PARAMETER [rORING SYSTEM FOR THE

10.4m MILLIMETREWAVE RADIO TELESCOPE

Project Report

Submitted in partial fulfillment of the requirement
for the award of degree of

Bachelor of Engineering

in

Electronics & Communication

External Guide :
Dr. D K. Ravindra

Submitted by :
PARTHA GHOSH

MARUTHI B.R.

Under the guidance of

Head, Department of Electronics,

RRI,-Bangalore.

Mr. R. Ganesan
Engineer Incharge,
Telescope Building,
RRI, Bangalore.

VENKATARAMAN NARENDRA

“Internal Guide :
Prof. S. Rammurthi Rao
Associate Faculty,
Department of Electronics
& Communication.
B.M.S.CE.
Bangalore.

Department of Electronics & Communication
B. M. S. College of Engineering

Bangalore - 560 019.
1996-97.

RAMAN RESEARCH INSTITUTE

C.V.Raman Avenue, Sadashivanagar, Bangalore - 560 080 India

CERTIFICATE

This is to certify that the project entitled ‘PARAMETER
MONITORING SYSTEM FOR THE 104 METRE MILLIMETREWAVE
RADIO TELESCOPE” has been satisfactorily completed at Raman Research
Institute , Bangalore by the following students under our guidance towards
the pattial fulfilment for the award of the Degree of Bachelor of
Engineering in Electronics & Communication, during the academic year
1996-97.

PARTHA GHOSH
VENKATARAMAN NARENDRA
MARUTHI B. R.

b

Dr. D.K.RAVINDRA Mr. R.GANESAN

HEAD, - ENGINEER INCHARGE,
RADIO ASTRONOMY LAB, MILLIMETREWAVE
RAMAN RESEARCH INSTITUTE, @ OBSERVATORY, RAMAN
BANGALORE - 560 080. RESEARCH INSTITUTE,

BANGALORE - 560 080.

DEPARTMENT OF ELECTRONICS & COMMUNICATION,
B.M.S. COLLEGE OF ENGINEERING
BANGALORE 560019.

CERTIFICATE

This is to certify that the project work entitled
"Parameter Monitoring System for the 10.4m millimetrewave
Radio Telescope” has been successfully completed by the
following students in partial fulfilment of requirements for the
award of the Bachelor of Engineering in" Electronics &
Communication of the Bangalore University during the academic
year 1996-97.

PARTHA GHOSH
VENKATARAMAN NARENDRA
MARUTHI .B.R

M Soy= —3

Internal Guide Head/of the Department
Prof. S. Rammurthi Rao Dr. P. S. Satyanaryana
Assosciate Faculty Department of Electronics
Department of Electronics & Communication

& communication B.M.S.C.E.

B.M.S.C.E.

ACKNOWLEDGEMENT

We express our sincere thanks to the management of RAMAN
RESEARCH INSTITUTE, Bangalore for having provided us the facilities to
carry out the project work.

With utmost pleasure, we hereby extend our sincere and heartfelt
thanks to our guides Dr.D.K.Ravindra and Mr.R.Ganesan, for their unlimited co-
operation and guidance during the course of our project work.

We gratefully acknowledge the valuable help rendered by
Mr.K.Gurukiran, Mr.K.Ramesh and Mr.E.Palanichamy of RRI. We extend our
gratitude to Mr.K.V.Sathyaprakash, formerly of RRI, for his guidance in the early
stages of the project. We also take this oppurtunity to thank all the staff members
of the Telescope Building for extending their support in carrying out this project
and making this a success.

We express our profound gratitude to our internal guide, Prof. S.
Rammurthi Rao, Assosciate faculty, B.M.S.College of Engineering, Bangalore
for his help rendered to us during the tenure of the project.

A special note of thanks goes to our Head of the Department, Dr. P. S.
Satyanaryana and the entire staff of the Electronics Department of B.M.S.C.E. for

their encouragement and support throughout our project.

Partha Ghosh
15 July, Venkataraman Narendra
1997 Maruthi B.R.

TITLE: Parameter Monitoring System for the 10.4m
millimetrewave Radio telescope

Contents distribution and guidelines

Chapter 1 : INTRODUCTION:

This chapter provides an account of the objectives as well as the
environment associated with the project. It is divided into the following

sections:

1.1 Radio Astronomy: An Insight

It provides a brief history of radio astronomy and the role it

plays in the observation of various celestial bodies.

1.2 The Radio Telescope at Ruman Research Institute

A brief description of the Radio Telescope is presented in this

section, complete with the specifications.

- 1.3 Requirement for a Monitoring System

This section lays stress on the various factors responsible for

making the monitoring system an absolute neccessity.

This chapter provides an outline of the project. The following

sections are presented in conjunction with this chzpter.

2.1 Primary Objectives

This section lays emphasis on the approach towards the project.
The project was broken up into several modules and the completion of each

module was carried out independent of the other.

2.2 Mode of Working

This section gives a sneak preview at how the different
components were organised within the working system and how they

interacted with one other.

Chapter 3 : HMPC

This chapter describes the control center of operations, the
Health Monitoring PC and the way it communicates with the various control

centers (MCMs).

Chapter 4 : DESIGN & DEVELOPMENT

4.1 The Mux Card

‘This section emphasises the need for an external multiplexer card
in the working system as well as provides a detailed description of the steps

taken towards the development of such a card.

4.2 The Voltage Limiter Card

This section provides a detailed account of the development of
the conditioning card which proved to be such a crucial factor for the proper

working of the system.

Chapter 5 :HARDWARE IMPLEMENTATION : Components
and thei‘r.Utilities

This chapter takes a closer look at the different components used
in the hardware side of the project along with the wide range of utilities they
offer. Key ‘compoheﬁté like the SBC 80186, SCC Z8530, the multiseial i/o
card and the Digitizer Card (ADC) are covered in detail.

Chapter 6 : SOFTWARE ORGANIZATION

This chapter has been divided into two sections namely, the PC
side and the SBC side. Each section gives a detailed description of the

program associated with it and also explains the logic behind it. Special

empbhasis is given on the software development tool, Paradigm and the role it
plays in the execution of the SBC program. The menu driven PC program is

also explained in details.

The chapter titled Execution of Software describes the events that take
place when both the programs are executed after the system has been

switched ON.

Chapter 7 : DESIGN CHOICES

This section has been divided into two segments and it vindicates the
choice of hardware components as well as the software methodologies used
for the project.

The chapter titled Software Considerations justifies the choice of ‘C’
as the programming language in the light of various considerations and
standards adopted for the project.

The chapter titled Hardware Considerations explains the logic behind

the selection of the various components used in the hardware side of the

project.

Chapter 8 : TESTING AND DEBUGGING

This chapter provides a brief accc.:t of the various methods

adopted for testing and validation of the system.

Chapter 9 : THE WORKING SYSTEM

This chapter takes a final look at the system set-up and throws light on

the sequence of events that are generated when the system is switched ON.

Chapter 10 : IMPORTANCE OF THE PROJECT

In summarising, it may be said that the project marks a beginning in the
shape of things to come. The various important things to come out of this

project are pointed out in this chapter.

Chapter 11 : LOOKING AHEAD : Provisions for the future

A brief account of the upgradaﬁons possible in future are mused over in
this chapter .

Apart from this, the system features, an index containing the expanded
versions of several key abbreviated terms and an appendix containning useful

data are presented at the end.

Parameter Monitoring System
for a 10.4m millimetrewave

Radio Telescope

Chapter 1 : INTRODUCTION

1.1 Rédio astronomy :An Insight

{s\Our knowledge of the universe is based on the
observations of the various celestial bodies-stars, pulsars, quasars, supernova
- to name a few. With the passage of time, human resources have varied from
the naked eye to the optical telescope in this heavenly pursuit of knowledge
and the field called astronomy has slowly begun to take shape. As research in
this field increased, it became clear that the aperture of the telescope has to be
very large compared to the wavelength of lig..c in order to make fine
observationsjGrouhdbrcaking work was done in this field by a radio engineer
at the Bell Teicphone Laboratory called Karl Guthe Jansky. In 1932, while
studying the direction of thunderstorm static, Jansky was able to detect the
origin of a steady Hiss type static, which was previously unaccounted for. He
observed that the hiss is due to the radio waves of extra-terrestrial origin, thus
laying the foundation for Radio Astronomy. The iinportance of these results
took a while to be recognised but since then Radio Astronomy has rapidly
become a major branch of Astronomy.

{Radio wavelengths are typically about a million times
longer than those in the optical range are, Regions of space that are opaque to
light waves because of interstellar :‘dust, are generally transparent to radio

waves.

@\s Radio Astronomy progressed, the need for Radio
Telescopes with better resolution came up. This led to several innovations
both in elcctroniés and antenna engineering complementing each other, Many
pioneering high-tech developments are due to the research done in this field.
Spin-offs from this area find applications in ve-ious fields including satellite

communications, space research, image processing and biomedical sciences.

1.2 The Radio Telescope at Raman Research Institute

A Radio Telescope operates in the radio band of the
electromagnetic spectrum thus making it suitable for observing celestial

bodies. The main components are

% An antenna with its feed that selectively collects the radio power from

a narrow solid angle.

% A low noise receiver that amplifies the received signal over a restricted
frequency band, detects, correlates and integrates information and

stores the output in digital form.

The Raman Research Institute, Bangalore can stake its
claim to being one of the finest research units in the whole country. It

boasts of research facilities in several arenas including a fully equipped

Radio Astronomy laboratory complete with a millimetrewave radio
telescope. Following are a few important specifications of the above-

mentioned telescope:

~ Antenna Type \ :Parabolic Reflector
~ Diameter :10.4 metres
Beam Width :80 arc seconds at 80 GHz

Normal frequency range of operations :22 GHz - 115 GHz

1.3 Requirement for a Monitoring System

The radio telescope mentioned above is quite a complicated
system and has to take a lot of parameters into consideration for proper
functioning. Each of these parameters is individua]ly controlled and the
working of the telescope is contingent to the parameters sticking to a pre-
defined set of values. Straying from this critical range by the parameters may
prove detrimental to the ‘health’ of the telescope and hence the need for a
monitoring system arises. The monitoring system in question is also required
to make provisions such that the parameters may be monitored from three
separate control centers in the building, namely the cabin, the Receiver room

and the TBCC. However the system monitors the parameters only after they

have been converted to their appropriate voltage levels beforehand. The

system should prove quite economical in terms of data storage and time.

The table below shows a tentative schedule for the parameters

involved in the Receiver room. The ‘C’ next to the parameter indicates that

the parameter is critical while ‘NC’ refers to a non-critical parameter.

© P N U AW oN e

. L-Band IF level -ch.1
L-Band IF level ~ «ch.2
Baseband (0-400MHz) level -ch.1
Baseband (0-400MHz) level -ch.2

Phase Lock Indication (2200 MHz)
Phase Lock Indication (1600 MHz)
Phasé Lock Indication (400 MHz)
Rubidium Oscillator level (SMHz)
120 MHz AOS Video level

10.400 MHz AOS Video level
11.500 MHz AOS Video level

12.DC Power Supply #1 -+ve unreg.
13.DC Power Supply #1 -+Ve unreg.
14.DC Power Supply #2 -+Ve unreg.

15.DC Power Supply #2 -+ve unreg.

o OO0 00000

1V<2V<4V
1V<2V<4V
1V<2V<4V
1V<2V<4V
1.75V<2V<2.25V
1.75V<2V<2.25V
1.75V<2V<2.25V
1V<2V<4V
1V<4V<8V
1V<4V<8V
1V<4V<8V
24V<20V<18V
-24V<-20V<-18V
24V<20V<18V
-24V<-20V<-18V

BLOCK DIAGRAM OF THE SCHEME

BLOCK SCHEMATIC OF MCM MODULE

IP()WER SUPPLY CARD

B
A |
C 80186 SBC CARD
K I
P AD 7886 ADC CARD
A . _
N |
E 32 CHANNEL MUX CARD RS 232 TO HMPC
L &RS 232 DRIVER 1 .
VOLTAGE LIMITER
CARD
28 SINGLE ENDED 4 DIFFERENTIAL/
INPUTS SINGLE ENDED I/PS

(JUMPER SELECTABLE)

Chapter 2 : BRIEF OVERVIEW OF THE PROJECT

2.1 Primary Objectives

The project in question involved deveiopment of cost effective
time critical monitoring system. Our primary goal was to make best use of
available hardware and software resources and integrate them into the
‘working model of a Monitor Control Module. The skeletal outline of such a
scheme is shown above.

On the software side, the project involved PC based
microprocessor software development. It involved development of real time
software for monitoring the critical parameters of the Radio Telescope at
RRI. The software was developed keeping in mind the future extensions and
provisions were made to install control systems/ add control features.

On the hardware side, the desigr, development and testing of
voltage limiter card as well as the 32-channel MUX card was carried out. The
design of both the units was extensively carried out using the circuit design
package ORCAD. Replication, testiLg and debugging of prototype SBC 186
and ADC cards also constituted a major portion of the project as both these

units in conjunction form the heart of the Monitor Control Module. Hardware

debugging and testing were done with the help of advanced IC testers and
logic analysers.

At every developmental stage cost, efficiency and reliability
were the main criteria taken into consideration and modular approach was
made use of.”

| Software written on both monitor PC and SBC side was machine
indepéndent (written in high level language ‘C’). The availability of Paradigm
embedded system software and optimised cross-compiler (optimised for
speed) made the software development on SBC side more flexible and easy.
| - The interface standard used was EIA RS232C with Multiserial
I/0 PCL 232. However the software was made compatible for both RS232C
and RS485(multidrop).
Final developmental phase included two things:
. Freezing the SBC program into(even and odd) E--~ms.

. Screen design in order to provide good user interface.

2.2 Mode of Working

The SBC units have to be installed at the cabin, TBCC and the RX-room

since these are the primary monitoring centres.
HMPC will send commands to SBC units to set upper and lower limits for
various parameters, to specify whether they are critical or non-critical, etc.

SBC units will acquire from all the 32 channels, continuously, compare the

voltage levels with respective upper and lower limits and set and reset

corresponding status bits.

HMPC will get the status of 32 channels of each SBC in the form of 8

~ bytes. This will take approximately 4 ms making :: a total of 12 ms for the 3
SBC units, and can be synchronised with start and stop pulses. |

HMPC checks the status bits and if it encounters any critical parameter
being set, sends ‘HEALTH NOT OK’ code to CPC through serial port. This
generates a serial port interrupt to the CPC which will pull the DATA VALID
line low. When all the critical parameters are fine, ' HEALTH OK’ code will
be sent and DATA VALID line becomes active.

Chapter 3 : HMPC

| HMPC stands for the Health Monitoring PC. The HMPC is the
main control center for the Monitoring System. The multiserial input-output
card is the meahs thrngh which the HMPC communicates with the SBC. The
PC software is loade;i into the HMPC and execution of this program enables
the monitoring system to acquire data for its required purpose. The software
was implemented in C as the project demanded a modular approach. The
presence of low level features and graphical flexibility also came in handy
since the program required bit manipulation and windows design in several
places. All the three MCMs are in constant communication with the HMPC

and it is the only means by which the user can effect changes in the

Monitoring System. The interactive menu on the HMPC monitor makes the
job of implementing changes on thc system a very simple affair. The user can,
for example, vary the upper and lower limits for the inputs to each and every
channel as well as the Scale Factor. The selection of desirable channels (by
masking the undesirable ones) also takes plece with considerable ease. A
detailed description of the Health Monitoring PC program can be found in the

Software section under the heading ‘The PC Side’.

Chapter 4 : DESIGN & DEVELOPMENT

41 The Mux Card

For the project concerned, the design and developmental phase
consisted of 32 parameters to be selected by the SBC in order that they may
be monitored constantly. This necessitated the design of the card in question.
The card comprises of two 16:1 multiplexers (AD7506) along with an inverter
to enable only a_éingle MUX at a time. The interface reqﬁired by the PC to
communicate with the SBC has been chosen to be RS232 and to this facility
has been incorporated via an ICL 232 chip present on the card. The SBC
provides the supply for the ICL 232. The inputs to the MUX from the Voltage
Limiter card are routed via a 64-pin Euro C‘onncctor.The choice of the card
was also influenced by the factor that the AD7506 has an in-built structure to

handle differential inputs.

