PROJECT REPORT
on

mm-WAVE MIXER CHARACTERISATION
DATA ACQUISITION AND ANALYSIS

Carried out at
RAMAN RESEARCH INSTITUTE
Bangalore

Under the Guidance of
Mr. P.G. Ananthasubramanian
Engineer, R.R.L

by
K. SUDHAKAR

Reg. No. 95063

Submitted to the Regional Engineering College in partial ﬁllﬁ]ment
For the Award of Degree of
MASTER OF COMPUTER APPLICATIONS

Internal Guide
Mr. S.R. Balasundaram,
Lecturer, Dept. of Math. & Comp. Apphcat1ons

Départment of Mathematics & Coniputer Applications,
REGIONAL ENGINEERING COLLEGE
“Thiruchirappalli - 620 015

June - 1998

DEPARTMENT OF MATHEMATICS & COMPUTER APPLICATIONS
REGIONAL ENGINEERING COLLEGE
Thiruchirappalli - 620 015

CERTIFICATE

This is to certify that the project “entitled “mm-WAVE
CHARACTERISATION DATA ACQUISITION & ANALYSIS” is done.
by

K. SUDHAKAR
Class :M.CAA Roll No. : AG 4174
Semester : VI Reg No. : 95063
in partial fulfilment of requirements for the award of Master of Computer
Applications degree from Regional Engineering College - Thiruchirappalli,
during the academic year 1995-98. The project work was carried out at
RAMAN RESEARCH INSTITUTE, Bangalore.

%W&a é“‘@’

Project Co-ordinator Head of the Department
Dr. A.V. Reddy, Dr. A.K. Banerjee,

Asst. Professor, Dept. of Math. & Comp. Appns, Dept. of Math. & Comp. Appns.
R.E.C., Thiruchirappalli. R.E.C., Thiruchirappalli.

Internal Examiner External Examiner

Mr. S.R. Balasundaram,
Lecturer, Dept. of Math. & Comp. Appns
R.E.C., Thiruchirappalli.

RAMAN RESEARCH INSTITUTE

C.V. Raman Avenue, Sadashivanagar, Bangalore — 560 080 India

26 June 1998
CERTIFICATE

This is to certify that the project work entitled “mm-WAVE MIXER
CHARACTERISATION - DATA ACQUISITION & ANALYSIS” was
carried 6ut by K. Sudhakar in Radio Astronomy Laboratory of the Raman
Research Institute - Bangalore, during January’98 to June’98 under my
guidance for the partial fulfilment of the requirement for the 'award of Master
of Computer Applications of the Regional Engineering College,
Thiruchirappalli. o

P.G. ANANTHASUBRAMANIAN

Engineer, Raman Research Institute,
Bangalore.

Phone : (80) 334 0122 Fax : {80) 334 0492 Telegrams : RAMANINST e-mail : root@rri.ernet.in

ACKNOWLEDGEMENTS

I thank Dr. D.K. Ravindra, Head, Radio Astronomy Lab in Raman
Research Institute for providing us the facilities to carry out this project
work successfully.

I thank the project guide Mr. P.G. Ananthasubramanian, Engineer, Radio
Astronomy Lab, R.R.I, for guiding in all phases of the project.

I thank our Head of the Dept. Dr. A.K. Banerjee, who has heiped in
getting the project in institutions like R.R.I. and the internal guide
Mr. S.R. Balasundaram, Lecturer, Dept.of Math & Comp. Appns., RECT.,
who has given the correct direction in doing the project successfully from the
beginning.

I thank Mr. K.B. Raghavendra Rao, R.R.I. who helped in various
activities for the development of the project. I thank Mr. B.S. Girish,
R.R.I. who helped in the soﬁware design. I also thank Mr. H. Nagaraj,‘

R.R.I. who helped in the PCB development required inthe project.

K. SUDHAKAR.

CONTENTS

Chapter 1 : INTRODUCTION
Chapter 2 : ANALYSIS
2.1 Device setup & Function
2.2 Measurement process
2.3 Data acquisition system - Requirements

Chapter 3 : DESIGN

3.1 Hardware construction
3.2 Software

Chapter 4 : EVOLUTION
Code

Chapter 5 : CONCLUSION

Chapter 6 : BIBLIOGRAPHY

Page No.

18

18
27

37
56

72

73

Chapter 1. INTRODUCTION 1

Chapter 1 INTRODUCTION

Radio Astronomy is the source of study of Astronomical objects and
interstellar medium, in the radio frequency range of the Electromagnetic
spectrum. .

Raman Research Institute has a 10.4 m diameter mm-wave Telescope in
the campus. The Front-end is a cryogenic receiver working in the 75-115
GHz. band. A cryogenic mixer is the first element in this receiver, used to
down convert the RF (Radio freq.) to IF (Intermediate freq.) frequency of
1.4 GHz.

Mixer :

The ‘mixer’ is the critical component in RF systems. A mixer converts
'RF power at one frequency into power at another frequency to make signal
processing easier and less expensive. The more fundamental reason for
frequency up conversion, is to allow for the practical transmission of audio
and other low-frequency information through free space. Since a mixer
converts signal from one frequency to another, it is sometimes called a
‘frequency converter’ but the term frequency converter usually implies a
mixer/ amplifier or mixer/oscillator combination. The term mixer more
closely describes the mechanism through which frequency conversion occurs.

