DαS ≈ 2.86), and we see the

dynamo action in the simulation. This particular investigation seems to strengthen

the idea that DαS plays a crucial role in determining whether the dynamo action

is going to operate or fail.

7.5 Conclusions

Motivated by theoretical investigations of the shear dynamo problem due to non–helical

stirring of an incompressible fluid, we performed variety of numerical simulations ex-

ploring different regimes of the control parameters. The simulations were done for the

following three parameter regimes: (i) both (Re, Rm) < 1; (ii) Re > 1 and Rm < 1; and

(iii) Re < 1 and Rm > 1. These limits, which were never explored in any earlier works,

appeared interesting to us for following reasons: first, to compare our analytical findings

with the results of numerical simulations in the similar parameter regimes; and second,

to look for the growth of mean magnetic field in the limit when Re < 1. Exploring the

possibility of dynamo action when Re < 1 seems particularly interesting, as, in the limit

of small Re, the non–helical forcing has been shown to give rise to non–helical velocity

field (see the discussion below Eqn. (3.24) in Ch. 3); whether this is true even in the

limit of high Re has not been proved yet. Thus performing the simulation in this limit

(i.e., Re < 1) with non–helical forcing guarantees the fact that the fluctuating velocity

field is also non–helical. Also, for low Re, the Navier–Stokes Eqn. (7.1) can be linearized

and thus it becomes analytically more tractable problem, as compared to the case of

high Re. Such solutions have been rigorously obtained without the Lorentz forces in
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Navier–Stokes equation, and have been presented in Ch. 3.

In the present chapter, we successfully demonstrated that the dynamo action is pos-

sible in a background linear shear flow due to non–helical forcing when the magnetic

Reynolds number is above unity whereas the fluid Reynolds number is below unity, i.e.,

when Re < 1 and Rm > 1 (see Figs. (7.6–7.9)). To investigate the reasons for the

observed dynamo action (or otherwise), we computed the dynamo number, DαS, cor-

responding to the incoherent alpha–shear mechanism, by estimating the fluctuations in

the turbulent transport coefficients. The simulations, where we see the growth of mean

magnetic field, are the ones, in which the dynamo number exceeds its critical value, i.e.,

when DαS > Dcrit
αS where, Dcrit

αS ≈ 2.3 (see Table (7.2)). Few important conclusions may

be given as follows:

1. We did not find any dynamo action in the limit when both (Re, Rm) < 1 (see

Fig. (7.4)). We computed all the transport coefficients by test–field simulations

and compared with our theoretical work of Ch. 6 (see Figs. (7.1–7.3)). A good

agreement between the theory and the simulations was found for all components

of the magnetic diffusivity tensor, η∞ij , except for η
∞
12, which is expected to behave

in a complicated fashion (Brandenburg et al., 2008; Rüdiger & Kitchatinov, 2006;

Singh & Sridhar, 2011).

2. η∞21 was always found to be positive in all the simulations performed in different

parameter regimes. This is in agreement with our earlier conclusion that the shear–

current effect cannot be responsible for dynamo action, at least for all the cases we

have studied in different parameter regimes.

3. There was no evidence of dynamo action in the limit when Re > 1 and Rm < 1

(see Fig. (7.5)).

4. We demonstrated the dynamo action when Re < 1 and Rm > 1, for the first

time (see Figs. (7.6–7.9)). The initial exponential growth rate of Brms, γ, seems

to scale linearly with the rate of shear, |S|, in the range of parameters explored

in this chapter (see Fig. (7.10)); a result which is in agreement with Yousef et
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al. (2008a); Brandenburg et al. (2008); Heinemann, McWilliams & Schekochihin

(2011); Richardson & Proctor (2012).

5. It is important to note that the dynamo number, DαS, corresponding to the in-

coherent alpha–shear mechanism, was computed for all the simulations performed

in different parameter regimes, and the results have been presented in Table (7.2).

Interestingly, those simulations, where we see the growth of mean magnetic field,

are the ones, in which the dynamo number exceeds its critical value, i.e., when

DαS > Dcrit
αS where, Dcrit

αS ≈ 2.3, whereas for all the other cases, in which we do not

find the dynamo action, the corresponding dynamo number is always subcritical.

The hypothesis, that the fluctuations in the αij with zero mean, together with the

mean shear (which is known as the incoherent alpha–shear mechanism) might drive the

dynamo, seems a promising candidate for the observed dynamo action in linear shear flow,

with no net helicity. We find that the dynamo action seems to crucially depend on the

quantity, DαS, with its critical value Dcrit
αS ≈ 2.3, which was determined by Brandenburg

et al. (2008), and supported by our numerical simulations presented in this chapter; see

Table (7.2). We note that DαS is an empirically constructed quantity and our goal in

the next chapter is to construct a theory of dynamo action due to the combined effects

of α−fluctuations and shear.



Chapter 8
DYNAMO ACTION DUE TO

α−FLUCTUATIONS IN A LINEAR SHEAR

FLOW

8.1 Introduction

The mechanism, by which the large–scale cosmic magnetic fields could be generated

due to mirror–symmetric turbulence (i.e., in the absence of usual α−effect) in a back-

ground linear shear flow, remains to be understood. In the framework of the classical

mean–field theory (Moffatt, 1978; Krause & Rädler, 1980; Brandenburg & Subramanian,

2005), which may also be viewed as a two–scale approach, one has not yet been able to

construct a rigorous theory explaining the origin of the shear dynamo problem due to

non–helical turbulence. It has been argued in previous works that the fluctuations in the

turbulent helicity in such systems with no net helicity, together with differential rotation,

might be able to generate the observed large–scale magnetic field (see e.g., Vishniac &

Brandenburg (1997); Sokolov (1997); Silant’ev (2000); Proctor (2007); Brandenburg et

al. (2008); Sur & Subramanian (2009)). It will be quite a challenging task to study the

effects of the turbulent helicity fluctuations in traditional mean–field approach, for rea-

sons that will be described later. A slight revision of the usual mean–field theory might

161
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be useful to study and understand the effects of the turbulent helicity fluctuations. The

aim of the present chapter is to explore the possibility of such revision based on some

arguments and suggestions which appeared in earlier works (Kraichnan, 1976; Hoyng,

1987a,b, 1988; Sokolov, 1997).

The helicity (or chirality or screwness) at each spacetime point is given by, v· (∇×v),

where v denotes the turbulent flow. The helicity is a pseudo–scalar (non mirror–

symmetric) quantity which is also turbulent due to the turbulent nature of the flow.

The net helicity in a perfectly mirror–symmetric turbulence is expected to vanish, but

the correlation of helicities at different spacetime points need not be zero. In other words,

the ensemble average of v· (∇×v) contributing to usual α−effect vanishes identically for

perfectly mirror–symmetric turbulence, while the net helicity fluctuations, characterized

by 〈( v· (∇×v) )2〉 in the single averaging scheme, need not be zero. Thus a rigorous the-

ory, aiming to address issues related to the turbulent helicity fluctuations in a non–helical

turbulence, would inevitably require the computation of four–point unequal time velocity

correlator in the single averaging scheme, a task which although is of great importance,

would be quite challenging in practice. In order to study the effects of fluctuations of the

turbulent helicity in an analytically simpler way, the concept of double averaging seems

reasonably useful (Kraichnan, 1976). As argued in Kraichnan (1976), both the turbulent

field variables, v and v· (∇×v), have correlation times τv and τh, respectively
1, with

τv 6= τh, in general. Following the arguments of Kraichnan (1976) and Sokolov (1997),

where the mathematical aspects of double averaging have been given, we consider an en-

semble, in which, each member of the ensemble corresponds to a different realization of

the fluctuating velocity field, v. The ensemble average of v is strictly zero, i.e., 〈v〉 = 0,

where 〈Q〉 denotes the ensemble average of some quantity Q. The ensemble average of the

quantity v· (∇×v) (over different realizations of velocity field) need not be strictly zero

in the perfectly mirror–symmetric turbulence, and it can be a stochastic variable. Thus

1The correlation time of a turbulent field may be thought of as the time scale over which the fluctu-

ating quantity, at a particular spatial location, does not vary appreciably. Similarly one may define the

correlation length of the turbulent field.
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〈v· (∇×v)〉 which contributes to α−effect does not vanish even in the perfectly mirror–

symmetric turbulence and α may be viewed as a fluctuating quantity. Now we construct

a superensemble, in which, each member of the superensemble corresponds to a differ-

ent realization of the fluctuating α ∝ 〈v· (∇×v)〉. For a perfectly mirror–symmetric

turbulence, the net helicity is expected to vanish, i.e., the superensemble–average of the

ensemble–averaged–helicity (over different realizations of α) vanishes. In other words,

α ∝ 〈v· (∇×v)〉 = 0, where Q denotes the superensemble–average of some quantity Q.

