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Abstract

Quantum mechanical explanation of a double slit interference experiment takes
the assumption that the wave function at the screen with both slits open is exactly
the sum of the wave function with the slits individually open one at a time. This
is done by applying the superposition principle which is commonly used in many
popular textbooks and literature. Application of super-position principle is approx-
imately true in this case as the three scenarios mentioned above represent three
different boundary conditions. Addition of solutions to the wave-function with two
different boundary conditions can’t give a solution of the wave function with a third
boundary condition and therefore there has to be a correction term. In order to
quantify this correction term one can appeal to Feynman path integral formalism.
This quantification in terms of non-classical path has recently been demonstrated
theoretically in our group. In this thesis, the experimental test for the existence of
such non-classical paths is attempted.

5



Contents

1 Introduction and Statement of the problem 9

2 Quantification of κ 12

3 Feynman’s Path Integral Formalism 14
3.1 Physical Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Derivation of the Path Integral . . . . . . . . . . . . . . . . . . . . . 17
3.4 Schrodinger Equation from Path Integral . . . . . . . . . . . . . . . . 20

4 Experimental Procedure 22
4.1 Design Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Setting up the slits . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Imaging the slits and the masks . . . . . . . . . . . . . . . . . 22
4.1.3 Processing the images . . . . . . . . . . . . . . . . . . . . . . 24
4.1.4 Assembling the microscope . . . . . . . . . . . . . . . . . . . . 24

4.2 Simulating the experiment . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Future work 32

6



List of Figures

1 Incorrect Wavefunction hypothesis . . . . . . . . . . . . . . . . . . . . 9
2 Illustration of different cases . . . . . . . . . . . . . . . . . . . . . . . 10
3 Paths excluded from ψA + ψB . . . . . . . . . . . . . . . . . . . . . . 11
4 A triple slit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Feynman paths between A and B . . . . . . . . . . . . . . . . . . . . 16
6 Image of the triple slit . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Slit and Mask used for different combinations . . . . . . . . . . . . . 23
8 Different combinations in the opening masks . . . . . . . . . . . . . 24
9 Profile of intensity vs distance . . . . . . . . . . . . . . . . . . . . . . 24
10 Schematic of the microscope . . . . . . . . . . . . . . . . . . . . . . . 25
11 Assembled microscope . . . . . . . . . . . . . . . . . . . . . . . . . . 26
12 Intensity distribution, slit A open . . . . . . . . . . . . . . . . . . . . 28
13 Intensity distribution, slit B and C open . . . . . . . . . . . . . . . . 29
14 Intensity distribution, all slits open . . . . . . . . . . . . . . . . . . . 30
15 Comparison of the Intensities . . . . . . . . . . . . . . . . . . . . . . 31
16 Experimental Setup using an attenuated laser source . . . . . . . . . 33

7



”I think I can safely say that nobody understands
quantum mechanics.”

- Richard Feynman
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1 Introduction and Statement of the problem

The wave function is the most fundamental concept of quantum mechanics. It was
first introduced into the theory by analogy(Schrodinger 1926); the behaviour of mi-
croscopic particles like waves, and thus a wave function is used to describe them.
Schrodinger originally regarded the wave function as a description of real physical
wave. But this view met serious objections and was soon replaced by Born’s prob-
ability interpretation[9] (Born 1926), which becomes the standard interpretation of
the wave function today. According to this interpretation, the wave function is a
probability amplitude, and the square of its absolute value represents the probability
density for a particle to be measured in certain locations.

The most common approach to compute the behaviour of a wave function is to write
that wave function as a superposition of many other wave functions of a certain
type-stationary states whose behaviour is particularly simple. This superposition
principle is used to obtain the approximate solutions of the wave equation.

Now, let us consider the Young’s well known double slit experiment[8] with inci-
dent photons. The wave function at the detector with slit A open is ψA. The wave
function at the detector with slit B open is ψB. And thus the wave function with
both slits open is assumed to be ψA + ψB using the superposition principle. This
naive assumption(referred as Wave function hypothesis) is approximately true as the
three scenarios represent three different boundary boundary conditions [1],[7], and
superposition should not be valid in such case.