1 I z | € T < 1 3
3c 388ys[resl 91 Ainr 123€q I 4
T Z/WH g .
AdY JBQUNN JUSUNDOQ|®ZTS)
aHYD XNW TANNVHD-Z€
ST
080 095 JHUOIVONVH
FLOLILSNI HDMVISHY NVWVY
N
I Z55A
. %D
A1ddns ¥ 3
*0 D
T 1
0co9d1dsz anNo §
205LaY SO%D
91s
Zguj-—-e
s £D >
vis [leure T T
Em— L
L2048 LZlgga t1s |8 gzUI-®
T00a 1 [3 LZUui-®©
ots e
3 GZUY -
Zus-xnuw QI N3 WM pZUT—@
i fZuy—-e
IAc-XnW Bz | L° Nw U1-e H
Uy -e
Pay v m« wm SZuT=%) B
Aeleh'd 9 T zs 6lUl-@e PIQAUNT =
a4y oy Is [0 _Blui-@ o zev zed J
aav L 3 AT S ooiHHOZ oo 1EV 1€D o
Z=X0W Zxo1 o T =3 OEVY 0ED —A
ot 6zv 6zD "
= 8Z¥y 8D |
LNIdZ “ CM LIV LD b—-ydg
| U= 9zZY 92D —
00£dIAYI T SZY §ZD — b
rove '] vy vZ0 —4
IO XMW vin prui-e £Zv €ZD 1
T uy-—e
1 ur—e zzv 2ZD p—9e
oo9didaez Uur—o tzy 120 — i
90540V e 0Zv 0ZD }—o]
1S T 61¢ 61D —
sis & pluT-® DDADES 91 NId Ui—¢ BIV 81D —d
) vis [2 s1oi-e aNsS s1 NId 00EdIAs T Ur-e w“« wa -
ooTHHOZ s aNS 1S yiai-o coso - _ZETYDI STul=€ 2y 213 1
AN ZT1logh zrs 3 - /._\Ir -zo -1 ur-e
ZX0T Y Zo0h P Tis [ui-e pIwol B = PIV pID [—d
= . 554 T A LIS T UT-e #> e €IV €10 |— ,
! és o) _n.. IM o N re +ZD +1D ZYuUTl —© m~¢. WHU 9
= = v 10 ptv
M Tus—-xXnuw g1 N3 MM ur-e ° M IM o1V orD p——9
! Lno ss e SOND (oq7qxyuzezoy _ev &UT=% I3 6D |——d
d . INO-XNW 8¢ es [£ UiTe pIwol Todispuzezsy gui-e av 82
¢ v vs ur-e €2 {OdJaxizezsy o1 Lui-e Ly Lo 9
H vJqy Pl i zv €s ur-e e sy 95 —
c £qqY S1 | {yg zs G1-e z = sv SO —rt
1 el 2L ow s F2 ur-ge piuo . yii—o vy vD o
aay L 3 uy-e z EET £V €0 |19
- T=xnk 7 T zZv zD
o 124 D p— -4
ir
o n

4.2 The Voltage Limiter "ard

The ADC chip (AD7886) finds a very important application in
this set-up as it executes the crucial joo of converting the physical voltage into
its digital counterpart. However, the ADC can handle voltages only in the
range of +5 to -5 volts. A conditioning system for the ADC was in demand
and this brought the concept of a voltage limiter card into the forefront.

The basic structure of the card consists of 32 analog voltage
inputs(single-ended) being fed into 32 potentiometer and diode arrangements
where the voltage is suitably clamped to remain within a range of +5 to -5
volts. However, the system has a suitable modification to enable it to work in
the differential mode of operation also. The differential mode of operation is
sometimes preferred to the single-ended mode in order to overcome any
pickups in the mains cable and also to obtain a better CMRR. In the final
design, 28 inputs were kept single-ended and 4 inputs were modified so as to

have options for both single-ended and differential mode of operation.

DESIGN OF LIMITING ACTION

The following potentiometer-diode arrangement is used for
carrying out the limiting action as far as the single-ended inputs are

concerned. The limiter card ensures the proper working of the ADC by

T z I L T X 1 [I = T 1 2
¥l LT R e 2 RS TS EY:)
T 1/HE >
a3 Jequen_3uswnooglez)
QUYD WILIWIT FOVIIOA
®I2ITL
BHE 05 % TUOTVORVE
LNIILSHI HOUVUESIM NVHVM "
M
001418
sou> | 30010 10 sox3 | zao1c hoed
pr N Litar by ez
veo sle eva ws o sia
VERT-W TV
2001G 3q0:a
¥
o s1a
r*Zan
120A
i XI55 1 T
i | =) Loa 104
i soud 3g010 Lod soND> a0 coud 30010 oD aco:a
i R & IN14Z ntaz 1N1az b
H 160 M= zwa €25 = e 1> ~s oca ¢> - via
TENI-W TENI-V SINI -V LN -V
2Qo3a 29030 agoi1a 001¢
T 353 T
15a v sza cta
itAn €AW AN
-0
9-ouna uﬂ =57
m ecw ero] P43 — T ; 1
& e 163 2 Lod
= bev oed 1ar sou> | soo1a sen> | acolg sou 3q01a
n.mm“m leow &rd> IN1dZ iN1aE INT4E
I lezv az> ot> os%a zes veo yio xe eza
T o 3
o X Ty 32 YINT-V
NI Jerv I3 2q01a
PENIY —rew ved = N
.I.lTng €D cza
= o zz> viaw
- tTY 1z
[T jozn oz 133a
H = 6 1Y 61D I
NI w ®1> INXdz =]
= 1 s
m”m = u_u u.w siw 03D 40010 1o soud 2001¢ 0% SO wauic s
NI s v c15 /N iN1dC y, NI4T n3dT
o v 1y ri2 bt 6z - wsa 123 M eva 5 o ol
—X. ™ £ ScL ”
Y w (353 TINTV TRV mTY
NITY "It 113 dacia 3qo12 20010
Ny ot 013 P2 (X2 ﬁ TTE B3
e - 4 [¢sa T 5G .
- T) . szav H 1ZA% saw
wHE B o
G w 2 >
Mkn”I“ bt bd
R ”r »0 L] DnZU~U> T
= o o zt sox> | z@o1a od 50%0 agora 108 sox3 0013 e
km._ l,«l\ }% 13 254 N iN1dZ INI4Z b Y paveeis
v 8z> X< 550 21D == yza o =t sC ;
iN1az i
e ZINT -V
™ aqaoia
'
¥ e ENI-Q €za N
3 ot ZiaNn rae
otw v
. ¥i o
ﬂ u
b EETN
¥
ey
14T b
cu
N
v -
= sy 5033 3001 og soN2
u F7 LNI&T Z
. s 9ED = rsq 810 ~v 3@y
. T STRIV FINTY
aco1a [qore
YrL
150 s£T
sza¥ atav otAd
T
SO0MD I001a -
IN14Z
4D X2 81Q
ENI-VW
20010
Zx B
wa
R A
¥ T55A

limiting all the inputs to within +5 to =5 volts. If the analog input is more than-
+5 volts, the diode D2 is forward biased and the oufput voltage drops to zero.
Simﬂarly, if the voltage is below — 5 volts, the diode D1 is forward biased
making the output voltage zero, yet again. The scale factor can be adjusted by
varying the_resistance on the potehtiometer. The limiter card supports 32 such
potentiometer-diode arrangements fdr 32 possible single-ended inputs. The

bypass capacitor takes care of noise-related disturbances.

ANALOG I/P -5V

i o

7 DIovE D1

POTENTIOMETER N\
2\

oo/

Yl

~ CAPACITOR

+5V

ENDED CONVERTER

DESIGN OF DIFFERENTIAL TO SINGLE

Vo1
—O

ANALYSIS o

(D)

Using Superposition principle,

VOI1 = -(-V)RF/R1 = V RF/R1

(ii)

RF

T

ke

Vo2

+V + '
R1

R2

VO2 = +V [R2/(R1+R2)] (1+ RF/R1)
According to Superposition Principle,
"VO1 + V02 = VO
V RF/R1 + V [R2/(R1+R2)] (1+ RF/R1) = +V
RF/R1 + [R2/(R1+R2)] (1+ RF/R1) = 1
RFR1 + [R2/(R1+R2)] (RF/R2) = 1 — [R2/(R1+R2)]
RF/R1 + [Rz/(Ri+R2)] (RF/R2) = R1/(R1+R2)

On simplification, it yields -
2

RF (2R2 + R1)=R1

Design Choice

1. Choose R1 =R2
2

RF [3R1] =R1
RF =R1/3

2

2. . 2R2RF +RIRF =R1 |

Put R2 = RF = R1/2
LHS =[2 (R1/2) (R1/2)] + R1 (R1/2)
2 2 2

=R1/2 +R1/2=R1=RHS

Design of differehtial to Single ended Converter
(with Limiting Action)

2R2/R1)V
(@R2/RY)

If this circuit is incorporated, it can provide limiting action as well.
For instance, differential inputs -10/+10 volts have to be limited to 2 volts single
ended output.
Then choose R2 = 10K.-
R1 = 100K
Output 2.(10/100).10 v = 2v,

i

Chapter 5 : HARDWARE IMPLEMENTATION

Components And their Utilities

5.1 The Single Board Computer 80186

The SBC card is a general purpose Single Board Computer
intended to be used as an embedded controller in data acquisition and/or
control system applications. This card had been previcusly developed in RRI

and had been in existence for sometime.

This single board computer design is based around INTEL’s
80C186 microprocessor that runs at 16MHz. This board has two 28 pin
sockets for ROM upto 128KB, and two 28 pin sockets for SRAM, upto‘
64KB. It has an INTEL 8259 Programmable Interrupt Controller(PIC) to
increase the total interrupts handling capacity to 16 (External-9 including one
NMI & Internal-7). It has a serial Communication Controller, the 8530. This
controller has two independent channels that support a whole range of serial
communication protocols such as Asynch, Bi-synch, SDLC/HDLC and so on.
One of these channels is connected to RS 232C line drivers and it is used as
the debug port which is connected to any of the COM port of a standard PC.
This card also has an 8-bit DIP switch port and an 8-bit LED port useful for

displaying status information. One end of the card has a 96 pin Euro

91 ,INa148
‘vccp_,._r‘.._.l

CO/P OF TIMER O CAN BE USE!
TO RESET Pﬁeczsson)
JP1O
O———oVece

110
TI4

DRGO
DRAL

INTO
INTY

INT2/,
INT3/!

ARDREes puc

annores guc

P

RS

RES
TEST

RRASRRS
I

88858882

TIACTE

CRSO sP, 1 qT
CAS1 INT ;tg“—hﬁ_‘
CAS2 INTA

Wai-id

¥

RAIA BUS

ECEEEERERRORE

kerok-lo

/\BRRREES pus

>
o
]
]
n]
.

1]
D
u
]
a
i
i

ZHR_ 27 | o

52256 E

DD

PINZE OF UL3 & Ul4 TO VCC-STBY

fara BuS

-) e
3 4 D=
—35 &
7 8
9 10
14 12
——q 13 14 D—
1S 16 p——
17 1
12
10x2

[o|
D
4
1Y

L_‘_:ffjﬁl_4
3 e

::pr s

[,

G
DIR

VARCTZR!

L

RLL CAPACITORS ARE D.1 uF

i W BNONS W

A R
Nea

i i O i
<

1T
<
a
n

[r.[
10
ao
Zr
on

= WIRED NOT ON THE PC8

»
2
m

H]EE

H<D| T

ZOr =0

sRoyd
5

‘5

1

“im

N -
o

[s8Esssse

s 3 'Fi:

1.

o

oc
bCLK

noc

P«
it v
L 10uF
18 TXI
L

aL
8c178

ey T
10uF 'L_r.l

5 mnmaay

CHANNEL OQOF 40186 1S USED BY SCC.

ko
<
o
<
5

R O Of 80186 S NOT AVALIABLE
YHE :XPP‘SX:N BUS FOR USE BY THE g?é?uf

)

2 B

s

T 5%

- ..gg;;gi

01 \ORCAO *tcruuas DHG

connector expansion bus, containing all the necessary signals for interfacing
any user specific hardware. The other end of the card has two berg
connectors, one with an 8-bit I/O bus mainly to be used with INTEL’s 8279
Keyboard/Display Controller to provide the user interface, while the other

connector provides the serial communication lines.

The resident firmware initialises the CPU as well as all 1/O
devices on the board and memory in the system. After the power on
initialisation, the DIP switch settings are read and a decision is made to
branch either to the Turbo Debugger Remote (TDREM) kernel or a Remote-

boot routine.

5.2 The Serial Communications Controller Z8530

The Z8530 is a dual channel, multiprotocol data communications
peripherals designed for use with 8- and 16-bit microprocessors. The SCC
functions as a serial-to-parallel and parallel-to-serial converter/controller. The
SCC can be software-configured to satisfy a wide variety of serial
communication applications, including: Bus Architecture (full- and half
duplex). Token passing ring (SDLC Loop mode) and Star
Configurations(similar to SLAN).

‘The SCC contains a variety of internal functions including on-
chip baud rate generators, digital phase-lock loops and crystal oscillators,
which drarriatically reduce the" need for external logic. In addition,
SDLC/HDLC enhancements have been added to the Z85C30 that allow it to

be used more effectively in high speed applications.

The SCC handles asynchronous formats, synchronous character-
oriented protocols such as IBM Bisync, and Synchronous bit-oriented
protocols such as HDLC and IBM SDLC. This vcrsétile device supports
virtually any serial data transfer application(telecommunications, cassette,

disketted, tape drivers, etc)

The device can generate and checiz CRC codes in any
Synchronous mode. The SCC also has facilities for modem controls in both
channels. In applications where these controls are not necessary, the modem

controls can be used for general purpose 1/0.

With access to 14 Write registers and 7 Read registers per

channel, the user can configure the SCC so that it handles all asynchronous
formats regardless of data size, number of stop bits or parity requirements.
The SCC also accommodates all synchronous formats including characters,

byte and bit-oriented protocols.

Within each operating mode, the SCC also allows for prdfocol
variations by handling odd or even parity bits, character insertion or deletion,

and many other protocol-dependent features.

Data Communication Modes

Functional Descriptions

The SCC provides two independent full-duplex channels
programmable for use in any common asynchronous or synchronous data
communication protocols. This includes: Asynchronous, Syng:hronous
MONOSYNC(8-bit sync character). Synchronous BISYNC (16-bit sync
character), normal SDLC and SDLC loop modes.

PROTOCOLS

A communication protocol defines a set of rules for the orderly
transfer of the information between two communication devices. All
communication line protocols in the industry today exchange data in either an
asynchronous or synchronous manner. Asynchronous transmission is used in
several protocols including the TTY protocol while synchronous transmission
is used in protocols like: IBM BISYNC, Synchronous data link control
(BDLC), High-level data link control (HDLC) and Advanced data
communication control procedures (ADCCP).

For the project undertaken, only the Asynchronous mode of

polling is concerned. Hence a brief overview of the Asynchronous

Transmission Mode is ptesented here.

ASYNCHRONOUS TRANSMISSION

In Asynchronous transmission, as th; name irﬁplies each
character is transmitted as an independent entity: that is, the time between the
last bit of one character and the first bit of another character can be variable.

Since the receiver must be able to ¢ :zct the beginning of each
character transmitted, this mode requires that at least one bit be added at the
start of and end of each character for synchronisation purposes. |

Synchronisation at the recciver is accomplished by sensing the
transition of the start-bit for each character transmitted. The first data bit of
the character is typically sampled one and one-half bit times after the high-to-
low transition of the start-bit and each subsequent bit is sampled one bit time
thereafter. The sampling of the bit occurs at some multiple of thé data rate.
Larger multiples allow a closer approximation to the sampling.