In § 8.2 we formulate the shear dynamo problem by considering temporal fluctuations

in the quantity α. Using Reynolds averaging, we split the magnetic field into mean and

fluctuating components and note that the mean field is driven by mean electromotive

force (EMF) due to α−fluctuations. We develop the equation for fluctuating magnetic

field and ignore the term which is non–linear in fluctuations. Making use of the shearing

coordinate transformation and the Green’s function for linear shear, which is derived in

the Appendix A, we write an explicit solution for the magnetic fluctuations. Thus we

determine the mean EMF due to α−fluctuations. In § 8.3 we derive explicit expressions

for mean EMF and transport coefficients for the case when the mean magnetic field

is a slowly varying function of spacetime. In § 8.4 we specialize to the case when the

mean–field is a function only of the spatial coordinate X3 and time τ ; this reduction

is necessary for comparison with some earlier works. We derive explicit expressions for

all components of magnetic diffusivity tensor, which depend on the two–time correlator

of fluctuating α. General expression for the dispersion relation is derived, which could

be expressed as a function of three dimensionless parameters. Comparisons with earlier

works are made and the implications for the dynamo action are discussed. We provide

the conclusions in § 8.5.
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8.2 The shear dynamo problem due to fluctuating

α−effect

8.2.1 The basic equations

Let (e1, e2, e3) be the unit vectors of a Cartesian coordinate system which we refer as a

lab frame, and we use the notation X = (X1, X2, X3) for the position vector, and τ for

time. The evolution of once-averaged magnetic field, denoted as B(X, τ), is given by

∂B

∂τ
= ∇× [V ×B + αB − (η + ηt)∇×B] (8.1)

where α and ηt depend on the kinetic helicity and the energy density of the turbulence

(prescribed by the turbulent flow, denoted as v), respectively. Both, α and ηt are, by

definition, quantities which are suitably averaged over the same ensemble over which

we have averaged the total magnetic field, Btot(X, τ), to define once-averaged magnetic

field, B(X, τ). Denoting this ensemble average as 〈 〉, we write explicitly,

〈
Btot

〉
= B ; α ≈ −1

3
τv〈v· (∇×v)〉 ; ηt ≈

1

3
τv〈v· v〉 ; 〈v〉 = 0 (8.2)

V in Eq. (8.1) is the background mean flow, which we assume, in our case, to be of the

form SX1e2, where S is the rate of shear parameter. We recall from Chapter (1) that the

Eq. (8.1) is valid under what is famously known as the “first order smoothing approx-

imation” (FOSA) or “second order correlation approximation” (SOCA). As mentioned

in the introduction of this chapter that, in the usual single averaging schemes, α and

ηt cannot be fluctuating quantities, as all the fluctuations have been averaged out while

taking the ensemble average, but by using the scheme of double averaging (Kraichnan,

1976; Sokolov, 1997), we may study the effects of fluctuations in the helicity by consid-

ering the fluctuations in α. The fluctuations in α have been considered in various earlier

works (Silant’ev, 2000; Proctor, 2007; Sur & Subramanian, 2009; Richardson & Proctor,

2012).
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In this chapter, we study a problem where α is prescribed in Eqn. (8.1). It is assumed

that α is independent of spatial coordinates, i.e., it is a homogeneous quantity, and it

shows temporal fluctuations which have zero mean. Symbolically, α = α(τ) and α = 0,

where Q denotes an average of an arbitrary quantity Q over the superensmeble discussed

above. The action of fluctuations in α on some given initial magnetic field is assumed

to produce B (discussed above) with well–defined mean–field (B) and fluctuating–field

(bα):

B = B + bα , bα = 0 (8.3)

Taking average of Eqn. (8.1) and following Reynolds rules, we obtain the equations

governing the dynamics of the mean and fluctuating magnetic fields:

(
∂

∂τ
+ SX1

∂

∂X2

)
B − SB1e2 = ∇×E

α + ηT∇
2B (8.4)

(
∂

∂τ
+ SX1

∂

∂X2

)
bα − Sbα1e2 = ∇×

(
αB
)
+∇×

(
α bα − α bα

)
+ ηT∇

2bα(8.5)

where ηT = η + ηt and E
α = α bα is the mean electromotive force (EMF) due to

α−fluctuations. Ignoring the term which is non–linear in fluctuations in Eqn. (8.5)

by FOSA–like approximation, we can write the evolution equation of bα as,

(
∂

∂τ
+ SX1

∂

∂X2

)
bα − Sbα1e2 = ∇×

(
αB
)
+ ηT∇

2bα, (8.6)

We note that ∇×
(
αB
)
acts as a source term for bα. Once bα has been determined, the

mean EMF due to α−fluctuations may be calculated directly by, Eα(X, τ) = α(τ) bα(X, τ),

as α(τ) is being assumed to be prescribed.

8.2.2 The shearing coordinate transformation

Eqn. (8.6) is similar to the Eqn. (5.9) of Ch. 5, in which the (X1∂/∂X2) term makes

Eqn. (8.6) inhomogeneous in the coordinate X1. This term can be eliminated through
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a shearing transformation to new spacetime variables, as was done in Ch. 5. We follow

a similar technique here. We use Eqns. (A.2) and (A.3), given in the Appendix A, and

define new variables, which are component–wise equal to the old variables:

H(x, t) = B(X, τ) , hα(x, t) = bα(X, τ) (8.7)

Note that, just like the old variables, the new variables are expanded in the fixed

Cartesian basis of the lab frame. For example, H = H1e1 + H2e2 + H3e3, where

Hi(x, t) = Bi(X, τ), and similarly for the other variables. In the new variables, Eqn. (8.6)

becomes,
∂hα

∂t
− Shα1e2 = α(τ)

(
∇×H

)
+ ηT∇

2hα (8.8)

where ∇ is given, in terms of shearing coordinates, by

∇ ≡ e1
∂

∂X1

+ e2
∂

∂X2

+ e3
∂

∂X3

= e1

(
∂

∂x1
− St

∂

∂x2

)
+ e2

∂

∂x2
+ e3

∂

∂x3
(8.9)

∇
2 is given by Eqn. (A.4). Work out,

(
∇×B

)
i
= ǫijk

∂Bk

∂Xj

= ǫijk

(
∂

∂xj
− δj1St

∂

∂x2

)
Hk = (ǫijk − ǫi1k δj2 St)Hkj (8.10)

where we have used the notation Hkj = (∂Hk/∂xj). Eqn. (8.9) may be expressed in

component form using Eqn. (8.10) as,

(
∂

∂t
− ηT∇

2

)
hαm(x, t) = qαm(x, t) (8.11)

where ∇
2 is given by Eqn. (A.4), and

qαm(x, t) = α(t) [ǫmjk − ǫm1k δj2 St]Hkj + Sδm2h
α
1 (8.12)

Below we obtain a particular (i.e. forced) solution to Eqn. (8.11) following the methods

described in Ch. 5 and the Appendix A.
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8.2.3 Explicit solution for hα(x, t)

As may be seen from Eqn. (A.1) of Appendix A that Eqn. (8.11) is exactly of similar

form. The general method to construct the Green’s function solution has been discussed

in detail in Ch. 5 and Appendix A. We are interested in the particular solution to

Eqn. (8.11) (i.e. the forced solution) which vanishes at t = 0. This can be written as

hαm(x, t) =

∫ t

0

dt′
∫

d3x′GηT (x− x′, t, t′) qαm(x
′, t′) (8.13)

where GηT (x, t, t
′) is the resistive Green’s function for linear shear flows whose derivation

and properties are given in the Appendix A (see Eqn. (A.16) where µ signifies the role

of ηT ). Substituting the expression for qαm from Eqn. (8.12) in Eqn. (8.13), we have

hαm(x, t) =

∫ t

0

dt′
∫

d3x′ GηT (x− x′, t, t′) α(t′) [ǫmjk − ǫm1k δj2 St
′]H ′

kj

+ Sδm2

∫ t

0

dt′
∫

d3x′GηT (x− x′, t, t′) hα1 (x
′, t′) (8.14)

where primes denote evaluation at spacetime point (x′, t′). The solution is not yet in

explicit form because the last term on the right side contains the unknown quantity

hα1 (x
′, t′). Thus we need to work out the integral

∫ t

0

dt′
∫

d3x′GηT (x− x′, t, t′) hα1 (x
′, t′) =

∫ t

0

dt′
∫

d3x′GηT (x− x′, t, t′)×

×
∫ t′

0

dt
′′

∫
d3x

′′

GηT (x
′ − x

′′

, t′, t
′′

) α(t′′) ǫ1jkH
′′
kj

where ′′ means evaluation at spacetime point (x
′′

, t
′′

). Note that, on the right side, x′

occurs only in the Green’s functions. So, by using the property given in Eqn. (A.7d),

the integral over x′ can be performed. Then

∫ t

0

dt′
∫

d3x′GηT (x−x′, t, t′) hα1 (x
′, t′) =

∫ t

0

dt′
∫ t′

0

dt
′′

∫
d3x

′′

GηT (x−x
′′

, t, t
′′

)α(t′′) ǫ1jkH ′′
kj
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The double–time integrals can be reduced to single–time integrals because of the following

simple identity. For any function f(x, t), we have

∫ t

0

dt′
∫ t′

0

dt
′′

∫
d3x

′′

f(x
′′

, t
′′

) =

∫ t

0

dt
′′

∫
d3x

′′

f(x
′′

, t
′′

)

∫ t

t′′
dt′

=

∫ t

0

dt
′′

(t− t
′′

)

∫
d3x

′′

f(x
′′

, t
′′

)

=

∫ t

0

dt′ (t− t′)

∫
d3x′ f(x′, t′)

where in the last equality we have merely replaced the dummy integration variables

(x
′′

, t
′′

) by (x′, t′). Then we have

∫ t

0

dt′
∫

d3x′GηT (x−x′, t, t′) hα1 (x
′, t′) =

∫ t

0

dt′ (t−t′)α(t′)
∫

d3x′GηT (x−x′, t, t′) ǫ1jkH ′
kj

Therefore the forced solution to Eqn. (8.11) can finally be written in explicit form as

hαm(x, t) =

∫ t

0

dt′ α(t′) [ǫmjk − ǫm1k δj2 St
′ + ǫ1jk δm2S(t− t′)]×

×
∫

d3x′GηT (x− x′, t, t′)H ′
kj (8.15)

Eqn. (8.15) gives the magnetic fluctuations due to fluctuating α.

8.2.4 Explicit expression for the mean EMF (Eα)

The mean EMF is given by E = α b = αh, where Eqn. (8.15) for h should be substituted.