Since the mixer is usually the first or second device from the RF input, the
performance of the mixer is crucial to the overall performance of the system.
This Switched Mixer Test System is being used for characterising the W-
band millimetre wave (mmw) mixer. The characterisation consists of the DC
analysis and RF analysis which include the noise temperature and conversion
loss measurements. These are performed to optimise the important mixer
parameters such as dynamic range, conversion loss, bandwidth, noise
figure, voltage standing wave ratio ... etc.

Data Acquisition system :

Data acquisition systems are real-time systems that are basically
developed through systems programming and applied with some interfacing

Chapter 1. INTRODUCTION 2

hardware. It enables the computer to have access with any real world
devices.

This Data acquisition system is designed for the Switched Mixer Test
System which is a RF - measurement system. All the measurements have
been done manually so far in the existing system. By this Automation of Data
acquisition the measurements are made and controlled through a personal
computer.

It will perform the following tasks :

0 Control and set some parameters in SMTS

0 Acquiring required analog signals from SMTS to PC
0 Calculating derived measurements from data

0 Storing the data in format

The block diagram of this Data acquisition system is shown in the figure.
The automation is incorporated as much as possible. This project includes
the construction of interfacing hardware and the software for the data
acquisition.

1.1 The Switched Mixer Test System :

The SMTS is a system, contains radio-frequency devices, components and
DC amplifiers inside. This is used for characterising the mixers.
Characterising the mixer has two parts. One is the DC part where from the I-
V data one can derive the series resistance of the diode as well as the ideality
factor. Ideality factor determines the closeness of the diode to an exponential
I-V profile. i.e.) how closeitisto 1.

By providing two different input levels to the mixer and making power/
detected measurements at the IF output the conversion loss and the Noise
figure or Noise temperature of the mixer can be determined. A SMTS is
already developed to measure the output of the mixer Noise temperature.

In this project the effort put in is to acquire the data through a PC with an
appropriate Interface module and analyse the data to determine these

characteristics of the mixer.

Chapter I INTRODUCTION

Analog

Switched Mixer
Test System

DEVICE

1/p signals

>

INTERFACE
Block

INTERFACE

Analog signals

Digital signals

ADD ON card

PC

(SOFTWARE)

Fig. : Data acquisition system level-1 Block diagram

Chapter 1. INTRODUCTION 4

1.2 Interfacing hardware :

The data acquisition system primarily incorporates the three major
modules Analog/Digital converter, Digital/Analog converter and Digital
Input/Output buffers.

1 Analog-to-Digital converter [ADC]:

For the real world devices the analog data is acquired in digital form for
the following destinations. Storage, Processing, Transmission, Display.
Digital data may be stored imn either raw or processed form; it may be
retained for short, medium, or long periods. It may be transmitted over long
distances (for example to or from outer space) or short distances (from one
part to another of a micro processor-based instrument).

Processing can run from simple comparisons to complicated mathematical
manipulations. One might use it for such purposes as collecting information,
converting data to a useful form, using the data for controlling a physical
process, performing repeated calculations to extract signals dispersed in
noise, generating information for displays, simplifying many of the manually
operated jobs. It all starts with getting the data in digital form, as rapidly, as
frequently, as accurately, as completely and as cheaply as necessary.

The basic instrumentality for accomplishing this is the analog-to-digital
converter (ADC). To accommodate the input voltage to the specified
‘conversion relationship, some form of scaling and offsetting (signal
conditioning) may be necessary, performed with an amplifier/ attenuator. To
~ convert analog information from more than one source, either additional
converters or a multiplexer may be necessary. To increase the rate at which
information may be accurately converted, a sample-hold or software polled
operations may be desirable. To compress an extra-wide analog dynamic
range, a logarithmic amplifier or conversion relationship may be found useful.

- Key factors :-

Apart from the environmental factors, the choice of configuration and
circuit building blocks in data acquisition depends on a number of critical
considerations, among them .

e Resolution and accuracy
e Number of analog channels to be monitored

Chapter 1. INTRODUCTION 3

Sampling rate per channel

Throughput rate

Signal-conditioning requirements
Intended disposition of converted data
The cost function.

Measurement :-

The ADC will have fixed number of output lines for measuring the input
voltages. The transfer function for the a/d conversion is as follows.

—> by
- »by
Vi—> ad ——>bs nbits o/p

—

by

Vi= Vg X% (b;/2) + Vogr

where Vfs is the reference voltage or the full scale range,
Voff is the offset-voltage of the input voltage range
and b1,b2,... bn are the corresponding output bits.

The least input voltage will produce the output as all bits 000...0 and the full
scale voltage will produce the output of all high as 111..1. Each bit
incrementation corresponds to the input voltage incrementation by the
resolution amount.