Asynchronous communication channels are found in most
distributed computer systems for terminal-to~compute£ communications. The
common “serial port” found on personal computers is an asynchronous port. It
is used to attach external modems and printers, and' to interface the personal

computer to a minicomputer for use as a terminal.

[Baud Rate
|Gen A ‘

»

Channel A [

L
Discrete Contrpl and

; —
Status A pces

e

s Int Cont Channel|B Discrete Contrpl and
+“—1 Logic Registe Status B
—— . s

vey

1o §

Baud Rate "?,Chm)pevl”B,
Gen B

v

—
le————
—>
l——

* ’;

'S

78530 BLOCK DIAGRAM

5.3 Multiserial 1/0 Card

The PC multiserial I/O card (PCL 232) contains 4 standard RS232C

~ interface ports using 8250 Universal Asynchronous Communication
Adaptors.The ports are fully programmable to set the start bits, stop bits, ‘
parity bit and the baud rate.

MAIN FEATURES.
1.PCL 232 with 4 asynchronous ’communication ports.

2.Jumper selectable interrupt levels.
3.DIP switch selection for base address.

4 IBM-PC/XT/AT compatibility, with multilink software.

APPLICATION AREAS
1. DATA ACQUISITION.

The multiserial card can be used for data acquisition from devices such

as plotters, analysers, etc and even from other remote devices.

The monitoring system makes use of this application and Data
Acquisitioﬁ is carrieci out from the remote device (the MCM unit, in this
case).

2. MULTIUSER ENVIRONMENT
3. SERIAL TO PARALLEL / PARALLEL TO SERIAL
COMMUNICATION.

Specifications

Interfaceisystem clock: 1.8432 MHz
Method of communication : Asynchronous
Programmable Baud Rate : 50 to 9600
Data bit :5,6, 7 or 8

Stop bit : 1,1&1/2 or 2

Parity bit : even, odd or none.

RS232 interface chip : 1488,1489.

5.4 The Digitizer Card (ADC)

To read data from the AOS and the Filter Banks by the SBC and to
send this data over the TELENET to the master PC there was a need for a card
wh.ich could convert the data from the AOS a... the Filter Banks. The main
criterion for the DC selected was its conversion speed which had to match the fast
data rate from both the AS and Filter Bank with the AOS in particular. The ADC
chosen for this purpose was the Analog Devices’ AD7886 which has a conversion
time of 1.33 micro seconds. |

The ground loop problem in the ADC ,wher¢ three to four bits of
digitised output changes constantly for a single value of the input ,arising due to
improper segregation of the digital and analog supplies had to be overcome.
Therefore the ADC outputs were optically isolated just before the digitised data is
read by the SBC as shown in the schematic for the digitiser. The data from this
digitiser card is interfaced to the SBC through the 96 pin Euro connector (JP6,
JP7 & JP8). There is also provision for the TELENET signals to be input to this
board through the connector JP24, |

As another means of overcoming the ground loop problem the entire

digitizer card has been divided into 3 sections namely:
* SBCsection
* Digital section
* Analog section
The three sections are clearly seen in the schematic of the

- digitizer and all the three sections have individual supplies and grounds.

SBC.SECTION : I : ECTION 3 '
o pe— — . . DIGITAL SECTI : . ANALOG SECTION
GND T GND s Gh T o0 JE24 . - 200 . i :
% B prl= e : L . ' .
— p H uz4 .
o1 —-.:g%: - “Rs1 —LIcK 3 6 2232 7! !
52 | . RS2 - 3 h .8 uye | Re . - IN g ouT Sl VREG . VREG
D4 :Fﬁ? RS4 = o 3 112 w01 B L us us
£ S g - i £ : iz ﬁy
b7 rd R R o1s ca3 N ST caa =4SV 1
GND - RS - GND = HERDER exz 2232 J33uF ce2 | J22uF]
e ey T yese SoHE = : uan | | w s -
‘ 2 o e MipE " P Farw yumtl B < 2 oA Stsnur Srard g oufT
-y N T220F
a3 48 Trso (4 P35 < SI5% aid r1e=) g T 33ul 0-220F 5) 0.22uF 1uF 0. LuF
SHEE e e At i =
-4
a7 IRoa (&4 2 a1e H 3 uize Ri0 19
b s s : saele I " o
iR 2% Shai ¢ Récs $ by ! ‘ w3
ity s | £33 : :
PCS4 .
GND THRO PCSS 1 uisa Ri1 JumPER TX
NRDY 1St PCsé poa oo R
~15y +BATT ~isv 1% JPa
P a.gHo A.GND cc A.GND cc .]) vis
GND GND GNG 2232 : ' _ap7ese JuMPER
T = = b + , ug3n R12 ' pge. o8O es
Q10 2
: S: . . DBl $———0
©y2s - u26 28 . Aquitz vee) 1K 26 b . oB2 VINL UMPER l:és‘!ston
£ D1 ol [HZ-PHP 2. 181 1yi H B2 Do : 16 . DB3 J _
¥ 33 ¥ " 5y 2232 17 _EOC DB4
-4 0z B (73 e S we [I) »25 RECC _Fiove 2a4 4 o085 o
03 a3 [1 93 iap H 0% rrEAmE uien R13 2z 2sn : ¢ DBE vINZ [
3 DS a5 i3] HzaL 2vi : {ba outo [AR : pos, a— 2yi e , 54 RESISTOR 4
8% &% 283 3va uEH 15 ‘ 1K dr{iva 13 < : o8 .
%8 &8 1263 e 85 kit mp2 1 i3 183 : o8 |20 RESISTOR
out1 [T 2232 1 EVAE T ' DBLL +SREF N L N2
oL 16) ==
% St ma._:]ﬁ i g B cicadin ; usre i TR IR 3 four .
= 7IBACTE 74 . 2? ouss AT TLKZ mq ' rR23 . ;
. i : rrorrannBEQG .
. LsS8 20l ww : . 1
BEES . e E . €35 0. 1uF SN2 <7
) - aRCS ——*
. : . ! . 1K . caz . -
. ' . . : ! 2232 . . 10uF
. : R . i . uses R2 . vzge ~ ’ 2
o G:_....__Enu ca1 .
u29. uz i Lod1 - = =l ciim
[. : : \ p 1% c10 = Tour]
MR ot ;z% <28 Pr——— NE i S0 o o
13 o3
< 7 . 2
14 04 e DB . AR Ay %?E
i % A= i — :
17 07 Phi- S DS ’ 2010 ’ Ne
I8 o8 pia- - s D4 : p u20a
z‘“ib.‘i: . 28 s 23 : 2232 rio
X ; PELK
1 D1 uiss R4
= TERE - TACTS . ! E::..,.._BD:_ RESISTOR 2232
N . 4 4 p 1K : N2
: et ApeE— N v2zn
. IEQC R20 |
a8 o8 | uisa RS ” : :}Duzm
6 D6 + i V-1
PR 11 Qs DS RESISTOR 2232 QIPCLX
N 12 Q4 D4} ; | 1K
I3 a3 D3 |—4 = : uzz8 QIRCLK
oY, I3 E @2 D2 . . M 2232 I
L ’ i 3 e uee | re PR aal B
_— VAFRTEY i e BRZ -iSY
1w ce1 == %é vee ¢ —Rez. i ; ™ RESISTOR 2292 ‘
:_E.g uF 3417 % 2232 t& ke . : ST .
= P Sy SRS S S SRSD SIS SR SRR SRS SN SR (R SRy SRR &) . X . . Y
R T I T TTTTT T T T TTTT i g e s s 4/- 15V = ANALOG POMER! - E oo
C45 C46CAT C4BCA9 C50 c51 CL7 C1B C19 €20 €21 C22 €23 C2 . . AEND — ANALOG GND ™=
SBC GND 0. 1uF i . S 0. lur -
. tul = N €26 €27 C28 €29 1 !
. : . |
r o ! RAMAN RESEARCH INSTITUTE
TR T BYGY YRU T POEER . . i Ttle -
: : : 7. DASTI e SNR....E : DIGITIZER CARD
. | . t Geument Numb: 14y
. . - . T l 032 \ORCAD\ASHOK\ADC . DHG 3

CIRCUIT DESCRIPTION

Analog section:

The heart of this section is the Anaiog Devices’ AD7886 ADC. The features of this
chip are:

* 12 bit resolution

* 1 microsecond conversion time (1.33 micro seconds including S/H time)
achieved by using 15 comparators in a 4 bit flash tcchnique.

* 750 KHz throughput rate.

* No missed codes over temperature.

* Low power consumption of 250 mW (typical).

* High speed digital interface with a bus access time of 57 nanosecs (Max).

* On chip clock oscillator provides appropriate timing for the operatibn ,eliminating
the need for any external clocks. |

* Operates from +/-5V power supplies.

« Choice of three analog ranges - (0-5) , (0-10) ,& (-5 to +5) V.

Circuit operation:

The +5V reference voltage required for the ADC is derived from a high
performance +5V supply source using the Analog Devices’ AD 586 (U2) which
exhibits excellent stability performance. | ,

The AD7886 also requires a -3.5V reference which must be provxded
at its Vref input. This voltage is generated by the Analog Devices” AD 707 (U1)

with the use of 2 onchip resistors. This external amplifier serves the second function
of force/sensing the Vref input , which minimises the error contributions from
voltage or IR drops along the internal conductors.

The differential analog voltage to be digitized is fed through the
connector J3. The differential to single ended conversion of the analog devices chip
AD 845 (U21) . Any offset errors are corrected using the potentiometer R22. The
single ended signal ADCIN is made available to the monitoring point J2 , after
being conditioned by the opamp OPA 606 (U19). The gain adjustments of the ADC
are corrected by the potentiometer R18.

The mode and range of operation of the ADC is determined by
the jumpers JP3, JP4 and JPS.

JUMPER TO BE LINKED ~ RANGE
JP3 (0-10)V
IP4) +/-5V
JPS (0-5)V

The RD and CS lines are permanently tied low to indicate the ready
condition. ’ The conversion is started by the CC signal
connected to the CONVST pin of the ADC, The analog input voltage is sampled by
the on chip S/H amplifier before being applied to the A/D converter. The transition
from track to hold takes place on the falling edge of the CC. The EOC signal, which

- -

is the output of the ADC on the BUSY goes low as soon as the conversion starts

and at the same time, the data bus DBO to DBI11 is tristated. When the
conversion is over the S/H amplifier goes back to the track mode’and the data
bus is activated to indicate that new data is ready on the output of the chip. The
output from the ADC which are in the digital form is the last section in the
analog part of the digitizer.

In addition to the ADC and the opamps, there are four voltage regulators U3 to
U6 which provide the necessary voltages for the ADC and the opamps.

Digital section:

The digital section comprises of two buffers (U9 and U10) and the two opto
isolators (U20 and.U22). The power éupply and ground to these IC’s in the
digital section are provided by a regulator(U24). The data lines and the EOC
lines from the ADC are buffered in this section before they drive the LED’s of
the optocouplers of the SBC section. The two opfocoup]crs are used to isolate
the conversion command for the ADC and the filter bank or the AOS clock
signals from the SBC section.

SBC section:

The optocoupled EOC signal from the ADC is used to latch data into the
latches 74HCT54 (U7 and US8). The RADC signal derived in the chip select
logic PAL (U27) is used as an output control signal for these two latches. The
SBC then reads the converted data by reading the latches through the 96 pin

Euro connector.

Other peripherals:

 Timing generator (8254): Device U28 on the ADC card is a programmable
timer used to generate the clock reference for the AOS and the Filter Bank
timing signals. Timer O is used to generate a 2 MHz clock signal which is used to
derive the timing waveforms for the AOS and Filter Banks. Timers 1 and 2 are
not used in;the design. The clock input to Timer 1 can be a tick signal from the
Telenet or the output of Timer 0, while the input of Timer 2 is the CPU clock.
The output CLK1 can be used to ihterrupt the processor while the output CLK2
is made available on the Telenet connector JP24. The chip select for the device is
derived from the PAL 16L8 (U27).

* Chip Select Logic: This handled by the PAL 16L8 (U27). This provides the
chip selects for the Telenet buffer register(U26), digitizer cofnmand register
(U25), the 8254 timer (U28) and the ADC data registers U7 and U8. The base
address of these chip selects is determined by the /BCS input which is jumper

selectable.

Chapter 6 : SOFTWARE ORGANIZATION

- 6.1 The PC Side

The software written on the PC side provides the only interface
by which the user can interact with the monitoring system. This program
(written in ‘C’) takes care of the user interaction as well as the data
manipulation and the masking and unmasking of channels. The following

- events take place when the HMPC program is executed:

The program loads data from the MCM.cfg file and downloads them into
respective MCMs. The MCM.cfg file is a configuration file that contains the
default values of the different parameters pertaining to each channel. This data
includes several key parameters such as the mask patterns, upper & lower
limits(voltage), scale factor etc. The settings of any channel can be accessed
via the MCM.cfg file and they can be altered by suitable user inputs from the
main menu. However, on initialization, the default settings would be restored.

An interactive menu is displayed on the screen which provides the monitoring
personnel with various options (HMPC commands shown below in details).
The various options or HMPC commands, as they are called, can be

implemented by punching the keys 0 through 9 and then feeding the suitable

text or numeric commands to the called window (if required). Menu design
has been carried out with user-friendliness being the foremost criterion and
pains have been taken to ensure that the acquired data can be verified through
different options available on the menu. The most important command, from
the project’s point of view, -is the one called ‘CONTINUOUS
ACQUISITION’ which provides a continuous commentary on the étatus and
data accumulation of each channel so that they can be reviewed and
appropriate action can be taken.

The acquisition data collected by the Monitoring System is regarded very
important both in terms of future modifications and research utilities. So, a
provision was necessary to record the acquired data so that it may be
reviewed from time to time. HMPC program provides an option of writing
acquired data in a data.cfg(configuration) file every n minutes. The variable
‘n’ can be specified by the user by inputs in the menu. However, a default

setting is also provided which writes data into the data configuration file every

10 minutes.

6.2 The SBC Side

The software development for the SBC186 card is made
extremely easy by exploiting the software development resources available on
the PC MS-DOS operating system. System designers can dévelop the
programs for the SBC186 in popular development environments like Borland
C++, Turbo C, Microsoft C and Assembler using the PC. The relocatable
code in the DOS .EXE file is then converted to absolute located code for the
SBC 186 memory map by Paradigm’s Locate utility. Debugging the programs
for the SBC186 card is also made easy with the Turbo Debugger
Remote(TDREM) kernel residing on the card. This communicates with
Borland’s Turbo Debugger, configured in the remote CPU mode, or the
Paradigm Debug/RT running on the PC, through the RS232 serial debug port
and the COM port on the PC. This provides source level debugging and the
full power of Turbo Debugger to the embedded system program developer.

Software Development for the SBC186

The normal procedure for writing any application specific
software for an embedded system would be to write the programs in assembly

language and then burning the ROM after assembling, linking and locating the

files.

This procedure is tedious, time consuming and needs an
in-depth knowledge of the system architecture and assembly language
constructs. All these intricacies make the programmer yearn for utilities that

make the above processes transparent to him.

PARADIGM Utilities

“Paradigm Systems have two utilities called Paradigm Locate and
Debug/RT-186EA, which have been developed keeping in mind only the
convenience of the programmer. With the above utilities at his disposal, the
programmer now has the option of writing his program in high-level languages
like:

* Microsoft C
* Borland C++
* Turbo C

~ The Paradigm utilities have supporf for the startup code and run-
time libraries for these packages, which makes the power of these
development environments available to the programmer, with a few
restrictions of course! This ensures that the process of developing software for
the SBC becomes as simple as writing any other software for the PC, where
the code is written in a high—]eVel language and consequently compilation,
linking, debugging z;nd execution takes place. This similarity between the
development cycles of two different environments leads to greater
productivity as the programmer can use his skills learnt on\ the PC
environment for the other and the time spent on }earning some other software

development tool can be fruitfully utilised in another direction.

ROMming the program

Once the program is completely debugged and " the programmer

is satisfied with its performance, the code is ready to be fused into ROM.