ψA + ψB 6= ψAB (1)

ψAB

ψA +ψB

(a) Wave function hypothesis

ψAB

ψA +ψB

   +ψL

(b) Wave function correction

Figure 1: Incorrect Wavefunction hypothesis
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A

B

(a) the double slit system

A ψA

(b) top slit(A) open

ψB

B

(c) bottom slit(B) open

A

B

ψAB

(d) both slits(A and B) open

Figure 2: Illustration of different cases
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A

B

Figure 3: Paths excluded from ψA + ψB

In order to quantify the wave function hypothesis we need to approach it using
the Feynman path integral formalism of quantum mechanics. The path integral
formalism an integration over all possible paths that can be taken by the photon
through the two slits. This not only includes the nearly straight paths from the
source to the detector through either slits (the classical paths) but also includes
the non-straight paths(non-classical paths). These non classical paths make a much
smaller still finite contribution to the total intensity at the detector screen compared
to the contribution from the classical paths. Thus, the rectification of the wave
function becomes inevitable and is given by:

ψAB = ψA + ψB + ψL (2)
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2 Quantification of κ

As we saw in the previous section, there are contributions from the non classical
paths. In order to experimentally measure this contribution, we define a quantity
known as κ.

Let us define some of the following parameters in order to quantify κ (Kappa) in
the case of triple slit experiment(Fig.4).

ψA := Wavefunction when the top slitA is open .

ψB := Wavefunction when the middle slitB is open .

ψC := Wavefunction when the bottom slitC is open .

ψAB := Wavefunction when the slitsA andB are open .

ψBC := Wavefunction when the slitsB andC are open .

ψAC := Wavefunction when the slitsA andC are open .

ψABC := Wavefunction when all slits are open .

PA := |ψA|2

PB := |ψB|2

PC := |ψC |2

Def. PAB = |ψA + ψB|2 = |ψA|2 + |ψB|2 + 2 Re(ψAψB) = |ψA|2 + |ψB|2 + 2φAB

Def. φAB = PAB−PA−PB

2

Def. PAC = |ψA + ψC |2 = |ψA|2 + |ψC |2 + 2 Re(ψAψC) = |ψA|2 + |ψC |2 + 2φAC

Def. φAC = PAC−PA−PC

2

Def. PBC = |ψB + ψC |2 = |ψB|2 + |ψC |2 + 2 Re(ψBψC) = |ψB|2 + |ψC |2 + 2φBC
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A

C

B

Figure 4: A triple slit system

Def. φBC = PBC−PC−PB

2

PABC = |ψA + ψB + ψC |2 = ψ2
A + ψ2

B + ψ2
C + 2φAB + 2φAC + 2φBC

PABC = PAB + PBC + PAC − PA − PB − PC

Def. κ = PABC−PAB−PBC−PAC+PA+PB+PC

PABC(at central maxima)

κ being zero implies that the superposition principle has been used
incorrectly. Non-zeroness of Kappa will quantify the non-classical contri-
butions.
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3 Feynman’s Path Integral Formalism

Feynman’s formulation of quantum mechanics using the so called path integral is
arguably the most elegant. It can be stated in a single line:

〈xf , tf |xi, ti〉 =

∫
Dx(t)eiS[x(t)]/h̄ (3)

The equation states that in order to know the quantum mechanical amplitude
for a point particle at a position xi at a time ti to reach a position xt at time tt , we
integrate over all possible paths connecting the points with a weight factor given by
the classical action for each path. Hence the name ”Path integral”[5]. The position
kets form a complete set of basis, and knowing this amplitude for all x is enough
information know everything about the system. The expression is generalized for
more dimensions and more particles in a straightforward manner.

This formulation is completely equivalent to the usual formulation of quantum
mechanics. On the other hand, there are many reasons why this expression is just
beautiful.

First, the classical equation of motion comes out in a very simple way. If we
take the limit h̄ → 0, the weight factor eiS[x(t)]/h̄ oscillates very rapidly. Therefore,
we expect that the main contribution to the path integral comes from paths that
make the action stationary. This is nothing but the derivation of Euler - Lagrange
equation from the classical action. Therefore, the classical trajectory dominates the
path integral in the small h̄ limit.

