
PARAMETER -TORING SYSTEM FOR THE 

10.4m MILLIMETREWAVE RADIO TELESCOPE 

Project Report 

Submitted in partial fulfillment of the requirement 
for the award of degree of 

Bachelor of Engineering 
in 

EIectronics & Communication 

Submitted by : 
PARTHA GI-1OSI-I 

VENKATARAMAN NARENDRA 
MARUTHI B.R. 

Under the guidance of 

of Electronics, 
@I,-  ang gal ore. 

& 

Mr. R. Ganesan 
Engineer Incharge, 
Telescope Building, 
RRI, Bangalore. 

- 
Internal Guide : 

Prof S. Rammurthi Rao 
Associate Faculty, 
Department of Electronics 
& Communication. 
B.M.S.C.E. 
Bangalore. 

Department of Electronics & Communication 
B. M. S. College of Engineering 

Bangalore - 560 0 19. 
1 996-97. 



RAMAN RESEARCH INSTITUTE P 
C.V.Rarnan Avenue, Sadashivanagar, Bangalore - 560 080 India 

CERTIFICATE 

This is to certify that the project entitled "PARAMETER 
MONITORING SYSTEM FOR THE 10.4 METRE MILLIMETREWAVE 
RADIO TELESCOPE" has been satisfactorily completed at Raman Research 
Institute , Bangalore by the following students under our guidance towards 
the partial fulfilment for the award of the Degree of Bachelor of 
Engineering in Electronics & Communication, during the academic year 
1996-97. 

PARTHA GHOSH 
VENKATARAMAN NARENDRA 
MARUTHI B. R. 

Dr. D.K.RAVINDRA 
HEAD, 
RADIO ASTRONOMY LAB, 
RAMAN RESEARCH INSTITUTE, 
BANGALORE - 560 080. 

Mr. R.GANESAN 
ENGINEER INCHARGE, 
MILLIMETREWAVE 
OBSERVATORY, RAMAN 
RESEARCH INSTITUTE, 
BANGALORE - 560 080. 



DEPARTMENT OF ELECTRONICS & COMMUNICATION, 
B.M.S. COLLEGE OF ENGINEERING 

BANGALORE 560019. 

This is to certify that the project work entitled 
"Parameter Monitoring System for the 1 0 . 4 ~ ~  millimetrewave 
Radio Telescope " has been successfully completed by the 
following students in partial fulfilment of requirementsfor the I 

award of the Bachelor of Engineering in' Electronics & I 

Communication of the Bangalore University during the academic 
I 

year 1996-97. 

PARTHA GHOSH 
VENKATARAMAN NARENDRA 
MARUTHI. B. R 

Internal Guide 
Prof. S. Rammurthi Rao 
Assosciate Faculty 
Department of Electronics 
& communication 
B.M.S.C.E. 

Headlof the Department 
Dr. P. S. Satyanaryana 
Department of Electronics 
& Communication 
B, M.S,C.E, 



We express our sincere thanks to the management of RAM.AN 

RESEARCH INSTITUTE, Bangalore for having provided us the facilities to 

carry out the project work. 

With utmost pleasure, we hereby extend our sincere and heartfelt 

thanks to our guides Dr.D.K.Raviadra and Mr.R.Ganesan, for their unlimited co- 

operation and guidance during the course of our project work. 

We gratefully acknowledge the valuable help rendered by 
1 

Mr.K.Gurukiran, Mr.K.Ramesh and Mr.E.Palanichamy of RRI. We extend our 

gratitude to Mr.K.V.Sathyaprakash, formerly of RRI, for his guidance in the early 

stages of the project. We also take this oppurtunity to thank all the staff members , 

of the Telescope Building for extending their support in carrying out this project ' 

and making this a success. 

We express our profound gratitude to our internal guide, Prof. S. ' 

Rammurthi Rao, Assosciate faculty, B.M.S.College of Engineering, Bangalore 

for his help rendered to us during the tenure of the project. 

A special note of thanks goes to our Head of the Department, Dr. P. S. 

Satyanaryana and the entire staff of the Electronics Department of B.M.S.C.E. for I 
their encouragement and support throughout our project. 

15 July, 
1997 

Partha Ghosh 
Venkataraman Narendra 

Maruthi B.R. 



TITLE: Parameter Monitoring System for the 10.4m 
millimetrewave Radio telescope 

Contents distribution and guidelines 

Chapter 1 : INTRODUCTION: 

This chapter provides an account of the objectives as well as the 

environment associated with the project. It is divided into the following 

sections: 

1.1 Radio Astronomy: An Insight 

I t  provides a brief history of radio astronomy and the role it 

plays in the observation of various celestial bodies. 

1.2 The Radio Telescope at Rarnnn Research Institute 

A brief description of the Radio Telescope is presented in this 

section, complete with the specifications. 

1.3 Requirement for a Monitoring System 

This section lays stress on the various factors responsible for 

111akittg the monitoring system an absolute neccessity. 



This chapter provides an outline of the project. The following 

sections are presented in conjunction with this chqter. 

2.1 Primary 0 bj ectives 

This section lays emphasis on the approach towards the project. 

The project was broken up into several modules and the completion of each 

module was carried out independent of the other. 

2.2 Mode of Working 

This section gives a sneak preview at how the different 

components were organised within the working system and how they 

interacted with one other. 

Chapter 3 : HMPC 

This chapter describes the control center of operations, the 

Health Monitoring PC and the way it communicates with the various control 

centers (MCMs). 



I(lhapter 4 : DESIGN & DEVELOPMENT 

4.1 The Mux Card 

-This section emphasises the need for an external multiplexer card 

in the working system as well as provides a detailed description of the steps 

taken towards the development of such a card. 

4.2 The Voltage Limiter Card 

This section provides a detailed account of the development of 

the conditioning card which proved to be such a crucial factor for the proper 

working of the system. 

Chapter 5 :HARDWARE IMPLEMENTATION : Components 

and their Utilities 

This chapter takes a closer look at the different components used 

in the hardware side of the project along with the wide range of utilities they 

offer. Key compollents like the SBC 80186, SCC 28530, the rnultiseiol i/o 

curd and the Digitizer Card ( ADC ) are covered in detail. 

Chapter 6 : SOFTWARE ORGANIZATION 

This chapter has been divided into two sections namely, the PC 

side and the SBC side. Each section gives a detailed description of the 

program associated with i t  and also explains the logic behind it. Special 



emphasis is given on the software development tool, Paradigm and the role it 

plays in the execution of the SBC program. The menu driven PC program is 

also explained in details. 

The chapter titled Execution of Software describes the events that take 

place when both the programs are executed after the system has been 

switched ON. 

Chapter 7 : DESIGN CHOICES 

This section has been divided into two segments and it  vindicates the 

choice of hardware components as well as the software methodologies used 

for the project. 

The chapter titled Software Considerations justifies the choice of 'C' 

as the programming language in the light of various considerations and 

standards adopted for the project. 

The chapter titled Hardware Considerations explains the logic behind 

the selection of the various components used in the hardware side of the 

project. 



Chapter 8 : TESTING AND DEBUGGING 

This chapter provides a brief accc-;:t of the various methods 

adopted for testing and validation of the system. 

Chapter 9 : THE WORKING SYSTEM 

This chapter takes a final look at the system set-up and throws light on 

the sequence of events that are generated when the system is switched ON. 

Chapter 10 : IMPORTANCE OF THE PROJECT 

In summarising, it may be said that the project marks a beginning in the 

shape of things to come. The various important things to come out of this 

project are pointed out in this chapter. 

Chapter 11 : LOOKING AHEAD : Provisions for the future 

A brief account of the upgradations possible in future are mused over in 

this chapter. 

Apart from this, the system features, an index containing the expanded 

versions of several key abbreviated terms and an appendix contaiming useful 

data are presented at the end. 



Parameter Monitoring System 

for a 10.4m millitnetrewave 

Radio Telescope 



Chapter 1 : INTRODUCTION 

1 .I  Radio astronomy :An Insight 

b u r  knowledge of the universe is based on the I 
\. 

observations of the various celestial bodies-stars, pulsars, quasars, supernova 

- to name a few. With the passage of time, human resources have varied from 

the naked eye to  the optical telescope in this heavenly pursuit of knowledge 

and the field called astronomy has slowly begun to take shape. As research in 

this field increased, i t  became clear that the aperture of the telescope has to be 

very large compared to the wavelength of li& in order to make fine 

observations.'Groundbreaking work was done in this field by a radio engineer 1 
at the Bell Telephone Laboratory called Karl Guthe Jansky. In 1932, while 

studying the direction of thunderstorm static, Jansky was able to detect the 

origin of a steady Hiss type static, which was previously unaccounted for. He 

observed that the hiss is due to the radio waves of extra-terrestrial origin, thus 

laying the foundation for Radio Astronomy. The importance of these results 

took a while to be recog~lised but since then Radio Astronomy has rapidly 

become a major branch of Astronomy. 

.Radio wavelengths are typically about a million times 

longer than those in the ~ptical range are. Regians sf space that are opaque to 

light waves because of interstellar dust, are generally transparent to radio 

waves. 



Radio Astronomy progressed, the need for Radio 

Telescopes with better resolution came up. This led to several innovations 

both in electronics and antenna engineering complementing each othe3i Many 

pioneering high-tech developments are due to the research done in this field. 

Spin-offs from this area find applications in v?-:ms fields including satellite 

communications, space research, image processing and biomedical sciences. 

1.2 The Radio Telescope at Raman Research Institute 

A Radio Telescope operates in  the radio band of the 

electromagnetic spectrum thus making it  suitable for observing celestial 

bodies. The main components are 

p:. 
" An antenna with its feed that selectively'collects the radio power From 

a narrow solid angle. 

.A::.. 

" A low noise receiver that amplifies the received signal over a restricted 

frequency band, detects, correlates and integrates information and 

stores the output in digital form. 

The Raman Research Institute, Bangalore can stake its 

claim to being one of the finest research units in the whole country. It 

boasts of research facilities in several arenas including a fully equipped 



Radio Astronomy laboratory complete with a millimetrewave radio 

telescope. Following are a few important specifications of the above- 

mentioned telescope: 

- Antenna Type 

- Diameter 

- Beam Width 

:Parabolic Reflector 

: 10.4 metres 

:80 arc seconds at 80 GHz 

- Normal frequency range of operations :22 GHz - 115 GHz 

1.3 Requirement for a Monitoring System 

The radio telescope mentioned above is quite a complicated 

system and has to take a lot of parameters into consideration for proper 

functioning. Each of these parameters is individually controlled and the 

working of the telescope is contingent to the parameters sticking to a pre- 

defined set of values. Straying from this critical range by the parameters may 

prove detrimental to the 'health' of the telescope and hence the need for a 

monitoring system arises. The monitoring system in question is also required 

to make provisions such that the parameters may be monitored from three 

separate control centers in the building, namely the cabin, the Receiver room 

and the TBCC. However the system monitors the parameters only after they 



have been converted to their appropriate voltage levels beforehand. The 

system should prove quite economical in terms of data storage and time. 

The table below shows a tentative schedule for the 

involved in the Receiver room. The 'C' next to the parameter indicates that 

the parameter is critical while 'NC' refers to a non-critical parameter. 

1. L-Band IF level -ch, 1 

2. L-Band IF level -ch.2 

3. Baseband (0-400MHz) level -ch.l 

4. Baseband (0-400MHz) level -ch .2 

5. Phase Lock Indication (2200 MHz) 

6. Phase Lock Indication (1600 MHz) 

7. Phase Lock Indication (400 MHz) 

8. Rubidium Oscillator level (5MHz) 

9. 120 MHz AOS Video level 

10.400 MHz AOS Video level 

11 .SO0 MHz AOS Video level 

12.DC Power Supply #1 -+ve unreg. 

1 3 . K  Power Supply #1 -+ve unreg. 

14.DC Power Supply #2 -+ve unreg. C 24V<20V< l8V 

15.DC Power Supply #2 -+ve unreg. C -24Ve-20Vu- 18V 



- ,  , 

BLOCK DIAGRAM OF THE SCHEME 



BLOCK SCHEMATIC OF MCM MODULE 

D 7886 ADC CARD 

TO HMPC 
+ 

VOLTAGE LIMITER 
CARD 

C 

v * 
28 SINGLE ENDED 

INPUTS 
4 DIFFERENTIAL1 

SINGLE ENDED I/PS 
(JUMPER SELECTABLE) 



Chapter 2 : BRIEF OVERVIEW OF THE PROJECT 

2.1 Primary Objectives 

The project in question involved development of cost effective 

time critical monitoring system. Our primary goal was to make best use of 

available hardware and software resources and integrate them into the 

working model of a Monitor Control Module. The skeletal outline of such a 

scheme i s  shown above. 

On the software side, the project involved PC based 

microprocessor software development. It involved development of real time 

software for monitoring the critical parameters of the Radio Telescope at 

RRI. The software was developed keeping in mind the future extensions and 

provisions were made to install control systems/ add control features. 

On the hardware side, the desig;., development and testing of 

voltage limiter card as well as the 32-channel MUX card was carried out. The 

design of both the units was extensively carried out using the circuit design 

package ORCAD. Replication, testil,g and debugging of prototype SBC 186 

and ADC cards also constituted a major portion of the project as both these 

units in conjunction form the heart of the Monitor Control Module. Hardware 



debugging and testing were dane with the help of advanced IC testers and 

logic analysers. 

At every developmental stage cost, efficiency and reliabi!i ty 

were the main criteria taken into consideration and modular approach was 

made use of. 

Software written on both monitor PC and SBC side was machine 

indepzndent (written in high level language 'C'). The availability of Paradigm 

embedded system software and optirnised cross-compiler (optimised for 

speed) made the software development on SBC side more flexible and easy. 

The interface standard used was EIA RS232C with Multiserial 

110 PCL 232. However the software was made compatible for both RS232C 

and RS485(multidrop). 

Final developmental phase included two things: 

1. Freezing the SBC program into(even and add) E;--:rns. 

2. Screen design in order to provide good user interface. 

# The SBC units have to be installed at the cabin, TBCC and the RX-room 

since these are the primary monitoring centres. 

# HMPC will send commands to SBC units to set upper and lower limits for 

various parameters, to specify whether they are critical or non-critical, etc. 

# SBC units will acquire from all the 32 channels, continuously, compare the 



voltage levels with respective upper and lower limits and set and reset 

corresponding status bits. 