~ The program is again compiled after suitable modifications made
in the configuration file and ‘make’ file, with the following options:
* Not running under TDREM.
* Program should originate from the free ROM area(above OF500H).
A .HEX file of the appropriate format, again, thorough the serial port of the
PC.

6.3 Execution of software

The SBC program, at the time of docﬁmenting, was being loaded
separately into the MCMs and this was eating up a little bit of time. However,
this is a temporary situation and can be modified successfully once the
program is ROMmed (i.e. it is loaded into the EPROM). Once the Paradigm
program is loaded into the SBC and the PC program is executed, the

following sequence of events is generated:

MCM SIDE: SBC outputs 0x55 to Serial Port from where it is transferred to
the Receiver buffer of PC.

PC SIDE: PC sends the command string
“0X55;

MCM addi'ess;

COMMAND CODE,;

Number of Bytes ;

Parameters;

0XAA”

MCM SIDE:

» Before scanning each channel, SBC checks whether a ‘character’ has

arrived from PC.

« IfYES, it checks whether the byte is 0x55

* If NO, it promptly returns.

* If YES, it receives next byte and puts it in the ‘MCM-ADDR". It proceeds to
check if the second character is-its own address (MY_ADDRESS).

» IfNO, it returns control.

» If YES, it outputs ‘COMMAND INVALID’ GXAA. It receives a number of

parameters including the f parameter and the last character. It also checks if the last

character is ‘COMMAND_END (0xAA)’.

» IfNO, it promptly returns.

» If YES, it interprets the command.

* If the command is successful (valid), it sends ‘COMMAND_ACK’ or data depending

on the data.

PC SIDE:

= PCreads the SP, checks whether the character is ‘COMMAND_INVALID’ (0xAA).

* If NO, it returns zero (unsuccessful)

= It waits for the n_éxt character/data with timeout (depends on the command of character

‘COMMAND_ACK’-exclusively for some commands).
= It returns ‘1 if successful, else it returns 0 (HANDSHAKE_COMMAND).

Chapter 7 : DESIGN CHOICES

7.1 Software considerations

The choice of software is affected by several factors:
> The high level language ‘C’ was the natural choice mainly because of its
universal appeal and its modularity. Because a modular approach was the
backbone of our project, a software language which supports modﬁlarity was
the order of the day. ‘C’ came in handy in this regard és it was comparatively
easier to enforce changes in the program as and when it was necessary.
» The PARADIGM embedded software system was a turning point in the
software as it allowed the programmer plenty of freedom as far as the SBC
program was concerned. Gone were the days of hectic assembly language
programming when even the simplest of changes demanded a lot of attention
and hard work. Instead the programmer keys the assembly language program
in his favourite programming language and the PARADIGM takes care of the
rest. Since PARADIGM supports a lot of languages like Turbo C, Borland C,
Pascal, etc there was a wide variety of standards to choose from. After a lot
-of consideration, Borland C was given the go-ahead.
> The presence of low level features like bit manipulation also played a
“pivotal role in the selection of ‘C’ as thé, working language.
'The screen design utility in the PC program required a lot of graphical

flexibility and manoeuvrability within the program. To offer a suitable

interactive screen design, quite a number of windows had to be called from
within the program. ‘C’ was the perfect foil for this kind of interaction as it

provides the user with a lot of graphical options.

7.2 Hardware Considerations

SBC: The choice of the Single Board Computer 186 as the means for data
storage and control is governed by the capabilities and performance criteria of
the project requirements. The SBC is a microcontroliet with an inherent
facility to accommodate a resident program in the EPROM which can be
executed repeatedly .The program can be made to take into account a number
of external parameters for processing. This fit in quite comfortably with the
project requirements. The co’mpatibility with a powerful software -

development tool like PARADIGM also influenc=4 its selection.

ADC: AD7886 was given the nod when the question of an Analog to Digital
Convertér came up. It is a flash type ADC and has provisions for handling
differential inputs. Although the Monitoring System is a comparatively slow
speed dévice, the high speed Qature'of the AD7886 makes it ideal for

improvisations in future.

ICL.232: 1t is the serial communication driver that communicates with the

HMPC via the RS232 serial interface.

MUX: An analog multiplexer plays a crucial role in the selection of channels

from the address providéd. A total of 32 channels has to be accommodated
and so the MUX card is designed so that two 16:1 multiplexers in conjunction

with an inverter are used to select the required channel. The multiplexer

chosen is AD506.

VOLTAGE LIMITER:_ A limiter card using a diode-potentiometer

arrangement keeps the analog voltage input to the ADC from shooting out of
range and hence ensures the proper working of the ADC. The inputs are
routed via a 64-pin Euro Connector. Due to the presence of 32 inputs with
respect to a éommon ground, 33 pin terminals are required. The situation is
resolved by shorting the grounded 32 pins and using the rest 32 for 32 input

signals.

Chapter 8 : TESTING AND DEBUGGING

The testing phase began with the whole assembly being set up
and the software (both PC and SBC side) running without any glitches. The
system was initially tested without the Voltage Liriter card and was found to
run smoothly after minor connection errors were rectified. Each channel was
individually tested with a direct input voltage in the range of +5 to -5 volts to
the ADC. The software took care of displaying the correct voltage but the
communication bethcn the MUX and the SBC was less than perfect and
selection of channéls presented a problem. However, the problem was soon
eradicated with the help of Logic Analysers. Next, voltage inputs (+5 to -5
volts) were fed to more than one channel at a time and the system was found
to be true again. All the above procedures were carried out for a monitoring
system with a single MCM unit.

The Voltage Limiter card was included next in the testing
process. Re-thinking had to be done at this stage since the design process had
overlooked the provision for the second ground for each channel and 32

external jumper connections had to be implemented to negate the problem.

[TSR

Chapter 9 : The Workinvg System

The monitoring system conceived for the project has weighed
several factors for it’s proper utilisation, not the least of which being the user-
friendliness of the system, even from a non-technical point of view. Adequate
measures were taken to render the end-product free from any complexities as
far as the user was concerned. |

The final set-up consists of the H=='th Monitoring PC being
connected- to the three SBC units being placed at different locations of the
observatory (the Cabin, the Receiver Room and the TBCC Room). The
communication standard used, as mentioned before, is EIA RS232. The SBC
unit along with the ADC card, the MUX card(including ICL 232 driver) and
the Voltage Limiter card is housed in a compact box assembly. The power
supply unit complete with a cooling fan comprises the other member of the
box. Each of these boxes are placed at the three locations mentioned above
and are in constant communication with the HMPC.

Initially, each of the SBC unit is loaded with the resident SBC
program in the EPROM. The SBC program may be summarised briefly as
follows:

1. As soon as the system is switched ON, initialization takes place with the
MUX, the serial port and the peripherals being initialiscd.

2. The program takes care of acquiring from the selected channels and

compares the data (voltage) with the upper and lower limits which had been

previously defined in the PC program. Accordingly the appropriate status bits

are generated.

3. The program waits for the command from the HMPC and depending on
the nature -of the command, the following sequence is generated:

* If NO, the program goes back and starts executing step 2 again.

* If YES, the program services the command and continues data acquisition.

RADIO TELESCOPE MCM3 MCM2
FRONT BACK
END END
TBCC |
MCM HMPC
CPC

BLOCK SCHEMATIC OF THE FULL FLEDGED WORKING SYSTF

Chapter 10 : IMPORTANCE OF THE PROJECT

The project marks an important development in the implementation
of additional facilities for the 10.4 m Radio Telescope. The telescope, one of its
kind in Asia at the time of its inception , is stiii a landmark for astronomy
enthusiasts all over India. However, this is the first time a step has been taken
towards a full-fledged monitoring system for it.

The monitoring system , when fu‘lly functional , would take
care so that the telescope continues acquiring data when the critical parameters
are within limits and stops acquiring when the critical parameters are exceeded.
A file which is updated at regular intervals would ensure that the data recorded
from the key channels would be available for further investigation. Apart from
these , the ‘faulty’ channels would also be indicated so that tile ‘reforming’

action could be carried out later. In future, the monitoring system would be

[4

made to ° talk’ directly with the workstation in the control room so that
automatic control can be enforced on the proceedings.

Another important footnote in this project has been the
utilization of the resources. Almost 90% of the components associated with this
project has been in-house developments. Needless to say, there were many a
happy face in the institute when the project finally came through. This is
especially important in the light of the fact that many of them had made

contributions in their own, unique ways, in measures that might seem small, yet

might prove crucial in the long run,

The SBC 80186 card, for example , which was developed.
for a highly specialized purpose, had been an in-house effort and had proved to
be a key factor in the success of this project. Barring a PARADIGM or an
ORCAD, the ¢ntire software had beéen written by us and provisions have also
been made so that they' may be upgraded in future with the minimum of hassles.

There are , of coursc; some limitations which have to be
contended with, for the time being. The scanning of channels takes place
sequentially and hence limits the user in his quest for monitoring a desired
| sequence of channels. Thankfully, none of the limitations assume a permanent
nature and can be taken care of quite easily in the future. The above problem,
for example, can be eradicated with the help of an interrupt driven structure in
the software. HoWever the usefulness of the system far outweighs its
shortcomings and the system in general marks the beginning of the shape of
things to come. |

From our point of view it might be said that the project has
proved to be an eye opener in‘terms of exposure to the professional side of
engineering. Full marks goes to our college as well as to RRI for providing us

with the above mentioned opportunity.

Chapter 11 : LOOKING AHEAD: Provisions for

the future

The system concieved for the project fesponds perfectly to the
needs of a specific time critical Monitoring System. However, due to the
modular approach taken during the hardware and software design procedures,
the system can easily find application as a generic data acquisition system.

Although it may be noted that the ADC used here is of a high-
speed nature as compared to the requirements of the system, yet it leaves a lot
of options open as far as future implementations are concerned. The high-
speed ADC has a resounding effect on the ﬂexibility'of the system and it is
quite possible that in future, it may be used in the back- end of a spectral line
receiver or a EQtal power system. |

| Because of the proceSsing power of the 80186 microprocessor,
control features may be incorporated to the system in future.

The current data acquisition process used by the MCMs is of a
sequential nature and hence inhibits the system from performing to the fullest
of its capabilities. However, with suitable modifications in software, non-
sequential data acquisition by the MCMs is a not-too-distant possibility in

future.

SYSTEM FEATURES

" Easy to configure

. Easy to install

n Menu driven and user-friendly
" Adaptability

t

THROUGHPUT OF THE MCM:;

Throughput rate with all the 32 channels unmasked: 4.8 milliseconds
(Scan time for one channel is 150 microseconds)

Throughput rate with only one channel unmasked: 175 microseconds

POWER SUPPLY REQUIREMENTS:

SBC CARD : +/- 5V REGULATED.
ADC CARD : +/- 25V UNREGULATAED.
. +/- 12V UNREGULATED.
MUX CARD: +/- 15V REGULATED.
VOLTAGE LIMITER CARD: +/- 5V REGULATED
+/- 15V REGULATED

INDEX:

The list below depicts the expanded versions of several key terms whose

abbreviated forms have been used frequently throughout the document:

ADC - Analog to Digital Converter

ADCCP - Advanced Data Communication Control Process
ADLC - Asynchronous Data Link Control

ASCII — American Standard Code for Information Interchange
CMOS - Complementary Metal Oxide Semiconductor
CMRR - Common Mode Rejection Ratio

CPC - Control PC

CPU - écntral Processing Unit

CRC - Cyclic Redundancy Code

DMA - Direct Memory Access

DRAM - Dynamic Random Access Memory

DPLL - Digital Phase Locked Loop

EQOP - End Of Poll

EPROM - Electrically Programmable Read Only Memory
GHz - Giga Hertz

HDLC- Highlevel Data Link Control

HMPC — Health Monitoring Personal Computer

IC — Integrated Circuit

KB - Kilo Bytes

LED - Light Emitting Diode

MCM - Monitor Control Module

MUX — Multiplexer

PC — Personal Computer

RAM -~ Random Access Memory

RRI — Raman Research Institute
RX-ROOM - Receiver Room

SBC - Single Board Computer

SCC - Serial Communications Controller
SDLC - Synchronous Data Link Control
SRAM - Static Random Access Memory
TBCC - Telescope Based Control Console
TDREM - Turbo Debugger REMote

APPENDIX

THE SINGLE BOARD COMPUTER 80186
Overview of SBC Board
The hardware features of SBC186 are as follows:

16 MHz, 80C186 CPU, 20 bit address bus (total 1 Mb memory space) and
16 bit wide data bus.

Two sockets for SRAM. Jumper selectable upto 64KB (2 x 62256) with
battery backup circuitry.

Two sockets for EPROM Jumper selectable upto 128 Kb (2x 2C256) for

program code.

An external Programmable Interrupt Controller(8259) to provide more
interrupts which makes the SBC186 board capable of handling a total of 9

external interrupts.

An 8 position BAR Graph LED pdrt.
An 8 bit DIP switch.

Two independent DMA channels.

Two independent 16 bit Timers. One is reserved for on board use while

the other is available on the expansion bus.

An 8-bit bi-directional port intended for front panel user interface, for

example the 8279 keyboard & display controller and dot matrix ASCII
display.

A serial Communication Controller using 85C350 provides two serial
ports, one of them is an RS232 port while the other is user configurable

through specific hardware.

Buffered expansion bus on a 96 pin Euro connector.

The 80C186 Microprocessor

¢k CMOS 8086 microprocessor with 16 bit external data bus, 1MB memory
address space and 64KB I/O space. Object code compatible with Intel 8086
family. -

of Two DMA channels with programmable priority.
o Three 16 bit Programmable Timers.

ok Programmable Interrupt Controllers that can be configured for a variety of

operating modes.
% Programmable Chip Select Unit for memory and 1/0.

&% Clock generator with external crystal 10MHz, 16MHz and 20MHz clock
speeds.

% DRAM refresh controller.

THE SCC Z8530
CAPABILITIES
Two independent full duplex channels
Synchronousﬂso;ynchronous data rategz

- Upto 1/4 of the PCLK (i.e. 4 Mbits/sec maximum data rate with 16 MHz
PCLK Z85C30)

Asynchronous capabilities:

- Upto 250 Kbits/sec with 16Mhz(x16 mode) PCLK.
- 5,6,7 or 8-bits per character

- 1,1-1/2 or 2 stop bits

~ Qdd or Even parity

- x1,16,32 or 64 clock modes

- Break generation and detection

- Parity, Overrun and Framing Error detection
Character-oriented synchronous capabilities:

- Internal or extcrna.ll character synchronous capabilities:
~ or 2 sync characters in separate registers

- Automatic CRC generation/detection

o SDLC/HDLC Capabilities:
- Abort sequence generation and checking
- Automatic; Zero bit insertion and deletion
- Automatic flag insertion between messages
~ Address field recognition
- I-Field Residue handling
- CRC generation/detection
- SDLC Loop mode with EOP recognition/loop entry and exit
o Receiver data registers quadruply buffered. Transmitter data register doubly
buffered.
o NRZ, NRZ1 or FM encoding/decoding and Manchester decoding. -
o Baud-rate generator in each channel
o A DPLL in each channel for clock recovery.
o Crystal oscillator in each channel.

o Local Loopbacks in Auto Echo Modes

PARADIGM UTILITIES

Paradigm Locate

Paradigm Locate is a utility that allows any DOS.EXE file to be split
up and placed at user specified addresses in the target system’s address space.
Also, during the installation, a subset of the chosen compiler(s) run time
libraries is modified by removing all the functions that are not supportable on
the system(due to the functions making use of the BIOS or MS-DOS calls,
which are absent on the target).It also provides a user customizable INT 21H
emulation package to provide features like memory management, stream 1/O
and other DOS dependant run-time libraries, to be used on the SBC. The
entire sequence of operations has been streamlined by using the MAKE
utility. The MAKE utility starts compiling the source code, linking and then
produces the final LOCATE’d file ready debugging/burning into ROM.
‘MAKE’ utility checks the time tags of the source files and
compiles/assembles only those which have been changed since the last

MAKE-ing and also aborts if any errors are reported while compiling or

linking.
* Development Cycle
The cycle starts with the programmer keying his code in a file called,

say, TEST.C. Then the MAKE utility is invoked with the following command
at the DGS prompt:

make -ftest

This instructs MAKE to process the files in the sequence, specified in a
special makefile calléd TEST.MAK. The directives in this file control the
compilation, linking and invoking LOCATE. Here LOCATE looks for a
special configuration file called TEST.CFG, for the translation process. Some
of the important parameters specified in this file are:
1. Output file type & name (ABSFILE): This is used to sélect the file type
and optionally supply a file name for the Absolute output file. This is useful
when working with the Debugger & other developmeht tools.
I1. Assigning a Physical address to the segments (CLASS): This assigns the
specified address in the directive to the first segment in a particular named
‘class’. |
III.Specifying the type of CPU(CPUTYPE): This informs Paradigm LOCATE
of the target system microprocessor, which helps in selecting the selecting the
set of permitted peripheral registers in the INITCODE directive.
IV.Directive to copy a class (DUPLICATE): This is used to copy the
initialised data from the EPROM to RAM by the startup code. ‘
V. Specifying EPROM programmer file type (HEXFILE): This tells LOCATE
to produce a suitabi'e format, HEX fi]e, for downloading to an EPROM
programmer.
VLInitialisation code(INITCODE): This is used to generate instructions in the
correct order for the reset vectors, stack initialisation and other peripheral
register initialisation like DRAM refresh, \-ait-state, etc.
VIL.Specify access attributes for the memory regions(MAP): This directive is

used to intimate LOCATE of the target system’s memory structure , i.e.

regions that are read-only; read-write, reserved, etc. This information helps
LOCATE in error-checking like overlapping segments, trying to write into
EPROM, etc. |

If the source code contains any errors, MAKE reports them and aborts
the process. Thén the necessary corrections are made and MAKE is invoked
till it goes through successfully. If the programmer had chosen to debug it on
the target, two other utilities called DEBUG/RT and TDREM are used to

download it onto the target system through the serial port on the PC.
Debugging Options

The two utilitiés Paradigm DEBUG/RT or Turbo debugger allows the
user to download the .EXE file produced by LOCATE from the PC onto the
SBC, to debug it on the SBC card directly.