Second, we don’t know what path the particle has chosen, even when we know
what the initial and final positions are. This is a natural generalization of the two-slit
experiment. Even if we know where the particle originates from and where it hit on
the screen, we don’t know which slit the particle came through. The path integral
is an infinite-slit experiment. Because we can’t

Third, we gain intuition on what quantum fluctuation does. Around the classical
trajectory, a quantum particle ”explores” the vicinity. The trajectory can deviate
from the classical trajectory if the difference in the action is roughly within h̄. When
a classical particle is confined in a potential well, a quantum particle can go on an
excursion and see that there is a world outside the potential barrier. Then it can
decide to tunnel through. If a classical particle is sitting at the top of a hill, it doesn’t
fall; but a quantum particle realizes that the potential energy can go down with a
little excursion, and decides to fall.

Fourth, whenever we have an integral expression for a quantity, it is often easier
to come up with an approximation method to work it out, compared to staring at
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a differential equation. In fact, some techniques in quantum physics couldn’t be
thought of without the intuition from the path integral.

3.1 Physical Intuition

Let’s take the two-slit experiment. Each time a photon hits the screen, there is
no way to tell which slit the photon has gone through. After repeating the same
experiment many many times, a fringe pattern gradually appears on the screen,
proving that there is an interference between two waves, one from one slit, the other
from the other. We conclude that we need to sum amplitudes of these two waves that
correspond to different paths of the photon. Now take case when we have more(3 in
our case) slits. There are now more paths, each of which contributing an amplitude.
As we increase the number of slits, eventually the entire obstruction disappears. Yet
it is clear that there are many paths that contribute to the final amplitude of the
photon propagating to the screen.

As we generalize this thought experiment further, we are led to conclude that the
amplitude of a particle moving from a point xi to another point xf consists of many
components each of which corresponds to a particular path that connects these two
points. One such path is a classical trajectory(Fig. 5). However, there are infinitely
many other paths that are not possible classically, yet contribute to the quantum
mechanical amplitude. This argument leads to the notion of a path integral [7] , where
we sum over all possible paths connecting the initial and final points to obtain the
amplitude.

In order to weight individual paths, one thing is very clear that the weight factor
must be chosen such that the classical path is singled out in the limit h̄ → 0. The
correct choice turns out to be eiS[x(t)]/h̄, where

S[x(t)] =

∫ tf

ti

dtL(x(t), ẋ(t))

is the classical action for the path x(t) that satisfies the boundary condition x(ti)
= xi, x(tf ) = xf . In the limit h̄ → 0,the phase factor oscillates so rapidly that
nearly all the paths would cancel each other out in the final amplitude. However,
there is a path that makes the action stationary, whose contribution is not cancelled.
This particular path is nothing but the classical trajectory. This way, we see that the
classical trajectory dominates the path integral in the h̄→ 0 limit. As we increaseh,
the path becomes ”fuzzy”. The classical trajectory still dominates, but there are
other paths close to it whose action is within ∆S ' h̄ and contribute significantly to
the amplitude. The particle does an excursion around the classical trajectory.
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A

B

Figure 5: Feynman paths between A and B

3.2 The Propagator

The quantity
K(xf , tf ;xi, ti) = 〈xf , tf |xi, ti〉 (4)

is called propagator. It knows everything about how a wavefunction propagates in
time, because

ψ(xf , tf ) = 〈xf , tf |ψ〉 =

∫
〈xf , tf |xi, ti〉dxi〈xi, ti|ψ〉 (5)

=

∫
K(xf , tf ;xi, ti)ψ(xi, ti)dxi (6)

This is the Green’s function for the Schrodinger equation.
The propagator is also written using energy eigen values and eigen states (if the

Hamiltonian doesn’t depend upon time),

K(xf , tf ;xi, ti) = 〈xf |e−iH(tf−ti)/h̄|xi〉 =
∑
〈xf |n〉e−iEn(tf−ti)/h̄〈n|xi〉

=
∑

e−iEn(tf−ti)/hψ∗
n(xf )ψn(xi) (7)
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In particular, Fourier analyzing the propagator gives all energy eigenvalues, and each
Fourier coefficients the wave functions of each energy eigenstates.

The propagator is a nice package that contains all dynamical informa-
tion about a quantum system.