II. Digital-to-Analog converter [DAC]:

After analog data have been converted to digital form and have been duly
stored, transmitted, or processed, the results to this, with some digital
numbers may be required once again to intervene in the real world of
phenomena. In analog or digital form, they may be used to drive meters or
motors, display information, simulate devices under test, generate heat, light
or sound, modulate wave forms, sound the alarm, adjust an audio gain, ... etc.

Chapter 1. INTRODUCTION 6

While an increasing number of real-world devices, such as numerical
displays, stepping motors, printers and the like, are operated more or less
directly by digital numbers. As with a/d conversion, the basic objective of
d/a converter (DAC) is to get the data into the analog form, as rapidly, as
accurately, as completely, as necessary.

In response to a digital code, the DAC may be used either to provide a
voltage or current output (fixed-reference DAC), or to adjust the gain of an
analog circuit (multiplying DAC). It can be a simple device on an IC chip,
or a high-resolution, high-speed device.

To accommodate the analog output to the specified conversion
relationship, some form of scaling and offsetting (signal conditioning) and
energy translation (e.g., current-to-voltage) may be necessary, performed
with amplifiers. To send analog information to more than one destination,
either additional converters or a multiplexer and sample-holds may be
necessary.

Measurements :-

by — —»
by ———»

bsy——* da — >V, .

by ——»

The transfer function for the d/a converter is as follows.

Vo= Vg X% (bi/2)) + Vogr ‘

Voff is the offset-voltage of the output voltage range and Vfs is the
reference quantity. i.e.) a scalar multiple of the actual input reference voltage.
There are 2" discrete voltage levels possible in the mput.
All 1’s output voltage is given by vi1 = Vi (1- 1/27)
The bipolar voltage transfer function is given by,

V,=- Vs +2 Vg X (by/2") + Ve

Chapter 1. INTRODUCTION 7

I Digital Input/Output [DIO] :

In many situations, where TTL signals of HIGH and LOW are used, the

Digital input/output module is required. It’s applications include selecting
one of the many multiplexed channels, making high/low of particular TTL line
in a circuit, addressing, enabling on/off of a switch ... etc. All these kind of
applications are used in large scale analog-to-digital and digital-to-analog set-
ups.
Normally several ports of digital signals are required for both input/ output
operations in a system. These buffers provide lot of flexibility to the users, so
that any ports can be selected for input operation and/or any ports can be
selected for output operations. With these, the computer can directly access,
set/reset the TTL lines in any real world devices.

Chapter 2 ANALYSIS 8

Chapter 2 ANALYSIS

2.1 Device set-up & Function:

The primary objective of this system is to characterise the W-band
millimeter wave mixer. The architecture of the device (mixer test system)
under test is depicted in the diagram. There are three local oscillators
(LO;,LO,,L03) being used to generate the LO signals, at standard
frequencies viz. 114 GHz, 92.4 GHz, and 83.4 GHz respectively. At a time,
through a wave guide switch, one of the three local oscillators is selected.
Wave guides are used here to pass the RF signals. An attenuator is used to
control the power output of the oscillator. A pre-calibrated ‘directional-
coupler’ is used to monitor the power input to the mixer.

The “directional-filter’ adjacent to it is tuned to the given oscillator and
the signal is then fed to the mixer input. The IF output of the mixer is
connected to SMTS, through a co-axial cable, to measure the dc
characteristics and the noise performance of the specimen mixer.

2.2 Measurement process :

In characterising the mixer,
(i) the DC characteristics and
(ii) the RF analysis are performed.

The parameters to be measured in the system are,

1. Bias voltage (Vimon)

2. Current monitor (I yon)

3. Temperatures of the mixer T, corresponding to the noise source
4. RF signal power. ‘

There are many other parameters calculated from the measured values.
They are R, VSWR, Lm, La, Tm, Ta, Td.

Chapter 2 ANALYSIS

Local
oscillator 1
=114 GHz.

Local
oscillator_2

£=92.4 GHz.

Local
oscillator_3

Y

RF
switch

=83.4 GHz.

9

RS
Noise w-band . }
source horn Wave-guide
Termination |
|
Direction :
Filter !
|
i
|
i
Variable - — !
Attenuator g Direction |
Coupler I
|
|
Thermister MIXER |
|
{
/ Bias V'
1 j “..\ :
! DGy, L
: A Y, ‘ I
| Fo, |
Temp., Vo
Y |[
SMTS i
I
Power :
meter |
|

ONITOR
[MONITOR] ™M] !
{
|
I

Fig. :

Device Under Test - The Mixer Test System

Chapter 2 ANALYSIS 10

The following mechanical, electrical, electro-mechanical control operations
are made on the device during the measurement.
(i) selecting a local oscillator (electronic & mechanical)
(i) adjusting the attenuator (mechanical)
(iii) To set the required power in the power meter
(iv) setting the noise switch On/Off (electronic)
(v) putting the noise source in hot/cold (mechanical)
(vi) setting the Bias voltage through potentiometer (mechanical)
' (vii) setting current monitoring range in 0.1mA and 10.mA (mechanical)