The Paradigm DEBUG/RT is a customised version of the Borland’s
Turbo Debugger for the Single Béard Computers based the Intel80186 series
of embedded processors. In case the DEBUG/RT is not available, the original
Turbo Debugger can also be used for debugging the programs on the SBC.
This makes the full ﬁbwer of the Turbo Debu gger available to the developers
of programs for the SBC186 card. The following resources are available to

the programmér:

. Breakpoints - source and instruction level.

. Variable watches - for keeping track of desired variables.

. inspect windows - for inspecting variables.

. Memory dumps.
. CPU windows - for processor status.
. Source line debugging.
. Logging, etc.
Two special features available on the Debug/RT are:
1. Display of the contents of the 80186 internal registers.
2. Single operations of loading, executing and then exiting to DOS prompt.
The DEBUG/RT interacts with the TDREM kernel residing on the
SBC through the serial port to achieve this task. The TDREM (Turbo
Debugger REMote) .’is a customised version of the actual utility, which
occupies just 4 K of the 80186 space.
TDREM uses some amount of RAM space. So while debugging, the
user program should originate above 0BOOH.

RIS IES | SESSESALLLLALLLLLLLLLLLLLALLLLL

THE SBC PROGRAM

#include "gendefs.h"
#include "sccdefs.h"
#include "globvars.h"
#define MCM2 1

#ifdef MCM1 -
#define MYADDRESS 01
#endif

#ifdef MCM2

#define MYADDRESS 02
#endif

#ifdef MCM3 ,
#define MYADDRESS 03
#endif '
unsigned int ok=0x55,notok=0xaa;

#define COMMAND_BEGIN 0x55
#define COMMAND_END OxAA
#define COMMAND_ACK 0x55
#define COMMAND_INVALID 0xAA
#define HANDSHAKE_COMMAND 0x00
#define ANALOG_MASK_COMMAND 0x01
#define ANALOG_LIMIT_COMMAND 0x02
#define SEND_STATUS_COMMAND 0x03
#define SEND_DATA_COMMAND 0x04
#define GET_AMASK_COMMAND 0x05
#define SEND_LIMIT_COMMAND 0x07

/*********************************#********#*****************t#‘*t‘##*#***#****#

THIS FUNCTION CHECKS WHETHER THE OUTPUT PORT IS FULL.IF NOT, IT WAITS FOR A
CERTAIN AMOUNT OF TIME.

#****************#t****#*#*******#/

wait_trn()

int dly=10000;

while(! (inportb(SCC_CHNLA_CTRL) & 0x04))

{

dly--;

if(dly==0) break;

e
}
R A R o KK KRS O ROK ORI R K R O KK R K KR R R R RO R K R K
THIS FUNCTION CHECKS WHETHER THE INPUT PORT IS FULL.IF NOT, IT WAITS FOR A
CERTAIN AMOUNT OF TIME.
f********t#*********#t#*****/
wait_rec()
{

int dly=32000;

while(! (inportb(SCC_CHNLA_CTRL) & 0x01))

{

e e e e s et B e

dly--;
if(dly==0) break;
} .

/**************************‘********************************t*******‘****#*#*##

FUNCTION TO TRANSFER A CHARACTER TO THE OUTPUT PORT (TRANSMIT BUFFER).

*******##*ﬁ****Ut#***#iQ**%#*******#*#*#***************t****ﬁ****t****t****ﬁ*i/
void send_char(unsigned char data)

wait_tm(); —

outportb(SCC_CHNLA_DATA ,data);

/**#*****************#*****************#******ﬂi#******#*****t******t*****#**k

THIS PROCEDURE RECEIVES A CHARACTER FROM SCC_CHANNEL_A .THIS PROCEDURE IS
BASIC TO ALL FUNCTIONS SUCH AS RECEIVING PC COMMAND. '

t#*********#************#t***/

unsigned char rec_char()

{

wait_rec();
return(inportb(SCC_CHNLA_DATA));
}

/***#*****##******#**#*t*****#*#t****

THIS PROCEDURE SETS THE SCC REGISTER SPECIFIED BY THE PARAMETER
'REG_NO' WITH THE VALUE SPECIFIED BY THE PARAMETER 'CONTENTS'

************************************#************#*****t*t*************‘******/

void writeto_sccreg(unsigned char reg_no, unsigned char contents)

{

int dtly; ,
outportb(CTRL._PORT,reg_no);
dtly = 0; /* SCC recovery time */
outportb(CTRL_PORT,contents);

/*********#****************t*ﬁ****#**W‘*‘l#i**ﬁﬁ***&***i*‘*@*ﬁ%‘i***ﬁ##*ﬁ***ﬁ“
THIS PROCEDURE INITIALIZES THE SCC FOR THE ASYNC MODE OF OPERATION
WITH THE REQUIRED CHARACTERSTISTICS
READS FROM CONTROL PORT TO RESET INTERNAL REGISTER POINTERS OF SCC TO 0

***********#*****#*********************l****t***#*****&**U#t#&******!*********/
void init_scc_chnla()

int i;

unsigned int entries = sizeof(init_table)/sizecof(unsigned char);

inportb(CTRL_PORT);

for (i=0;i <entries ; i+=2) -

writeto_sccreg(init_table[i], init_table[i+1]);

/************************************#**#****************#***{****#tl****#*****/

THIS PROCEDURE CLEARS THE CONTROL PORT OF SCC 8530 CHIP

#*t#*t***t***#*****t***#/

void clear_ctrl_port()

ctrl_port_data=0x00;
outportb(CTRL_REG1, ctrl_port_data);
}

SR U

/*************#***t*******#**************#******#*#******************#**#****Q*

THIS FUNCTION UNMASKS ALL THE 32 CHANNELS. USED FOR INITIALIZATION PURPOSE

**********#*****************#*******************************t*#*********#*****/

void init_limit_tables()

int chnl_no;
for(chnl_no=0;chnl_no<MAXCHANNEL;chnl_no++) analog_mask[chnl_no]=0;

/m*a****wvm******#i***h**wwﬁi***ﬁ**#*#*i*ﬁi**#*ﬁﬁﬁ*tma*t******ﬁ*in*#***w****wm

THIS PROCEDURE PROVIDES START OF CONVERSION PULSE FOR FLASH TYPE A/D
“CONVERTOR

*********#*****************************#***************t#*#*#*********#t**#*tl

void generate_start_conv()

{

ctrl_port_data = ctrl_port_data | 0x04;
outportb(CTRL_REG1, ctrl_port_data);
}

/*******#**#*****#******t***#***#

THIS PROCEDURE PROVIDES END OF CONVERSION PULSE

********#**t********#****#**********##/

void stop_start_conv()

{

ctrl_port_data = ctrl_port_data & 0xFB;
outportb(CTRL_REG], ctrl_port_data);

}

/**#***************************¥**

THIS PROCEDURE PROVIDES A DELAY OF 0.96microseconds(approx lus)

****#************************************#***##*t**#*#*t*#ttt#***t****‘lt**tt*/

void delay_1us()

int ii; .
for(ii=0;ii<1;ii++);
}

/**'***#li*****t#********#l#*****t******
THIS PROCEDURE PROVIDES A DELAY OF 4*0.96:aicroseconds(approx 4us)
********#****************t#********ﬁii***#***i**#****#***i*#iﬁt#**ﬁ*#**t**#$*/
void delay_4us()

{im ii;

for(ii=0;ii<4;ii++);

}

/************************************‘********#******i*i*#**'*#****#*##i****#*

THIS PROCEDURE PROVIDES A DELAY OF 8*0.96microseconds(approx 8us)

AR AR R ROK KRR KKK SR KK R KR KRR AR R R R R R R R AR KRR RN KR

void delay_8us()
intii;

for(1i=0;ii<8;ii++);

}

/**#**

THIS PROCEDURE OUTPUTS A BIT PATTERN TO THE CONTROL PORT FOR A ENABLING
THE DESIRED MUX AND SELECTING PARTICULAR CHANNEL OF THAT MUX

#**t#******'*****************#***********#****************i********t***#t****/2
void select_mux_channel()

{

unsigned char ms4bits;

ms4bits=((chnl_no&0x3c) <<2);

ctrl_port_data=(ms4bits | (chnl_no&0x03)) ;

outportb(CTRL_REG1, ctri_port_data);

delay_1lus();

}

/****#**********#*********************************t**#**************#**********

THIS FUNCTION IS USED FOR DATA ACQUISITION AND DATA ANALYSIS AND
INTEGRATION.

t****************#**/
void scan_parameters()
{ .
for(chnl_no=0;chnl_no<MAXCHANNEL;chnl_no++)
{
if((inportb(SCC_CHNLA_CTRL) & 0x01)) rec_pcemd();
if(analog_mask[chnl_no}==1)

adc_data[chnl_no]=2048;
chnl_status[chn]_no]=0K;
continue;
}
select_mux_channel();
generate_start_conv();
delay_8us();
stop_start_conv();
delay_4us();
adc_data[chnl_no]=inport(READ_ADC);
voltage=adc_data[chnl_no};
if((voltage>max_limit[chnl_no]) J|(voltage<min_limit{chnl_no]))
{ .
status=NOTOK;
chnl_status{chnl_no]=status;

}

else

{ .
status=0K;
chnl_status{chnl_no]=status;

}

outportb(LED_PORT,++points);
scan_count++;
if(scan_count==1)

scan_count=0;outportb(LED_PORT,++points);
}

B

3 3 3 3K 3k e o ok ok ke ke ol ke ol ok ok koK ke ke e e ok ak e ok ke e sk ok ek ok ok K kol K R oK K ok ok ok R S e ke ok ok ok ok ok ok oK K % ok ROk

THIS FUNCTION UPDATES IN STATUS OF ALL THE CHANNELS. IF A CHANNEL GOES OUT
OF RANGE THE STATUS BIT MADE HIGH (SET) OTHERWISE IT IS MADE LOW(RESET)

R Ll I I I I L e I I InIImIImImImmImMIhnIomm
update_status_array()
{
int status_data;
unsigned char bitchk;
int ii=0,jj=0,chnl_no=0;
chnl_no=0;
for(ii=0;ii<8;ii++)
{
mem_status[ii]=0;
bitchk=0x01;
for(jj=0;jj<8;jj++)
{

status_data=chnl_status{chnl_no];

if(status_data==NOTOK) mcm_status[ii}]= mcm_status[ii] | bitchk;
bitchk=bitchk<<1;

chnl_no++;

}

/******&*******#***************#****#***#************it**##**tt***##*##***tt**t

THIS FUNCTION IS CALLED TO UPDATE MASK PATTERN IF THE END USER SENDS A
DESIRED MASKED PATTERN.

********#**t#**#************#**********************t**‘******t**#**#***i##***t/
update_amask_array()
{
unsigned char mask_data,bitchk;
int ii,jj,chnl_no=0;
for(ii=0;ii<8;ii++)
{ ‘ _
mask_data=amask_recd[ii];
bitchk=0x01;
for(jj=0;jj<8;jj++)
{

if((mask_data&bitchk)==0x00) analog_mask[chnl_no]=0;
else analog_mask[chnl_no]=1;
chnl_no++;
bitchk=bitchk<<1;
}
}
}

2 ofe e o o e o ol e e ok ol ke ok ok ok ok ok e kel ok ol o ok K sk ok b ke o e 3k ok e ok ok ol e ok ok o o ke i ol ok K o ok e o o e e o o o o o o R R R K

THIS FUNCTION INTERPRETS AND SERVICES THE COMMAND FROM MONITORING PC
t#*****#**t*************************t***********#*******t#**#**t****###**‘#/
interpret_command()

{

int i,jjj;

switch(cmd_code)

case HANDSHAKE COMMAND:
send_char(COMMAND_ACK);
break;

case ANALOG_MASK_COMMAND:
send_char(COMMAND_ACK);
memcpy(&amask_recd[0],¶meters[0),8);
update_amask_array();
break;

case ANALOG_LIMIT_COMMAND:
send_charf(COMMAND_ACK);
memcpy(&max_limit[(int)parameters[0]],¶meters[1],2);
memcpy(&min_limit[(int)parameters[0]],¶meters[3],2);

memcpy(&acritical[(int)parameters[0]],¶meters[5],1);
break;

case SEND_STATUS_COMMAND:
scan_parameters();
update_status_array();
send_char(COMMAND_ACK);
for(i=0;1<32000;i++);
for(i=0;i<8;i++)

send_char(mem_status[i]);
for(jjj=0;jjj<1000;jjj++);
}
break;
case SEND_DATA_COMMAND:

send_char(COMMAND_ACK);
for(i=0;i<32000;i++);
for(i=0;i<64;i++)
{ ﬁ
send_char(adc_data[i]&0x00ff);
for(Gjj=0:jjj<1000;jij++);
send_char(((adc_data[i]&0xff00)>>8));
for(jjj=0;}jj< 1000;jjj++);
}

break;

‘case GET_AMASK_COMMAND:
scnd_char(COMMAND_ACK);
for(i=0;1<32000;i++);
for(i=0;i<8;i++)

{
send_char(amask_recd[i]);
for(jjj=0:jjj<1000;jjj++);

break;

case SEND_LIMIT_COMMAND:
send_char(COMMAND_ACK);
memepy(&max_limit[(int)parameters[0]], ¶meters[1],2);
memepy (&nin_limit[(int)parameters[0]],¶meters[3],2);

memcpy(&chnl_no,(int)parameters[0],1);
break;

default: '
send_char(COMMAND_INVALID);

break;

for(i=0;i<10;i++);
}

/*******#********#********#*********#*******************tt*t**##**#**********#*

THIS FUNCTION RECEIVES THE COMMAND FROM MONITORING PC

******#***##*##**##*******#**t****l

rec_pcemd()