3.3 Derivation of the Path Integral

The basic point is that the propagator for a short interval is given by the classical
Lagrangian

〈x1, t+ ∆t|x0,t〉 = cei(L(t)∆t+O(∆t)2)/h̄ (8)

where c is a normalization constant. This can be easily shown for a simple Hamilto-
nian

H =
p2

2m
+ V (x) (9)

The quantity we want is

〈x1, t+ ∆t|x0,t〉 = 〈x1|e−iH∆t/h̄|x0〉 (10)

=

∫
dp〈x1|p〉〈p|e−iH∆t/h̄|x0〉 (11)

Our interest is in the phase only at O(∆t), the last factor can be estimated as
〈p|e− iH ∆t/h̄|x0〉

= 〈p|1− iH∆t/h̄+ (∆t)2|x0〉

= 1− ip2

2m
∆t− i

h
V (x0∆t+O(∆t)2)

e− ipx0/h̄

√
2πh̄

=
1√
2πh̄

exp
−i
h̄

(px0 +
p2

2m
∆t+ V (x0)∆t+O(∆t)2) (12)

Then the p− integral is aFresnel Integral
〈x1, t+ ∆t|x0,t〉

=

∫
dp

2πh̄
eipx1/h̄ e

−i
(
px0+

p2

2m
∆t+V (x0)∆t+O(∆t)2

)
/h̄

(13)
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=

√
m

2πih̄∆t
exp

i

h̄

m

2

(x1 − x0)2

∆t
− V (x0)∆t+O(∆t2) (14)

The quantity in the parentheses is nothing but the classical Lagrangian times ∆t by
identifying ẋ2 = (x1 − x0)2/(∆t)2

Once Eq.8 is shown, we use many time slices to obtain the propagator for a finite
time interval. Using the completeness relation many many times,

〈xf , tf |xi, ti〉 =

∫
〈xf , tf |xN−1, tN−1〉dxN−1〈xN−1, tN−1|xN−2, tN−2〉dxN−2

. . . . . . ..〈x2, t2|x1, t1〉dx2 〈x1, t1|xi, ti〉dx1 (15)

The time interval for each factor is ∆t = (tf−ti)/N . By taking the limit N →∞,
∆t is small enoughthat we can use the formula, and we can find

〈xf , tf |xi, ti〉 =

∫ N−1∏
i=1

dxie
i
∑N−1

i=0 L(ti)∆t/h̄ (16)

upto normalization (here, t0 = ti.)
In the limit N → ∞, the integral over all positions at each time can be taken

an integral over all possible paths. The exponent becomes a time integral of the
Lagrangian, namely the action for eachpath. This completes the derivation of the
path integral in quantum mechanics.

A very crucial point to be noticed is that even matrix elements of operators can
be written in terms of path integrals. For example,

〈xf , tf |x(t0)|xi, ti〉 =

∫
dx(t0)〈xf , tf |x(t0), t0〉x(t0)〈x(t0), t0|xi, ti〉

=

∫
dx(t0)

∫
tf>t>t0

Dx(t)eiS[x(t)]/h̄x(t0)

∫
t0>t>ti

Dx(t)eiS[x(t)]/h̄

=

∫
tf>t>ti

Dx(t)eiS[x(t)]/h̄x(t0),

At the last step, we used the fact that an integral over all paths from xi to x(t0),
all paths fromx(t0) to xf , further integrated over the intermediate position x(t0) is
the same as the integral over all paths fromxito xf . The last expression is literally
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an expectation value of the position in the form of an integral. If we have multiple
insertions, by following the same steps,

〈xf , tf |x(t2)x(t1)|xi, ti〉 =

∫
tf>t>ti

Dx(t)eiS[x(t)]/h̄x(t2)x(t1) (17)

Here we assumed that t2 > t1 to be consistent with successive insertion of positions
in the correct order. Therefore, expectation values in the path integral corresponds
to matrix elements of operators with correct ordering in time. Such a product of
operators is called �timed-ordered� Tx(t2)x(t1) de�ned by x(t2)x(t1) as long as t2 >
t1, while by x(t1)x(t2) if t1 > t2.