Among these controls, setting the 2-state On/Off switches is simpler and
can be made with the relay mechanism. Setting many analog signals through
the potentiometer is an electronic operation, which in turn increases or
decreases the signal connected at one end, from a maximum value to 0. This
effect can be accomplished by providing equivalent voltage to the required
point with the use of digital-to-analog converter (DAC). Appropriate scaling
& signal conditioning mechanisms are necessary at those places, to provide
safer precise values. Some of the controls, which are purely mechanical and
needs variant adjustment levels are little bit difficult to automate. The
attenuator control is one such kind and can be made automatic with the use
of precise stepper-motors or dc motors. '

I. DC characteristics =

This measurement is performed to find the DC characteristics of the diode
(mixer). This is done before starting the RF analysis. A typical V-I
relationship for the diode is found by first setting the 1 _monitor current to
some standard levels such as, 1 pA, 10 pA, 50 A, 0.1 mA ... etc. During
this setting, the current monitoring range switch is to be selected to either of
the 0.1 mA or 10 mA Ranges. When each of the required bias current has
been set through the potentiometer, the Ipon, Vmon are noted down. The
noise switch is made Off and the temperature is measured as Tempjr and the
switch is made On to get the temperature Tempir (temperature_reflected).
Actually when the noise switch is made On, +28 volts is applied and the
energy loss of RF signal sent is calculated from the signal reflected from the
source.

Chapter 2 ANALYSIS 11

II. RF analysis :

Here the bias voltage V is set to particular level and the required power P
is set through attenuator as read on the power meter accordingly. The
current L, is measured in the SMTS. Then the temperatures corresponding
to noise-switch position Off, On are measured as Tror and TReflected. Then
the noise absorber is dipped in liquid nitrogen and placed before the horn
connected to the directional filter. This temperature is measured as TcooL.
From these measured values, the derived measures, such as R, VSWR, La,
Lm, Ta, Tm are calculated. For each power set P, different bias voltages are
set and the current and temperatures are measured. This is continued for
other sets of power. This process is repeated for other LO frequencies also.

calculated

Freuency =114 GH=z. « measured values — |values >

Vi I; -
Pl IZ - - - -
Iz - - - -
V T, i - - i
I,
Iz - - - -
P, Vi I ; -] -
V, ’

This is repeated for other LO frequencies at 92.4 GHz. and 83.4 GHz.

Chapter 2 ANALYSIS | 12

Along with these measurements, the following details are also noted down
for each measurements.

- Diode identification

- Mixer identification

- Whisker length before bending
- Whisker bent height

- Whisker post or pin protrusion
- Plate temperature

- Ambient temperature and

- Lig. N, temperature.

In these measurements, even though there are different parameters, they
are basically exist in the form of voltages. Multi-channel analog-to-digital
converters (ADC) can be used to acquire these signals. For setting the bias
voltage to the mixer, the digital-to-analog converter (DAC) is to be used.
The voltage range of each of the parameter to be measured is important mn
the designing of the circuitry for the data acquisition system.

So the data to be acquired with required resolution are listed below.

Voltage V:
1. DC characteristics | -100 mV to -1150 mV 1 mV
2. RF analysis 05V to -1.0V 5mV
Current I:
1. DC characteristics | 1pA to 5 mA 1 mV
2.'RF analysis 0.6 mA to 2.5 mA 1 mV
Power P: 0.04 to 1.0 mW better than 0.01 mW
Temperature T : 1K to 2000 K 1K

Chapter 2 ANALYSIS 13

The measurement system has been analysed. The block diagram and the
Data acquisition system’s requirements are as follows :

2.3 Data Acquisition system - Requirements :

The system has to perform the following measurement : |
Bias voltage V ,

Bias current I with control over current setting

Power P
Temperatures Tig, Tigr, Tn, Tr, Tc with noise switch setting

The system has to control the following :

¢ Bias current setting
+ Noise switch setting

The system also has to provide the following derived measurements :

0 VSWR - voltage standing wave ratio

¢ Lm - mixer conversion loss
¢ Tm - mixer noise temperature

.. etc.

The system has to display the signal values while setting / and measuring
data. It has to make the statistical analysis every time it acquires the data.
The creation of data files for the specific measurements and storing the data
in the formatted way are also to be managed by the system.

"

weaeip yoopd geasT : 814

UOLMS TOTUOD)
A seig Sumes

Buruorpue)
sTeudis

R T SR P

XOWHd [« XN

N [OIUOD TUOTeSISS [9TULYD)

Chapter 2 ANALYSIS 15

We will make the following strategic assumptions :

A single-board computer (SBC) with a 386/ 486 class processor will be
used.

A set of signal converter hardware interfacing circuits will be used for
measuring the analog signals with the computer which are accessible via
memory mapped 1/O.

The date is supplied by and on-board clock, accessible via memory-
mapped 1/O.

The signal controlling such as bias current setting will be managed by
digital-to-analog modules of the interfacing hardware by the PC.

The On/ Off switch setting of the noise switch will be controlled by relay
mechanism.

User information and interface is provided through the keyboard.

The display is the CRT display and set of LED displays for indicating
signal path propagation.

The following is the process diagram that illustrates the hardware platform
on which the data acquisition software will be executed.