{
int i=0,csp=0;
pedata=inportb(SCC_CHNLA_DATA);
outportb(LED_PORT,pcdata);
if(pcdatal=COMMAND_BEGIN) return;
cmd_str{csp++]=pcdata;
pedata=rec_char(); .
outportb(LED_PORT,pcdata);
mcm_addr=pcdata;
if(mem_addr!=MYADDRESS) return;
outportb(SCC_CHNLA_DATA,COMMAND_INVALID);
cmd_str{csp++]=pcdata;
pcdata=rec_char(); :
outportb(LED_PORT,pcdata);
cmd_code=pcdata;
cmd_str[csp++]=pcdata;
pedata=rec_char();
outportb(ILED,_PORT,pcdata);
cmd_str{csp++]=pcdata;
no_of parameters=(int)pcdata;
while(no_of_parameters)
{
pedata=rec_char();
parameters[ij=pcdata;
cmd_str{csp++]=pcdata;
i++;no_of_parameters--;
}
pcdata=rec_char();
outportb(LED PORT,pcdata);
if(pcdatal=COMMAND END) return;
emd_str[csp++]=pcdata;
interpre:_command();

}

void main()

{ . .
nt ii;
for(ii=0;ii<8;ii++) mcm_status[ii]=0x5a;
for(ii=0;ii<8;ii++) amask_recd[ii}=0x55;
update_amask_array();
init_scc_chnla();
mportb(SCC CHNLA_DATA);
outportb(SCC_CHNLA_DATA,COMMAND ACK)
clear_ctrl_port();
init_limit_tables();
chnl_no=0x0;
while(1)

{

scan_parameters();

}
}

\
\
1 |
|

THE PC PROGRAM

#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <string.h>
#include <bios.h>
#finclude <ctype.h>
#include <stdlib.h>
#include <mem.h>
#include <stdlib.h>
#include<time.h>
#include<process.h>
#define TXRDYBIT 0x20
#define RXFULLBIT 0x01
#define MCM_NO 3
#define POSSTEPS 2047.0
#define NEGSTEPS 2048.0

#define COMMAND_BEGIN 0x55
#define COMMAND_END OxAA
#define COMMAND_ACK 0x55
#define COMMAND_INVALID OxAA
_ #define HANDSHAKE_COMMAND 0x00
#define ANALOG_MASK_COMMAND 0x01
#define ANALOG_LIMIT_COMMAND 0x02
#define SEND_STATUS_COMMAND 0x03
#define SEND_DATA_COMMAND 0x04
#define GET_AMASK_COMMAND 0x05
#define SEND_LIMIT_COMMAND 0x07

f#tdefine ADCMAX +5.0
#define ADCMIN -5.0
#define ADCBITS 12
#define ADCZERO 2048.0

#define SETTINGS 0xEO | 0x00 | 0x00 | 0x03/* Refer 'b...scom' function of BC*/
void menu();

void display_mask();

void display_data();

void display_status();

void select_mcm_port();

void download_limits_mask();
void read_conv_limits_mask();
void get_mcm_addr();

void comm_init(int);

void display1();

void display2();

int quit_loop();

void cursor_on();

void cursor_off();

void write_to_file();

float temp;

int x1,x2,y1,y2 k,data_mask[32];

unsigned int com_data_port,com_status_port,scan_rate[32];

unsigned char mcmused[10),critical[32),buff[128),cmd_buff[15];

unsigned char mcm_char,mcm_response,mcm_status[100],mecm_mask[10],data_Isb,data_msb;
unsigned int mem_data[100];

float

upper[32],lower[32],adcstep,disp_data[32],disp_data1[32],disp_data2[32]scale_factorff MCM_NO][32];
unsigned int ulimit,llimit,in_data;

char mcm1,mem2,mem3;

int mem_addr,d,mcmnos,i,j,dumint;

unsigned char begin[10],end[5],0ut_cmd[15];

unsigned int ulm[32],1lm[32];

unsigned char str1[20],str2[20],str3[20],str4[20],5tr5[20],str6]20];

unsigned char dums{20],location[20];

unsigned char

amask_final[8]. mask_bit[32],mask_bit1[32],mask_bit2[32],status_bit[32],status_bit1[32],status_bit2[32}];
char c;

double interval;

unsigned char key key1;

time_t t1,t2; '

FILE *fp;
/**t****tt*t*****#******

THIS FUNCTION SELECTS MCM ADDRESS AND INITIALISES CORRESPONDING SERIAL PORT
FOR RS232 COMMUNICATION

************#******#*********##**#*************#******#*****#***##‘**********/

void select_mcm_port()
{
switch(mem_addr)

{

case 1:
com_data_port= 0x2e8;
com_status_port= Ox2ed;
conun_init(4);
break;

case 2 :
com_data_port= 0x3¢8;
com_status_port= Ox3ed;
comm_init(3);
break; '

case 3 :
com_data_port= 0x2(8;
com_status_port= 0x2fd;
comm_init(2);
break;

default:
break;

}

}

/***#******t#*#**t#***

THIS FUNCTION CHECKS WHETHER IT CAN TRANSMIT TO MCM OR NOT
IT WAITS FOR A SUITABLE TIME

************#*************#***********************************#**************/

void wait_tx()

int dly=1000;

while(! (inportb(com_status_port) & TXRDYBIT))
{
dly--; s
if(dly==0) break; ~

}

/**#****mt!i***#**#&*w****ﬁm******#****imt&ﬁ#%é#vﬁ#éwt**tﬁﬁ@*%#i**w**&##vtwavﬁi
THIS FUNCTION CHECKS WHETHER IT CAN RECEIVE FROM MCM OR NOT
w*&mti**#%wi#*m**#v*t*i**t%****ttﬂiiﬁ&***#*tt****tt#a**iiitiiii**ixiﬂti/

void wait_rx_stat()

while(! (inportb(com_status_port) & RXFULLBIT));

/*******t**#************#*******************#*#*****tt*****t*#****#t*t**##i**t

THIS FUNCTION SENDS A CHARACTER TO TRANSMIT BUFFER

********#*‘*t***********************##*###‘*##*******t*****#****#*#**##**#***/

void send_char(unsigned char data)
{

wait_tx();
outportb(com_data_port,data);

}

/***************************************#*******ttt*********!*#**********t****

THIS FUNCTION CHECKS WHETHER THE RECIEVER BUFFER IS FULL OR NOT (i.e. WHETHER
A CHARACTER IS RECIEVED AT THE INPUT PORT.IF NOT, ITS WAITS FOR THE SPECIFIED
TIME DURING WHICH IT EXPECTS A CHARACTER FROM ONE OF THE ADDRESSED MCMS.

*************************************#*****************‘**‘*****‘#***********/
void wait_rx()
{

long int dly=32000;

while(! (inportb(com_status_port) & RXFULLBIT))

{

dly--;
if(dly==0) break;
}

}

/*###**t***#*#t***##*******t****#******!##t*‘*t***tt#*##*##*t**'#ltll*t*‘****t

THIS FUNCTION RECIEVES A CHARACTER FROM ITS RECIEVE BUFFER

e e L L yE

unsigned char rec_char_stat()
{
wait_rx_stat();
return(inportb(com_data_port));
'

/********#t###‘##t**%********************##**********t*********#**t#****t*#**#

THIS FUNCTION RECIEVES A CHARACTER FROM THE MCM

R AR KR K ROK R OR K RHR HRHOR K KRR K R R KRR R R R R R R KRR KRR

unsigned char rec_char()

{

wait_rx(); _
return(inportb(com_data_port));

/***********#************************#t*t****‘**********##**‘**tt******#****#*

THIS FUNCTION SENDS COMMAND TO MCM .

****************#************************************#****#*#t**************#/

void send_cmd_to_mcm()

{
int i,nbytes; X
nbytes=(int) cmd_buff[3];
for(i=0;i<(nbytes+5);i++)

send_char(cmd_buff[i]);

}
3*#**#**#****************************‘t***ﬁ******#*i****i***‘*t***************
THIS FUNCTION ACQUIRES STATUS AND 2-BYTE VOLTAGE INFORMATION OF ALL THE
CHANNELS FROM THE SELECTED MCM AND CONVERTS IT TO THE NORMAL FORM AND

DISPLAYS
THE VOLTAGES ON THE MONITOR.

#***********#‘*t#*#t*********/
void acquire()

unsigned char bitchk,i;

int ii,jj,nbytes, k;

if({(send_status_cmd(}))

cprintf("STATUS_OUT");
getch();

quit_loop();

}

if(!(send_data_cmd()))

{
cprint{("SEND_DATA_OUT");
getch();

quit_loop();

}

window(4,12,75,23);
textbackground(CYAN);
textcolor(BLACK);
clrser();

for(i=0;i<32;i++)

if(mcm_data[i}>=2048)
disp_data[i}=((mcm_data[i]-2048)*5.0/2048)*(scale_factor[mem_addr][i]);
else
disp_data[i]=((2048-mcm_data[i])*-5.0/2048)*(scale_factor{mem_addr][i]);

for(ii=0;iicd;iiv+)
(.
bitchk=0x01;
for(jj=0;jj<8;jj++)
{

status_bit[8*ii+jj]=mcm_status[ii]&bitchk;

bitchk<<=1;
}

for(i=0;i<8;i++)

{
for(j=0;j<4;j++)

switch(mcm_addr)

{
case 1: .
disp_datal[4*i+j]=disp_data[4*i+j};
status_bit1{4*i+]]=status_bit[4*i+j];
break;
case 2:
disp_data2[4*i+j]=disp_data[4*i+j];
status_bit2[4*i+j]=status_bit[4*i+j];
break;
default:break;
}
}
}
gotoxy(23,2);
cprintf{"------ MCM 1------ ");
for(i=0;i<8;i++)
{
for(j=0;j<4;j++){

if(mask_bit1[4*i+j}==0x00)

if(status_bit1[4*i+j]==0)
{
gotoxy(8*i+35,j+3);
cprintf("%d: %.2f" 4*i+j,disp_data1[4*i+j));

else

{
textcolor(RED);

gotoxy(8*i+5,j+3);
cprintf("%d: %.2f",4%i+],disp_data1[4*i+j]);
textcolor(BLACK);
}
}
else
{
gotoxy(8*i+5,j+3);
cprintf("%d:MASK",4*i+j);
}
}
}
gotoxy(23,7);
cprintf("------MCM 2------");
for(i=0;i<8;i++)
{ A
for(j=0;j<d;j++)

if(mask_bit2[4*i+]]==0%00)
if(status_bit2[4*i+j]==0)

gotoxy(8*i+5,j+8);
cprintf(" %d: %.2f" ,4*i+j,disp_data2[4*i+j]);
}

else

{
textcolor(RED);
gotoxy(8*i+5,j+8);
cprintf("%d:%.2f" ,4*i+j,disp_data2[4*i+j]);
‘textcolor(BLACK);
}
}
else
{
gotoxy(8*i+5,j+8);
cprintf("%d:MASK",4*i+j);
}
}
}

/*****#*******ﬁ*******i**************#**#*t*t***********t‘##***#*i*****‘*tt***

THIS FUNCTION IS USED TO BREAK OUT OF THE LOOP DURING CONTINOUS ACQUISITION
WHENEVER ANY OF THE MCMS STOPS RESPONDING.
**************************#*************#***#‘##***#*****###t*t*#*******#****/
int quit_loop()
{ :

window(1,12,80,25);

textbackground(WHITE);

clrser();

display1();

exit(0);

return;

} |

/*****************#*************************t**************#****t*******ttt***

THIS FUNCTION DISPLAYS A MESSAGE WHEN THE MCM IS NOT RESPONDING.

******#&****##************************************&***********#*********#***#/

void display1()

window(1,25,80,25);
textbackground(WHITE);
_ clrser();
window(15,23,40,25);
textbackground(GREEN);
textcolor(WHITE);
clrscr();
gotoxy(2,2);
cprintf("MCM %d not responding”,mem_addr);
getch();
}

/***#*****#**#*t****t*lt*t****

THIS FUNCTION DISPLAYS A MESSAGE WHEN THE COMMAND IS SUCCESSFUL.

**********************************#**#**********#**#*##******#**‘***#*W**#***/

void display2()

window(15,23,40,25);
textbackground(GREEN);
textcolor(WHITE);

clrscr();

gotoxy(2,2); .
cprintf("COMMAND SUCCESSFUL");
getch();

/********#***************************###****###t*******U********t*#*#t#*****i#

THIS FUNCTION IS USED TO CHECK WHETHER THE LINK BETWEEN THE HMPC AND THE
MCM
IS ACHIEVED AND THE MCM COMMUNICATES PROPERLY.
******##*#******#**********t*******#****t****ttt***tt*tt*#t*t#t##t*t**t**##*#/
int send_handshake_cmd()
{

int i,nbytes; .

cmd_buff{0}=COMMAND_BEGIN;

cmd_buff[1}=mcm_addx;

cmd_buff[2]=HANDSHAKE_COMMAND;

cmd_buff[3}=0x00;

cmd_buff{4]=COMMAND_END;

send_cmd_to_mcm();

for(i=0;i<10000;i++);

mcm_response=inportb(com_data_port);

if(mcm_response!l=COMMAND_INVALID) return(0);

mcem_response=rec_char(};

if(mem_response!=COMMAND_ACK) return(0);

else

return(1);

}

R L P P T

THIS FUNCTION SENDS THE MASK PATTERN TO THE SELECTED MCM.

*##***!**ﬁ***ﬁ**#**********t******t**#*****t*t*t*tii****#&tltt#*t**t##*******/

int send_analog_mask()

{
int i,nbytes;
cmd_buff[0]=COMMAND_BEGIN;
cmd_buff[1]=mcm_addr;
cmd_buff[2]=ANALOG_MASK_COMMAND;
cmd_buff[3]=0x04;
memcpy(&cmd_buff[4],&amask_final,4);
cmd_buff[8]=COMMAND_END;
send_cmd_to_mcm();
for(i=0;i<10000;i++);
mcm_response=inportb(com_data_port);
if(mem_response!=COMMAND_INVALID) return(0);
mcm_response=rec_char();
if(mem_response!=COMMAND_ACK) return(0);
else return(1);

}

/**********#**********************************t*******t***#*t**#*******#******

THIS FUNCTICN SENDS THE ANALOG LIMITS TO THE SELECTED MCM.

*************#*********************************t***#***#****#‘t*#****#******‘/

int send_analog_limits()

{
int i,nbytes,chnl_no;
cmd_buff{0J=COMMAND_BEGIN;
cmd_buff[1]=mcm_addr;
cmd_buff[2]=ANALOG_LIMIT_COMMAND;
cmd_buff[3]=0x08;
cmd_buff{12]s COMMAND _END;
for(chnl_no=0;chnl_no<32;chnl_no++)
{
cmd_buff[4]=(unsigned char) chnl_no;
memcepy(&emd_buff]5],&ulm[chnl_no],2);
memcpy(&cmd_buff]7],&1im[chnl_no],2);
memcpy(&cmd_buff][9],&critical[chnl_no],1);
memcpy(&cmd_buff]10],&scan_rate[chnl_no],2);
send_cmd_to_mcm();
mecm_response=inportb(com_data_port);
if(mcm_response!=COMMAND_INVALID) return(0);
mcm_response=rec_char();
if(mcm_response!=COMMAND_ACK) return(0);
else {delay(2);continue;}

return(1);

/*******#******************##****************#******‘**t##****#******#********

THIS FUNCTION REQUESTS THE MCM TO SEND THE STATUS INFORMATION OF THEIR
PARAMETERS.