Another useful point is that Euler�Lagrange equation is obtained by the change
of variable x(t) → x(t) + δx(t)with xi = x(ti) and xf = x(tf ) held �xed. A change
of variable of course does not change the result of the integral, and we �nd∫

Dx(t)eiS[x(t)+δx(t)]/h̄ =

∫
Dx(t)eiS[x(t)]/h̄ (18)

and hence∫
Dx(t)eiS[x(t)+δx(t)]/h̄ −

∫
Dx(t)eiS[x(t)]/h̄ =

∫
Dx(t)eiS[x(t)]/h̄ i

h̄
δS = 0 (19)

From Classsical Mechanics we know,

δS = S[x(t) + δ(t)]− S[x(t)] =

∫ (
∂L

∂x
− d

dt

∂L

∂ẋ

)
δx(t)dt (20)

Therefore, ∫
Dx(t)eiS[x(t)]/h̄ i

h̄

∫ (
∂L

∂x
− d

dt

∂L

∂ẋ

)
δx(t)dt = 0 (21)

Since δx(t) is an is an arbitrary change of variable, the expression must be zero at
all t independently, ∫

Dx(t)eiS[x(t)]/h̄ i

h̄

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
= 0 (22)

Therefore, the Euler�Lagrange equation must hold as an expectation value, nothing
but the Ehrenfest's theorem.
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3.4 Schrodinger Equation from Path Integral

Its very important to see if the path integral contains all information we need. In
this section we will retrieve Schrodinger equation from the path integral.

Let us �rst see that the momentum is given by a derivative. Starting from the
path integral

〈xf , tf |xi, ti〉 =

∫
Dx(t)eiS[x(t)]/h̄, (23)

we shift the trajectory x(t) vy a small amount x(t) + δx(t) with the boundary con-
dition that xi is held �xed (δx(ti) = 0) while xf is varied(δx(tf ) 6= 0). Under this
variation, the propagator changes by

〈xf + δx(tf ), tf |xi, ti〉 − 〈xf , tf |xi, ti〉 =
∂

∂xf
〈xf , tf |xi, ti〉δx(tf ) (24)

On the other hand, the path integral changes by∫
Dx(t)eiS[x(t)+δx(t)]/h̄ −

∫
Dx(t)eiS[x(t)]/h̄ =

∫
Dx(t)eiS[x(t)]/h̄ i

h̄
δS (25)

From Classical mechanics we know that the action changes by
δS = S[x(t) + δ(t)]− S[x(t)]

=

∫ tf

ti

(
∂L

∂x
δx+

∂L

∂ẋ
δẋ

)
dt

=
∂L

∂ẋ
δx|xfxi +

∫ tf

ti

dt

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
δx. (26)

The last term vanishes because of the equation of motion (which holds as an expec-
tation value, as we saw in the previous section), and we are left with

δS =
∂L

∂ẋ
δx(tf ) = p(tf )δx(tf ). (27)

By putting them together, and dropping δx(tf ), we �nd

∂

∂xf
〈xf , tf |xi, ti〉 =

∫
Dx(t)eiS[x(t)]/h̄ i

h̄
p(tf ). (28)

This is precisely how the momentum operator is represented in the position space.
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Now the Schrodinger equation can be derived by taking the a variation with
respect to tf . Recalling again from Classical Mechanics:

∂S

∂tf
= −H(tf ) (29)

after using the equation of motion. Therefore,

∂

∂tf
〈xf , tf |xi, ti〉 =

∫
Dx(t)eiS[x(t)]/h̄−i

h̄
H(tf ) (30)

If

H =
p2

2m
+ V (x)

the momentum can be written using Eq.28, and we recover the Schrodinger equation,

ih̄
∂

∂tf
〈xf , tf |xi, ti〉 =

−h̄2

2m

∂2

∂x2f

+ V (xf )〈xf , tf |xi, ti〉 (31)

In other words, the path integral contains the same information as the
conventional formalism of the quantum mechanics.
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4 Experimental Procedure

4.1 Design Consideration

4.1.1 Setting up the slits

In order to measure the eight intensities, a set of two plates is taken[3]. These
plates are commercially available and are made of stainless steel and the slits are
designed by laser cutting technique. One plate contains the slit pattern while the
other contains patterns to block or unblock the slits. This is depicted in the �gure
below. The di�erent combination are also shown in the picture. The slits are 300
microns in length and 30 microns in width (Fig. 6), where as the opening mask is 600
microns in length and 60 microns in width. The mask is chosen to be of larger dimen-
sion that the slit so that complete transmission is achieved. We switch between the
di�erent combination(Fig. 7 and Fig. 8) by moving the mask with a linear actuator.