Programming Language - Borland C++ ¢ C

- Software configuration :

Vv

Operating system - DOS 6.2

Processor - 486

Chapter 2 ANALYSIS

16

Key board

Analog-to-digital
converter

CRT display

Single-board

computer

P

Mixer Test
System

Relay
mechanism

Digital-to-analog

converter

Mixer

Fig. : Hardware Platform

Digital
Input/ Output

Chapter 2 ANALYSIS 17

The measurement system will be either in ‘Local’ mode or “Auto’ mode.
The data acquisition will be performed only if the system is in the auto mode
and the system will display message if the mode is in local. So the initial
part of the software will check this mode connection. This module will also
set the required default values to hardware devices. The specification of this
class ‘initialise’ is as follows.

Name:
Initialise
Responsibilities : :
Check the on-line connection between the measuring system and the on-
board computer via the interface circuits. Set the default values into the
hardware devices.
Operations :
Connectivity
Initialise
Attributes : v
dac-input, adc-output, dio-input.

The class ‘acquire’ will serve the basic acquisition of analog signals
from the mixer test system. The same is used for acquiring all signals such as
voltage, current, power and temperatures.

Name :
acquire
Responsibilities :
Acquisition of all analog signals from the mixer test system and performing
the analysis part.
Operations :
dc_measure
rf_measure
data_file
Attributes :
adc_output, dio_input, dac_input

The operation dc_measure is used to perform the DC characteristics
portion of the measurement as explained in the topic 2.2. The operation
rf measure will perform the RF analysis portion of the measurement. The
operation data_file is used to manipulate the various Data files where all the
acquired and processed data are stored. '

Chapter 3 DESIGN 18

Chapter 3 DESIGN

3.1 Hardware construction :

About Interfacing Circuit :

To set the bias voltage of mixer, the noise switch and to perform the data
acquisition for a mixer to be characterised, the ‘ALS-PC-02 Add on card’ is
appropriate. This Add on card contains the A/D converter, D/A converter
and Digital Input/Output buffer. The features of this ALS-PC-02 Add on card
are as follows.

(i) A/D Converter (Using AD 574 A4) :

¢ Itisa12-bit ADC.

¢ Jumper selectable 8 differential or 16 single ended input channels.

¢ Jumper selectable unipolar / bipolar analog mput range
(0 to +10v, +5v, £10v). |

¢ Three programmable onboard timers available (using IC 8253).
These timers can be used for acquisition sequence control/ timing, external
synchronisation, interruption mode.

¢ Provision to connect TTL compatible external trigger source for
acquisition sequence.

¢ Provision to perform data acquisition in DMA mode using the system
DMA channel 1. ‘ '

(ii) D/A Converter (Using DAC 1220) :

¢ Tt has two 12-bits programmable D/A converters using DAC 1220 IC.
¢ Jumper selectable unipolar / bipolar analog output ranges

(0to £10v, £10v).
¢ TFast settling time of less than 3 u secs.

Chapter 3 DESIGN 19
(iii) Digital Input / Output (Using 8255 IC’’s) :

¢ Contains 48 programmable digital I/O lines, using two 8255’s.

¢ The 1/O lines are terminated in two 26 pin headers for extending them
conveniently.

+ Provision to connect one bit of each 8255 to the system interrupt lines
IRQ2-IRQY7.

Measurement resolution :

The measurement resolution is calculated as follows.

Resolution = signal voltage (full-scale) range / No. Of input lines

O0to10v 10 v/ 212 =244 mV

A/D converter 12 bits o/p
+ 5v 10 v/ 22 = 2.44 mV
+10v 20 v/ 22 =588 mV
0to10v 10v/ 2?2 =244 mV

D/A converter 12 bits i/p
+10v 20 v/ 22=5.88 mV

The ‘resolution’ value defines the least voltage that can be measured /
adjusted for the converter in the particular voltage range.

Chapter 3 DESIGN | 20

The signal equivalent voltages & resolution required for each parameter are,

1. Voltage V Oto-12v Oto-12v
DC—-600 to -1150mV 1 mV
RF—-5000 to -1000mV <5mV
2. Current I 1 pA to SmA 0to-5v 1mV
(In the full scales of
0.1mA & 10mA)
3.Power P | 0.0l mW to 1.0 mW 0 to 1 volts | better than
10 mV
4 Temperatures
DC: Ty 50°to 500° K 0to05v
Tiw 73° to 2000° K 0to2.0v
' 1 mV
RF: Ty 150°to 450°K 0to0.5v
T: 150°to 880° K Oto1.0v
Te 100°to 450°K 0to05v

Since the signals to be measurements are exist in both +ve and -ve
voltages, we select the bipolar +5 volts input range in the A/D converter. In
the D/A we select the unipolar 0 to +10 v output range which has better
resolution.

Signal conditioning :

To achieve the required resolution for each of the parameters, we first
select the smaller full scale voltage range +5v in the ADC. The conversion
techniques can be employed which expands the signal voltage range to cover

Chapter 3 DESIGN 21

the entire A/D voltage range. This ‘Signal Conditioning” process can be
achieved through the application of ‘operational amplifiers’.