We note that the averaging acts only on the alpha variables but not on the mean field,
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i.e., ααH = ααH . Thus the mean EMF in component form may be written as

Eα
m(x, t) =

∫ t

0

dt′ α(t)α(t′) [ǫmjk − ǫm1k δj2 St
′ + ǫ1jk δm2S(t− t′)]×

×
∫

d3x′GηT (x− x′, t, t′)H ′
kj (8.16)

Changing the integration variable to r = x− x′, we may write,

Eα
m(x, t) =

∫ t

0

dt′ α(t)α(t′) [ǫmjk − ǫm1k δj2 St
′ + ǫ1jk δm2S(t− t′)]×

×
∫

d3r GηT (r, t, t
′)Hkj(x− r, t′) (8.17)

where

H ′
kj =

∂Hk(x
′, t′)

∂x′j
=
∂Hk(x− r, t′)

∂(xj − rj)
=
∂Hk(x− r, t′)

∂xj
= Hkj(x− r, t′)

We note that the mean EMF depends only on the first spatial derivative of the mean

magnetic field.

8.3 The mean EMF (Eα) for a slowly varying mag-

netic field

Eqn. (8.4) describing the evolution of mean magnetic field may be written in shearing

coordinates as,
∂H

∂t
= SH1e2 +∇×E

α + ηT∇
2H (8.18)

where ∇ and ∇
2 are given by Eqns. (8.9) and (A.4) respectively. The term ∇×E

α

in Eqn. (8.18) may be readily determined using Eqn. (8.17). While taking curl of

Eqn. (8.17), it may be noted that the curl operates only on Hkj(x − r, t′) inside the

integral sign. Thus the term ∇×E
α is contributed only by the second order spatial

derivative of the mean magnetic field. Eqn. (8.18) together with curl of Eqn. (8.17)
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completely specifies the evolution of mean magnetic field in terms of a set of coupled

integro–differential equations, assuming the nature of alpha fluctuation is known.

The mean EMF given in Eqn. (8.17) is a functional of Hkj. When the mean–field

is slowly varying compared to correlation time of alpha fluctuations, we expect to be

able to approximate E
α as a function of Hkj. In this case, the mean–field evolution

equation would reduce to a set of coupled partial differential equations, instead of the

more formidable set of coupled integro–differential given above.

The first step involves a Taylor expansion of the quantities, Hk and Hkj. Neglecting

spacetime derivatives higher than the first order ones, we have

Hk(x− r, t′) = Hk(x, t) − rpHkp(x, t) − (t− t′)
∂Hk(x, t)

∂t
+ . . .

Hkj(x− r, t′) = Hkj(x, t) − (t− t′)
∂Hkj(x, t)

∂t
+ . . . (8.19)

We now use the equation for mean–field, Eqn. (8.18), to express
(
∂Hk/∂t

)
and

(
∂Hkj/∂t

)
,

appearing in Eqn. (8.19), in terms of spatial derivatives. Assuming that the terms in-

volving second order spatial derivatives are of order µ, where µ ≪ 1, we may write

∂Hk

∂t
= Sδk2H1 + O(µ)

∂Hkj

∂t
= Sδk2H1j + O(µ) (8.20)

Using Eqn. (8.20) in the Eqn. (8.19), we write

Hkj(x− r, t′) = Hkj(x, t) − S(t− t′)δk2 H1j(x, t) + O(µ) (8.21)

Substituting Eqn. (8.21) in Eqn. (8.17), we write the following expression for mean EMF
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for slowly varying mean magnetic field:

Eα
m(x, t) =

∫ t

0

dt′ α(t)α(t′) [ǫmjk − ǫm1k δj2 St
′ + ǫ1jk δm2S(t− t′)]×

×
[
Hkj(x, t) − S(t− t′)δk2 H1j(x, t)

] ∫
d3r GηT (r, t, t

′) (8.22)

From Eqn. (A.17) of Appendix A, we note that

∫
d3r GηT (r, t, t

′) = 1 (8.23)

Using Eqn. (8.23) in Eqn. (8.22), we may write after some straightforward algebra

Eα
m(x, t) = Hkj(x, t)

∫ t

0

dt′ α(t)α(t′) [Γmjk(t, t
′)− S(t− t′)δk1Γmj2(t, t

′)] (8.24)

where

Γmjk(t, t
′) = ǫmjk − ǫm1k δj2 St

′ + ǫ1jk δm2S(t− t′) (8.25)

Although the sheared coordinates are essential for the calculations, but physical inter-

pretation is simplest in the laboratory frame; hence we derive an expression for the mean

EMF in terms of B(X, τ) by using,

Hkj(x, t) ≡
∂Hk(x, t)

∂xj
=

(
∂

∂Xj

+ Sτδj1
∂

∂X2

)
Bk(X, τ), (8.26)

and working out

Hkj [Γmjk − S(t− t′)δk1Γmj2] = −Bkj

{
−Γmjk + S(τ − τ ′)Γmj2δk1 −

−SτΓm1kδj2 + S2τ(τ − τ ′)Γm12δk1δj2

}
,
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we can write the following expression for mean EMF for a slowly varying magnetic field:

Eα
m(X , τ) = −βmjk(τ)

∂Bk(X, τ)

∂Xj

(8.27)

where the transport coefficient, βmjk(τ), is given by

βmjk(τ) =

∫ τ

0

dτ ′ α(τ)α(τ ′) ×

×
{
−Γmjk + S(τ − τ ′)Γmj2δk1 − SτΓm1kδj2 + S2τ(τ − τ ′)Γm12δk1δj2

}

(8.28)

Thus the evolution equation for mean–field, Eqn. (8.4), together with Eqns. (8.27) and

(8.28) is a closed partial differential equation (which is first order in temporal and second

order in spatial derivatives).

8.4 Predictions and comparisons with earlier works

We wish to compare our analytical results with measurements of numerical simulations,

which use the test–field method to compute the transport coefficients (cf. Brandenburg

et al. (2008) and Ch. 7). In this method, the mean–magnetic field is averaged over

the coordinates X1 and X2. So we consider the case when the mean magnetic field,

B = B(X3, τ). The condition ∇·B = 0 implies that B3 is uniform in space, and it

can be set to zero; hence we have B = (B1, B2, 0). In this case, we can write from

Eqns. (8.27) and (8.28)

Eα
m(X, τ) = −βm3k(τ)

∂Bk(X, τ)

∂X3
(8.29)

βm3k(τ) =

∫ τ

0

dτ ′ α(τ)α(τ ′) [−Γm3k + S(τ − τ ′)Γm32δk1] (8.30)
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where Γmjk is given by Eqn. (8.25). Now, we can express the mean EMF as E
α =

(E1, E2, 0), with

Eα
m = − βmp(τ) Jp ; J = ∇×B =

(
−∂B2

∂X3
,
∂B1

∂X3
, 0

)
(8.31)

where 2–indexed magnetic diffusivity tensor due to α−fluctuations βmp has four com-

ponents, (β11, β12, β21, β22), which are defined in terms of the 3–indexed object βmjk

by

βmp(τ) = ǫkp3 βm3k(τ) ; implying βm1(τ) = − βm32(τ) , βm2(τ) = βm31(τ) (8.32)

Eqn. (8.31) for Eα can now be substituted in Eqn. (8.4). Then the mean–field evolves

as,

∂B1

∂τ
= − β21

∂2B2

∂X2
3

+ (ηT + β22)
∂2B1

∂X2
3

∂B2

∂τ
= SB1 − β12

∂2B1

∂X2
3

+ (ηT + β11)
∂2B2

∂X2
3

(8.33)

The diagonal components, β11(τ) and β22(τ), augment the resistivity, ηT , whereas the

off–diagonal components, β12(τ) and β21(τ), lead to cross–coupling of B1 and B2.

8.4.1 Magnetic diffusivity tensor (βmp) due to α−fluctuations

We can write the following simplified expression for βmp(τ) after doing some calculations

by using Eqns. (8.32), (8.30) and (8.25):
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βmp(τ) =

∫ τ

0

dτ ′ α(τ)α(τ ′) ×

×
{
−δpm + S(τ − τ ′) [ǫ1p3 ǫm32 − δp1 δm2]− S2(τ − τ ′)2 ǫ1p3 δm2

}
(8.34)

It is useful to display all four components of βmp(τ):

β11(τ) = −
∫ τ

0

dτ ′ α(τ)α(τ ′)

β22(τ) = −
∫ τ

0

dτ ′ α(τ)α(τ ′)
[
1 + S2(τ − τ ′)2

]

β12(τ) = −
∫ τ

0

dτ ′ α(τ)α(τ ′) S(τ − τ ′)

β21(τ) = β12(τ) = −
∫ τ

0

dτ ′ α(τ)α(τ ′) S(τ − τ ′) (8.35)

The correlation function of the α−fluctuations, denoted as α(τ)α(τ ′), is expected to be

function of the difference of times τ−τ ′ alone, in the steady state. Therefore, we consider

it to be of the form

α(τ)α(τ ′) = α2
rmsD(τ − τ ′) (8.36)

where D(τ − τ ′) is a dimensionless function characterizing the profile of the correlation

function of fluctuating α. As may be seen from Eqn. (8.36) that D(0) = 1, as the root–

mean–squared value of alpha at any arbitrary time τ is defined by, α2
rms(τ) = α(τ)α(τ).

Let us assume that the correlation time of alpha fluctuations is denoted by τα.