# HMPC will get the status of 32 channels of each SBC in the form of 8 

bytes. This will take approximately 4 rns making i: a total of 12 rns for the 3 

SBC units, and can be synchronised with start and stop pulses. 

# NMPC checks the status bitssand if i t  encounters any critical barameter 

being set, sends 'HEALTH NOT OK' code to CPC through serial port. This 

generates a serial port interrupt to the CPC which will pull the DATA VALID 

line low. When all the critical parameters are fine, 'HEALTH OK' code will 

be sent and DATA VALID line becomes active. 

Chapter 3 : HMPC 

HMPC stands for the Health Monitoring PC. The HMPC is the 

main control center for the Monitoring System. The multiserial input-output 

card is the means through which the HMPC communicates with the SBC. The 
, 

PC software is loaded into the HMPC and execution of this program enables 

the monitoring system to acquire data for its required purpose. The software 

was implemented in C as the project demanded a modular approach. The 

presence of law level features and graphical flexibility also same in handy 

since the-program required bit manipulation and windows design in several 

places. All the three MCMs are in constant communication with the HMPC 

and it is the only means by which the user can effect changes in the 



Monitoring System. The interactive menu on the HMPC monitor makes the 

job of implementing changes on t h ~ :  system a very simple affair. The user can, 

for example, vary the upper and lower limits for the inputs to each and every 

channel as well as the Scale Factor. The selection of desirable channels (by 

masking the undesirable ones) also takes plzce with considerable ease. A 

detailed description of the Health Monitoring PC program can be found in the 

Software section under the heading 'The PC Side'. 

Chapter 4 : DESIGN & DEVELOPMENT 

4.1 The Mux Card 

For the project concerned, the design and developmental phase 

consisted of 32 parameters to be selected by the SBC in order that they may 

be monitored constantly. This necessitated the design of the card in question. 

The card comprises of two 16:l multiplexers (AD7506) along with an inverter 

to enable only a single MUX at a time. The interface required by the PC to 

communicate with the SBC has been chosen to be RS232 and to this facility 

has been incorporated via an ICL 232 chip present on the card. The SBC 

provides the supply for the ICL 232. The inputs to the MUX from the Voltage 

Limiter card are routed via a 64-pin Euro Connector.The choice of the card 

was also influenced by the factor that the AD7506 has an in-built structure to 

handle differential inputs. 





4.2 The Voltage Limiter r q rd  

*The ADC chip (AD7886) finds a very important application in 

this set-up as it executes the crucial job of converting the physical voltage into 

its digital counterpart. However, the ADC can handle voltages onlv in the 

range of +5 to -5 volts. A conditioning system for the ADC was in demand 

and this brought the concept of a voltage limiter card into the forefront. 

The basic structure of the card consists of 32 analog voltage 

inputs(sing1e-ended) being fed into 32 potentiometer and diode arrangements 

where the voltage is suitably clamped to remain within a range of +5 to -5 

volts. However, the system has a suitable modification to enable it to work in 

the differential mode of operation also. The differential mode of operation is 

sometimes preferred to the single-ended mode in order to overcome any 

pickups in the mains cable and also to obtain a better CMRR. In the final 

design, 28 inputs were kept single-ended and 4 inputs were modified so as to 

have options for both single-ended and differential mode of operation. 

DESIGN OF LIMITING ACTION 

The following potentiometer-diode arrangement is used for 

carrying out the limiting action as far as the single-ended inputs are 

concerned. The limiter card ensures the proper working of the ADC by 





limiting all the inputs to within +5 to -5 volts. If the analog input is more than- 

+5 volts, the diode D2 is forward biased and the output voltage drops to zero. 

Similarly, if the voltage is below - 5 volts, the diode D l  is forward biased 

making the output voltage zero, yet again. The scale factor can be adjusted by 

varying the resistance on the potentiometer. The limiter card supports 32 such 

potentiometer-diode arrangements for 32 possible single-ended inputs. The 

bypass capacitor takes care of noise-related disturbances. 

ANALOG I/P -5V 

POTENTIOMETER 



ANALYSIS 

Using Superposition principle, 

VOI = -(-V)RF/Rl = V RF/Rl 

(ii) 



V02 = +V [R2/(Rl+R2)] ( 1+ R F / R l )  

According to Superposition Principle, 

T O 1  + v02 = VO 

V RF/Rl+  V [R2/(RleR2)] ( 1+ RF/Rl) = +V 

RF/R1 + [R2/(Rl+R2)] ( I+ RF/Rl) = 1 

On simplification, it yields . 

Design Choice 

Choose R 1 =  R2 

Put R2 = RF = KS/2 
LHS = [ 2 (R1/2) (R1/2) ] + R1 (R1/2) 

2 2 2 

= R 1 / 2  + R 1 / 2  = R1= RHS 



Design of differential to Single ended Converter 
( with Limiting Action ) 

If this circuit is incorporated, it can provide limiting action as well. 

For instance, differential inputs -10/+10 volts have to be limited to 2 volts single 

ended output. t. 

Then choose R2 = 10K.r 

R1 = 1OOK 

Output 2.(10/100).10 v = 2v. 

r 



Chapter 5 : HARDWARE IMPLEMENTATION 

Components And their Utilities 

5.1 The Single Board Computer 801 86 

The SBC card is a general purpose Single Board Computer 

intended to be used as an embedded controller in data acquisition and/or 

control system applications. This card had been previously developed in RRI 

and had been in existence for sometime. 

This single board computer design is based around INTEL'S 

80C186 microprocessor that runs at 16MHz. ??..is board. has two 28 pin 

sockets for ROM upto 12SKB, and two 28 pin sockets for SRAM, upto 

64KB. It has an INTEL 8259 Programmable Interrupt Controller(P1C) to 

increase the total intempts handling cdpacity to 16 (External-9 including one 
?* 

NMI & Internal-7). It has a serial Communication Controller, the k530. This 

controller has two independent channels that suppart a whole range of serial 

communication protocols such as Asynch, Bi-synch, SDLC/HDLC and so on. 

One of these channels is connected to RS 232C line drivers and it  is used as 

the debug port which is connected to any of the COM port of a standard PC. 

This card also has an &bit DIP switch port and an $-bit LED port useful for 

displaying status information. One end of the card has a 96 pin Euro 





connector expansion bus, containing all the necessary signals for interfacing 

any user specific hardware. The other end of the card has two berg 

connectors, one with an 8-bit .I/O bus mainly to be used with INTEL'S 8279 

Keyboardmisplay Controller to provide the user interface, while the other 

connector pr~vides the serial communication lines. 

The resident firmware initialises the CPU as well as all 110 

devices on the board and memory in the system. After the power on 

initialisation, the DIP switch settings are read and a decision is made to 

branch either to the Turbo Debugger Remote (TDREM) kernel or a Remote- 

boot routine. 



5 2  The Serial Csmmunicati~ns Sontroller Z853Q 

The 28530 is a dual channel, mu1 tiprotocol data communications 

peripherals designed for use with 8- and 16-bit microprocessors. The SCC 

functions as a serial-to-parallel and parallel-to-serial converter/controller. The 

SCC can be software-configured to satisfy a wide variety of serial 

communication applications, including: Bus Architecture (full- and half 

duplex). Token passing ring (SDLC Loop mode) and Star 

Configurations(simi1ar to SLAN). 

The SCC contains a variety of internal functions including on- 

chip baud rate generators, digital phase-lock loops and crystal oscillators, 

which dramatically reduce the need for external logic. In addition, 

SDLC/HDLC enhancements have been added to the Z85C30 that allow it  to 

be used more effectively in high speed applications. 

The SCC handles asynchronous formats, synchronous character- 

oriented protocols such as IBM Bisync, and Synchronous bi t-oriented 

protocols such as HDLC and IBM SDLC. This versatile device supports 

virtually any serial data transfer application(telecomrnunicati~ns~ cassette, 

disketted, tape drivers, etc) 

The device can generate and ched: CRC codes in any 

Synchronous mode. The SCC also has facilities for modem controls in both 

' channels. In applications where these controls are not necessary, the modem 

controls can be used for general purpose 110. 

With access to 14 Write registers and 7 Read registers per 



channel, the user can configure the SCC so that it handles all asynchronous 

formats regardless of data size, number of stop bits or parity requirements. 

The SCC also accommodates all synchronous formats including characters, 

byte and bit-oriented protocols. 

Within each operating mode, the SCC also allows for protocol 

variations by handling odd or even parity bits, character insertion or deletion, 

and many other protocol-dependent features. 



Data Communication Modes 

Functional Descriptions 

The SCC provides two independent full-duplex channels 

programmable for use in any common asynchronous or synchronous data 

communication protocols. This includes: Asy nchronoue, Synchronous 

MONOSYNC(8-bit sync character). Synchronous BISYNC (16-bit sync 

character), normal SDLC and SDLC loop modes. 

A communication protocol defines a set of rules for the orderly 

transfer of the information between two communication devices. All 

communication line protocols in the industry today exchange data in either an 

asynchronous or synchronous manner. Asynchronous transmission is used in 

several protocols including the 'ITY protocol while synchronous transmission 

is used in protocols like: IBM BISYNC, Synchronous data link control 

(BDLC), High-level data link control (HDLC) and Advanced data 

communication control procedures (ADCCP). 

For the project undertaken, only the Asynchronous mode of 

polling is concerned. Hence a brief overview of the Asynchronous 

Transmission Mode is presented here. 



ASYNCHRONOUS TRANSMISSION 

In Asynchronous transmission, as the name implies each 
# 

character is transmitted as an independent entity: that is, the time between the 

last bit of one character and the first bit of another character can be variable. 

Since the receiver must be able to l:::ct the beginning of each 

character transmitted, this mode requires that at least one bit be added at the 

start of and end of each ckaracter.fsr synchronisation purposes. 

Synchronisation at the recciver is accomplished by sensing the 

transition of the start-bit for each character transmitted. The first data bit of 

the character is typically sampled one and one-half bit times after the high-to- 

low transition of the start-bit and each subsequent bit is sampled one bit time 

thereafter. The sampling of the bit occurs at some multiple of the data rate. 

Larger multiples allow a closer approximation to the sampling. 

Asynchronous communication channels are found " in most 

distributed computer systems for terminal-to-computer communications. The 

common "serial port" found on personal computers is an asynchronous port. It 

is used to attach external modems and printers, and to interface the personal 

computer to a minicomputer for use as a terminal. 



28530 BLOCK DIAGRAM 



5.3 Multiserial I10 Card 

The PC multiserial 110 card (PCL 232) contains 4 standard RS232C 

interface ports using 8250 Universal Asynchronous Communication 

Adaptors.The ports are fully programmable to set the start bits, stop bits, 

parity bit and the baud rate. 

MAIN FEATURES 

1 .PCL 232 with 4 asynchronous'communication ports. 

2.Jumper selectable interrupt levels. 

3.DIP switch selection for base address. 

4.IBM-PC/XT/AT compatibility, with mu1 tilink software. 

APPLICATION AREAS 

1. DATA ACQUISITION. 

The multiserial card can be used for data acquisition from devices such 

as plotters, analysers, etc and even from other remote devices. 

The monitoring system makes use of this application and Data 
.,' 

Acquisition is carried out from the remote device (the MCM unit, in this 

case ). 

2. MULTIUSER ENVIRONMENT 

3. SERIAL TO PARALLEL / PARALLEL TO SERIAL 

COMMUNICATION. 



Specifications 

* Interface system clock: 1.8432 MHz 

* Method of communication : Asynchronous 

Programmable Baud Rate : 50 to 9600 

Data bit :5,6, 7 or 8 

Stop bit : 1,1&1/2 or 2 

Parity bit : even, odd or none. 

RS232 interface chip : 1488,1489. 



5,4 The Digitizer Card (ADC) 

To read data from the AOS and the Filter Banks by the SBC and to 

send this data over the TELENET to the master PC there was a need for a card 

which could convert the data from the AOS ti..: the Filter Banks. The main 

criterion for the DC selected was its conversion speed which had to match the fast 

data rate from both the AS and Filter Bank with the AOS in particular. The ADC 

chosen for this purpose was the Analog Devices' AD7886 which has a conversion 

time of 1.33 micro seconds. 

The ground loop problem in the ADC ,where three to four bits of 

digitised output changes constantly for a single value of the input 'arising due to 

improper segregation of the digital and analog supplies had to be overcome. 

Therefore the ADC outputs were optically isolated just before the digitised data is 

read by the SBC as shown in the schematic for the digitiser. The data from this 

digitiser card is interfaced to the SBC through the 96 pin Euro connector ( JP6, 

JP7 & JP8). There i s  also provision for the TELENET signals to be input to this 

board through the connector JP24. 

As another means of overcoming the ground loop problem the entire 

digitizer card has been divided into 3 sections namely: 

* SBC se-ction 

Digital section , 

* Analog section 

The three sections are clearly seen in the schematic of the 

digitizer and all the three sections have individual supplies and grounds. 





CIRCUIT DESCRIPTION 

Analoe section: 

The heart of  this section is the h a l o g  Devices' AD7886 ADG. The features of this 

chip are: 

* 12 bit resolution 

1 microsecond conversion time ( 1.33 micrr! seconds including S/H time) 

achieved by using 15 comparators in a 4 bit flash technique. 

* 750 KHz throughput rate. 

No missed codes over temperature. 

Low power consumption of 250 mW (typical). 

High speed digital interface with a bus access time of 57 nanosecs (Max). 

On chip clock oscillator provides appropriate timing for the operation ,eliminating 

the need for any external clocks. 

Operates from +/-5V power supplies. 

Choice of three analog ranges - (0-5) , (0-10) ,& (-5 to +5) V. 

Circuit operation: 

The t5V reference voltage required for the ADC is derived from a high 

performance +5V supply source using the Analog Devices' AD 586 (U2) which 

exhibits excellent stability performance. 

The AD7886 also requires a -3.5V reference which must be provided 

at its Vref input. This voltage is generated by the Analog Devices' AD 707 (U1) 



with the use of 2 onchip resistors. This external amplifier serves the second function 

of force/sensing the Vref input , which minimises the error contributions from 

voltage or IR drops along the internal conductors, 

Ttre differential analog voltage to be digitized is fed through the 

connector J3;The differential to single ended conversion of the analog devices chip 

AD 845 (U21) . Any offset errors are corrected using the potentiqmeter R22. The 

si~igle ended signal ADCIN is made available to the monitoring point 52 , after 

being conditioned by the oparnp OPA 606 (U19). The gain adjustments of  the ADC 

are corrected by the potentiometer R18. 