0 Operational Amplifiers :
(a) Inverting follower :-

Here the input voltage is applied at the inverting-input terminal of the
Op-Amp. '

Vi - Vo=-Rs/Ry)V;

The gain of this Op-amp is given by Ay;=-R¢/R;
(b) Non-inverting follower :-

Here the input voltage is applied to the non-inverting input terminal of the
Op-amp.

VO = Vi [1+(Rf/ Rl)]

-

then fed to the ADC input, the resolution gets unproved The multllll}er
value of the Op-amp for each pa:rameter 1S calculated as follows

NE R R B

Signal full-scale value x M = ADC full-scale Value

f M = (ADCys / Signalgs value)

Chapter 3 DESIGN ' 22

It is to be observed that, the output of the ADC is to be divided by the equal
multiplier-amount to get actual values.

Vo xM ADC +M >V, (actual value)

| ... Software ... '
Let we consider the gain required for each measurements, for the ADCt5v
bipolar range mode.

1. Current I

The input voltage full scale range is 0 to -5 volts. It requires both
multiplication and addition to cover the entire + 5 v ADC range. The
multiplier value is 2 and the addition is of +5 volts. So the gain of the Op-
amp is 2Vi+5volts. :

\'A ADC;,=2V;+ 5
-5v -5v
Ov +5v

“ The reverse operation to be done at the ADC output is [ADCou-5] / 2

ADCou Vi=(ADCuy-5)/2

-5v -5v
+5v Ov
2. Voltage V :

The input voltage range is 0 to -1.25 volts. It also requires multiplication
and addition operations in the Op-amp. The gain is to be set for 8V;+5 volts.

Vi ADCi;=8V;+5
-125v -5v
0 +5v

The reverse operation required at the ADC output is [ADC,y-51/ 8

Chapter 3 DESIGN 23

ADCoy Vo=(ADCoy-5)/8

-5v -1.25v
+5v Ov
3. Power P :

The input voltage range is 0 to 1 volts. The resolution required is better
than 0.01 volts. i.e.) atleast 0.005 volts. So the 2.44 mV resolution of the +
volt range ADC is enough for power measurements. S0 the gain 1 (unity
gain) Op-amp can be applied for this measurement.

ADC;,=V;x 1
Tt requires no reverse function since the gain used is unity.

4. Temperatures :

The input voltage for the current and voltage parameters are n -ve range,
so when the multiplier is used, it also requires addition of some voltages. All
the temperature signals Tig, Tis, Tn, Tr, To are exist is positive voltages only.
So only appropriate multiplication is required for the conversion. All the
temperature signals require 1 mV resolution.

The multiplier value for different temperatures are as follows.

1. DC characteristics :-

(i) Tir : The signal input voltage range is 0 to 0.5 volts. So the converted
values to be with in + 5 volts. The appropriate multiplier value is
10. ADCyp=10 x V;

(i) Tiz: The signal input voltage range is 0 to 2.0 volts. Multiplier value is
5. ADC,=5 x V;.

II. RF analysis :

(i) Ty : The signal input voltage range is 0 to 0.5 volts. Multiplier value
is 10. ADCy=10 x V5.

(i) T; : Signal input voltage range is 0 to 1 volts. Multiplier value is 5.
ADCin=5 X Vi . '

(iii) T : Signal input voltage range is 0 to 0.5 volts. Multiplier value is 10.
ADC;=10 x Vj.

Chapter 3 DESIGN - ‘ 24

Gain for DAC output : |

The DAC output is to be used to set the bias current. In the manual bias
current setting, a potentiometer is used to give bias voltage in between 0 to -
1.5 volts. Since the DAC is set in unipolar 0 to +10 v range, this output has
to be converted to the range of 0 to -1.5 v. So the division of the DAC

output by 6 with sign inversion [V,=—(Vi/6)] will do that.

DACut Bias Vi, = «(DACy1 / 6)
Ov Ov
10v -16 v

So the final Signal-conditioning methods are listed as follows.

1. Current Ipen 0to-5.0v 0to-5.0v Vi =2Vi+5 | Vo =(V,—=5)2
2. Voltage Vipon | Oto-12v Oto-12v Vi =8Vi#5 | Vy=(V,—5)/8
3. Power P 00l1to1.0mW | Otolv Vi=1V; -
4 Temperatures
DC charact. :
@) Ty 50to 500K 0to0S5v Vi=10V; | V,=V,/10
(1) Tig 70 to 2000 K 0to2.0v Vi=5V; | V=V,/5
RF analysis : '
(1ii) Ty 150 to 450 K 0to05v V;=10V; | V,=V,/10
@) T; 150 to 880 K 0tol1.0v Vi=5V; | Vu=V,/5
v) T, 100 to 450 K 0to0S5v V;=10V; | V,=V,/10

Chapter 3 DESIGN 25

If the gain blocks are selectable, then we can use any particular gain block to
any other input signals. It enables the mput signals to pass through any
wanted gain blocks. This method can be achieved by the analog multiplexer-
demultiplexer combination.

The total gain blocks needed are,

Gain x2+5

Gain x8+5

Gain x1

Gain x4

Gam x5

Gain x10 & .

Gain 1/6 for DAC output conditioning.