The βmp(τ) saturate at some constant value at late times; let us denote these con-

stant values by β∞
mp = βmp(τ → ∞). If the mean magnetic field changes over times

that are longer than the saturation time, we may use β∞
mp instead of the time–varying

quantities βmp(τ) in Eqn. (8.33). In this case, we can write the following expressions for
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all components of β∞
mp using Eqns. (8.35) and (8.36):

β∞
11 = −α2

rms τα ; β∞
22 = −α2

rms τα
[
1 + 2n(Sτα)

2
]

β∞
12 = −α2

rms ταm(Sτα) ; β∞
21 = β∞

12 (8.37)

where τα, m and n have been defined to be of the form

τα =

∫ ∞

0

dτ ′ D(τ ′) ; m =
1

τ 2α

∫ ∞

0

dτ ′ τ ′ D(τ ′) ; n =
1

2τ 3α

∫ ∞

0

dτ ′ τ ′2 D(τ ′) (8.38)

m and n defined above are just the numbers characterizing the profile of the correlation

function of the α−fluctuations. By choosing some form for D(τ ′), m and n may be

determined by using Eqn. (8.38). Few important properties of β∞
mp are as follows:

(i) We see that β∞
11 is always negative and is independent of shear. This leads to the

negative diffusion of B2 as may be seen from Eqns. (8.33).

(ii) β∞
22 , which is also always negative, is contributed by two terms, one of which de-

pends on the shear. Shear adds to the negative diffusion, and if strong enough, it

might lead to self–excitation of B1. For zero shear, limS→0 β
∞
22 = β∞

11 .

(iii) We find that β∞
12 , which is equal to β∞

21 , is a positive quantity for negative values

of the shear parameter, S. These components vanish in the limit of zero shear.

(iv) Negative diffusion of mean magnetic field in the absence of shear was first noted

by Kraichnan in 1976 (see Kraichnan (1976)). This was called an α2−effect. Our

results obtained above reduce in agreement to the results of Kraichnan in the limit

of zero shear.

(v) All four components of β∞
mp depend on α2

rms and the correlation time of α−fluctuations,

τα.

Looking for solutions B ∝ exp [λτ + iK3X3] and substituting it in Eqn. (8.33), we

obtain the dispersion relation,
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λ±
ηTβ K

2
3

= −1 ± 1

ηTβ

√
β∞
21

(
S

K2
3

+ β∞
12

)
+ ǫ2β (8.39)

where the new constants are defined as,

ηTβ = ηT +
1

2
(β∞

11 + β∞
22) , ǫβ =

1

2
(β∞

11 − β∞
22) (8.40)

Before examining various conditions for exponentially growing solutions of the mean

magnetic field, we wish to rewrite Eqn. (8.39) in more useful form. To do that, we define

few dimensionless control parameters which may be identified as dynamo numbers :

DK =
α2
rms τα
ηT

; Tα = τα ηT K
2
3 ; Sα = |S| τα (8.41)

With the help of Eqns. (8.37), (8.40) and (8.41), the dispersion relation given in Eqn. (8.39)

may be expressed as

λ±
ηT K2

3

= −1 +DK

[
1 + nS2

α

]
± D1/2

K Sα

(−m
Tα

+ m2DK + n2DK S2
α

)1/2

(8.42)

As the modes were sought in the form of B ∝ exp [λτ + iK3X3], we note that the

positive real roots of Eqn. (8.42) admit exponentially growing solutions for the mean

magnetic field. Defining a quantity,

T crit
α =

m

m2DK + n2DK S2
α

, (8.43)

we may write the Eqn. (8.42) as,

λ±
ηT K2

3

= −1 +DK

[
1 + nS2

α

]
± m1/2 D1/2

K Sα

√
1

T crit
α

− 1

Tα

(8.44)
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8.4.2 Implications for dynamo action

Our aim is to find various conditions for the dynamo action by analyzing Eqn. (8.42)

in detail. Below, we first consider the following limiting cases before discussing various

conditions for dynamo action in greater detail:

• The case of zero shear (i.e., Sα = 0): Substituting Sα = 0 in Eqn. (8.42), we find

λ±
ηT K2

3

= −1 +DK ; Condition for dynamo action : DK > 1 (8.45)

This case was first discussed by Kraichnan (1976) where it was noted that the

fluctuations in α lead to the negative diffusion of mean magnetic field, in other

words, its effect is to diminish the decay of mean magnetic field due to positive

diffusion (through the ηT−term, where ηT is assumed to be positive), and if the

fluctuations in α be strong enough, it might lead to the growth of mean magnetic

field.

• A sufficient condition for dynamo action: In the case of non–zero shear, a sufficient

condition for dynamo action may be given by DK [1 + nS2
α] > 1, as may be seen

from Eqn. (8.42).

• Negative radicand in Eqn. (8.44), i.e., when 0 < Tα ≤ T crit
α : In this case the radi-

cand in Eqn. (8.44) becomes negative and does not exhibit growing modes. The

condition for growth of mean magnetic field in this case is, DK [1 + nS2
α] > 1.

• Positive radicand in Eqn. (8.44), i.e., when Tα > T crit
α : In this case λ+ seems to be

the favourable root for dynamo action if the first two terms on the right hand side

of Eqn. (8.44) be subcritical.

• Growth rate in the limit when, Sα ≪ 1 and DK < 1: In this limit, it may be shown

from Eqn. (8.42) that

λ±
ηT K2

3

= −1 +DK ± D1/2
K Sα

(−m
Tα

+ m2 DK

)1/2

+ O(S2
α) (8.46)
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It may be seen from above equation that λ+ is favourable for the dynamo action.

We note from Eqn. (8.46) that the growth rate varies linearly with shear, i.e., λ+ ∝
|S|. This scaling has been observed and discussed in various earlier works (Yousef

et al., 2008a,b; Brandenburg et al., 2008; Hughes & Proctor, 2009; Heinemann,

McWilliams & Schekochihin, 2011; Mitra & Brandenburg, 2012; Richardson &

Proctor, 2012). This linear scaling was also observed in our simulations presented

in Ch. 7 (see Fig. (7.10)).

• Growth rate in the limit when, Sα ≫ 1: In this limit, the terms of order S2
α domi-

nate, as may be seen from Eqn. (8.42). Thus for sufficiently large shear, we may

write by ignoring the first two terms of the radicand given in Eqn. (8.42),

λ+
ηT K

2
3

≈ −1 +DK

[
1 + 2nS2

α

]
;

λ−
ηT K

2
3

≈ −1 +DK (8.47)

We see that λ+ shows strong dependence on shear and seem to scale with shear

as, λ+ ∝ |S|2. The root λ− seem to be approximately independent of shear in

this limit. Thus, in the limit of small DK , only λ+ may be responsible for dynamo

action with growth rate scaling as, λ+ ∝ |S|2, for large values of Sα.

Having discussed some of the asymptotic limits of Eqn. (8.42), we now wish to demon-

strate some general conditions for dynamo action by exploring range of values of the three

dynamo numbers, DK , Tα and Sα defined above in Eqn. (8.41). First, we need to choose

some form for the profile function of αα correlation, D(τ ′), given in Eqn. (8.36), in order

to compute the values of the quantities m and n defined in Eqn. (8.38). Out of many

possible choices for D(τ ′), let us choose it to be of the form

D(τ ′) = exp

(
− τ ′

τα

)
; which implies from Eqn. (8.38), m = 1 ; n = 1 (8.48)

As an illustrative example, we wish to choose some parameter values which are typical

to the interstellar medium of our Galaxy. Let us choose following typical values of some

parameters: Supernovae (SNe) inject energy in the interstellar medium (ISM) with a
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typical stirring scale of order, ℓstir ∼ 100 pc; the turbulent velocity field caused due to

SNe stirring is typically of order, vturb ∼ 10 km/s at the disc mid–plane; a typical scale

over which the mean magnetic field varies (LB) may be taken to be of the order of the

scale height of the ionized gas, thus LB ∼ 500 pc; and, the observed value of the rate

of shear for the Milky Way gives the shearing time scale, |S|−1 ∼ 108 yr. Using these

values, we estimate: (i) the turbulent diffusivity, ηt ∼ (vturbℓstir)/3 ∼ 1026 cm2/s; (ii) the

turbulent diffusion time scale (or the decay time scale) of the “large–scale” magnetic

field, tdecay ∼ L2
B
/ηt ∼ 5 × 108yr; 2 and (iii) the stirring time scale due to the SNe,

tstir ∼ ℓstir/vturb ∼ 107 yr. Although ηT = η + ηt, the microscopic resistivity (η) in the

ISM being extremely small (η ∼ 107 cm2/s) as compared to the turbulent diffusivity, ηt

(∼ 1026 cm2/s estimated above), we can take ηT ≈ ηt (see Shukurov & Sokoloff (2008)

for a detailed introduction to the “Galactic Dynamos”). We note from Eqn. (8.41) that

Tα is an estimate of the ratio of the correlation time of the fluctuating α (τα) and the

turbulent diffusion time scale of the large–scale magnetic field (tdecay), and Sα measures

the ratio between τα and the shearing time scale given by |S|−1. Assuming τα to lie

between tstir and the galactic life time (which is twenty times larger than tdecay), i.e.,

107 yr < τα < 1010 yr, we can see that 2× 10−2 < Tα < 20 and 10−1 < Sα < 100.