*******#********#t#*********************#**#***##*#t*#***#*#**t#ttt***t#*t***/

int send_status_cmd()

{
unsigned char bitchk,i;
int ii,jj,nbytes k;
cmd_buff[0]=COMMAND_BEGIN;
cmd_buff[1}=mcm_addr;
cmd_buff[2]=SEND_STATUS_COMMAND;
cmd_buff[3]=0x00; -
cmd_buff[4]=COMMAND_END;
send_cmd_to_mem();
delay(1);
mem_response=inportb(com_data_port);
if(mem_response!=COMMAND_INVALID) return(0);
mem_response=rec_char();
if(mem_response!=COMMAND_ACK) { return(0);}
else

{

for(i=0;i<4;i++) mem_status[i]=rec_char_stat();

return(1);

}

/**#*#***‘#*#****#*###

THIS FUNCTON IS USED TO SEND THE UPPER LIMIT,LOWER LIMIT AND SCALE FACTOR
FOR A PARTICULAR CHANNEL OF A MCM ONLINE.IT CHECKS THE VALIDITY OF THESE

PARAMETERS AND CONVERTS INTO A 12-BIT DATA(ACCORDING TO THE FORMULA).
#**/
int send_limit_cmd()
{
int i,nbytes,number;
float up_lim,low_lim;
cmd_buff[0}=COMMAND_BEGIN;
cmd_buff[1]=mcm_addr;
emd_buff[2}=SEND_LIMIT_COMMAND;
cmd_buff]3]=0x05;
cmd_buff[9]=COMMAND_END;
window(20,13,65,22);
textbackground(BLUE);
textcolor(YELLOWY);
clrser();
disable();
enter_chno: gotoxy(3,2);
cprintf("ENTER CHANNEL NUMBER:");
if(! scanf("%d",&number))
goto enter_chno;
enable();
memcpy(&cmd_buff[4],&number,1);
gotoxy(3,4);
cprintf(" ENTER THE UPPER LIMIT:");
scanf("%f",&up_lim);
gotoxy(3,6);
cprintf(" ENTER THE LOWER LIMIT:");
scanf("%f" ,&low_lim);
if(up_lim<low_lim)

temp=up_lim;

up_lim=low_lim;

low_lim=temp;

-}

enter: gotoxy(3,8);

cprintf(" ENTER SCALE FACTOR:");
scanf("%f",&scale_factor[mcm_addr][number]);
if(scale_factor[mcm_addr][number]<=0.0)

goto enter;

up_lim=up_lim/scale_factorfmem_addr]{number};
low_lim=low_lim/scale_factor[mem_addr][number];

if (up_lim>ADCMAX) up_lim=ADCMAX;

if (low_lim<ADCMIN) low_lim=ADCMIN;

if(up_lim >= 0.0) adcstep=POSSTEPS; else adcstep=NEGSTEPS;
ulimit=(unsigned inf) (ADCZERO + ((adcstep/ADCMAX)*up_lim));
if (low_lim >= 0.0) adcstep=POSSTEPS; else adcstep=NEGSTEPS;
llimit=(unsigned int) (ADCZERO + ((adcstep/ADCMAX)*low_lim));
memcpy(&cmd_buff[5],&ulimit,2);
memcpy(&cmd_buff]7],&Ilimit,2);

send_cmd_to_mcm();

delay(1); «
mcm_response=inportb(com_data_port);
if(mem_response!=COMMAND_INVALID) return(0);
mcm_response=rec_char();

if(mcm_response!=COMMAND_ACK) return(0);

else return(1);
}**###‘******************i
THIS FUNCTION REQUESTS THE MCM TO SEND THE VOLTAGES OF ALL THE UNMASKED

CHANNELS.IF THE MCM RESPONDS, THE DATA IS RECIEVED AND STORED IN DIFFERENT
MEMORY VARIABLES.

************i*tt****t*****t*****************************t*tt******t*t********/
int send_data_cmd()_
{
int i,nbytes;
cmd_buff[0]=COMMAND_BEGIN;
cmd_buff[1]=mcm_addr;
cmd_buff[2]=SEND_DATA_COMMAND;
cmd_buff[3}=0x00;
cmd_buff[4]=COMMAND_END;
delay(2);
send_cmd_to_mem();
delay(1);
mcm_response=inportb(com_data_port);
if(mcm_response!=COMMAND_INVALID) return(0);
mcm_response=rec_char();
if(mem_response!=COMMAND_ACK){ return(0);}
else
{
for(i=0;i<32;i++)
{data_lsb=rec__char_stat();
data_msb=rec_char_stat();
mcm_data[i]=(data_msb<<8) | data_lsb; .

return(1);

}
}**#*t*t**t#********‘**‘#*##*t#*****
THIS FUNCTION RECIEVES THE MASK DATA OF THE SELECTED MCM AND DISPLAYS IT ON
THE MONITOR.

***********t&#f#**#*****************#**##ﬁ%&V#*m**v#****VV*****:****#*‘*#****/
int get_analog_mask()
{
int i,nbytes;
cmd_buff[0}=COMMAND_BEGIN;
cmd_buff[1}=mem_addr;
cmd_buff[2]=GET_AMASK_COMMAND;
cmd_buff[3]=0x0;
cmd_buff[4]=CGMMAND_END;
send_cmd_to_mcm();
delay(1);
mcm_response=inportb(com_data_port);
if(mem_response!=COMMAND_INVALID) return(0);
mem_response=rec_char();
if(mem_response!=COMMAND_ACK) return(0);
clse

{

for(i=0;i<4;i++) mcm_mask[i]=rec_char_stat();
return(1);

F R T T A

THIS FUNCTION IS USED TO TRANSFER THE ANALOG LIMITS TO THE SELECTED MCM.IF
THE ’

MCM IS NOT RESPONDING IT FLASHES A MESSAGE ON THE SCREEN.

******#****#l#t************#**********#**f*****##t***#****‘#*#'*****#*#*#3**#/
void download_limits_mask()
{
select_mem_port();
if(!(send_bandshake_cmd(})) {
getch();
window(10,25,36,25);
textbackground(WHITE);
textcolor(RED);
clrscr();
cprintf(" MCM %d NOT RESPONDING ",mcm_addr);
getch();
window(10,25,36,25);
textbackground(MAGENTA);
textcolor(WHITE);
clrscr();
return; }; '
if(!(send_analog_mask()))

cprintf("\nMCM %d not responding",mcm_addr);
return;

b

if(1(send_analog_limits()))

{

cprintf("\nMCM %d not responding",mcm_addr);

return;

H
3****#***ﬁ*#****#*#****#****#******************i!*******ti*#‘*#***ﬁﬂi**iti*i**
THIS FUNCTION IS USED TO PROCESS THE DATA OF SELECTED MCMS.THE UPPER LIMIT,
LOWER LIMIT AND SCALE FACTORS ARE STORED IN MEMORY VARIABLES AND ARE
CONVERTED INTO CORRESPONDING 12-BIT DIGITAL VALUE.

t**#l*t********/

void read_conv_limits_mask()
{
for(i=0;1<32;i++)
{
fgets(buff,81,{p);
printf("\n%s" buff);/*******/
sscanf(buff,"%s %d %f %f %os %f
%0d" str3,&mask_bit[i],&upper[i],&lower[i],&critical[i],&scale_factor[uacim_addr]{i],&scan_rate[i]);
scale_factor[mem_addr][i]=(scale_factor[mem_addr][i]<=0.0)?1.0:scale_factor{mem_addr][i};
if (upper[i]J>ADCMAX) upper{i]=ADCMAX;
if (lower[i]<ADCMIN) lower[i}J=ADCMIN;
if(upper[i] >= 0.0) adcstep=POSSTEPS; else adcstep=NEGSTEPS;
ulimit=(unsigned int) ((ADCZERO + ((adcstep/ADCMAX)*upper{i])/scale_factor{mem_addr][i]));

if (lower[i] >= 0.0) adcstep=POSSTEPS; else adcstep=NEGSTEPS;

limit=(unsigned int) ((ADCZERO + ((adcstcp/ADCMAX)*]ower[l])/Scale factorfmem_ addr][x]))
Nm[i}=(unsigned int)llimit;

ulm([i]=(unsigned int)ulimit;
for(i=0;i<4;i++)

amask_final[i]=0x00;
for(j=0;j<8;j++)
{

mask_bit[8*i+j]<<=j;
amask_final[i]|=mask_bit[8*i+j]&Oxff;

}

/**************tﬁ***#*#*****t#*****‘*#t‘{*l****t**ﬁ*‘*t**tt#t!ttt**‘**t#*t##*#

THIS FUNCTION IS USED TO INITIALISE THE RS232 COMMUNICATION PORT.

*******************************#****************‘******************‘#********/
void comm_init(int comm)

bioscom(0,SETTINGS,comm-1); /** Init RS-232 comm. **/

/*(comm==1 COM1, comm==2 COM2*/

inportb(com_data_port);
};*************‘*#*******#*************#‘*#***tt#****#*#***t#***#*************
THIS FUNCTION READS THE MCM.CFG DATA FILE AND PROCESSES ON IT.IT CHECKS
WHICH OF THE MCM'S ARE IN USE AND PROCESSES DATA OF THESE MCMS ONLY.

**********t#************#****##*******#***ﬁ‘#ﬁﬁ********#*t*****#*********#***/
void read_cfg_file()
{
highvideo();
window(1,1,80,25);
textbackground(MAGENTA);
textcolor(WHITE);
clrscr(); N
lowvideo();

if ((fp:fopen("mcm.cfg" "1"))==NULL) ’)
{

cprintf("Error opening mem.cfg file\n");
exit(0);
}
fgets(buff,81,fp); /*First line*/
fgets(buff,81,fp); /*First line*/
fgets(buff,81,fp); /*Second line*/
while({fgets(buff,81,fp)!=NULL))/*(for 1st MCM)Third line onwards*/
{
sscanf(buff,"%s %d %s %s %s" strl,&mem_addr,dums,dums,location);
fgets(buff,81,fp); /*Fourth line*/
sscanf(buff,"%s %s" str2,mcmused);
fgets(buff,81,fp); /*Fifth line*/
fgets(buff,81,fp); /*Sixth line*/
sscanf(buff," %s" begin);
getch();
if (stremp(begin,"BEGIN")!=0)

cprintf("\nMismatch in configuration file format\n");
fclose(fp);

exit(0);

}

if(strcmp(mcmused,"NOT_USED")==0)

{ .

for(i=0;i<32;i++) fgets(buff,81,fp);

fgets(buff,81,fp); /*Sixty (ifth line*/

sscanf(buff," %s",end);

if (strcmp(end,"END")!=0)

cprintf("\nMismatch in configuration file format\n");
fclose(fp);

exit(0);

}

continue;

}
read_conv_limits_mask();
download_limits_mask();
fgets(buff,81,fp); /*Sixty fifth linc*/
sscanf(buff,"%s" end);
if (stremp(end,"END")!=0)

cprintf("\nMismatch in configuration file format\n");
fclose(fp);
exit(0);
}
}
fclose(fp);

cprintf("\nFinished reading configuration file");

}

AR ook oo R K o KRR KK K KR KK R KR OK K K R K OR KKR KK KKR

THIS FUNCTION IS USED TO DISPLAY THE MASK INFORMATION SENT TO THE MCM.

**************************************#*n*#**#********ﬁ**#tt*#**********#*t‘i/

void display_mask()

window(15,13;65,22);
textbackground(BLUE);
textcolor{ YELLOW);
clrser();
gotoxy(5,1);
cprintf(" MCM_MASK ");
for(i=0;i<4;i++)
{
for(j=0;j<8;j++)
{
k=0x01;
k<<=j;
if(mem_mask[i)&k)
{
mask_bit[8*i+j]=0x01;
data_mask[8*i+j]=1; }
else

mask_bit[8*i+)]=0x00;

data_mask[8*i+j}=0;

}

gotoxy(12*i+2,j+2);

cprintf("ch_no%d :%d" 8*i+j,data_mask[8*i+j]);
}

}
}**t******
THIS FUNCTION IS USED TO DISPLAY THE VOLTAGES OF ALL THE CHANNELS OF THE
SELECTED MCM.

#*l&***************!‘*************************#*****t**l‘*******************/
void display_data()

if(!(get_analog_mask())) quit_loop();
for(i=0;i<4;i++)

{ .

for(j=0;j<8;j++)

k=0x01;

k<<=j;
if(mem_mask[i]&Kk)

{
mask_bit[8*i+j]=0x01;
data_mask[8*i+j]=1;

}

clse

{
mask_bit[8*i+j}=0x00;
data_mask[8*i+j]=0;

}
} |
window(15,14,65,22);
textbackground(GREEN);
textcolor(YELLOW);
clrscr();
gotoxy(15,12);
cprintf("MCM DATA: ");
i=0;
gotoxy(5,j+17);
for(i=0;i<32;i++)
{
if(mem_data(i]>=2048)
disp_data[i]=((mcm_data[i]-2048)*5.0/2048)*(scale_factor|mcm_addr][i]);
else
disp_data[i]=((2048-mcm_data[i])*-5.0/2048)*(scale_factor]mem_addr][i]);

for(i=0;i<4;i++)

{

for(j=0;j<8;j++) {
gotoxy(11*1+2,j+2);

if(mask_bit[8*i+j]==0x0)
cprintf(" %d: %f",8*i+j,disp_data[8*i+j]);
else
cprintf(" %d: MASKED ",8*i+j);
}
}
}

/**#******#***************#*****t*

THIS FUNCTION DISPLAYS THE STATUS INFORMATION OF THE SELECTED MCM ON THE
SCREEN.

#*#************/

void display_status()

unsigned char bitchk,i;
int ii,jj,noytes k;
window(1,13,80,23);
textbackground(CY AN);
textcolor(YELLOW);
clrser();

for(i=0;i1<8;i++)

{

for(j=0;j<4;j++)

gotoxy(10*i+1,2*j+3);
cprintf("CH_NO%d:",4*i+));
}

}
for(ii=0;ii<4;ii++)

{

bitchk=0x01;
for(jj=0;jj<8;jj++)

{

status_bit[8*ii+jj]=mcm_status[ii]&bitchbk;
bitchk<<=1; A
}
}
for(i=0;i<8;i++)
{
for(j=0;j<4;j++)
{

if(status_bit[4*i+]]!=0x00)

window(10*i+8,15+j*2,10%i+8,15+j*2);
textbackground(RED);
clrser();
}
}
}
}
/**#i**i****#*#******#**
THIS FUNCTION IS USED TO GENERATE A MENU SCREEN.
**********************************#**#************#**¥*it*t*‘**tt*ti**ﬂ*‘****/

void menu()

{

window(1,1,80,25);

clrser();

textbackground(WHITE);
window(1,1,80,3);

clrscr();

textbackground(BLUE);
textcolor(WHITE); '

gotoxy(1,1);

cprintf{(" 10.4M mmw Radio Telescope
textbackground(LIGHTMAGENTA);
textcolor(WHITE);

gotoxy(1,2); -

cprintf(" Health Monitoring Initialisation/Setup
window(1,3,80,10);

clrscr();
textbackground(CYAN+BLINK);
textcolor(YELLOW);

clrscr();

gotoxy(5,2);

cprintf® MCM COMMANDS ");
gotoxy(5,4);

cprintf("0 -> HANDSHAKE COMMAND *");
textcolor(YELLOW+WHITE);
gotoxy(5,4);

cprintf{("0 ->");

textcolor(YELLOW);
textbackground(CYAN+BLINK);
gotoxy(5,5);

cprintf("1 -> SEND ANALOG MASK ");
textcolor(YELLOW+WHITE);
gotoxy(5,5);

cprintf("1 ->");

textcolor(YELLOW);
textbackground(CYAN+BLINK);
gotoxy(S,6);

cprint{("2 -> SEND ANALOG LIMITS ");
textcolor(YELLOW+WHITE);
gotoxy(5,6);

cprintf("2 ->");

textcolor(YELLOW);
textbackground(CYAN+BLINK);
gotoxy(5,7);

cprintf("3 -> GET STATUS ");
textcolor(YELLOW+WHITE);
gotoxy(5,7);

cprintf("3 ->");

textcolor(YELLOW);
textbackground(CYAN+BLINK);
gotoxy(5,8);

cprintf("4 -> GET DATA ")
textcolor(YELLOW+WHITE);
gotoxy(5,8);

cprintf("4 ->");

textcolor(YELLOW);

textbackground(CYAN+BLINK);

gotoxy(40,2);

cprintf" MISC COMMANDS ");

gotoxy(40,4);

cprintf("5 -> INPUT MCM ADDRESS *");

textcolor(YELLOW+WHITE);

gotoxy(40,4);

cprintf("S ->");

textcolor(YELLOW);

textbackground(CYAN+BLINK);

gotoxy(40,5);

cprintf("6 -> GET ANALOG MASK ");

textcolor(YELLOW+WHITE);

gotoxy(40,5);

cprintf("6 ->");

textcolor(YELLOW);

textbackground(CYAN+BLINK);

gotoxy(40,6);

cprintf("7 -> INPUT ANALOG LIMITS");

textcolor(YELLOW4+WHITE);

gotoxy(40,6);

cprintf("7 ->");

textcolor(YELLOW);

textbackground(CYAN+BLINK);

gotoxy(40,7);

cprintf("8 -> CONTINOUS ACQUISITION");

textcolor(YELLOW+WHITE);

gotoxy(40,7);

cprintf("8 ->");

textcolor(YELLOW);

textbackground(CYAN+BLINK);

gotoxy(40,8);

cprintf("9 -> QUIT FROM PROGRAM ");

textcolor(YELLOW+WHITE);

gotoxy(40,8);

cprintf("9 ->");

textcolor(YELLOW);

textbackground(CYAN+BLINK);

window(1,11,80,25);

textbackground(WHITE);

clrscrf); .

textbackground(MAGENTA);

textcolor(WHITE);

gotoxy(5,15);

cprintf(" PRESS KEY TO --> ENTER COMMAND CODE ");
}

/**********#t*#**********************##*******t*#********.*#********#****t****

THIS FUNCTION IS USED TO CONFIGURE THE PORT FOR THE MCM SELECTED.