® Analog Multiplexer/ Demultiplexer :

To connect different gain blocks to the multi input signal channels and to
make the gain blocks selectable by any other mput channels, the analog
multiplexer-demultiplexer combination can be designed. This set up will give
many to many relation as shown in below.

address adﬁress
2
» Xy common — - V1
Inputs Xp > IN/OUT >y, Outputs
Mux Demux
X,
n S — Yn

Analog multiplexer/ demultiplexer IC MC 1405 1B :-

This IC has 8 Input/ Output channels and three digital control inputs. The
three binary signals select 1 of 8 channels to be ON and connect one of the 8
inputs to the output in the case of MUX. When these devices are used as
demultiplexers, the ‘channel IN/OUT’ terminals are the outputs and the
‘common IN/OUT” terminals are the inputs.

The block diagram of these hardware set up is shown in the figure.

: LINOYD AOVAAAINI PHD U0 QY Od 0 SIS - wesderp Jooyd : a9

)
Q
< > YOIIMS
& - = 3ST0N
40 > % [03T00
jzisidl
(SLINS
o1)
Boemy ?H.WN 3
-0~ S 8
=8I > > oL)
‘, £ D)
i “ ‘V > m
i « 1 < N < AQ)
) .
sdn e < 14 A 0050
| © € XOWED | XKW «
< > ¢ 1, smjeradwa],
~0]- 0 = z P sindug
Boreny | B 4 d Temod Sofeny
§ h 1 <
; 1] JueLin’
: - _ (SIS
m 9 .. - RN 0 T 0 INGEETON worg)
| §1NdLOO Ao b & $10dNI
; PUD A GT- A ST+ pun A TI- A G+ PUD AT~ A G+
: up
A 0050 o -
e | A ST~ o
A 000" B- e P— &~ puD o
: AOI+ f 0 EERA PUD &
i fie . AG+ o
: A ST+ o— ’
/ preoq A1ddns romod

pup ACT- ASTH woiy

Chapter 3 DESIGN 27

3.2 Software :

Architectural Framework :

The architecture encompasses the pattern of well defined classes and the
synchronisation of various operations inside each of the classes. The Class
diagram and the State Transition diagram that express this architecture for the
data acquisition system are shown in the figure.

The class ‘Initialise’ will be executed first prior to the start of
measurements. The declaration for that will be as follows.

Class Initialise {
public :

connectivity();
Initialise();

.

Initialise::connectivity {
outport(DAC_port_id, 0);
outport(ADC_channel_mode,channelQ);
value1=inport(ADC_port_id);
outport(DAC_port_id,5000);
outport(ADC_channel_mode,channel0);
value2=inport(ADC_port_id);
if ((value1>10) && (abs(value2)<1000))

strcpy(mode,‘Local’)
else strcpy(mode,‘Auto’);

}

Initialise::Initialise {
outport(DAC_port_id,0x000);
outport(DIO_port_id,0x00);
struct date d;
getdate(&d);
strcat(dcfile,year);
strcat(rffile,year);
today = d;

Class diagram 28
-_— / g o ~ ~
-7 T T N
/ Windowset . |
B heading() /
’ setting() J
. normal() b
AN - N7 -7
N -
P, Display selection
T \/ > ~
I aye]. \
Initialise() e
connectivity() N
- I~ -
N -
— T N N
s T . X N
/ Acquires
W offset_gain() /
P dc_measure() 7
N
\ rf_measure() \
N datafiles() !
~ _ ;e
\ 4 <

Fig : Class diagram

ﬁ Sumos 4 j Burpes

ﬁ O1IMS 9STON ;A ﬁ oe)[0A SBI
195 23u)0A SeIg]

1os spumeyy | TMEADVA sulpy

AAO/NO M8 oSTON

Vﬁ Gumes ouney) g

(snseowr J1::sexnnboy
/SIsATeue I 11818

maﬁ_@m Eﬁaao

m%ﬁ.ﬂ nonismboy

S

2 weiderp uonisuel], oels - 8L
ﬁ \o eyep ﬁ Sumes
=i ;4 ﬁ Jo =o:~m5woc 50IN0S 3STON LA
A 108 a3E)j0A JO PUH 198 S0INOS 8S10 Z 108 TOIIMS ISTON]
$10s 088)[OR LOH/TO0D
0 puo JON Ul 90IN0S 9STOU 90B[J
19§ JUSIING
o j
$}9S JUDLIND JO PU2 JON
(A1) J ﬁ Sues) Jumes
jo womisinboy | 01IMS SSTON < a3eyjon serg *
&, -) r H \

108 S[PUUET)

195 YO)IMS OSTON JISLIND POToRY

AA0/NO 48 SSION onjea DV S0PV

ﬁ spow [2507]

P

(Qomseow op::sexmnboy
/SOTSTIOORIBYO (] MEIS

.Oimwdumhc“ :sonmboy
jured speiddn

J

ﬁ opot oy

Ar

§5000N8
UOTJEOIUNTIWIOO ABM OM],

J

opow-0jne JOJ AJIATOSUU0D JSY

[oy u

omjIey Tonoouuo) |

1Pl p

TOTINOSXS 18IS

: mRJASRI(] UOnISuRI], ¥IS

Chapter 3 DESIGN 30

Here to access the hardware circuits and to make control over them, the
basic library functions INPORT and OUTPORT are being used. The function
inport() reads a word from the mentioned hardware port_id connected to the
PC. Another function inportb() does the same, but reads a byte from the
port. The function outport() writes a word into the hardware register
indicated by the port_id. The function outportb() does the same, but writes a
byte to the port.