The mode and range of operation of the ADC is determined by 

the jumpers JP3, JP4 and JPS. 

JUMPER TO BE LINKED RANGE 

JP3 (0-1 0)V 

JP4 +/-5V 

JP5 (0-5)V 

The RD and CS lines are permanently 
/ 

condition. 

tied low to indicate the ready 

The conversion is started by the CC signal 

connected to the CONVST pin of the ADC. The analog input voltage is sampled by 

the on chip SB. amplifier before being applied ta the IVD converter. The transition 

from track to hold takes place on the falling edge of the CC. The EOC signal, which 

is the output of the ADC on the BUSY goes low as soon as the conversion starts 



and at the same time, the data bus DBO to DBl l  is tristated. When the 

conversion is over the S/H amplifier goes back to the track mode'and the data 

bus is activated to indicate that new data is ready on the output of the chip. The 

output from the ADC which are in the digital form is the last section in the 

analog part of the digitizer. 

In addition to the ADC and the opamps, there are four voltage regulators U3 to ' 

U6 which provide the necessary voltages for the ADC and the opamps. 

Digital section: 

The digital section comprises of two buffers (U9 and U10) and the two opto 

isolators (U20 and U22). The power supply and ground t~ these IC's in the 

digital section are provided by a regulator(U24). The data lines and the EOC 

lines from the ADC are buffered in this section b~fore  they drive the LED'S of 

the optocouplers of the SBC section. The two optocouplers are used to isolate 

the conversion command for the ADC and the filter bank or the AOS clock 

signals from the SBC section. 

SBC section: 

The optocoupled EOC signal from the ADC is used to latch data into the 

latches 74HCT54 (U7 and U8). The RADC signal derived in the chip select 

logic PAL (W27) is used as an output control signal for these two latches. The 

SBC then reads the converted data by reading the latches through the 96 pin 

Euro connector, 



Other peripherals: 

Timing generator (8254): Device U28 on the ADC card is a programmable 

timer used to generate the clock reference for the AOS and the Filter Bank 

timing signals. Timer 0 is used to generate a 2 MHz clock signal which is used to 

derive the timing waveforms for the AOS and Filter Banks. Timers 1 and 2 are 

not used in the design. The clock input to Timer 1 can be a tick signal from the 

Telenet or the output of Timer 0, while the input of Timer 2 is the CPU clock. 

The output CLKl can be used to interrupt the processor while the output CLK2 

is made available on the Telenet connector JP24. The chip select for the device is 

derived f'rom the PAL 16L8 (U27). 

Chip Select Logic: This handled by the PAL 16L8 (U27). This provides the 

chip selects for the Telenet buffer register(U26), digitizer command register 

(U25), the 8254 timer (U28) and the ADC data registers U7 and U8. The base 

address of these chip selects is determined by the /BCS input which is jumper 
." 

selectable. 
! 



Chapter 6 : SOFTWARE ORGANIZATION 

6.1 The PC Side 

The software written on the PC side provides the only interface 

by which the user can interact with the monitoring system. This program 

(written in 'C') takes care of the user interaction as well as the data 

manipulation and the masking and unmasking of channels. The following 

events take place when the HMPC program is executed: 

P The program loads data from the MCM.cfg file and downloads them into 

respective MCMs. The MCM.cfg file is a configuration file that contains the 

default values of  the different parameters pertaining to each channel. This data 

includes several key parameters such as the mask patterns, upper & lower 

lirnits(voltage), scakafactor etb. The settings of any channel can be accessed 

via the MCM.cfg file and they can be altered by suitable user inputs from the 

main menu. However, on initialization, the default settings would be restored. 

P An interactive menu is displayed on the screen which provides the monitoring 

personnel with various options ( HMPC commands shown below in details ). 

The various options or HMPC commands, as they are called, can be 

implemented by punching the keys 0 through 9 and then feeding the suitable 



text or numeric commands to the called window (if required). Menu design 

has been carried out with user-filendliness being the foremost criterion and 

pains have been taken to ensure that the acquired data can be verified through 

different options available on the menu. The most important command, from 

the project's point of view, . is the one. called 'CONTINUOUS 

ACQUISITION' which provides a continuous commentary on the status and 

data accumulation of each channel so that they can be reviewed and 

appropriate action can be taken. 

r> The acquisition data collected by the Monitoring System is regarded very 

important both in terms of future modifications and research utilities. So, a 

provision was necessary to record the acquired data so that it may be 

reviewed from time to time. HMPC program provides an option of writing 

acquired data in a data.cfg(configuration) file every n minutes. The variable 

'n' can be specified by the user by inputs in the menu. However, a default 

setting is also provided which writes data into the data configuration file every 

10 minutes. 



6.2 The SBC Side 

The software development for the SBC186 card is made 

extremely easy by exploiting the software development resources available on 

the PC MS-DOS operating system. System designers can develop the 

programs forthe SBC186 in popular development environments like Barland 

C++, Tufbo C, Microsoft C and Assembler using the PC. The relocatable 

code in the DOS .EXE file is then converted to absolute located code for the 

SBC 186 memory map by Paradigm's Locate utility. Debugging the programs 

for the SBC186 card is also made easy with the Turbo Debugger 

Remote(TDREM) kernel residing on the card. This communicates with 

Borland's Turbo Debugger, configured in the remote CPU mode, or the 

Paradigm DebugIRT rumi~ig on the PC, through the RS232 serial debug port 

and the COM port on the PC. This provides source level debugging and the 

full power of Turbo Debugger to the embedded system program developer. 

0 

Software Development for the SBC186 

The normal procedure for writing any application specific 

software for an embedded system would be to write the programs in assembly 

language and then burning the ROM after assembling, linking and locating the 

files. 

This procedure is tedious, time consuming and needs an 

in-depth knowledg~ t:of the system architecture and assembly language 

constructs. All these intricacies make the programmer yearn for utilities that 

make the above processes transparent to him. 



PARADIGM Utilities 

' Paradigm Systems have two utilities called Paradigm Locate and 

Debu&/RT-l$(iEA, which have been developed keeping in mind only the 

convenience of the programmer. With the above utilities at his disposal, the 

programmer now has the option of writing his program in high-level languages 

like: 

Microsoft C , 

Borland C++ 

Turbo C 

The Paradigm utilities have support for the startup code and run- 

time libraries for these packages, which makes the power of these 

development environments available to the programmer, with a few 

restrictions of course! This ensures that the process of developing software for 

the SBC becomes as simple as writing any other software for the PC, where 

the code is written in a high-level language and consequently compilation, 
df 

linking, debugging and execution takes place. This similarity between the 

development cycles of two different environments leads to greater 
. 

productivity as the programmer can use his skills learnt on the PC 

environment for the other and the time spent on learning some other software 

development tool can be fruitfully utilised in another direction. 



ROMming the program 

Once the program is completely debugged and ' the programmer 

is satisfied with its performance, the code is ready to be fused into ROM. 

- The program is again compiled after suitable modifications made 

in the configuration file and 'make' file, with the following options: 

Not running under TDREM. 

Program should originate from the free ROM area(above OF500H). 

A .HEX file of the appropriate format, again, thorough the serial port of the 

PC. 

6.3 Execution of software 

The SBC program, at the time of documenting, was being loaded. 

separately into the MCMs and this was eating up T, little bit of time. However, 

this is a temporary situation and can be modified successfully once the 

program is ROMmed (i.e. it is loaded into the EPROM ). Once the Paradigm 

program is loaded into the SBC a d  the PC program is executed, the 

following sequence of events is generated: 

MCM SIDE: SBC outputs 0x55 to Serial Port from where it  is transferred to 

the Receiver buffer of PC. 



PC SIDE: PC sends the command string 

"0x55; 

MCM address; 

COMMAND CODE; 

Number of Bytes ; 

Parameters; 

OXAA" 

MCM SIDE: 

Before scanning each channel, SBC checks whether a 'character' has 

arrived from PC. 
/ 

If YES, it checks whether the byte is 0x55 - 

If YES, it receives next byte and puts it  in the 'MCM-ADDR'. It proceeds to 

check if the second character isits own address (MY ADDRESS). - 
If NO, it returns control. 

If YES, it outputs 'COMMAND INVALID' OiAA. It receives a number of 

parameters including the f parameter and the last character. It also checks if the last 



character is 'COMMAND END (OxAA)'. - 
If NO, it promptly returns. 

L 

If YES, it interprets the command. 

If the command is successful (valid), it sends 'COMMAND ACK' or data depending - 
an the: data, . 

PC SIDE: 

PC reads the SP, checks whether the character is 'COMMAND INVALID' (OxAA). 
-.I 

If NO, it returns zero (unsuccessful) 

It waits for the next characterldata with timeout (depends on the command of character 

'COMMAND ACK'-exclusively for some commands). - 
It returns '1' if successful, else it returns 0 (HANDSHAKE COMMAND). 

Z 



Chapter 7 : DESIGN CHOICES 

7.1 Software considerations 

The choice of software i s  affected by several factors: 

> The high level language 'C' was the natural choice mainly because of its 

universal appeal and its modularity. Because a modular approach was the 

backbone of our project, a software language which supports mod;larity was 

the order of the day. 'C' came in handy in this regard as it was comparatively 

easier to enforce changes in the program as and when it was necessary. 

> The PARADIGM embedded software system was a turning point in the 

software as it allowed the programmer plenty of freedom as far as the SBC 

program was concerned. Gone were the days of hectic assembly language 

programming when even the simplest of changes demanded a lot of attention 

and hard work. Instead the programmer keys the assembly language program 

in his favourite progamming language and the PARADIGM takes care of the 

rest. Since PARADIGM supports a lot of languages like Turbo C, Borland C, 

Pascal, etc there was a wide variety of standards to choosz from. After a lot 

of consideration, Borland C was given the go-ahead. 

> The presence of low level features like bit manipulation also played a 

pivotal role in the selection of 'C' as the working language. 

The screen design utility in the PC program required a lot of graphical 

flexibility and manoeuvrability within the program. To offer a suitable 



interactive screen design, quite a number of windows had to be called from 

within the program. 'C' was the perfect foil for this kind of interaction as it 

provides the user with a lot of graphical options. 

-7.2 Hardware Considerations 

SBC: The choice of the Single Board Computer 186 as the means for data - 
storage and control is governed by the capabilities and performance criteria of 

the project requirements. The SBC is a microcontrollet with an inherent 

facility to accommodate a resident program in the EPROM which can be 

executed repeatedly .The program can be made to take into account a number 

of external parameters for processing. This fit in quite comfortably with the 

project requirements. The compatibility with a powerful software 
* 

development tool like PARADIGM also influent-3 its selection. 

ADC: AD7886 was given the nod when the question of an Analog to Digital 

Converter came up. It is a flash type A J C  and has provisions for handling 

differential inputs. Although the Monitoring System is a comparatively slow 

speed device, the high speed nature of the AD7886 makes it ideal for 

improvisations in future. 

ICL232: It is the serial communication driver that communicates with the 

HMPC via the RS232 serial interface. 

MUX: An analog multiplexer plays a crucial role in the selection of channels 



from the address provided. A total of 32 channels has to be accommodated 

and so the MUX card is designed so that two 16:l multiplexers in conjunction 

with an inverter are used to select the required chax~?el. The multiplexer 

chosen is AD506. 

VOLTAGE LIMITER: A limiter card using a diode-potentiometer 

arrangement keeps the analog voltage input to the ADC from shooting out of 

range and hence ensures the proper working of the ADC. The inputs are 
# 

routed via a 64-pin Euro Connector. Due to the presence of 32 inputs with 

respect to a common ground, 33 pin terminals are required. The situation is 

resolved by shorting the grounded 32 pins and using the rest 32 for 32 input 

signals. 



Chapter 8 : TESTING AND DEBUGGING 

The testing phase began with the whole assembly being set up . 

and the software (both PC and SBC side) running without any glitches. The 

system was initially tested without the Voltage L i~ l f e r  card and was found to 

run smoothly after minor connection errors were rectified. Each channel was 

individually tested with a direct input voltage in the range of -1-5 to -5 volts to 

the ADC. The software took care of displaying the correct voltage but the 

communication between the MUX and the SBC was less than perfect and 

selection of channels presented a problem. However, the problem was soon 

eradicated with the help of Logic Analysers. Next, voltage inputs (+5 to -5 

volts) were fed to more than one channel at a time and the system was found 

to be true again. All the above "procedures were carried out for a monitoring 

system with a single MCM unit. 

The Voltage Limiter card was included next in .the testing 

process. ~e-thinking'had to be done at this stage since the design process had 

overlooked the provision for the second grou~ld for each channel and 32 

external jumper connections had to be implemented to negate the problem. 



Chapter 9 : The Working System 

The monitoring system conceived for the project has weighed 

several factors for it's proper utilisation, not the least of which being the user- 

friendliness of the system, even from a non-technical point of view. Adequate 

measures were taken to render the end-product free from any complexities as 

far as the user was concerned. 

The f inal set-up consists of the Hfi:'.th Monitoring PC being 

connected- to the three SBC units being placed at different locations of the 

obsenratoiy (the Cabin, the Receiver Room and the TBCC Room). The 

communication standard used, as menthned before, is EIA RS232. The SBC 

unit along with the ADC card, the MUX card(inc1uding ICL 232 driver) and 

the Voltage Limiter card is housed in a compact box assembly. The power 

supply unit complete with a cooling fan comprises the other member of the 

box. Each of these boxes are placed at the three locations mentioned above 

and are in constant communication with the HMPC. 

Initially, each of the SBC unit is loaded with the resident SBC 

program in the EPROM. The SBC program may be surnrnarised briefly as 

follows: 

1. As soon as the system is switched ON, initialization takes place with the 

MUX, the serial port and the peripherals being initialised. 

2. The program takes care of acquiring from the selected channels and 



compares the data (voltage) with the upper and lower limits which had been 

previously defined in the PC program. Accordingly the appropriate status bits 

are generated. 

3. The program waits for the command fiom the HMPC and depending on 

the nature of the command, the following sequence is generated: 

If NO, the program goes back and starts executing step 2 again. 

If YES, the program services the command and continues data acquisition. 

CPC 1 
c! 
k BLOCK SCHEMATIC OF THE FULL FLEDGED WORKING SYSTW 



Chapter 10 : IMPORTANCE OF THE PROJECT 

The project marks an important development in the implementation 

of additional facilities for the 10.4 m Radio Telescope. The telescope, one of its 

kind in Asia at the time of its inception , is sti;; a landmark for astronomy 

enthusiasts all over India. However, this is the first time a step has been taken 

towards a full-fledged monitoring system for it. 