Figure 6: Image of the triple slit

4.1.2 Imaging the slits and the masks

The slit and the masks were imaged using a powerful microscope using 10x magni�-
cation. The images of the slit and the opening masks is in Fig. 6 and Fig.8.
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Figure 7: Slit and Mask used for different combinations
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Figure 8: Different combinations in the opening masks

Figure 9: Profile of intensity vs distance

4.1.3 Processing the images

The images were processed using Matlab and ImageJ software. In order to �nd the
width and length of the images, the image pro�le function is used. The grayscale
images are converted to binary and using the image pro�le technique the edges of
the slits and masks are known. The pro�le image is shown in Fig. 9.

As we see, the slits are 30 microns width, any misalignment in the opening masks
can lead to a variation in Kappa. The pro�ling technique helps us to �nd the o�set
if any. In order to know the precision of this pro�ling technique, the process was
repeated for a mask slit with a known o�set of 8 microns in one of the combination.
Using the above mentioned techniques, an o�set of 11 microns was found in the given
combinations.

4.1.4 Assembling the microscope

As mentioned in the previous section, we want to switch between the di�erent com-
bination. Therefore, a microscope becomes one of the most important tool for our
experiment.

The microscope was assembled (Fig.11) using a 10x objective lens from Newport

24



and Co. The schematic diagram for the microscope is drawn below (Fig. 10):

10x
objective

Length Adjustment Screw

High Resolution 
CCD

(with Trigger)

ND �lter
 

(99.99% Re�ectivity Mirror)

10 cm

Eyepiece

Figure 10: Schematic of the microscope
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TRIGGER

PC CONNECTOR

10x OBJECTIVE LENS

TRANSLATIONAL 
STAGE

ROTATIONAL 
MOUNT

LED
ILLUMINATION

SAMPLE SLIT

CCD CAMERA

Figure 11: Assembled microscope
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4.2 Simulating the experiment

The experiment was �rst simulated using Finite Di�erence Time Domain technique.
This simulation was performed by one of the members in our group. This simulation
provided an insight to what may happen to kappa, if there are any o�sets in any
of the combinations. This technique is extremely powerful. Few results using this
technique is shown below:
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(a) Intensity at near field

(b) Intensity at far field

Figure 12: Intensity distribution, slit A open
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(a) Intensity at near field

(b) Intensity at far field

Figure 13: Intensity distribution, slit B and C open
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(a) Intensity at near field

(b) Intensity at far field

Figure 14: Intensity distribution, all slits open
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(a) Intensity without any offset

(b) Intensity with 8 microns offset

Figure 15: Comparison of the Intensities
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5 Future work

The experiment is currently under progress. The proposed experiment will use two
sources:

1. Attenuated laser source

2. Heralded single photon source

Single photon source is being developed as a technology in our lab right now. The ex-
periment is going to be �rst of it's kind which will serve as table top veri�cation for the
theory developed in our group which aims to �nd the correction term in the the wave
function hypothesis. If successful in �nding this correction term, our work will have
the potential of replacing some material existing in popular quantum mechanics text-
books.
The proposed set-up for our experiment using an attenuated laser source is illus-
trated in Fig 16. A pulsed laser source is attenuated and coupled into a Single mode
�ber(SMF). In order to achieve the necessary attenuation, a combination of a half-
waveplate, polarizing beam-splitter(PBS) and neutral density �lters is used. The
opening mask is connected a high precision linear actuator(Actuator 1) to switch
between di�erent combinations. The slit mask is kept stationary, while the opening
mask will be translated. The di�racted light will be condensed vertically with a
cylindrical lens (CL) onto a multi-mode �ber (MMF).The photons will be detected
by a power-meter(PD) which is connected to the computer.
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Slit Mask

Opening Mask

Actuator 1

CL

Actuator 2

MMF

Motor
Drivers 
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Ti-Sa Laser SMFIntensity 
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Computer

/2

Attenuated Laser Source
810 nm

Mirror

Figure 16: Experimental Setup using an attenuated laser source
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