As we saw in the expression for the dispersion relation of the form given in Eqn. (8.42)

that there are three different dimensionless parameters, DK , Tα and Sα defined in

Eqn. (8.41), which can be varied to explore the possibility of the dynamo action. It

is helpful to fix the value of one of the parameters and vary the remaining two to look for

the real positive roots of the dispersion relation (Eqn. (8.42)) which are responsible for

the dynamo growth. Figs. (8.1–8.3) display the region plots, demonstrating the dynamo

region, as a function of two dimensionless parameters while the remaining third one is

kept constant. Various combinations of these dynamo numbers have been explored to

look for the conditions for the growth of large–scale magnetic field. In Fig. (8.1) we plot

the dynamo region as a function of DK and Sα for fixed values of Tα. The three panels

2Note that this decay time of “large–scale” magnetic field is a small fraction of the Galactic lifetime

(∼ 1010 yr), and hence the observed magnetic field needs to be maintained by the dynamo action
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Figure 8.1: Region plots of the growth rate as a function of DK and Sα for three different

values of Tα. These figures demonstrate the shaded region (shown in sky blue colour) in

which the dynamo action is possible. The left panel corresponds to Tα = 0.1; the middle

panel corresponds to Tα = 1.0; and the right panel corresponds to Tα = 10.0.

in Fig. (8.1) correspond to three different values of Tα, namely Tα = 0.1, 1.0 and 10.0

corresponding to the left, middle and the right panels respectively. In Fig. (8.2) we plot

the dynamo region as a function of DK and Tα for fixed values of Sα. The three panels

in Fig. (8.2) correspond to three different values of Sα, namely Sα = 0.1, 1.0 and 10.0

corresponding to the left, middle and the right panels respectively. Fig. (8.3) displays

the dynamo region as a function of Tα and Sα for fixed values of DK . The two panels in

Fig. (8.3) correspond to the two values of DK , namely DK = 0.1 for the left panel and

DK = 1.0 for the right panel. The interfaces between the shaded (sky blue) and the blank

(white) regions in various panels of Figs. (8.1–8.5) define the threshold or the criticality

for the dynamo action. As may be seen from these figures that the critical condition for

the dynamo action is a function of the parameters being explored. As noted before, DK

is a measure of alpha fluctuations; Tα is an estimate of the ratio of the correlation time of

the fluctuating α (τα) and the turbulent diffusion time scale of the large–scale magnetic

field (tdecay); and Sα measures the ratio between τα and the shearing time scale given by

|S|−1. Some noteworthy properties are as follows:

(i) If DK exceeds unity, we see dynamo action even when Sα = 0, whereas for smaller
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Figure 8.2: Region plots of the growth rate as a function of DK and Tα for three different

values of Sα. These figures demonstrate the shaded region (shown in sky blue colour) in

which the dynamo action is possible. The left panel corresponds to Sα = 0.1; the middle

panel corresponds to Sα = 1.0; and the right panel corresponds to Sα = 10.0.

values of DK , we need some minimum values of Sα defining the threshold above

which there is dynamo action and below which there is no dynamo action; see

Fig. (8.1).

(ii) For larger values of Sα we see that it is easy to excite dynamo for even smaller

values of DK . The critical value of Tα is a strong function of DK . If the value of DK

falls below a certain value for fixed Sα, the critical value of Tα approach extremely

large values; see Fig. (8.2).

(iii) For a fixed DK , there is a minimum value of Sα which is needed to excite the

dynamo. This minimum value of Sα as a function of Tα is insensitive upto certain

value of Tα, and falls below once Tα is increased further; see Fig. (8.3).

We saw in § 7.4 of Ch. 7 of this thesis that there is a dimensionless parameter, DαS,

defined in Eqn. (7.18) with respect to αrms
22 , which, when exceeds the value 2.3, gives rise

to the dynamo action (Dcrit
αS ≈ 2.3 was first determined numerically in Brandenburg et

al. (2008)). To explore the dynamo regime as a function of DαS , we define the dimen-

sionless parameter corresponding to the incoherent alpha–shear mechanism considering
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Figure 8.3: Region plots of the growth rate as a function of Tα and Sα for tow different

values of DK . These figures demonstrate the shaded region (shown in sky blue colour)

in which the dynamo action is possible. The left panel corresponds to DK = 0.1; and

the right panel corresponds to DK = 1.0.

fluctuations in isotropic alpha. The new dynamo parameter is related to DK , Tα and Sα

by,

DSα =
αrms|S|
η2TK

3
3

=
D1/2

K Sα

T 3/2
α

(8.49)

Using Eqn. (8.49) we can write any one of the parameters DK , Tα or Sα in terms of

DSα. Thus we can always express the dispersion relation given in Eqn. (8.42) in terms

of DSα and any two of the three known parameters, DK , Tα and Sα. In Fig. (8.4) we

display the dynamo region as a function of DK and DSα for fixed values of Tα. The left

panel corresponds to Tα = 0.5 and the right panel corresponds to Tα = 1.0. A careful

investigation of Fig. (8.4) reveals:

(i) If Tα = 1.0 (right panel), the critical value of DSα, which is understood to be a

function of DK , never exceeds unity.
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Figure 8.4: Region plots of the growth rate as a function of DK and DSα for tow different

values of Tα. These figures demonstrate the shaded region (shown in sky blue colour) in

which the dynamo action is possible. The left panel corresponds to Tα = 0.5; and the

right panel corresponds to Tα = 1.0.

(ii) While it is understood that the value Dcrit
Sα = 2.3 has nothing special in terms of

exciting the dynamo, it may be noted from the left panel that it can be satisfied

for the chosen values of parameters (Tα, m, n) when the value of DK is very small,

as may be the case in most numerical simulations (of Brandenburg et al. (2008)

and Ch. 7 of this thesis).

To further comment on DSα, we plot in Fig. (8.5) the dynamo region as a function of

DK and Tα for DSα = 2.3. We note that the smaller values of DK would require larger

values of critical values of Tα and vice versa to trigger the dynamo action.

It is important to realize that the dispersion relation, which we explore to find various

dynamo conditions, is a function of three dimensionless parameters and it can be ex-

pressed in terms of different sets of three dimensionless parameters by constructing more

dimensionless numbers. The real positive roots of the dispersion relation are responsible

for dynamo action. Thus the critical condition for the dynamo action is essentially given
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Figure 8.5: Region plot of the growth rate as a function of DK and Tα for DSα = 2.3,

demonstrating the dynamo region (shown in sky blue colour). Compare Brandenburg et

al. (2008).

by a surface in three dimensional parameter space at which the real part of the dispersion

relation vanishes.

8.5 Conclusions

In this chapter we have formulated the shear dynamo problem by considering fluctuations

in α which have zero mean. In Chs. 5 and 6 we studied the shear dynamo problem due

to non–helical flows in the limit of small Rm, where the analysis of Ch. 5 was valid for

arbitrary values of Re, whereas the analysis of Ch. 6 also assumed the small Re limit.

Our theoretical investigations were always non–perturbative in the shear parameter.

The main conclusion of Chs. 5 and 6 was that there is no dynamo action in the limits

explored. Results of Ch. 7 motivated us to study this problem in the light of fluctuating



CHAPTER 8. THE SHEAR DYNAMO DUE TO α−FLUCTUATIONS 185

helicity in a mirror–symmetric turbulence. This problem may be studied by using the

concept of double averaging in which any quantity may be first averaged over an ensemble

(defined by the different realizations of the velocity field) and then one can take another

average over the superensemble (defined by different realization of the fluctuating α ∝
〈v· (∇×v)〉). Thus, we modelled the usual “alpha square–omega” dynamo equation and

considered that the quantity α is a stochastic variable.

We start with the usual α2−Ω dynamo equation for the once–averaged (or ensemble–

averaged) magnetic field. The quantity α is assumed to fluctuate in time whose average

over the superensemble vanishes. Using Reynolds averaging, we split the magnetic field

into mean and fluctuating components. The mean magnetic field is driven by the curl of

mean EMF due to fluctuating α, denoted as Eα, which may be determined by solving the

equation for fluctuating magnetic field. We write the equation for fluctuating magnetic

field by ignoring the term which is non–linear in fluctuations; this may be thought of as

FOSA–like approximation. Using the shearing coordinate transformation and the various

properties of the Resistive Green’s function discussed in the Appendix A, we write explicit

solution of the fluctuating magnetic field. We then determine E
α in terms of two–point

correlation function of random alpha and the first spatial derivative of mean magnetic

field, suggesting that the fluctuating α lead to diffusive–like effect. We considered the

case of slowly varying mean magnetic field and wrote explicit expressions for the mean

EMF due to alpha fluctuations and the transport coefficient. The transport coefficient

could be expressed in terms of two–time correlator of random alpha. For comparative

purposes, we considered the case when the mean–field is a function only of the spatial

coordinate X3 and time τ . We derived explicit expressions for all four components of the

transport coefficient, which is also called ‘the turbulent diffusivity tensor due to alpha

fluctuations’, βmp(τ). As βmp(τ) saturate at finite values at late times, we consider the

saturated values of βmp(τ) denoted by β∞
mp in our analysis. Few important properties of

β∞
mp are as follows:

1. In the limit of zero shear, only the diagonal components, β∞
11 and β∞

22 , survive and

the off–diagonal components vanish.
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2. Both β∞
11 and β∞

22 are negative, in which β∞
11 is independent of shear and β∞

22 is

contributed by two terms, one of which depends on shear. The shear makes β∞
22

more negative.

3. The negative values of β∞
11 and β∞

22 lead to the negative diffusion of mean mag-

netic field giving rise to self–excited dynamo without any cross–coupling between

different components of mean magnetic field.

4. Our results reduce in agreement to the results of Kraichnan (1976) in the limit

of zero shear, who did similar analysis in the absence of shear and reported the

negative diffusion of mean magnetic field.

5. Both β∞
12 and β∞

21 , which lead to the coupling of different components of mean

magnetic field, are positive for negative values of the rate of shear which we assume.

Also β∞
12 = β∞

21 .

We derive the dispersion relation, Eqn. (8.39), and write it in convenient form,

Eqn. (8.42), by defining three dimensionless parameters, DK , Tα and Sα, which are given

in Eqn. (8.41). We study various situations in which the mean magnetic field could grow

by exploring range of values of the three dimensionless parameters. The main conclusion

may be stated as: the fluctuations in α with zero mean in conjunction with background

shear flow can give rise to the growth of large–scale magnetic field.

Below we summarize some of the key results related to the dynamo action:

• The dispersion relation, which we explore to find various dynamo conditions, is

a function of three dimensionless parameters and it can be expressed in terms of

different sets of three dimensionless parameters by constructing more dimensionless

numbers. The real positive roots of the dispersion relation are responsible for

dynamo action. Thus the critical condition for the dynamo action is essentially

given by a surface in three dimensional parameter space at which the real part of

the dispersion relation vanishes.
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• The critical value required by one of the parameters for dynamo action is a function

of the remaining two dimensionless parameters, e.g., Dcrit
αS varies as a function of two

other dimensionless parameters, and hence is not a unique number; see Figs. (8.1)–

(8.5).