The monitoring system , when fully functional , would take 

care so that the telescope continues acquiring data when the critical parameters 

are within limits and stops acquiring when the critical parameters are exceeded. 

A file which is updated at regular intervals would ensure that the data recorded 

from the key channels would be available for further investigation. Apart from 

these , the 'faulty' channels would also be indicated so that the 'reforming' 

action could be carried out later. In future, the monitoring system would be 

made to ' talk' directly with the workstation in the control room so that 

automatic control can be enforced on 'the proceedings. 

Another important footnote in this project has been the 

utilization of the resources. Almost 90% of the components associated with this 

project has been in-house developments. Needless to say, there were many a 

happy face in the institute when the project finally came through. This is 

especially important in the light of the fact that many of them had made 

contributions in their own, unique ways, in measures that might seem small, yet 



might prove crucial in the long run, 

The SBC 80186 card, for example , which was developed. 

for a highly specialized purpose, had been an in-house effort and had proved to 

be a key factor in the success of this project. Barring a PARADIGM or an 

ORCAD, the entire software had been written by us and provision8 have also 

been made so that they may be upgraded in future with the minimum of hassles. 
' 

There are , of course, some limitations which have to be 

contended with, for the time being. The scanning of channels takes place 

sequentially and hence limits the user in his quest for monitoring a desired 

sequence of channels. Thankfully, none of the limitations assume a permanent 

nature and can be taken care of quite easily in the future. The above problem, 

for example, can be eradicated with the help of an interrupt driven structure in 

the software. However the usefulness of the system far outweighs its 

shortcomings and the system in general marks the beginning of the shape of 

things to come. 

From our point of view it might be said that the project has 

proved to be an eye opener in terms of exposure to the professional side of 

engineering. Full marks goes to our college as well as to RRI for providing us 

with the above mentioned opportunity. 



Chapter 1 1 : LOOKING AHEAD: Provisions for 

the future 

The system concieved for the project responds perfectly to the 

needs of a specific time critical Monitoring System. However, due to the 

modular approach taken during the hardware and software design procedures, 

the system can easily find application as a generic data acquisition system. 

Although it may be noted that the ADC used here is of a high- 

speed nature as compared to the requirements of the system, yet it leaves a lot 

of options open as far as future implementations are concerned.'The high- 

s p e d  ADC has a resounding effect on the flexibility of the system and it is 

quite possible that in future, it may be used in the back- end of a spectral line 

receiver or a total power system. 
r* 

Because of the processing power of the 80186 microprocessor, 

control features may be incorporated to the system in future. 

The current data acquisition process used by the MCMs is of a 

sequential nature and hence inhibits the system from performing to the fullest 

of its capabilities. However, with suitable modifications in software, non- 

sequential data acquisition by the MCMs is a not-too-distant possibility in 

future. 



SYSTEM FEATURES 

Easy to configure 

Easy to install 

Menu driven and user-friendly 

Adaptability 

t 

THROUGHPUT OF THE MCM: 

Throughput rate with all the 32 channels unmasked: 4.8 milliseconds 

( Scan time for one channel is 150 microseconds) 

Throughput rate with only one channel unmasked: 175 microseconds 

POWER SUPPLY REQUIREMENTS: 

SBC CARD : +/- 5V REGUMTED. 
ADC CARD : +/- 25V UNREGULATAED. 

, +/- 12V UNREGULATED. 
MUX CARD: +/- 15V REGULATED. 
VOLTAGE LIMITER CARD: +I- 5V REGULATED 

+/- 151' REGULATED 



INDEX: 

The list below depicts the expanded versions of several key terms whose 

abbreviated forms have been used frequently throughout the document: 

ADC - Analog to Digital Converter 

ADCCP - Advanced Data Communication Control Process 

ADLC - Asynchronous Data Link Control 

ASCII - American Standard Code for Inforrna tion Interchange 

CMOS - Complementary Metal Oxide Semiconductor 

CMRR - Common Mode Rejection Ratio 

CPC - Control PC 

CPU - Central Processing Uqi t 

CRC - Cyclic Redundancy Code 

DMA - Direct Memory Access 

DRAM - Dynamic Random Access Memory 

DPLL - Digital Phase Locked Loop 

EOP - End Of Poll 

EPROM - Electrically Programmable Read Only Memory 

GHz - Giga Hertz 

HDLC- Highlevel Data Link Control 

HMPC - Health Monitoring Personal Computer 

IC - Integrated Circuit 

KB - Kilo Bytes 

LED - Light Emitting Diode 



MCM - Monitor Control Module 

MUX - Multiplexer 

PC - Personal Cbmputer 

RAM - Random Access Memory 

RRI - ~ a m k  Research Institute ' 

RX-ROOM - Receiver Room 

SBC - Single Board ~omput 'er  

SCC - Serial Communications Controller 

SDLC - Synchronous Data Link Control 

SRAM - Static Random Access Memory 

TBCC - Telescope Based Control Console 

TDREM - Turbo Debugger REMote 



APPENDIX 

THE SINGLE BOARD COMPUTER 80186 

Overview of SBC Board 

The hardware features of SBC186 are as follows: 

# 16 MHz, 80C186 CPU, 20 bit address bus (total 1 Mb memory space) and 

16 bit wide data bus'. 

# Two sockets for SRAM. Jumper selectable upto 64KB (2 x 62256) with 

battery backup circuitry. 

# Two sockets for EPROM Jumper selectable upto 128 Kb (2x 2C256) for 

program code. 

# An external Programmable Interrupt ControIler(8259) to provide more 

interrupts which makes the SBC186 board capable of handling a total of 9 

external interrupts. 

# An 8 position BAR Graph LED port. 

# An 8 bit DIPswitch. 

# Two independent DMA channels. 

# Two independent 16 bit Timers. One is reserved for on board use while 

the other is available on the expansion bus. 

# An 8-bit bi-directional port intended for front panel user interface, for 



example the 8279 keyboard & display controller 2nd dot matrix ASCII 

display. 

# A serial Communication Controller using 85C350 provides two serial 

ports, one of them is an RS232 port while the other is user configurable 

through specific hardware. 

# Buffered expansion bus on a 96 pin Euro connector. 

The 80C186 Microprocessor 

* CMOS 8086 microprocessor with 16 bit external data bus, IMB memory 

address space and 64KB 110 space. Object code compatible with Intel 8086 

family. 

ilr Two DMA channels with programmable priority. 

* Three 16 bit Programmable Tim,ers. 

* Programmable Interrupt Controllers that can be configured for a variety of 

operating modes. 

* Programmable Chip Select Unit for memory and I/O. 

* Clock generator with external crystal 1 OMI-Iz, I6MHz and 20MHz clock 

speeds. 

* DRAM refresh controller. 



THE SCC 28530 
1 

CAPABILITIES 

LI Two independent full duplex channels 

o S ynchronous/Isos y nchronous data rates: 

- Upto 114 of the PCLK (i.e. 4 Mbits/sec maximum data rate with 16 MHz 

PCLK Z85C30) 

o Asynchronous capabilities: 

- Upto 250 Kbitslsec with 16Mhz(x16 mode) PCLK. 

- 5,6,7 or W i t s  per character 

- 1,l-1/2 or 2 stop bits 

- Odd or Even parity 

- x1,16,32 or 64 clock modes 

- Break generation and detection 

- Parity, Overrun and Framing Error detection 

o Character-oriented synchronous capabilities: 

- Internal or external character synchronous capabilities: 

- or 2 sync characters in separate registers 

- Automatic CRC generation/detection 



o SDLC/HDLC Capabilities: 

- Abort sequence generation and checking 

- Automatic Zero bit insertion and deletion 

- Automatic flag insertion between messages 

- Address field recognition 

- I-Field Residue handling 

- CRC generatio~vdetection 

- SDLC Loop mode with EOP recognition/loop entry and exit 

o Receiver data registers quadruply buffered. Transmitter data register doubly 

buffered. 

o NRZ, NRZl or FM encodingldecoding and Manchester decoding. 

o Baud-rate generator in each channel 

o A DPLL in each channel for clock recovery. 

o Crystal oscillator in each channel. 

o Local Loopbacks in Auto Echo Modes 



PARADIGM UTILITIES 

Paradigm Locate 

Paradim Lamte is a utility that allows any DOS.EXE file to be split 

up and placed at user specified addresses in the target system's address space. 

Also, during the installation, a subset of the chosen compiler(s) run time 

libraries is modified by removing all the functions that are not supportable on 

the system(due to the functions making use of the BIOS or MS-DOS calls, 

which are absent on the target).It also provides a user customizable INT 21H 

emulation package to provide features like memory management, stream I/O 

and other DOS dependant run-time libraries, to be used on the SBC. The 

entire sequence of operations has been streamlined by using the MAKE 

utility. The MAKE utility starts compiling the source code, linking and then 

produces the final LOCATE'd file ready debugginglbuming into ROM. 

'MAKE' utility checks the time tags of the source files and 

compiles/assembles only those which have been changed since the last 

MAKE-ing and also aborts if any errors are reported while compiling or 

l inking. 

Development Cycle 

The cycle starts with the programmer keying his code in a file called, 

say, TEST.C.- Then the MAKE utility is invoked with the following command 

at the DCS prompt: 



make -ftest 

This instructs MAKE to process the files in the sequence, specified in a 

special makefile called TEST.MAK. The directives in this file control the 

compilation, linking and invoking LOCATE. Here LOCATE looks for a 

special configur6tion file called TESTCFG, for the translation process. Seme 

of the important parameters specified in this file are: 

I. Output file type & name (ABSFILE): This is used to select the file type 

and optionally supply a file name for the Absolute output file. This is useful 

when working with the Debugger & other development tools. 

11. Assigning a Physical address to the segments (CLASS): This assigns the 

specified address in the directive to the first segment in a particular named 

'class'. 

IILSpecifying the type of CPU(CPUTYPE): This informs Paradigm LOCATE 

of the target system microprocessor, which helps in selecting the selecting the 

set of permitted peripheral registers in the INITCODE directive. 

1V.Directive to copy a class (DUPLICATE): This is used to copy the 

initialised data from the EPROM to RAM by the startup code. 

V. Specifying EPROM programmer file type (HEXFILE): This tells LOCATE 

to produce a suitabie format, .HEX file, for downloading to an EPROM 

programmer. 

VI.Initialisation code(1NITCODE): This is used to generate instructions in the 

correct order for the reset vectors, stack initialisation and other peripheral 

register initialisation like DRAM refresh, cwait-state, etc. 

VII.Specify access attributes for the memory regions(MPS): This directive is 

used to intimate LOCATE of the target system's memory structure , i.e. 



regions that are read-only, read-write, reserved, etc. T h i s  information helps * 

LOCAT& in omor-checking like overlapping segments, trying to write into 

EPROM, etc. 

If the source code contains any errors, MAKE reports them and aborts 

the process. Then the necessary corrections are made and MAKE is invoked 

till it goes through successfully. If the programmer had chosen to debug it on 

the target, two other utilities called DEBUGIRT and TDREM are used to 

download it onto the target system through the serial port on the PC. 

Debugging Options 

The two utilities Paradigm DEBUG/RT or Turbo debugger allows the 

user to download the .EXE file produced by LOCATE from the PC onto the 

SBC, to debug i t  on the SBC card directly. 

The Paradigm DEBUG/RT is a customised version of the Borland's 

Turbo Debugger for the Single Board Computers bzsed the Intel80186 series 

of embedded processors. In case the DEBUGIRT is not available, the original 

Turbo Debugger can also be used for debugging the programs on the SBC. 

This makes the full iower of the Turbobebugger available to the developers 

of  programs for the SBC186 card. The following resources are available to 

the programmer: 

e Breakpoints -source and instructiorl level. 

* Variable watches - for keeping track of desired variables. 

* Inspect windows - for inspecting variables. 



@ Memory dumps. 

e CPU windows - for processor status. 

Source line debugging. 

Logging, etc. 

Two special features available on the DebuglRT are: 

1. Display of the contents of the 80186 internal registers. 

2. Single operations of loading, executing and then exiting to DOS prompt. 

The DEBUG/RT interacts with the TDREM kernel residing on the 

SBC through the serial port to achieve this task. The TDREM (Turbo 

Debugger REMote) is a customised version of the actual utility, which 

occupies just 4 K of the 80186 space. 

TDREM uses some amount o f  RAM space. So while debugging, the 

user prograni should originate above OBOOH, 



- - - .  -- EL- -------*------ 

THE SBC PROGRAM 

#include "gendefs.hn 
#include "sccdefs.hn 
#include "globvars .hn 
#define MCM2 1 
#ifdef MCMl 
#define MYADDRESS 01 
#endif 
#ifdef MCM2 
#define MYADDRESS 02 
#endif 
#ifdef MCM3 
#define MYADDRESS 03 
ktex~dif 
unsigned int ok=Ox55,notok=0xaa; 

#define COMMAND-BEGIN 0x55 
#define COMMAND-END Ox AA 
#define COMMAND-ACK 0x55 
#define COMMAND-INVALID OxAA 
#define l3kWDSHA.KE-COMMAND 0x00 
Mefine ANALQG-MASK-COMMAND 0x01 
#define ANALOG_LIMIT_COMMAND 0x02 
#define SEND-STATUS-COMMAND 0x03 
#define SEND-DATA-COMMAND 0x04 
#define Gm-AMASK-COMMAND 0x05 
#define SEND-LIMIT-COMMAND 0x07 

THIS FUNCTION CHECKS WHETHER THE OUTPUT PORT IS FULLIF NOT, IT WAITS FOR A 
CERTAIN AMOUNT OF TIME. 
****************************************************************************** / 
wai t-tm0 

int dly=10000; 
while( ! (inportb(SCC-CHNLA-CTRL) & 0x04 ) ) 

dly--; 
if(dly==O) break; 
1 .  