***********t#****************************#**********#***‘#*#**#tt‘i****ﬁ****#l

void get_mem_addr()

{
window(1,25,80,25); }
textbackground(WHITE);
clrscr();

window(25,18,60,23);

textbackground(RED);

textcolor(WHITE);

clrscr();

gotoxy(2,2);

cprintf("Enter MCM address : ");
scanf("%d",&mcm_addr);

gotoxy(2,4);

cprintf("New MCM address is %d",mcm_addr);
select_mcm_port();

}

/*********#*****l*****************************#****.t##‘##*t‘#*****'il##****#*

THIS FUNCTION CHOOSES APPROPRIATE FUNCTIONS TO BE EXECUTED ACCORDING TO
THE

CHOICE ENTERED.

**********#****************************t******#**#*****#**#l*********t***#**‘/

void exec_command()

{

int i;

while(1)

{

menu();

gotoxy(5,16);

key=getch();

switch(key)

{

case '0"
if(!(send_handshake_cmd()))
{
display1(); '
}
else
window(17,15,42,19);
textbackground(GREEN);
textcolor(WHITE);
clrscr();
gotoxy(5,3); - _
cprintf("MCM % is alive!",mcm_addr);

getch();

}
break;

case '1":

window(17,12,65,22);
textbackground(GREEN);
textcolor(WHITE);
clrscr();
gotoxy(4,1);
cursor_on();
cprintf("Enter mask pattern : 0-->unmask 1-->mask ");
for(i=0;i<4;i++)
{
amask_{inal[i}=0x00;
for(j=0;j<8;j++)

{

exit_loop: gotoxy(10*i+6,j+3);
cprintf("chno%d:",8*i+j);
scanf("%c",&data_mask[j]);

whllc(toascu(((mt)data _mask[j]))!=toascii(((int)'1")) & &toascii(((int)data_mask(j]))!=toascii(((int)'0)))
goto exit_loop;
mask_bit[8*i+j]=data mask[}]& 0x0001;
data_mask[j}<<=j;
amask_finai[i]|=data_mask[j]&O0xO00ff;

}
gotoxy(11*i+5,11);
cprintf("CHK: %x" amask_final[i]);

if(!(send_analog_mask()))
display1();
}

else

{
display2();
}

cursor_off();
break;
case 2"
if(!(send_analog_limits()))

display1();

else

{
display2();
}

break;
case '3"
if(!(send_status_cmd()))

display1();

else

{
display_status();

display2();

break;
case '4" ,
if({(send_data_cmd()))

display1();

else

{
display_data();

display2();

case 'S"

}
break;

get_mcm_addr();

~ break;

case '6"

if(!(get_analog_mask()))
{

case '7":

case '8";

display1();

else

{
display_mask();
display2();

} .

break;

if(!(send_limit_cmd()))
{
display1();

else

{
display2();

break;

window(5,18,45,20);
textbackground(MAGENTA);
textcolor(WHITE);

clrser();

gotoxy(2,1);

cprintf(" SAVE EVERY HOW MANY MINUTES?");
scanf("%d", &interval);

interval *=60;

if(interval<600)

interval=600;

gotoxy(2,2); -

cprintf("DEFAULT 10 MINUTES ");
mem_addr=1;

select_mem_port();
if(!(get_analog_mask())) quit_loop();

for(i=0;i<d;i++)

{
for(j=0;j<8;j++)

k=0x01;
k<<=j;
if(mem_mask[i]&k)

mask_bit1[8*i+j]=0x01;
data_mask[8*i+j]=1;
}

else

mask_bit1[8*i+j]=0x00;
data_mask[8*i+j]=0; }

}

mem_addr=2;
select_mem_port(); ‘
if(!(get_analog_mask())) quit_loop();

for(i=0;i<4;i++)

{

for(j=0;j<8;j++)

{

k=0x01;

k<<=j;
if(mem_mask[i]&k)
{

mask_bit2[8*i+j]=0x01;

data_mask[8*i+j]=1;

else

{

mask_bit2[8*i+j]=0x00;

data_mask[8*i+j]=0;

}
}
tl=time(NULL);
while(1)
{
mcem_addr=1;
select_mecm_port();
acquire();
mem_addr=2;
select_mem_port();
acquire();
=time(NULL);
if(difftime(12,t1)==interval)
{ &
t1=t2;
write_to_file();
} .
if(kbhit()) keyl=toascii(((int)getch());
if (keyl==toascii(((int)'9")))
break;
}
break;
case '9"
window(1,1,80;25);
textbackground(BLACK);
textcolor(WHITE);
clrscr();
return;
default:

break;

}

-}

} .

void main()

{
clrser();
read_cfg_file();
cursor_off();
menu();
exec_command();
cursor_on();

R R KKK KRR R KO RK KKRRRRARRRRF F R AR

THIS FUNCTION TURNS THE CURSOR OFF

************#************t*tt*****************t**t#tt****###‘#‘#"‘*““t*“*/
void cursor_off()

union REGS rg;

rg.h.ah =1;

rg.x.cx = 0x2000;

int86(0x10,&rg, &rg);

/**#*******##*****#******#‘*****‘***

THIS FUNCTION TURNS THE CURSOR ON

**********#***ﬁ*******#**************‘*********t**!**tl*‘*l‘“*‘#******t#*f**l
void cursor_on()

{
union REGS rg;

rg.hah = 1;
1g.x.cx = 0x0507; // the "underline cursor™’
int86(0x10,&rg, &rg);

/**#*****#*#********#*#****************##*****#*****#*#*#*t*itt&*t*tt##‘****##

THIS FUNCTION WRITES THE MCMS DATA INTO A FILE

****&*#******#****#***********************#*******************‘**t##*"**‘***/
void write_to_file()

int k;

disable();

if((fp=fopen("data.cfg","a+"))!=NULL)

fprintf(fp,"\n%s" ctime(&t1));
fputs("MCM1:\n",fp);
for(i=0;i<32;i++)

{

k=i/8;

if(i==k*8)

fputs("\n",fp);

fprintf(fp," %d: %.3f ",i,disp_datal[i]);

}
fputs("\nMCM2:\n",fp);
for(i=0;1<32;i++)

k=i/8;

if(i==k*8)
fputs("\i",fp);

fprintf(fp,"%d: %.3f ",i,disp_data2[i]);}
fclose(fp);

else
cprint{("FILERR");
enable();

SCCDEFS.H

/*

#define REGO
#define REG1
#define REG2
#tdefine REG3
#define REG4
#define REGS
#define REG6
#define REG7
#define REG8
#define REG9
#defige REG10
#define REG11
#define REG12,
#define REG13
#define REG14
#define REG15

#idefine STN_ADR 0x02

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0xO0F

HEADER FILES

-- SCC REGISTERS --- . */

#define SCC_CHNLB_CTRL 0x0408

#define SCC_CHNLB_DATA 0x040A
#define SCC_CHNLA_CTRL 0x040C
#define SCC_CHNLA_DATA ‘0x040E

#define CTRL_PORT
#define DATA_PORT

#define CLK_CONTROL

#define RESET

SCC_CHNLA_CTRL
SCC_CHNLA_DATA

0x05 /* No External Crystal ,
Rx Clock = RTxC pin,
Tx Clock = RTxC pin,
TRxC pin is configured as output,
TRxC pin = Tx clock */

0x80 /* Channel A Reset */

#define BRG_ENABLE 0x00 /* Disable The BR generator

(BRG not uscd on SBC card) */

f#define STATION_ADDR STN_ADR /* The Slave address */

#define ADDR_SRCH

0x04 /* Address search mode enabled */

/¥ =eversuaacnsnennes OTHER CONSTANTS

#define VALUE_R9 0x07
/* No Reset,
Vector includes status in bits D3,D2 & D1
MIE disabled ,
Disable Lower Chain,
No Vector mode Cox/

?

#define SET_R9 VALUE_R9 | RESET
' /* Channel reset */

#define VALUE_R1 0x60
/* Select Receive request on W/REQ pin,
Select DMA function,
DMA disabled, -
Rx Interrupts disabled
- Parity is not Special Condition,
Tx & Ext Interrupts Disabled */

#define SET_R1 VALUE_R1 | RX_INTR
/* Select Rx interrupt mode */

#define DMA_ENABLE SET_R1 | 0x80
/* Enable the DMA funtion */

#define VALUE_R14 0x02
/* No DPLL command,
No Local Loopback,
No Auto Echo,
DTR request function,
BR generator source = PCLK,
BR generator disabled */

#define SET_R14 VALUE_R14 | BRG_ENABLE
/* Enable the BRG (as defined) _ */

#define DISABLE_RX 0xD8 | ADDR_SRCH
'/* Rx 8 bits/char,
Auto Enables Off,
Enter Hunt Mode,
Rx CRC Enable,
Rx Disabled */

#define ENABLE_RX DISABLE_RX | 0x01
/* Enable Rx */

#define DISABLE_TX 0x61
/* DTR pin = high (inactive),
Tx 8 bits/char,
Do not send Break,
Tx Disabled,
SDLC CRC polynomial used,

*/

REGS, /* Point to Register 5 */

0x60, /* tx 8bits/char */

REG6, /* Point to register 6 */

0x00,

REG7, /* Point to register 7~ Y

0x00, .

REG9, /* Point to Register 9 */

0x01, /*vectorinclude status */
REG10, /* Point to Register 10 */
0x00,

REG11, /* Point to Register 11 */
0x56, /*rxc=txc=brg(baud generator output) */
REG12, /* Point to register 12 */
0x18, /*to generate 1200 baud @ 4 MHz */
REG13, /* Point to register 13 */
0x00,

REG14, /* Point to register 14 */

0x03, /* BRG source=sys clock,enable BRG */

REGI1S5, /* Point to register 15 */
0x00, /* All ext status interrupts off */
b
unsigned int
i ;

GENDEFS.H

/*

#define DIGIT_BASE 0x480

#define READ_ADC DIGIT_BASE + 0x06
#deline CTRL_REG1 DIGIT_BASE + 0x00
#define LED_PORT 0x410

%

#define MAXCHANNEL 32
#defline MAXLIMIT 5.0
#define MINLIMIT -5.0
#define OK 0x5S
#define NOTOK OxAA

*/

RTS pin = high (inactive),

Tx CRC Enabled */

#define ENABLE TX DISABLE_TX | 0x08

/* Enable Tx */
#define ASSERT_RTS ENABLE_TX | 0x02

/* RTS pin = low (active) */
#define DEASSERT_RTS ENABLE_TX

/* RTS pin = high (inactive) */
#define ASSERT_DTR ENABLE_TX | 0x00

/* DTR = low (enable the RS-485 line-drivers) */

#define DEASSERT_DTR ENABLE_TX | 0x80
/* DTR = high (disable the RS-485 line-drivers)*/

GLOBVARS.H

unsigned char
chnl_ro;
unsigned int
ctrl_port_data=0x0;
unsigned int
adc_data[64],
max_limit[64],
min_limit[64],
analog_mask[64],
chnl_status[64];
unsigned int
scan_count=0x0,

-
’

points=0xJ;

unsigned char init_table[] =

{

¥ —mmemnmnee Section 1 : Modes & Constants */
REG9, /* Point to register 9 */
0x40, /* channel reset */
REG4, /* Point to Register 4 */
0x04, /* 1 stop bit, no parity, brg = x1 mode */
REG2, /* Point to resister 2 */
0x20, /* vector = 20h */
REG3, /* Point to Register 3 */

0xCO, /* rx 8bits/char,no auto enable */

MCM.CFG

MCM CONFIGURATION FILE

CH NO=Channel number UL=Upper limit LL=lower limit C?=Critical Parameter?
SR=scanrate SF=scale factor

MCM_ADDRESS: 01 MCM LOCATION: CABIN

USED/NOT_USED: NOTUSED

CHNO.MASK UL LL C? SF SR

BEGIN

00 0 3.0-45Y 0.0 100
01 0 25-25N 1.0 10
02 05 0N 1010
03 020N 1010
04 010N 1010
05 000N 1010
66 05 3 N 1010
07 040N 1010
08 023-313 N 1010
09 02-1 N 1010
10 0 1-2 N 1.0 100
11 0 0-4 N 1.0 10
12 0 5-5 N 1010
13 040N 1010
14 G 3 0N 1010
15 02 0N 1010
16 010Y 1010
17 0 0 0 N 1010
18 05 0N 1010
19 04 0N 1010
20 03 0N 1.0 100
21 02 0O N 1010
22 010N 1010
23 000N 1010 o
24 051N 1010
25 06 -6 N 1010
26 07 -7TN 1010
27 08 -8 N 1.0 10
286 000N 1010
29 0 1.0-1.0 N 1.0 10
30 0 25-25N1010
31 0 50-50N1010
END

MCM_ADDRESS: 02 MCM LOCATION: RX-ROOM
USED/NOT_USED: USED
CHNO. MASK UL LL C? SF

BEGIN

00 0 150-150N 1.0 10
01 1 25-25N 1.0 10
02 050N 10100
03 120N 1010

04 010N 1010

05 1 00N 1010

066 053 N 1010

07 140N 1010
08 03-3 N 1010
09 12-1 N 1010
10 01-2 N 1010
11 104N 1010
12 05-5N 1010
13 140N 1010
14 030N 1010
15 120N 1010
16 010Y 1010
17 100N 1010
18 050N 1010
19 140N 1010
20 030N 1010
20 120N 1010
22 010N 1010
22 100N 1010
24 051N 1010
25 16 -6N 1010
26 07 -7TN 1010
27 18 -8 N 1010
28 000N 1010
29 1 10-1.0 N 1.0 10
30 0 25-25N 1010
31 1 50-50N 10 10
END

MCM_ADDRESS: 03 MCM LOCATION: TBCC
USED/NOT_USED:NOT USED
CHNO.MASK UL LL C? SF

BEGIN

00 0 50-5.0N 1.0 10
01 1 25-25N 1.0 10
02 150N 10 10

03 120N 10 10

04 110N 10 10

05 100N 10 10
06 153N 10 10

07 140N 10 10

08 13-3 N 1.0 10

09 12-1N 1.0 10

10 1 1-2N 1.0 10

11 1 0-4 N 1.0 10

12 155 N 10 10

13 140N 1010

14 130N 1.0 10

15 120N 10 10

16 1 10Y 1.0 10

17 100N 10 .10

18 150N 10 10

19 140N 1010

20 130N 1.0 10

2. 120N 1.0 10

22 110N 10 10

22 100N 1.0 10

24
25
26
27
28
29
30
31
END

Pt gk e el Bk fued pek

51N 10 10
6 -6 N 1.0 10
7 7N 10 10
8 -8 N 1.0 10
00N 1.0 10
1.0-1.0 N1.0 10
2.5-25 N1.0 10
50-5.0 N0.0 10