• Sufficiently strong α−fluctuations may lead to the growth of mean magnetic field

by the process of negative diffusion, even in the absence of shear; see Eqn. (8.45).

• Assuming that the fluctuations in α be small such that DK < 1, we find that

the growth rate varies linearly with shear in the limit of small Sα; see Eqn. (8.46).

This linear scaling has been observed and discussed in various earlier works (Yousef

et al., 2008a,b; Brandenburg et al., 2008; Hughes & Proctor, 2009; Heinemann,

McWilliams & Schekochihin, 2011; Mitra & Brandenburg, 2012; Richardson &

Proctor, 2012). This linear scaling is also observed in our simulations presented in

Ch. 7; see Fig. (7.10).

• For large values of Sα, the growth rate varies as |S|2. This scaling has also been

reported in Richardson & Proctor (2012).

• By analyzing the conditions for dynamo action as a function of three dimensionless

parameters, we find that the shear helps in the generation of large–scale magnetic

field in the presence of α−fluctuations. If the fluctuations in α are extremely small,

one can still find growing solutions for the mean magnetic field for sufficiently large

values of shear; see Figs. (8.1)–(8.5).

• In most numerical simulations that we perform, the fluctuations in α are not too

strong, and hence these alone may not give rise to the dynamo action, unless

supported by the shear.

It is routinely found in the numerical simulations of the shear dynamo that the

quantity α fluctuates in time without having any net value, even when the random

forcing at small scales in these simulations was non–helical, therefore, it seems plausible

that these observed α−fluctuations together with background shear flow could have led
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to the growth of large–scale magnetic fields in these simulations, by the mechanisms

described in our analytical calculations of fluctuating α discussed above.



Chapter 9
CONCLUSIONS & OUTLOOK

In this chapter we present some of the broad conclusions of different problems that were

studied in this thesis. The conclusions for each chapter are also separately given at the

end of every chapter, and therefore here we highlight only the main conclusions. We

briefly mention below the central topic of the thesis and its basic motivation:

• The main question that was considered: We studied the shear dynamo prob-

lem which may be stated as: Under what conditions does the large–scale magnetic

field grow due to the mirror–symmetric (i.e. non–helical) turbulence at small scales,

in the background linear shear flow ?

This problem may be viewed in the following way: In a given background mean

shear flow, the kinetic energy is being supplied by stirring the electrically conduct-

ing incompressible fluid in a non–helical fashion, as a result of which, the magnetic

energy at large–scale is seen to grow in time due to the large–scale dynamo action.

This is clearly a process of inverse–cascade in which the energy is being transferred

from small scale to larger scales. Our aim is to understand the reason for this shear

dynamo action in the absence of usual α−effect.

• The motivation to pursue this problem: We mention the following two main

motivations to study this problem:
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(i) From observations: Astrophysical systems possess ordered magnetic field in ad-

dition to a random component which survive for time scales much larger than

the diffusion time scales in those systems, and therefore are thought to be self–

sustained by the turbulent dynamo action. The mean differential rotation is com-

mon in these systems, e.g., the Sun, the disc galaxies, the accretion discs etc.

The standard paradigm involves amplification of seed magnetic fields, due to non

mirror–symmetric (i.e. helical) turbulent flows through the α−effect (Moffatt,

1978; Parker, 1979). Only recently the role of mean shear in the turbulent flow

is beginning to be appreciated. Dynamo action due to shear and turbulence re-

ceived some attention in the astrophysical contexts of accretion discs (Vishniac

& Brandenburg, 1997) and galactic discs (Blackman, 1998; Sur & Subramanian,

2009). The natural question to be addressed may be posed as: In the absence of

usual α− effect, will it be possible to generate large–scale magnetic field just due

to the action of mirror–symmetric turbulence in background shear flow on the seed

magnetic field ?

(ii) From simulations: The question posed just above were simulated in the recent

past by Yousef et al. (2008a,b); Brandenburg et al. (2008). These simulations

clearly demonstrated the growth of large–scale magnetic field due to non–helical

stirring at small scale in the background linear shear flow.

This forms the basic motivation for our interest in the study of the shear dynamo

problem in the absence of usual α−effect. It is realized that this problem of the shear

dynamo is quite difficult in nature and therefore we first develop the necessary techniques,

which is then applied to a simpler problem of passive scalar mixing, before pursuing the

main problem concerning the shear dynamos. In the problems studied in this thesis,

we assumed a linear shear flow, and throughout this thesis, we dealt with the shear

parameter non–perturbatively. We derived the resistive Green’s function for a linear

shear flow, which is equivalent to the one first derived by Krause & Rädler (1980). Using

the Galilean invariance of linear shear flows, which is a statement of homogeneity in

the sheared coordinate frame, we proved a result on the Galilean invariant form of the
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unequal–time two–point velocity correlators in Fourier space, and demonstrated that

any general second order correlator of random velocity field, in terms of which various

transport coefficients of different transport phenomena (of passive scalar or the magnetic

field) could be expressed, can entirely be written in terms of a single entity which we

called the velocity spectrum tensor. Below we present broad conclusions together with

statements of different problems in the sequence of their appearance in the thesis:

1. Shearing waves: Shear flows are common and seen in a variety of astrophysical

contexts; like differential rotation in disc galaxies, accretion discs around compact objects

etc. The shearing waves are excited in such systems by some random stirring in the

medium, e.g., in disc galaxies the random supernovae (SNe) events stir the differentially

rotating disc and excite shearing waves. These shearing waves tend to mix passive scalar

and the magnetic fields in the medium. Our aim is to understand the large–scale dynamo

action in systems which possess mean shear, and therefore a necessary understanding

of waves in such shearing systems is quite useful in our studies related to the large–

scale dynamo action. We studied the free and non–helically forced shearing waves in

background linear shear.

• Exact solutions of the Navier–Stokes equations: By studying the incompressible

Navier–Stokes equations in a background linear shear flow in the absence of any

external forcing, we have constructed a plane shearing wave solution for the Navier–

Stokes equations in linear shear flows. These solutions are also the exact solutions

and we have presented explicit expressions for all three components of the veloc-

ity field in the real form. We demonstrate that, when these shearing modes, also

known as the Kelvin modes, with parallel wavevectors are superposed, they remain

exact solutions. We give, in explicit form, the most general plane transverse shear-

ing wave solution, with any specified initial orientation, profile and polarization

structure, with either unbounded or shear–periodic boundary conditions. This was

presented in Ch. 2.

• Forced stochastic velocity dynamics: In Ch. 3 we studied the stochastically forced
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incompressible shear flows by solving the Navier–Stokes equations with a back-

ground linear shear flow with external random forcing in the limit of small fluid

Reynolds numbers. The forcing was assumed to be non–helical (mirror–symmetric),

as our aim was to model the non–helical random flow in linear shear flows. It was

shown that the non–helical forcing of an incompressible fluid at low Re, in the

absence of Lorentz forces, gives rise to a non–helical velocity field. We determined

the velocity spectrum tensor which was later used to compute various transport

coefficients.

2. Passive scalar mixing in shear flows: A passive scalar evolves according

to an advection–diffusion equation, which is much simpler than the induction equation

governing the evolution of magnetic field, and therefore provides a simpler situation

where we could quickly apply our techniques to understand the large–scale mixing of the

passive scalar. As we have developed stochastic forced shearing wave solutions which

are non–helical, because of our ultimate interest in the shear dynamos, we applied the

same solutions of non–helical turbulent flows in background linear shear flows to study

the mixing of passive scalars. We found the possibility of transient amplification of mean

concentration of the passive scalar. Just like everything else in the thesis, this result is

non–perturbative in the shear parameter.

3. The shear dynamo problem: The problem of the shear dynamo was first

analytically studied in the limit of low Reynolds numbers and the α−effect was strictly

absent. These investigations motivated us to look for the dynamo action in such systems

in the limit when at least the fluid Reynolds number be below unity, and we performed

numerical simulations using the Pencil Code1 in previously unexplored parameter

regimes. Results of our numerical simulations and the simulations of Brandenburg et

al. (2008) in different parameter regimes provided strong evidence for the non–trivial

role of fluctuations in α, which have zero mean, in the presence of background linear

shear flow. This led us to analytically study the shear dynamo problem where α could

1See http://www.nordita.org/software/pencil-code.
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be considered as a fluctuating quantity with zero mean. As argued before by Kraichnan

(1976), these fluctuations in α may be understood in terms of helicity fluctuations.

We show analytically that the fluctuations in α with zero mean together with mean

background shear can drive the large–scale dynamo action. The main results may be

given as follows:

(i) When α−effect is strictly zero: Some earlier works on the similar problem proposed

that the origin of the large–scale magnetic field in such systems may be explained

by an effect known as the shear–current effect (Rogachevskii & Kleeorin 2003, 2004,

2008).

We formulated the problem of the shear dynamo in the limit of low Reynolds

numbers and concluded that the shear–current effect cannot be responsible for

dynamo action. Our theory is found to be in good agreement with some other

works, esp., with Brandenburg et al. (2008) who computed the magnetic diffusivity

tensor and concluded that the relevant component responsible for the shear–current

effect (η∞21) is of wrong sign and hence cannot give rise to the dynamo action. This

was the natural prediction of our theory.

Thus the main contribution of our studies, in which α was strictly zero, may be

stated as follows: The mean magnetic field cannot grow due to mirror–symmetric

turbulence in the background linear shear flow, at least in the limit when: (a)

both fluid and magnetic Reynolds numbers are below unity; (b) α−effect is strictly

absent (without considering any fluctuations in α); but (c) the shear parameter

can take arbitrary values.