1 
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THIS FUNCTION CHECKS WHETHER THE INPUT PORT IS FULL.IF NOT, IT WAITS FOR A 
CERTAIN AMOUNT OF TI.ME. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
wai t-rec0 
{ 

int dly=32000; 
while( ! (inpodb(SCC-CHNLA-mL) & 0x01 ) ) 



d l ~ = - ;  
if(dly==O) break; 
1 

1 /****************************************************************************** 
FUNCXQN TO TRANSER A CHARACTER TO T'HE OUTPUT PORT ( W S M I T  R W E R ) .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
void ~end~~b~r(un~igncd che r data) 
{ 

THIS PROCEDURE RECEIVES A CHARACTER FROM SCC-CHANNEL-A .THIS PROCEDURE IS 
BASIC TO ALL FUNCTIONS SUCH AS RECEIVING PC COMMAND. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
unsigned char rec-char0 
{ 
wa itreco; 
return(i~lportb(SCC-CHNLLDATA)); 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS PROCEDURE SETS THE SCC REGISTER SPECIFIED BY THE PARAMETER 
'REG-NO' WITH THE VALUE SPECIFIED BY THE PARAMETER 'CONTENTS' 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
void writeto-sccreg(unsigned cbar regno, unsigned char contents) 
{ 
int dtly; 
outportb(--PORT,reg_no); 
dtly = 0; /* SCC recovery time */ 
outportb(CTRL-PQRTF,contents); 
1 
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * w * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * e * *  

THIS PROCmURE INITlA16ZIIZE THE SCC FOR THE ASYNC MODE QF OPERATION 
WITH THE REQUIRED CHARACTERSTISTICS 
READS FROM CONTROL PORT TO RESET lNTERNAL REGISTER POINTERS OF SCC TO 0 

* * * * * * * * * * l * I * L * * * I * * * * * * * * ~ I k * 4 : * * O r ) r r k * * * * * * * ~ * * * * * # * 4 : # * ~ $ * * ~ ~ & @ * + ~ * ~ * * @ ~ ~ * * * 4 * *  / 
void init-scc-chsla0 

{ 
illt i ;  
unsigscd int estries = sizeof(init-table)kizcof(ui~signed cbar); 
inportb(CTRL-PORT); 
for (i = 0 ; i < entries ; it-?) 
writeto-sccreg(init-table[i], init-table[i+ 11); 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS PROCEDURE CLEARS THE CONTROL PORT OF SCC 8530 CHIP 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
void clear-ctrlqorto 
{ 
ctrlgort_data =0x00; 
outportb(CTRL-REG1, ctrlqort-data); 
1 



void init-liinit-tables0 
{ 
int cbnl-no; 
for(chnl~no=0;chnl~nocMBXCHANNEL;chnl~no++ analogmask[chnl-no]=0; 
P / * * * * * * *+***** * * * * - * * * * *~***** * * * * * * * * * * * * * * * * * * * *~***#***~***** *~***** * * * * * * * *  
THIS P R O C D U E  PROVIDES START OF CONVERSION PULSE FOR T;LASH TYPE A D  
CONVERTOR 
***************************************************************************** / 
void generate_stafi-wnv() 
{ 
ctrlqort-data = ctrlqofi-data 1 0x04; 
ou tljortb(CI'RL-REG1, ctrlgort-data); 
} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS PROCEDURE PROVIDES END OF CONVERSION PULSE 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
void stop-start_convo 
{ 
ctrlgort-data = ctrlqort-da ta & OxFB; 
ou tportb(CTRLCTRLREG1, ctrljort-data); 

1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS PROCEDURE PROVIDES A DELAY OF 0.96nucroseconds(approx lus) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
void delay-lus0 
{ 
int ii; 
for(ii=O;ii<l;ii++); 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS PROCEDURE PROVIDES A DELAY OF 4*0.96,~licroseconds(app~ax 4us) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
void delay-4us0 
{ 

THIS PROCEDURE PROVIDES A DELAY OF 8*0.96nucroseconds(approx 8us) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
void delay_8ue0 
{ 



THIS  PROCEDURE OUTPUTS A BIT PATERN TO THE CONTROL PORT FOR A ENABLING 
?7EFE DESIRED MUX AND SELECTING PARTICULAR CHANNEL OF THAT MUX 
***************************************************************************** / 
void select-mux-channel0 
{ 
unsigned char nls4bits; 
nls.tbits=( (chnl_no8;0x3c) <c2 ); 
ctrl_port_data=( ms4bits I (chnl_no&OxO3) ) ; 
outportb(CTRL-REG1, ctrlgort-data); 
dela y-luso; 
} 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THIS FUNCTION IS USED FOR DATA ACQUISITION AND DATA ANALYSIS AND 
INTEGRATION. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
void sca~~gara~lleterso 
{ 
for(chnl~no=O;chnl~~~o~MAXCHANNEL;ch~~l~~io++) 

{ 
if( (inportb(SCC-CHNLA-CTRL) 8: 0x0 1 ) ) rec_pccmd 0; 
if(a11alog-x~lask[chnl-no]== 1) 

adc-da ta[chnI_no]=2048; 
chfil_status[ebnl-~~o]=QK; 
@~#?tii~ugb; 
1 

select-nlux-channelo; 
genera tc-sta rt_conv(); 
delay-8us0; 
stop-start-convo; 
delay-4us0; 
adc-data [chnl-no]=i nport(READ-ADC) ; 
voltage=ad~-data[ch11I~110]; 
if( (vol tage>nwx-lii~iil[ch~i1~i~o]) ~) (vo l la s~cn~  ii-li~~ii~[ch~~l-~io]) ) 

{ 
sta tus=NOTOK; 
ch~~l~status[chi~l~~io]=status; 

} 
else 
{ 

status=OK; 
chnl-sta tus[chnl-no]=sta tus; 

1 
1 

ou tportb(LED-PORT,++poi nts); 



- .  . 

THIs FUNCnON UPDATES IN STATUS OF ALL THE CHANNELS. IF A CKANNU GOES OUT 
OF RANGE THE STATUS BIT MADE HIGH (SQ OTHERWISE IT IS MADE LOW(RFSW 
* * * * * * * * * * . * * * * * * * * * * * * * * c * * * * * * * * * * * * * * * * * * * * * * * * v * * * * * * * * * * * * * * * * * * * * * * * * * * *  

int status-data; 
unsigned char bitcbk; , .  

int ii=O,jj=O,chnl-no=O; 
chnl-no=O; 
for(ii=O;ii<8;ii++) 

mcm-status [ii]=O; 
bitchk=OxOl; 
for(jj=O;jjcS;jj++) 

- - 
if(status-~~~~==NoToK) n~cnl-status[ii]= rncnl-status[ii] I bitcbk; 
bitchk=bitchk<cl; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION IS CALLED TO UPDATE MASK PATTERN IF THE END USER SENDS A 
DESIRED MASKED PATIERN. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ 
upda te-amask-array0 

unsigned char mask-data,bitchk; 
int ii,jj,chnl-no=U; 
for(ii=O;iicB;ii++) 

mask-data=amask-recd[ii]; 
bitchk=OxOl; 
for(ij=O;jj<S;jj++) 

if( (1nask_data&bitchk)==0x00) analog-mas k[chsl-no J=O; 
else a11alog_a1ask[chnl-110]=1; 
c hnl-no+ + ; 
bitchk=bitchk<<l; 

1 .  
1 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION INTERPRETS AND SERVICES THE COMMAND FROM MONITORING PC 
***************************************************************************** 

/ 
interpret-commando 
{ 
int ijjj; 
swi tch(cn1d-code) 



{ 
case HANDSHAKE-COMMAND: 

send-cha r(C0MMAND-ACK); 
break; 

case ANALOG-MASK-COMMAND: 
send-cha r(COMMAND-ACK); 
memcpy(&amask-recd [O],&pa ra e~eters[O],S); 
upda te-a mas k-arra y0; 
break; 

case ANA.LoG-LI~~_COMMAND: 
send-cha r(C0MMAND-ACK); 
memcpy(&max-limit[(int)p~mn1etets[O]],&paran1eten[l],2); 
memcpy(&min_lin~it[(int)paran~ete~[O] ],&pa ranleters[3 ],2); 
mcmcpy(&critical[(int)paramete~~[O]],&pameters[5],1); 
break; 

case SEND_STATUSSCOMMAND: 
scangarameters0; 
upda te-sta tus-arm yo; 
send-cha r(C0MMAND-ACK); 
for(i=O;ic3200O;i++); 
for(i=O;i<B;i++) 
{ 
send_char(tncm-sta tus[i]); 

for(jjj=O;jjjcl000;jjj++): 
1 

break; 
case SEND-DATA-COMMAND: 

send-cha r(C0MMAND-ACK) ; 
for(i=O;ic3200O;i++); 
for(i=O;ic64;i++) 
{ 
send-char(adc-da ta [i]&oxodn); 
for(jjj=O;jjj<lOOO;jjj++); 
send-cha r( ((adc-da ta [i]&OxffOO)>>S) ); 
for(jjj=O;jjjc lOOO;jjj++); 
1 
break; 

case GET-AMASK-COMMAND: 
send-chn r(C0MMAND-ACK); 
for(i=O;ic32000;it t ) ;  
for(i=O;i<S;it t )  

{ 
send-cha r(an1as k-recd [i 1); 
for(jj=O;jjjc1000;jjj++); 

1 
break; 

case SEND-LIMIT-COMMAND: 
send-cha r(C0MMAND-ACK) ; 
memcpy(&11~a~-li11~i~(int)pm111eters(0]),&~arametcrs~ l] $2); 
m~n1~py(&nJn-limi![(i~1t)paranrcters[O]j,&~nraruercrs()],2); 
memcpy(&chnl-no,(int)para nleters[O], 1); 
break; 

default: 
scnd-cha r(C0MMAND-INVALID); 



break; 
1 

for(i=O;i<IO;i++); 
} /****************************************************************************** 
THIS FUNCTION RECEIVES THE COMMAND FROM MONITORING PC 
****************************************************************************** 

/ 
recqccmdo 
{ 

int i=O,csp=O; 
pcda ta=inportb(SCC-CHNLA-DATA); 
ou tportb(LED-PORT,pcda ta); . 
if@cda ta !=COMMAND-BEGIN) return; 
cmd-str[csp++]=pcda ta ; 
pcda ta=rec-char(); 
ou tportb(LED-PORT, pcd a ta); 
mcm-addr=pcdata; 
if(mcm-addrl=MYADDRESS) return; 
ou tportb(SCC-CHNL&DATA,COMMAND-INVALID); 
cmd-str[csp++]=pcda ta ; ' 

pcda ta=rec-char(); 
ou tportb(LED-PORT,pcdata); 
cmd-code=pcda ta ; 
cmd-str[csp++]=pcda ta ; 
pcdata=mc-char@ 
~~tportb(LEB~PORT,pcda t8); 

cmd-str[rsp++]=pcda ta ; 
no-ofgarametels=(int)pcda ta; 
while (no-ofg a ra meters) 

pcda ta=rec-char(); 
para meters[i]=pcda ta ; 
cmd-s tr[csp++]=pcda ta ; 
i++;no-afgarameters--; 
1 
pcda ta=rec-char(); 
ou tportb(LED-PORT,pcda ta); 
ifbcdata !=COMMAND-END) return; 
cmd-str[csp++]=pcda ta ; 
interpret-commando; 

1 
void main0 
{ 

i~i t  ii; 
for(ii=O;iic(l;ii++) n1cm_status[ii]=Ox5a; 
for(ii=O;ii<(l;ii++) an1ask_recd[ii]=Ox55; 
upda te-amask-ana yo; 
ini t-scc-chnla 0 ;  
i npo rtb(S CC-CHNLA-D ATA) ; 
ou tportb(SCCCC~AADATA,COMMANDMANDACK); 
clear-ctrlgort0; 
init-lintit-tableso; 
c b nl-no=OxO; 
whilc(1) 





THE PC PROGRAM 

#include<process.h> 
#define TXRDYBIT 0x20 
#define RXFULTBIT 0x01 
#define MCM-NO 3 
#define POSSTEPS 2047.0 
#define NEGSTEPS 2048.0 

#define COMMAND-BEGIN 0x55 
#define COMMANDEND Ox AA 
#define COMMAND-ACK Ox55 
#define COMMAND-INVALID OxAA 
#define HANDSHAKE-COMMAND 0x00 
#define A N A L O G P S  K-COMMAND 0x0 1 
#define A.NALO~LIMIT_COMMAND 0x02 
#define SEND_STATUS-COMMAND 0x03 
#define SEND-DATA-COMMAND 0x04 
#define Gm-A,MASK_COMMAND Ox05 . 
#define SEND-LIMIT-COMMAND 0x07 

#define ADCMAX +5.0 -. 
#define ADCMIN -5.0 
#define ADCBITS 12 
#define ADCZERO 2848.0 

#define S m N G S  OxEO ( 0x00 ( 0x00 I 0x03/* Refer 'b;.,sco~n' furlction of BC*/ 
void menu(); 
void display_mask(); 
void display-data 0; 
void displa y-sta tuso; 
void select-mcmprto; 
void download-limits-nlasko; 
void read_conv-limits-n1ask0; 
void get-mcm-addro; 
void comm-init(int); 
void display lo; 
void display20; 



int quit-loop(); 
void cursoran(); 
void cursor-off(); 
void write-toefile(); 
float temp; 
in1 ;xl,x2,yl,y2,k,data-1nask[32l; 
unsigned int conl_da tagort,con1~status~ort~scan_rate[32]; 
unsigned char nic1nusod[l0],criti~al[32],buf~128J,cn~d~'~uf~l5]; 
unsigned char mcm~~har,n1cn~~response~n1~~~~t8tu~[100]~n~~m~~11a~k[1O],da ta-lsb,da ta-n~sb; 
unsigned int rncrn_data[100]; 
f l ~ a  t 
upper[32],lower[3Z],adcstep,dispPd8 ta[32],dispPdafa 1[32J,disp_data2[32j~caIeefaeto~[MCMMNO][32]; 
unsigned int ulimit,ilimit,in-data; 
char mcml,mcn~2,mcn~3 ; 
int mcm_addr,d,n~cmnos,i &dunlint; 
unsigned char begin[lO],eed[5],out_cmd[lS]; 
unsigned int uim[32],11iu[32]; 
unsigned char str1[20],s tr2[20],str3[20],str4[20],str5[20],~ tr6[20]; 
unsigned char du11ls[20],location[20]; 
unsigned char 
an~ask-final[8].1~~ask-bit[32],1~~ask-bitl[32],n~ask-bi 12[32],status-bit[32],status-bit 1[32],status_bit2[32); 
char c; 
double interval; 
unsigned char key,keyl; 
time-t tl,t2; 
FILE * fp; 