This negative result of no dynamo action prompted us to carry out various numer-

ical simulations when at least one of Re, Rm is below unity.

(ii) Results of numerical studies of the shear dynamo: We demonstrated the large–scale

dynamo action in the limit when Re < 1 and Rm > 1. We performed simulations

in the regime when both (Re,Rm) < 1 to compare the results with our analytical

calculations done in the similar regime and found a reasonably good agreement. We
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also estimated the dynamo number (DαS), which was empirically defined in Bran-

denburg et al. (2008) corresponding to the incoherent alpha–shear mechanism2, for

many simulations, and found that the dynamo number (DαS) is always supercriti-

cal for cases, in which, we see dynamo growth, a result which is in agreement with

Brandenburg et al. (2008)3. This suggested that the incoherent alpha–shear mech-

anism could plausibly be the reason for observed shear dynamo due to non–helical

random stirring in these simulations. Thus our numerical investigations, together

with those of Brandenburg et al. (2008) in different parameter regime, motivated

us to analytically study the problem of dynamo action by assuming fluctuations in

α with no net value in the presence of background linear shear flow.

(iii) When α is a fluctuating quantity with zero mean: By considering temporal fluctu-

ations in the quantity α, with its mean value zero, we demonstrated that the

fluctuations in α with zero mean in conjunction with background shear flow can

give rise to the growth of large–scale magnetic field. Some other conclusions of this

analysis could be stated as:

(a) In the limit of zero shear, we find that only the diagonal components of the

turbulent diffusivity tensor (β∞
mp) survive, which are negative. This leads to the

negative turbulent diffusion of mean magnetic field, which in case of sufficiently

strong α−fluctuations may give rise to the self–excited dynamo action. This

result was first obtained by Kraichnan (1976) who did a similar analysis in

the absence of shear.

(b) The shear leads to cross–coupling of different components of mean magnetic

field with each other through the off–diagonal components of β∞
mp. The diag-

onal components couple each component of mean magnetic field with itself.

2A mechanism by which the fluctuations in α with no net value in conjunction with mean shear

might give rise to the large–scale dynamo action in such systems.
3Critical value of DαS (Dcrit

αS ≈ 2.3), above which the dynamo is seen, was empirically determined in

Brandenburg et al. (2008). We show by our analytical investigation of fluctuating α with background

mean shear that this number 2.3 is not unique; we describe it later.
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The shear makes one of the diagonal components β∞
22 more negative whereas

β∞
11 is independent of the shear.

(c) By deriving the dispersion relation and putting it in a useful form in terms

of three dimensionless parameters, we explored various conditions for the dy-

namo action, and found that the critical conditions could be given by a surface

in three dimensional parameter space. Therefore, the critical value required

by one of the parameters for dynamo action is a function of the remaining

two dimensionless parameters (e.g., Dcrit
αS varies as a function of two other

dimensionless parameters, and hence is not a unique number).

(d) We find that the shear helps in the generation of large–scale magnetic field in

the presence of α−fluctuations. If the fluctuations in α are extremely small,

one can still find growing solutions for the mean magnetic field for sufficiently

large values of shear.

(e) In most numerical simulations that we perform, the fluctuations in α are not

too strong, and hence these alone may not give rise to the dynamo action,

unless supported by the shear.

It is routinely found in the numerical simulations of the shear dynamo that the

quantity α fluctuates in time without having any net value, even when the random

forcing at small scales in these simulations was non–helical, therefore, it seems plausible

that these observed α−fluctuations together with background shear flow could have led

to the growth of large–scale magnetic fields in these simulations, by the mechanisms

described in our analytical calculations of fluctuating α discussed above. The natural

scope for future works related to this problem could be to perform numerical experiments

exploring conditions for the dynamo action, as predicted in our analytical calculation of

α−fluctuations, in which, we suggested that there are three dimensionless parameters,

which, if tuned suitably, can always give rise to the dynamo action.



Appendix A
THE RESISTIVE GREEN’S FUNCTION FOR

A LINEAR SHEAR FLOW

The Green’s function for linear shear flows was first derived by Krause & Rädler (1971).

Here, we derive an expression of the resistive Green’s function for a linear shear flow, in

the coordinate system which is suitable for our purposes. Equations (4.10), (5.12) and

(8.11) are of the following form:

(
∂

∂t
− µ∇2

)
ϕ(x, t) = ζ(x, t) (A.1)

where µ takes the role, for example, of molecular diffusivity (κ) for the problem of passive

scalar mixing and microscopic resistivity (η) for the shear dynamo problem. ζ(x, t) in the

Eqn. (A.1) may be thought of as the source term, which is different for various problems

we have studied. The spacetime coordinates in the sheared frame, denoted as (x, t),

and in the laboratory frame, denoted as (X, τ), are related by the following shearing

transformation:

x1 = X1 , x2 = X2 − SτX1 , x3 = X3 , t = τ (A.2)
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Partial derivatives transform as

∂

∂τ
=

∂

∂t
− Sx1

∂

∂x2
,

∂

∂X1

=
∂

∂x1
− St

∂

∂x2
,

∂

∂X2

=
∂

∂x2
,

∂

∂X3

=
∂

∂x3
(A.3)

Therefore ∇
2 in Eqn. (A.1) is given by

∇
2 ≡ ∂2

∂Xp∂Xp
=

(
∂

∂xp
− Stδp1

∂

∂x2

)2

=
∂2

∂xp∂xp
− 2St

∂2

∂x1∂x2
+ S2t2

∂2

∂x22
(A.4)

Equation (A.1) is linear, homogeneous in x and inhomogeneous in t. Therefore, the

general solution can be written in the form,

ϕ(x, t) =

∫
d3x′Gµ(x− x′, t, s) ϕ(x′, s)

+

∫ t

s

dt′
∫

d3x′Gµ(x− x′, t, t′) ζ(x′, t′) ; for any s < t , (A.5)

where Gµ(x, t, t
′) is the resistive Green’s function for the linear shear flow. Allowing

(
∂/∂t − µ∇2

)
to act on both sides, we have

(
∂

∂t
− µ∇2

)
ϕ =

∫
d3x′ ϕ(x′, s)

(
∂

∂t
− µ∇2

)
Gµ(x− x′, t, s)

+

∫ t

s

dt′
∫

d3x′ ζ(x′, t′)

(
∂

∂t
− µ∇2

)
Gµ(x− x′, t, t′)

+

∫
d3x′ ζ(x′, t) lim

t′→t−
Gµ(x− x′, t, t′) (A.6)

From Eqn. (A.1), we note that the right side of Eqn. (A.6) must be equal to ζ(x, t).

Therefore the Green’s function must satisfy the following properties:

Gµ(x, t, t
′) is non–zero only when 0 ≤ t′ < t. (A.7a)
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lim
t′→t−

Gµ(x, t, t
′) = δ3(x) (A.7b)

(
∂

∂t
− µ∇2

)
Gµ(x, t, t

′) = 0 (A.7c)

By iterating Eqn. (A.5), we have

ϕ(x, t) =

∫
d3x′ ϕ(x′, t0)

∫
d3x

′′

Gµ(x− x
′′

, t, s)Gµ(x
′′ − x′, s, t0)

+

∫ s

t0

dt′
∫

d3x′ ζ(x′, t′)

∫
d3x

′′

Gµ(x− x
′′

, t, s)Gµ(x
′′ − x′, s, t′)

+

∫ t

s

dt′
∫

d3x′ ζ(x′, t′)Gµ(x− x′, t, t′) ; for t0 < s < t .

Comparing this with Eqn. (A.5), we obtain another property of the Green’s function,

namely,

Gµ(x− x′, t, t0) =

∫
d3x

′′

Gµ(x− x
′′

, t, s)Gµ(x
′′ − x′, s, t0) ; for t0 < s < t . (A.7d)

Let us define the spatial Fourier transform of the Green’s function as,

G̃µ(k, t, t
′) =

∫
d3x exp (−ik·x)Gµ(x, t, t

′) (A.8)

where k, being conjugate to the sheared coordinate vector x, can be regarded as a sheared

wavevector. Then Eqns. (A.7a)–(A.7d) imply that

G̃µ(k, t, t
′) is non–zero only when 0 ≤ t′ < t. (A.9a)

lim
t′→t−

G̃µ(k, t, t
′) = 1 (A.9b)

∂ G̃µ

∂t
+ µK2(k, t) G̃µ = 0 (A.9c)

G̃µ(k, t, t0) = G̃µ(k, t, s) G̃µ(k, s, t0) ; for t0 < s < t . (A.9d)



APPENDIX A. GREEN’S FUNCTION FOR A LINEAR SHEAR FLOW 199

where, in Eqn. (A.9c), K2(k, t) = (k1 − Stk2)
2 + k22 + k23. It is now straightforward to

write down the solution:

G̃µ(k, t, t
′) = exp

[
−µ
∫ t

t′
dsK2(k, s)

]

= exp

[
−µ
(
k2(t− t′)− S k1 k2(t

2 − t′2) +
S2

3
k22(t

3 − t′3)

)]
(A.10)

Note also that G̃µ(k, t, t
′) is a positive quantity which takes values between 0 and 1, and

that it is an even function of k and k3.

We now take the inverse Fourier transform of Eqn. (A.10) to get Gµ(x, t, t
′). It is

convenient to write this as

Gµ(x, t, t
′) =

∫
d3k

(2π)3
exp

[
ik·x − µ(t− t′){k2 + Tij ki kj}

]
(A.11)

where Tij is a 2× 2 symmetric matrix whose elements are given by,

T11 = 0, T12 = T21 = −S
2
(t+ t′), T22 =

S2

3
(t2 + tt′ + t′2) (A.12)

The integral in Eqn. (A.11) can be evaluated by diagonalising the matrix Tij . It proves

useful to express Gµ(x, t, t
′) in terms of the principal–axes coordiates, x = (x1, x2, x3).

These are defined by the orthogonal transformation,




x1

x2

x3




=




cos θ sin θ 0

− sin θ cos θ 0

0 0 1







x1

x2

x3




(A.13)

which is a time–dependent rotation of the coordinate axes in the x1–x2 plane. The angle
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of rotation, θ, is determined by

tan θ = f +
√
1 + f 2

f = −1

3

S(t2 + tt′ + t′2)

(t + t′)
(A.14)

Note that θ depends on the shear parameter, S, and the times, t and t′. Let us define

the dimensionless quantitites,

σ1 =

[
1 − S

2
(t+ t′) tan θ

]1/2

σ2 =

[
1 +

S

2
(t+ t′) cot θ

]1/2
(A.15)

Now we can write the Green’s function as a sheared heat kernel,

Gµ(x, t, t
′) = [4πµ(t− t′)]

−3/2

[
1 +

S2

12
(t− t′)2

]−1/2

×

× exp

[
− 1

4µ(t− t′)

(
x21
σ2
1

+
x22
σ2
2

+ x23

)]
, (A.16)

which is equivalent to the one first derived in Krause & Rädler (1971). Properties of the

Green’s function have also been discussed in Ch. 5; see Fig. (5.1). It is useful to note

that the Green’s function Gµ(x, t, t
′) is an even function of x.

Also, substituting k = 0 in Eqns. (A.8) and (A.10), we find

∫
d3xGµ(x, t, t

′) = G̃µ(0, t, t
′) = 1 (A.17)



Appendix B
GALILEAN INVARIANCE & A RESULT ON

G–INVARIANT VELOCITY CORRELATORS

The linear shear flow has a basic symmetry relating to measurements made by a special

subset of all observers. These special observers are termed as the comoving observers in

Sridhar & Subramanian (2009a,b). A comoving observer is defined to be the one whose

velocity with respect to the laboratory frame is equal to the velocity of the background

shear flow, and whose cartesian axes are aligned with those of the laboratory frame.

In the laboratory frame, a comoving observer can be labelled by the coordinates, ξ =

(ξ1, ξ2, ξ3), of her origin at time τ = 0. Different labels identify different comoving

observers and vice versa. As the labels run over all possible values, they exhaust the

set of all comoving observers. At any time τ , the origin of the comoving observer with

respect to the laboratory frame is given by,

Xc(ξ, τ) = (ξ1 , ξ2 + Sτξ1 , ξ3) (B.1)

An event with spacetime coordinates (X, τ) in the lab frame has spacetime coordinates

(X̃, τ̃) with respect to the comoving observer, given by

X̃ = X − Xc(ξ, τ) , τ̃ = τ − τ0 (B.2)
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where the arbitrary constant τ0 allows for translation in time as well. The coordinate

transformation given in Eqn. (B.2) implies that partial derivatives are related through

∂

∂τ
=

∂

∂τ̃
− Sξ1

∂

∂X̃2

,
∂

∂X
=

∂

∂X̃
(B.3)

We note that the combination (∂/∂τ + SX1∂/∂X2) =
(
∂/∂τ̃ + SX̃1∂/∂X̃2

)
is invariant

in form. There is a fundamental difference between the coordinate transformations asso-

ciated with Galilean invariance (Eqn. B.2) and the shearing transformation (Eqn. A.2).

The former relates different comoving observers, whereas the latter describes a time–

dependent distortion of the coordinates axes of one observer. Comparing Eqn. (B.3)

with (A.3), we note that the relationship between old and new variables is homogeneous

for the Galilean transformation, whereas it is inhomogeneous for the shearing transfor-

mation.

B.1 Galilean–invariant velocity correlators

We now explore the consequences of requiring that the statistics of the velocity fluc-

tuations be Galilean–invariant. We consider the n–point velocity correlator measured

by the observer in the lab frame. Let this observer correlate vj1 at spacetime location

(R1, τ1), with vj2 at spacetime location (R2, τ2), and so on upto vjn at spacetime location

(Rn, τn). Now consider a comoving observer, the position vector of whose origin is given

by Xc(ξ, τ) of Eqn. (B.1). An identical experiment performed by this observer must

yield the same results, the measurements now made at the spacetime points denoted

by (R1 +Xc(ξ, τ1), τ1) ; (R2 +Xc(ξ, τ2), τ2) ; . . . ; (Rn +Xc(ξ, τn), τn). If the velocity

statistics is GI, the n–point velocity correlator must satisfy the condition

〈vj1(R1, τ1) . . . vjn(Rn, τn)〉 = 〈vj1(R1 +Xc(ξ, τ1), τ1) . . . vjn(Rn +Xc(ξ, τn), τn)〉
(B.4)

for all (R1, . . .Rn ; τ1, . . . τn ; ξ).

We find that the transport coefficients of different transport phenomena (of passive
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scalars or magnetic fields), within the framework of FOSA, are given in terms of second

order correlator of random velocity field (see e.g. Eqns. (4.19) and (5.27)), for which

〈vi(R, τ) vj(R′, τ ′)〉 = 〈vi(R +Xc(ξ, τ), τ) vj(R
′ +Xc(ξ, τ

′), τ ′)〉 (B.5)

for all (R,R′, τ, τ ′, ξ). We also need to work out the correlation between velocities and

their gradients:

〈vi(R, τ) vjl(R′, τ ′)〉 =
∂

∂R′
l

〈vi(R, τ) vj(R′, τ ′)〉

=
∂

∂R′
l

〈vi(R+Xc(ξ, τ), τ) vj(R
′ +Xc(ξ, τ

′), τ ′)〉

= 〈vi(R +Xc(ξ, τ), τ) vjl(R
′ +Xc(ξ, τ

′), τ ′)〉 (B.6)

The Galilean–invariance of velocity correlators stated in Eqn. (B.5) is most compactly

expressed in Fourier–space, which will be shown below. Let ṽ(K, τ) be the spatial Fourier

transform of v(X, τ), defined by Eqn. (3.3). As may be seen from Eqns. (3.18) and

(3.19) that the quantity to be determined, in order to find various real–space correlators

between velocities and their gradients, is Fourier–space two–point unequal–time velocity

correlator,
〈
ṽi (K, t) ṽ∗j (K

′, t′)
〉
.

We prove below that a G–invariant Fourier–space two–point velocity correlator must

be of the form

〈
ṽi(K, τ) ṽ∗j (K

′, τ ′)
〉

= (2π)6 δ(k − k′) Πij(k, t, t
′) (B.7)

where Πij is the velocity spectrum tensor, which must possess the following properties:

Πij(k, t, t
′) = Π∗

ij(−k, t, t′) = Πji(−k, t′, t)

KiΠij(k, t, t
′) = (ki − St δi1k2) Πij(k, t, t

′) = 0

K ′
j Πij(k, t, t

′) = (kj − St′ δj1k2) Πij(k, t, t
′) = 0 (B.8)
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Figure B.1: Galilean invariance of the two–point velocity correlator given in Eqn. (B.5).

O labels the observer in the laboratory frame who correlates the velocity fluctuation at

location R at time τ with the velocity fluctuation at location R′ at a later time τ ′. A
and A′ label a comoving observer the origin of whose cooordinate axes is at ξ at the

initial time, and who makes an equivalent measurement at the times τ and τ ′.

Proof The velocity correlator in Fourier–space is

〈
ṽi(K, τ) ṽ∗j (K

′, τ ′)
〉

=

∫
d3X d3X ′ exp [i (K ′

·X ′ −K·X)] 〈vi(X, τ) vj(X
′, τ ′)〉

=

∫
d3X d3X ′ exp [i (K ′

·X ′ −K·X)] ×

× 〈vi(X +Xc(ξ, τ), τ) vj(X
′ +Xc(ξ, τ

′), τ ′)〉 (B.9)

where Eqn. (B.5) has been used. Using new dummy variables of integration, X →
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X −Xc(ξ, τ) and X ′ → X ′ −Xc(ξ, τ
′), we write

〈
ṽi(K, τ) ṽ∗j (K

′, τ ′)
〉

= exp [i (K·Xc(ξ, τ)−K ′
·Xc(ξ, τ

′))] ×

×
∫

d3X d3X ′ exp [i (K ′
·X ′ −K·X)] 〈vi(X, τ) vj(X

′, τ ′)〉

= exp [i (K·Xc(ξ, τ)−K ′
·Xc(ξ, τ

′))] ×
〈
ṽi(K, τ) ṽ∗j (K

′, τ ′)
〉

(B.10)

Comparing the left and right sides, we conclude that the phase,[K·Xc(ξ, τ)−K ′
·Xc(ξ, τ

′)],

must vanish. Substituting for Xc from Eqn. (B.1), the condition of zero phase implies

that

(k1 − k′1)ξ1 + (k2 − k′2)ξ2 + (k3 − k′3)ξ3 = 0 (B.11)

where k ≡ (k1, k2, k3) and k′ ≡ (k′1, k
′
2, k

′
3) are sheared wavevectors which are related to

K and K ′ through the Fourier–space shearing transformation

k1 = K1 + SτK2 , k2 = K2 , k3 = K3 , t = τ

k′1 = K ′
1 + Sτ ′K ′

2 , k′2 = K ′
2 , k′3 = K ′

3 , t′ = τ ′ (B.12)

Since Eqn. (B.11) must be valid for arbitrary (ξ1, ξ2, ξ3), we must have k = k′. In other

words, the G–invariant Fourier–space velocity correlator must be of the general form

stated in Eqn. (B.7). Moreover the listed properties of the velocity spectrum tensor,

Πij , given in Eqns. (B.8) follow from the reality of v(X , τ), symmetry with respect to

simultaneous interchange of (i, j) and (t, t′), and incompressibility.
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