THIS FUNCTION SELECTS MCM ADDRESS AND INITIALISES CORRESPONDING SERIAL PORT 
FOR RS232 COMMUNICATION 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
void select_lncnlgort() 
i 

switc;b(mcrllPIadd t) 

case 1 : 
c o n ~ ~ d a  tagort= Ox2e8; 
conl-sla tusjortz Ox2ed; 
conull-init(4); 
break; 

case 2 : 

c ~ s l l ~ s t s t u s ~ o r t =  Qx3ed; 
co 11m-i ni t (3) ; 
bren k; 

case 3 : 
caln-da t;tr)or!= Ox'EB; 
conl-statusport= Ox2fd; 
co xnm-i nit (2) ; 
break; 

default: 
break; 

1 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



THIS FUNCTION CHECKS WHETHER IT CAN TRANSMIT TO MCM OR NOT 
IT WAITS FOR A SUITABLE TIME 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
void wait-tx0 
{ 

int dly=1000; 
while( ! (inpoflb(com_sta tusgort) & TXRDYBIT) ) 

dly--; , 

if(d1 y==Q) break; 
1 

THIS FUNCTION CKECMS WI33?3ER IT CAN RECEIVE FROM MCM OR NOT 
*$*******************************#***************************@****@***********/  

THIS FUNCTION SENDS A CHARACTER TO TRANSMIT BUFFER 
**********************************************%*******************************/ 
void send-char(unsigned char data) 

wait-a(); 
ou tportb(com-da tagort ,da ta); 
} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION CHECKS WHETHER THE RECIEVER BUFFER IS FULL OR NOT (i.e. WHETHER 
A CHARACTER IS RECIEVED AT THE INPUT PORT.IF NOT, ITS WAITS FOR THE SPECIFIED 
TIME DURING WHICH IT FXPECTS A CHARACTER FROM ONE OF THE ADDRESSED MCMS. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
void wait-rx0 
{ 

long int dly=32000; 
while( ! (inportb(conl-sta tusgort) & RXFULLBIT) ) 

dly--; 
if(dly-=0) break; 
1 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

THIS FUNCTION RECIEVES A CHARACTER FROM ITS RECIEVE BUFFER 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1- 
unsigned char rec-char-stat0 
{ 

wait-rx-stat(); 
rctunl(inportb(com-cia taqort)); 

j%$b*%Cb*2~*t***~*%*rk*k**.***rC*******I*4*%*********%%*****~*****~****~~~****~** 

THIS FUNCTION RECIEVES A CHARACTER FROM THE MCM 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
urisigned char rec-char() 
{ 



wai t-rx0; 
return(inportb(com-datagort)); 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION SENDS COMMAND TO MCM 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
void send-cmd-to-n1cm0 

int i,nbytes; 
nbytes=(int) cmd_duf~3]; 
for(i=O;i<(nbytes+5);i++) 
{ 

THIS FUNCTION ACQUIRES STATUS AND 2-BYTE VOLTAGE INFORMATION OF ALL THE 
CHANNELS FROM THE SELECTED MCM AND CONVERTS IT TO THE NORMAL FORM AND 
DISPLAYS 
TKE VOLTAGES ON THE MONITOR. 
***************************************************************************** / 
void acquire0 

ux~igtled char bitchk,i; 
int ii jj,fibytcs,k; 
if(!(send-sta tus-cmd 0)) 
{ 
cprintP("STATU<OUT'); 
geteho; I 

quit-loop(); 
1 

cprint f("SENB-DATA-OUT'); 
gctch0; 
quit-loop(); 
1 
window(4,12,75,23); 
textbackground(CYAN); 
textcolor(BLACK); 
clrscro; 
for(i=O;i<32;i++) 
{ 
if(mcill_data [i]>=204S) 
disp-data [i]=((tnciu_da t a [i]-2048) *5.0/2048)* (sca le-factor[~ncnl-addr][i]); 
else 
disp-data[i]=((2048-111~1t~-d11tn [i])*-5.0/204S)*(scale-factor[nicn?_addrl[i j); 
1 



bitchk<c=l; 
f 

1 
for(i=C);i<8;i++) 
{ 
forG=O;j<4;j++) 
{ 
switch(mcm_addr) 
{ 
case 1: 

disp datal[4*i+j]=disp_data[4*i+jl; 
statu~bitl[4*i+j]=status_bit[4*i+j]; 

break; 
case 2: 

disp_data2[4*i+j]=disp_data [4 *i+j J; 
status-bit2[4*i+j]=status_bit[4*i+j]; 

break; 
defau1t:break; 
1 
) 

gotoxy(U,2); 
cprintf(n------MCM 1 ------" >; 
for(i=O;i<S;i++) 
i 
for(j=Ojc4;j++){ 
if(mask-bitl[4*i+j]==OxOO) 
{ 
iystahls_bitl[4*i+j]==0) 

i 
gotoxy(&*i+5,j+3); 
cprintf("%d:%.2f",4* i+j,disp-data 1[4*i,tj]); 

) 
else 
{ 

textcolor(RED); 
gotoxy(8 *it5,j+3); 
cprintf("%d:%.2f",4*i+j,disp_data 1[4*i+j]); 
textcolor(BLACK); 

1 
1 
else 
{ 
gotoxy(8*i+5 j+3); 
cprintf(" W:MASKn ,4* i+j); 
1 



if(maskebit2[4*i+j]==&tcQ8) 
{ 
if(status_bit2[4*i+j]==Q) 
{ 
gotoxy(8*i+S,j+8); 
cprintf("%d:%.2f",4*i+j,disp_da ta2[4*i+j]); 
1 
else 
{ 

textcolor(RED); 
gotoxy(8*i+5,j+8); 
cprintf(" %d:%.2T,4*i+j,disp_da ta2[4*i+j]); 
text@olor(BLACK); 
1 
} 
else 
{ 
gotoxy(8*i+S7j+8); 
cprintf("%d:MASKn,4*i+j); 
1 
} 

1 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION IS USED TO BREAK OUT OF THE LOOP DURING CONTINOUS ACQUISITION 
WHENEVER ANY OF THE MCMS STOPS RESPONDING. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
int quit-loop0 
{ 

window(1,12,80,25); 
textbackground(WH1TE); 
cllrscr0; 
displaylQ; 
ewit(0); 
return; 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION DISPLAYS A MESSAGE WHEN THE MCM IS NOT RESPONDING. 
......................................................................... 
void displaylo 
{ 

window(1,25,80,25); 
textbackground(WH1TE); 
clrscro; 
window(15,23,40,25); 
textbackground(GREEN); 
textcolor(WH1TE); 
clrscro; 
gotoxy(292); 
cprintf("MCM %d not respondingN,nlcnl-addr); 
getcho; 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS NNCTION DISPLAYS A MESSAGE WHEN THE COMMAND IS SUCCESSFUL,. 



void disgla y20 
{ 

window(15,23,40,25); 
textbackground(GEEN); 
t e x t c o l o r ~ ~ T E ) ;  
clfscr0; 
gotoxy (22); 
cprintf(" COMMAND SUCCESSFULn); 
getcho; 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION IS USED TO CHECK WHETHER THE LINK BFlWEEN THE HMPC AND THE 
MCM 
IS ACHIEVED AND THE MCM COMMUNICATES PROPERLY. 
***************************************************************************** I 
int send-ha ndsha ke-cmd 0 
{ 

int i,nbytes; 
cnld-bu fqO]= COMMAND-BEGIN; 
cxnd-buff[l]=mcnl-ad dr; 
cmd-buffl;2]=HANDSHAKEAKECOMMAND; 
crnd_buff[3]=0~00; 
CI~~-~U~~[~]=COMMAND-END; 
send-cmd-to-nlcm(); 
for(i=O;i<lOOOO;i++); 
mcm-response=i nportb(conl-da taqort); - 
i f(mcm-response ! =COMMAND_INVALID) re t u rn(0); 
mcm-response=rec-cha rO; 
if(mcm-response!=COMMAND-ACK) retu m(0); 
else 
retu m(1); 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION SENDS THE MASK PATTERN TO THE SELECTED MCM. 
.............................................................................. 

mcn~response=i nportb(co 111-da taqort); 
if(mcmn-response!=COMMAND_INVALID) returxl(0); 
mcm-response=rec-char(); 
i f(rncn1-response !=COMMAND-ACK) retu m(0); 
else return(1); 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



THIS FUNCTIBN SENDS THE ANALOG LIMITS TO THE SELECTED MCM. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
int send-analog-limits() 
1 

int i,nbytes,chnl-no; 
cmd-buffIO]=COMMMD-BEGIN; 
cmd-buff[l]=mcm-addr; 
cmd-buffI2]=~~QG-LIMFT_CQM1MAND; 
cmd_buf[13]=0x08; 
cnld-bufF[12]=COMW-ENIz; 
for(chnl~no=0;chnl~no<32;chnl~no++) 

{ 
crnd_buffC4]=(unsigned char) chnl-no; 
memcpy(&cmd_buff[5],&ulm[cbnl_no],2); 
rnemcpy(&cmd-bufr(7],&ll1n[chnl-n0],2); 
memcpy(&cmd-buffT9],&critical[chnl-no J, 1); 
memcpy(&cmd-bufq 10],&scan-ra te[chnl_no],2); 
send-cmd-tomcmO; 
mcm~response=inportb(com~da taqort); 
i f(mcm-response !=COMM AND-INVALID) retu rn(0); 
mcm-response=rec-char(); 
i f(mcm-response ! = COMMAND-ACK) re tu rn(0); 
else (delay(2);continue;) 
1 
return(1); 

} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
'THIS FUNCTION REQUESTS TKE MCM TO SEND THE STATUS INFORMATION OF THEIR 
PARAMETERS. 

int send-sta tus-cmd0 
{ 

unsigned char bitchk,i; 
int ii,jj,nbytes,k; 
cmd-bu fQQ]= COMMAND-BEGIN; 
cmd-buff[ l]=n~cn~-addr; 
cmd_buff12]=SEND_STATUS_COMMAND; 
cmd-buf~3]=OxOo; ,- 

crord-buff14]=COMWDDEND; 
se nd_cmd_ta_mcm(); 
delay(1); 
mlcmO-tespotiea~inpottb(cosn-d~'tif~art); 
if(m~m-response l = C O M M ~ m I N V A L I D )  retv nl(0); 
lncmn-response=rec-charQ; 
if(n1cn1-response!=COMMAND-ACK) { retur11(0);} 
else 
{ 
for(i=O;ic4;i+t) rnc111-status[i]=rec-char-state; 

1 
return(1); 

} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTON IS USED TO SEND THE UPPER LIMIT,LOWER LIMIT AND SCALE FACTOR 
FOR A PARTICULAR CHANNEL OF A MCM 0NLIME.IT CHECKS THE VALIDITY OF WEBE 



PARAMETERS AND CONVERTS INTO A 12-BIT DATA(ACCORD1NG TO THE FOlWfULA). 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
int send-limit-cmd0 
{ 

int i,nbytes,number; 
float up-lim,low-lim; 
c m d - b ~ f f I 0 ] = C 0 ~ ~ B E G I N ;  
cmd-bu ffC l]=mcm-ad dr; 
cmd-bu~2]=SENP-LIMIT-CC)MhilAND; 
cmd_buff1[3]=Ux05; 
c m d _ b u f Q 9 ] = C Q W  - END; 
window(Z0,13,65,22); 
textbaekground(BLUE); 
textcolor(YEU0W); 
clrscro; 
disebleo; 
enter-chno: gotoxy(3,2); 
cprintf("ENTER CHANNEL NUMBER: "); 
if(! sca nf(" %dn ,&number)) 
goto enter-chno; 
enable(); 
memcpy(&cmd-buffl4],&number, 1); 
gotoxy (394); 
cprintf(" ENTER THE UPPER LIMIT:"); 
scanf(" %f",&up-Iim); 
gotoxy (3,6); 
~pr in t f (~  ENTER THE LOWER LIMIT:"); 
scad(" %f",&low-lim); 
if(up-lim<low-lim) 
{ 
temp=up-lim; 
up-lim=low-lim; 
low-lim=temp; 
J 
enter: go toxy(3,8); 
cprintf(" ENTER SCALE FACTOR:"); 
scanf(''%P,&sca1e~factor[mcm~addr][nu111ber]); 
if(sca1e-factor[n:cn~-addr][nunlber]<=O.O) 
goto enter; 
up~lim=up~linllscale~factor[n~c~~~~addr][number]; 
low~lim=low~li~~~scale~factor[~oc~~~~addr][~~umbcr]; 
if (up-Iirn~ADCMAX) up-lim=ADCMAX; 
if (low-1imgADCMIN) low-lim=ADCMIN; 
if(up-lim >= 0.0) adcstep=POSSWS; else adcstep=NEGSTEPS; 
ulimit=(unsigncd int) (ADCZERQ + ( (adcstep/ADCMAX)*up-lim) ); 
if (low_lim >= 0.0) adcstep=POSSTEPS; else adcstep=NEGSTEPS; 
Ilimit=(unsigned int) ( ADCZERO + ( (adcstep/ADCMAX)*low-lim) ); 
memcpy(&cmd-buff[5],&ulimi~2); 
memcpy(&cmd-buffl7j,&1Ii1ni t,2); 
send-cmd-to-mcm(); 
delay(1); 
mcm~response=inportb(com~da tagort); 
if(mcm-response!=COMMANDANDINVALID) return(0); 
mcm-response=rec-char(); 



i f(mcm-response ! =COMMAND-ACK) retu rn(0); 
else return(1); 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION REQUESTS THE MCM TO SEND THE VOLTAGES OF ALL THE UNMASKED 
CHANNELS.IF THE MCM RESPONDS, THE DATA IS RECIEVED AND STORED IN DIFFERENT 
MEMORY VARIABLES. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
int send-data-cmd0 - 
{ 

int i,nbytes; 
cmd-bu ffEO]=COMMAND-BEGIN; 
cmd-bufql]=mcm-addr; 
cmd-buffE2]=SEND_DATA_COMMAND; 
cmd-buf~3]=0xOO; 
cmd_bufQ4]=COMMAND_END; 
delay(2); 
send-cmd-to-n~cm(); 
delay(1); 
rncm~response=inportb(com~datagort); 
if(mcm~response!=COMMANDANDINVALID) re turn(0); 
mcnl-response=rec-char(); 
i f(mcm-response ! = COMMAND-ACK) { retu rn(0);) 
else 

for(i=Q;i<32;i++) 

data-lsb=rec-cbarstato; 
data-mb=rec-char-stato; 
mcm-data[i]=(data-n1sbc<8) I da ta-lsb; a <, 

1 
retu rn(1); 
1 

} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS F U N W O N  RECIEVE THE MASK DATA QF THE SELE-D MCM AND DISPLAYS IT ON 
THE MONITOR. 
* * * * * * * * * * * * C * * * * Y * w * * * * * * * + * * * * * * * * * * * * * * * * v $ * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * /  

int get-analog-nlasko 
{ 

int i,nbytes; 
cmd-bufqO]=COMMAND-BEGIN; 
cmd-bufv]=~i~cn~addr; 
and-bufq2]=GETETAMASK-COMMAND; 
cmd_bufq3]=0xO; 
cmdbuff[4]=CGMMAND_END; 
send-cmd-to-mcm(); 
delay(1); 
mcm-response=inportb(conl-da tajort); 
if(n~cpresponse! =COMMAND_INVALID) re tu rn(0); 
mcm-response=rec-char(); 
i f(n1cn1-response ! =COMMAND-ACK) re tu nl(0); 
else 
{ 



THlS FUNCTION IS USED TO TRANSFER THE ANALOG LIMITS TO TME S E L E a D  MCM.IF 
THE 
MCM IS NOT RESPONDING IT FLASHES A MESSAGE ON TIE SCREEN. 
********r**+***+************************************************************* 1 
void downIssd-lin~ts-n~ask() 
{ 

select-mcmgorto; 
if(!(send-handshake-cn1d0)) { 
getcho; 
window(10,25,36,25); 
textbackground(WHITE); 
textcolor(RED); 
clrscro; 
cprintq" MCM %d NOT RESPONDING " ,incln-addr); 
getcho; 
window(10,25,36,25); 
textbackground(MAGENTA); 
textcolor(WH1TE); 
clrscro; 
return;); 
if(!(send-analog-nlasko)) 

cprintf("\nMCM %d not responding",mcnl-addr); 
return; 

* 
1; 
if(l(~e;nd_oanalo$,Ii~~i&~}) 

eprintf("lnMCM %d not responding" ,mcxn-ad*; 
return; 
1; 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS  FUNCTION IS USED'TO PROCESS THE DATA OF SELECTED MCMS.THE UPPER LIMIT, 
LOWER LIMIT AND SCALE FACTORS ARE STORED IN MEMORY VARIABLES AND ARE 
CONVERTED INTO CORRESPONDING 12-BIT DIGITAL VALUE. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
void read-conv-linlits-nlasko 
{ 

for(i=O;ie32;i++) 
{ 
fgets(bu ff,8 1,fp); 
printf("\n%sn ,buff);/** * ** * * / 
sscanf@uff,,"%s %d %f %f %s %f 

%d",str3,&mrsk~bit[i],&upper[i],&lower[i]y&c~tical[i],~cale~factor[~~~c~~~~addr][i],&san~mte[i]); 
scale~fnctor[mcn~~addrl[i]=(scale~f~ctor[mcx~~~~ddr][i]c=OtO)?1.O:sale~factar[n~cn~~add~[i~; 
if (upper[i]> ADCMAX) upper[i ]=ADCMAX; 
if (lower[i]<ADCMIN) lower[i]=ADCMIN; 
if(upper[i] >= 0.0) adcstep=POSSTEPS; else adcstep=NEGSTEPS; 
ulimit=(unsigned int) ((ADCZERO + ( (adcstep/ADCMAX)*upper[i])hcale~factor(mddr][i])); 



if (lower[i] >= 0.0) adcstep=POSSTEPS; else adcstep=NEGSTEPS; 
Ilimi t=(unsigned int) (( ADCZERO + ( (a dcstep1ADCMA.X) *lower[i])/sca leefa ctor[mcm-add r] [ill); 
Ilm[i]=(unsigned int)llimit; 
ulm[i]=(unsigned int)ulimit; 
1 
for(i=O;i<4;i++) 
{ 
arnask_final[i]=Ox00; 
for(j=O;j<&;j++) 
{ 
mask-bit[8 *i+j J<<=j; 
amask-final[i]l=mask-bit[8*i+j]&0xff; 
1 
} 

1 ............................................................................... 
THIS FUNCTION IS USED TO INITIALISE THE RS232 CQMMUNICATION PORT. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
void conlnx-init(int comm) ' 

{ 
biosconx(O,SE?TINGS,co~~~nx-1); I* * Init RS-232 comm. * */ 
/*(c~mnx==;.l CQM1, cornm==2 C O W * /  

THIS FWNCTION THE MCM.CFG DATA FILE AND PROCESSES ON IT.IT CHECKS 
wmeW OF THE MCMS ARE IN USE AND PROCBSES DATA QF THESE MCMS ONLY. 
*************************)+****************************************************/ 
void read-cfg_fileo 
{ 

highivideoo; 
window(1,1,80,25); 
textbackground(MAGENTA); , 

textcolor(WH1TE); 
clrscro; 
lowvideoo; 
if ((fp=fopen("rn~m.cfg~~~r~'))==NULL) 

cprintf("Error opening mcm.cfg file\nn); 
exit(0); 
1 
fgets@uff,8l,fp); /*First line*/ 
fgets(buff,Sl,fp); /*First line*/ 
fgets@uff,8l,fp); /*Second line*/ 
while((fgets@uff,S l,f'p)!=NULL))/*(for 1st h4CM)Third l i ~ ~ e  onwards */ 

sscanf@uff," %s %d %s %s %st' ,strl,&nlcnl-addr,du~x~s,du i~ls,loca t iol,); 
fgets(buff,B 1,fp); /*Fourth 1 ine */ 
sscanf@uff," %s %tin ,str2,mcmnused); 
fgets(buff,8l,fp); /*Fifth line*/ 
fgets@uff,Sl,fp); /*Sixth line*/ 
sscanf@uff," %sW,begin); 
getcho; 
if (strcmp@egin,"BEGINn)!=O) 



cprintf("\nMis~natch in configuration file fovnat\nM); 
fclose(fp); 
exit (0); 
1 
if(strc~np(xncn~used ," NOT-USEDw )==O) 
{ 
for(i=O;i<32;i++) fgcts(buff,$l,fp); 
fgcts(buff,8l,fp); /*Sixty fifth line*/ 
~sca~lf(buff,~'%s",end); 
if (strcmp(end,"ENDn)!=O) 
{ 
cprintf("\nMismatch in configuration file forn1at\nn); 
fclose(fp); 
exit(0); 

1 
continue; 

1 
read-conv-limits-inask0; 
download-limits-111ask0; 
fgets(buff,Bl,fp); /*Sixty fifth lint*/ 
ssca nf@uff,"%sn ,end); 
if (strcmp(end,%N1CS")!=O) 

{ 
cprintf("\lrMis~~~atch in conflgu rat ion file formar\tiW); 
fclose(fp); 
exi t(Q); 

} 
1 
fclose(fp); 
cprintf("\nFinished reading coi~figuratioi~ file"); 

} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION IS USED TO DISPLAY THE MASK INFORMATION SENT TO THE MCM. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * v * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  1 
void display-mask0 

{ 
window(15,13;65,22); . 

textba ckground(BLUE); 
'textcolor(YELL0W); 
clrscro; 
gotoxy(5,l); 
cprintf(" MCM-MASK "); 
for(i=O;i<4;i+t) 

for(j=O;j<8;j++) 

{ 
k=OxOl ; 
k<c=j; 
if(mc111-inask[ipk) 

{ 
mask-bit[8*i+j]=Ox(>l; 
data_mask[8*itj ]= 1; ) 

else 



TKIS FUNCTION IS USED TO DISPLAY THE VOLTAGES OF ALL THE CHANNELS OF THE 
SELECTED MCM. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 

void display-data0 
{ 
if(!(get-analog-mask())) quit-loop(); 
for(i=O;i<4;i++) 
{ 
forG=O;jc8;j++) 
{ 
k=Ox01; 
k<<=j; 
i f(mcm-mas k[i]&k) 
{ 
mask_bit[B*i+j]=Ox01; 
data_luask[8*i+j]= 1; 

else 

mas kmbit[8*S+j ]=QxQB; 

1 
1 
window(15,14;65,22); 
textbackground(GREElV): 
textcolor(YELL0W); 
clrscro; 
g~toxy(15,12); 
cprintf("MCM DATA: "); 
j=O; 
gotoxy(5,j+17); 
for(i=O;i<32;i++) 

{ 
if(mcm-da ta [i]>=2048) 
disp-data[i]=((lnc111-da ta[i]-2048)*5.0/2~8)*(scaIe~factor~1~~~~~~ - addr][i]); 
else 



if(mask_bit[8*i+j]==OxO) 
cgaintf("%d: %T,$*i+j,disp_data[8*i+fl); 
clsie 
cprintf(" %d: MASKED ",li*i+j); 
1 
} 

} 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION DISPLAYS THE STATUS INFORMATION OF THE SELECTED MCM ON THE 
SCREEN. 
*****************************************************************************  1 
void display-status0 

{ 
unsigned char bitchk,i; 
int ii,jj,nbytes,k; 
window(1,13,80,23); 
textbackground(CY AN); 
textcolor(YELL0W); 
clrscro; 

THIS FUNCTION IS USED TO GENERATE A MENU SCREEN. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  / 
void ll~crlu() 



window(l,l,80,25); 
clrscro; 
textbackground(WH1TE); 
window(& 1,8073); 
clrscro; 
textbackground(BLUE); 
textcolor(WH1TE); 
gotoxy(l9 1); 
cprintf(" 10.4M rlllllw Radio Telescope 
textbackground(L1GHT~MAGENTA); 
tcxtcolor(WH1TE); 
got oxy(l,2); - 
qfintf(" Health Monitoring Initialisa tion/Setup 
window(1,3,80,10); 
clrscro; 
textbackground(CYAN+BLINK); 
textcoIor(YELL0W); 
clrscro; 
gotoxy(5,2); 
cprintf(" MCM COMMANDS "); 
gotoxy (534); 
cprintf("0 -> HANDSHAKE COMMAND "); 
icxtcolot(YELLO W t  WHITE); 
goloxy(574); 
cprin t f("0 -> "); 
textcolor(YELL0W); 
textbackground(CYAN+BLINK); 
gotoxy(595); 
cprintf(" 1 -> SEND ANALOG MASK "); 
textcalor(YELLO W+ WHITE); 
gotoxy(5,S); 
cprint f(" l -> "); 
textcolor(YELL0W); 
textbitckgrouad(CYAN +BLINK); 
gotoxy (596); 
cpriatf("2 -> SEND ANALOG LIMITS 'I); 
tcxtcolor(YELLOW+WHITE); 
gotoxy(576); 
cprilltf("2 ->If); 
textcolor(YELL0W); 
texlbackground(CYAN+BLINK); 
gotoxy(577); 
cprintf(("3 -> GET STATUS "); 
textcolor(YELLOW+ WHITE); 
gotoxy(5,7); 
cpri nt f("3 -> "); 
textcolor(YELL0W); 
textbackground(CYANtBL1NK); 
gotoxy (578); 
cprintl'("4 -> GET DATA "1; 
tcxtcolor(YELLOW+WHITE); 
gotoxy (578); 
cprintf("4 ->"); 
tcxtcolor(YELL0W); 



textbackground(CYAN+BLINK); a 

gotoxy(40,2); 
cprintf(" MlSC COMMANDS "); 
gotoxy(40,4); 
cprintf("5 -> INPUT MCM ADDRESS "); 
textcolor(YELLOW+WHITE); 
gotoxy(40,4); 
cprintf("5 ->"); 
textcolor(YELL0W); 
textba ckground(CYAN+BLINK); 
gotoxy (403); 
cprintf("6 -> GET ANALOG MASK *); 
textcolor(YE;b,LOW+ WHITE); 
gotoxy(4Q,5); 
cprintf("6 ->*); 
textcolor(YELL0W); 
textbackground(CYANtE3LINK); 
gotoxy (40,6); 
cpnntf("7 -> INPUT ANALOG LIMITS"); 
textcalot(Y~LOW+WHITE); 
gotoxy (40,6); 
cprintf("7 ->"); 
textcolor(YELL0W); 
textbackground(L"YAN+BLI[NK); 
gotoxy(40,7); 
cprintf("8 -3 CONTINOUS ACQUISInONn); 
textcolor(YELLOW+ WHITE); 
gotoxy(40,7); 
cprintf("8 -rR); 
textcolor(YEU0W); 
textbackground(CYAN+BLINK); 
gotoxy (40,8); 
cprintf("9 -v QUIT FROM PROGRAM "); 
textcolor(YULOW+WHITE); 
gotoxy (408); 
cprintf("9 ->"); 
textcolor(YEU0W); 
textbackground(CYAN+BLINK); 
window(1,11,80,25); 
textbackground(WH1TE); 
clrscro; 
text background(MAGENTA); 
textcolor(WHITF,); 
gotoxy(5,15); 
cprintf(" PRESS KEY TO --> ENTER COMMAND CODE "); 

1 
THXS FUNCTION IS USED TO CONFIGURE THE PORT FOR THE MCM SELECTED. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
void get-nwm-addro 
{ 

window(1,25,80,25); 
textbackground(WHITE); 
clrscro; 



window(25,18,60,23); 
textbackground(RED); 
textcolorfWHITE); 
clrscro; 
gotoxy (292); 
cprintf("Enter MCM address : "); 
scanf(" %d",&mcm-addr); 
gotoxy (294); 
cprintf("New MCM address is %dn ,mcnl-addr); 
select-1nc1nprt0; 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FUNCTION CHOOSES APPROPRIAE FUNmIONS TO BE EXECUTED ACCORDING TO 
THE 
CHOICE ENTERED. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
void exec-cotlmla nd0 
{ 

illt i ;  
while(1) 

xnenuo; 
gotoxy(5,16); 
key=getcbO; 
swi tch(key) 
{ 
case '0': 

if(!(send-ha nds ha ke-cmd 0)) 
{ 
display lo; 
1 
else 

window(17,15,42,19); 
textbackground (GREEN); 
textco1orO;VHITE); 
clrscro; 
gotoxy(5,3); - 
cprintf("MCM %d is alive!",~ncn~-addr); 

getch0; 
1 
break; 

case '1's 

window(l7,12,65,22); 
texlbackgraund(GREEN); 
textcolor(WH1TE); 
clrscro; 
gotoxy(4,l); 
cursor-on(); 
cprintf("Enter nlask pattern : O-->un~uask l-->elask "); 

for(i=O;i<4;i++) 
{ 
amas k-Gnal[i]=OxOO; 

, for(j=O;j<B;j++) 



{ 
exit-loop: gotoxy(lO*i+6j+3); 

cprintf("chna%d:'~8*i+j); 
scanf(" %cl',&da ta-nlasklj]); 

while(toascii(((int)data_mask[j]))!=toascii(((int)'l'))&&toascii(((int)data mask[j]))!=toascii(((int)'O'))) - 
goto exit-loop; 
rnask-bit[8*i+j]=data-n~ask[j]&=Ox0001; 

data-maskljlc<=j; 

else 
{ 
display20; 
1 
cursor-off(); 
break; 

case '2': 
if(!(send-ana log_iimits0)) 

display l o ;  
1 
else 
{ 
display20; 
1 
break; 

case '3': 
if(!(send-sta tus-c~tido)) 

t 
displayl0; 
1 
else 
{ 

display-sta tuso; 
displa y20; 

1 
break; 

case '4': 

display 10; 

1 
elsc; 
{ 
display-datso; 
displa y20; 



1 
break; 

case '5': 
ge t-nlcm-a d d r0; 
break; 

case '6': 
if(! (ge t-a na l ognla s ko)) 

.c 
display 10; 
1 
else 
{ 
displa y-mask(); 
display20; 
1 
break; 

case '7': 
if(!(send-l inli t-erndo)) 
{ 
display l o ;  
1 
else 
{ 
display20; 
1 
brea k ; 

case '8': 
window(5,18,45,20); 
textbackground(MAGENTA); 
textcolsr(WHITE); 
clrscro; 
gotoxy (&I); 
c p r i n t f ( 3 ~ V E  EVERY HOW MANY MINUTES?'); 
aeanf("%dN,&intewal); 
iatcrval*=60; 
if(intervalc600) 
interval=60; 
gotoxy(2,2); - '  

cprintf("DEFAULT 10 MINUTES "); 
nlciu-a d d r= 1 ; 
select-n1cnlqort0; 
if(!(get-ana logmaslQ)) quit-loop(); 

for(i=O;i<4;j+c) 

{ 
for(j=O;jc8;j++) 
{ 
k=Ox01; 
kc<=j; 
if(rncn1-mask[i]& k) 

- { 
rnask_bit1[8*i+j]=Ox01; 
cia ta-mask[S*i+j]=l; 

1 
else 



mask-bit 1 [8*i+jJ=QxOO; 
data-niask[$*i+j]=O; ) 

1 
1 
nlcin3addr=2; 
selcet-n1cnl_part0; 
if(!(get-analognlasko)) quit-loopo; 

for(i=O;i<4;i'++) 

for(i=O;jc8;j++) 
{ 

k=Ox01; 
kc<=j; 
i f(mcm-ma s k [i] &k) 
{ 

mask_bit2[8*i+j ]=Ox01; 
data_nlask[8*i+j J=l ;  

else 
1 

{ 
rnask_bit2[8*i+j]=OxOO; 

data_nlask[8*i+j]=O; 
1 

. }  

tl=time(NULL); 
while(1) 
{ 

mcnl-addr= 1 ; 
select-mcmgort 0; 
acquire(); 
nlcm-a dd r=2; 
select-mcntjart 0; 
acquire(); 
t2= ti me(NULL); 

wri te-to-file(); 
} 
if(kbbit0) keyl=toascii(((int)getch0)); 
if ( key 1 ==toascii(((in t)'9'))) 
break; 
1 

break; 
case '9': 

windotv(l,1,80;25); 
textba ckgmu nd(BLACK); 
textcoior(WH1TE); 

return; 
default: 

break; 



1 > 
1 
void main0 

THIS FUNCTION TURNS THE CURSOR OFF 
***************************************************************************** / 
void cursor-off0 
i 

union REGS rg; 

THIS FUNCTION TURNS THE CURSOR ON 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * e * * * * *  / 
void cursor-on0 
{ 

union REGS rg; 
rg.h.ah = 1; 
rg.x.cx - 0x0507; //the "underline cursor"' 

THIS F U N a Q N  WRITES THE MCMS DATA INTO A FILE 
******************************************************************************* / 
void writs-to-file0 
i 



if(i==k*8) 
fpu togn\n'' ,fp); 
fprintf(fp,"%d: %.3f ",i,disp_data2[i]);) 
fcl ose (fp); 
1 
else 
cprintf("FILERWn>; 
enable(); 

1 
4 



HEADER FILES 

/* ---- .................... SCC REGISTERS --------------------------.. * / 
#define REGO Ox00 
#define REG1 0x01 
#define REG2 0x02 
#define REG3 0x03 
#define REG4 0x04 
#define REGS 0x05 
#define REG6 0x06 
#define REG7 0x07 
#define REG8 0x08 
#defineREW 0x09 
#defiue REG10 OxOA 
#define REG11 OxOB 
#define REG12. OxOC 
#define REG13 OxOD 
#define REG14 OxOE 
#define REG15 OxOF 

#define CTRL-PORT SCC-CHNLA-CTRL 
#define DATA-PORT SCC-CHNLA-DATA 

#define CLK-CONTROL 0x05 /* No External Crystal , 
Rx Clock = RTxC pin, 
Tx Clack = RTxC pin, 
TRxC pin is configured as output, 
TRxC pi11 = Tx clock */ 

#define RESET 0x80 /* Channel A Reset * / 

#define BRGENABLE 0x00 /@ Bisqblc Thc BR scrientarr 
(BRO not uscd 011 SBC r e d )  */ 

#defiine STATION-ADDR STN-ADR /* The Slave address * / 

#define ADDR-SRCH 0x04 I* Address search 111ode enabled */ 



#define VALUER9 0x07 
/* No Reset, 

Vector includes status in bits D3,D2 & Dl,  
MIE disabled , 
Disable h w c r  Chain, 
No Vector mode * / 

#define SW-R9 VAlLuER9 I RESET 
I* Channel reset */ 

#define VALUE;_R1 0x60 
I* Select Receive request on W/REQ pin, 

Select DMA function, 
DMA disabled, 

Rx Interrupts disabled 
Parity is not Special Condition, 
Tx & Ext Interrupts Disabled * / 

#define SET_Rl VALUE-R1 I RX_INTR 
/* Select Rx interrupt mode */ 

#define DMA-ENABLE SET_R110x80 
I* Enable the DMA funtion */ 

#define VALUE-R14 0x02 
/* No DPLL command, 

No Local Loopback, 
No Auto Echo, 
DTR request function, 
BR genera tor source = PCLK, 
BR generator disabled * / 

#define SELR14 VALUE-R14 I BRG-ENABLE 
/* Enable the BRG (as defined ) * / 

#Je fi ne DISABLE-RX OxD8 I ADDR-SRCH 
/* Rx 8 bits/char, 

Auto Enables Off, 
Enter Hunt Mode, 
Rx CRC Enable, 
Rx Disabled */ 

#define ENABLE_RX DISABLE-I3.X 1 Ox01 
/* Enable Rx */ 

#define DISABLE-= 0x6 1 
/* DTR pin = high (inactive), 

Tx 8 bitslchar, 
Do not send Break , 
Tx Disabled, 
SDLC CRC polynonlial used, 



REGS, /* Point to Register 5 * / 
0x60, /* tx 8bitslchar * /  

REG6, /* Point to register 6 * / 
0x30, 

REG7, /* Point to register 7 */ 
0x00, 

RE;@9, /* Point to Register 9 * / 
0x01, /*vector include status */ 

WGlQ,  /* Point to Register 10 */ 
OxQQ, 

REG11, /* Point to Register 11 */ 
0x56, !*mc=txc=brg(baud genera tor output) */ 

REG12, /* Point to register 12 * / 
0x18, /*to generate 1200 baud @ 4 MHz */ 

REG13, /* Point to register 13 * / 
0 x 0 ,  

REG14, /* Point to register 14 * / 
0x03, /* BRG source=sys clock,enable BRG */ 

REGIS, /* Point to register 15 */ 
0x00, /* All ext status interrupts off */ 

}; 
unsigned int 

11 ; 

/*---------------------------------------------------------------------------* / 
#define DIGIT-BASE 0x480 
#define R m - A B C  DIGIT-BASE + Ox06 
#define CTRI,-REG1 DIGIT-BASE + 0x00 
#define LED-PORT 0x410 
/ * ~ ~ n ~ r - n - ~ ~ a ~ ~ ~ - ~ ~ - ~ ~ ~ ~ ~ - m . n ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ - ~ ~ - ~ - ~ - - ~ - - - - - - - - ~ - - - ~ - ~ e - - ~ - - - ~ - - ~  */ 

#define MMCHQaNNEL 32 
Pldeflnle W L X M T  5,Q 
#define MINLIMIT -5.0 
#define OK 0x55 
#define NOTOK Ox AA 



RTS pin = high (inactive), 
Tx CRC Enabled 

#define ENABLE-IX DISABLE-TX I 0x08 
/* Enable Tx */ 

#define ASSERT-RTS ENABLE-= I 0x02 
/* RTS pin = low (active) * / 

#define DEASSERT-RE ENABLE-TX 
/* RTS pin = high (inactive) * / 

#define ASSERT-DTR ENABLE-= I 0x00 
/* DTR = low ( enable the RS-485 line-drivers) */ 

#define DEASSERT-DTR ENABLE-IX 1 0x80 
/* DTR = high ( disable the RS-485 line-drivers)*/ 

unsigned char 
chnl-60; 

unsigned int 
ctrlqort-da ta =OxO; 

unsigned int 
adc_data[64], 
ma x-limi t [64], 
min-limi t [64], 
analogmask[64], 
chnl-sta tus[64]; 

unsigned int 
scan-count=OxO, 

/a points=Oxa; 
unsigned char init-table[] = 
{ 
/ * ------ ---- Section 1 : Modes & Constants ........................ */ 

REG9, /* Point to register 9 */ 
0x40, /* channel reset * I  

REG4, I* Point to Register 4 */ 
0x04, I* 1 stop bit, 110 parity, brg = x l  inode */  

REG2, /* Point to resister 2 * / 
0x20, /* vector = 20h * I  

REG3, I* Point to Register 3 */ 
OxCO, /* rx 8bits/char,no auto enable */ 



MCM CONFIGURATION FILE 
CH NO=Channel number UL=Upper lilnit LL=lower limit C?=Gritical Parameter? 
SR=scanrate SF=scale factor 
MCM-ADDRESS: 01 MCM LOCATION: CABIN 
USED/NOT-USED: NOTUSED 
CH NO. MASK UL LL C? SF SR 
BEGIN 
00 0 3.0 -*4.5 Y 0.0 100 
01 0 2.5 -2.5 N 1.0 10 
02 0 5 0 N 1.0 10 
03 0 2 0 N 1.010 
04 0 f 0 N 1.0 10 
05 0 0 0 N 1.010 
06 0 5 3 N 1.0 10 
07 0 4 0 N 1.010 
08 O 2.3 -3.13 W Z+Q 10 
09 0 2 -1 N 1.8 10 
10 0 1 -2 N 1.0 100 
11 0 0 - 4  N 1.0 10 
12 0 5 -5 N 1.0 10 
13 0 4 0 N 1.0 10 
14 O 3 0 N 1.0 10 
15 O 2 0 N 1.0 10 
16 0 I. 0 Y 1.0 1Q 
17 0 0 0 N 1.010 
18 0 5 0 N 1.0 10 
19 0 4 0 N 1.0 10 
20 0 3 0 N 1.0 100 
21 0 2 0 N 1.010 
22 0 1 0 N 1.0 10 
23 0 0 0 16 1.010 
24 0 5 1 N 1.0 10 
25 0 6 - 6 N  1.0 10 
26 0 7 -7 N 1.0 10 
27 0 8 -8 N 1.010 
28 0 0 0 N 1.010 
29 0 1.0-1.0 N 1.0 10 
30 0 2.5 -2.5 N 1.0 10 
31 0 5.0-5.0 N 1.0 10 
END 
MCM-ADDRESS: 02 MCM LOCATION: RX-ROOM 
USEUjNOT-USED: USED 
CH NO. MASK UL LL C? SF 
BEGIN 
00 0 15.0 -15.0 N 1.0 10 
01 1 2.5 -2.5 N 1.0 10 
02 0 5 0 N 1.0 100 
03 1 2 0 N 1.0 10 
04 0 1 0 N 1.0 10 
05 1 e 0 N 1.010 
06 0 5 3 N 1.0 10 



07 1 4  0 N 1.010 
08 8 3 -3 N 1.0 10 
09 1 2 . 1  N 1.010 
10 0 1 - 2  N 1.0 10 
11 1 0 - 4  N 1.0 10 
12 0 5 -5 N 1.0 10 
13 1 4  0 N 1.010 
14 0 3 0' N 1.0 10 
15 1 2 0 N -1.0 10 
16 0 1 0 Y 1.0 10 
17 1 0 0 N 1.0 10 
18 0 5 0 N 1.0 10 
19 1 4 0 N 1.0 10 
20 0 3 0 N 1.0 10 
21 1 2 0 N 1.0 10 
22 0 1 0  N 1.0 10 
23 1 0  0 N 1.010 
24 0 5 l* N 1.0 10 
25 1 6 - 6 N  1.0 10 
26 0 7 -7 N 1.0 10 
27 1 8 -8 N 1.0 10 
28 0 0 O N 1.010 
29 1 1.Q-1.0 N 1.0 10 
30 0 2.5 -2.5 N 1.0 10 
a1 1 5.0 -5.0 N 1.0 10 

END 
MCM-ADDRESS: 03 MCM LOCATION: TBCC 
USED/NOT USED:NQT USED 
CH NO. MASK UL LL C? SF 
BEGIN 
00 0 5.0 -5.0 N 1.0 lo  
01 1 2.5 -2.5 N 1.0 10 
02 1 5 0 N 1 . 0 1 0  
Q3 1 2 0 N 1.0 10 
04 1 1 0 N 1.0 10 
05 1 O O N  1.0 10 
06 1 5 3 N 1.0 10 
07 1 4 0 N  1.0 10 
08 1 3 - 3  N 1.0 10 
09 1 2 - 1  N 1.0 10 
10 1 1 - 2  N 1.0 10 
11 1 0 - 4 N  1.0 10 \ 

12 1 5 - 5  N 1.0 10 
13 1 4 0 N 1.0 10 
14 1 3 0 N 1.0 10 
15 1 2 O N 1 . 0 1 0  
16 1 1  0 Y 1.0 10 
17 1 O O N 1 . 0 1 0  
18 1 5 0 N 1 . 0 1 0  
19 1 4 0  N 1.0 10 
20 1 3 0 N 1.0 10 
21 1 2 0 N 1.0 10 
22 1 1 0 N 1.0 10 
23 1 O O N 1 . 0 1 0  