Only the basic declaration for these function are given here. The operation
of these functions need several other allied communication functions and
settings prior to the start of data acquisition through ADC, which are
explained in detail in the next chapter. ‘

The class “Windowset” contains all the operations to handle the screen
displays for the data acquisition. The declaration for this class is as follows.

Class windowset {
public :

void heading(); ‘
void setting(int |, int t, int r, int b, int back, int text);
void normal();

=

windowset::heading {
window(left,top,right,bottom);
textbackground(color1);
textcolor(color2);
printf(“%s” title);
}
windowset::setting(int |, int t, int r, int b, int back, int text) {
window(l,t,r,b);
textbackground(back);
textcolor(text);

}

These objects makes the opening menu selection screen, various displays
and provides the platform for user interface.

Chapter 3 DESIGN 31

The class ‘acquire’ performs the data acquisition process. It’s operation
is largely divided into two as dc_measure and rf_measure. Each has unique
hardware access, ADC input channels setting and noise switch setting in the
measurement. They require careful synchronisation of several tasks.

On signal acquisition, the number of samples and the acquisition delay
time are fixed to the optimum level. Whenever there is a need to change
these values, it can be changed in the declaration part of the program. The
Analog-to-Digital converter has totally 16-input channels and we use 7-input
channels for. our acquisition. The ADC will read the signal from only one
channel at a time. In the software-polled mode of the ADC, it starts the
analog-to-digital conversion immediately, once the ADC channel register 1s-
set with the required channel number. If any signal-conditioning circuit is
employed before the signal is applied to the ADC input channels, then it
requires additional settings to be performed on these circuits from the
computer. After many samples have been acquired over the data, these will
be averaged and some statistical analysis is applied to these samples to find
the integrity of the data.

The data file name for each set of measurements is generated in the
‘Initialisation’ class from the current date of the system clock. The measured
data are stored along with the calculated values. All these information are
stored into the created data file in the required format. The declaration of this
‘acquire’ class is as follows.

———

Class acquire {
public :

void offset_gain();
void dc_measure();
void rf_measure();
int datafile();

The multiplier values of each of the gain blocks(signal-conditioning)
through which all signals are passed are significant since the same exact value
is used for dividing at the output of ADC. This reverse operation of signal-
conditioning on the data is performed in the software side. The O volts nput
and the standard input voltage of -0.500 volts are used for this purpose. To
get the exact gain values, this operation is done.

Chapter 3 DESIGN 32

The function of this ‘offset gain’ operation is as follows.

1. Set the mux-demux channels for 0 v input through DIO_PORTB.
2. Give delay of ‘timel’ millisecs to settle.

3. Set the ADC input channel for this through DIO-PORTB.

4. Give delay of ‘time2’ millisecs for conversion.

5. Measure the bits at output of ADC.

6. Calculate voltage(off) from bits. The off value for gain-2 is volt5offset.
7. Repeat step-1 to step-5 for -0.500 v input.
8. Calculate voltage(value) from bits.

9. Gain x = abs(value - off)/0.5

10.Repeat step-1 to step-9 for all the gains.

Acquire::offset_gain {
int gain2=2,gain4=4,gian5=5,gain8=8,gain10=10,volt5=5;
unsigned int off_mux[}={ 0x15, Ox1d, Ox1d, Ox2d, 0x3d };
unsigned int set_adc [[={ 0x80, 0x82, 0x81, 0x84, 0x83 };
unsigned int gn_mux[]={ 0x14, Ox1c, Ox1c, Ox2c, Ox3c };
for (int i=0;i<5;i++)
{ outport(DIO_PORTB,off_mux]i});
delay(time1);
outport(ADC_MODE,set_adc]i});
delay(time2);
int bits=inport(ADC_LOWB);
float off=bits*resolution-5000;
outport(DIO_PORTB,gn_mux{i]);
delay(time1);
outport(ADC_MODE,set_adc]i});
delay(time2);
bits=inport(ADC_LOWB);
float value=bits*resolution-5000;
switch(i)
{ case 0 : gain2=fabs(value-off)/500;
volt5=off; break;
case 1 : gaind=fabs(value-off)/500; break;
case 2 : gain8=fabs(value-off)/500; break;
case 3 : gain10=fabs(value-off)/500; break;
case 4 : gainb=fabs(value-off)/500; break;
default : break; }
}
}

Chapter 3 DESIGN 33

The function of ‘dc_measure’ operation is as follows.

Sl S

7.

8.

9

Set the mux-demux input channels for input L

Delay for ‘timel’.

Set the ADC input channel for input I

Delay for ‘time2’. :

Measure bits at the ADC output.

If (bits< I_require) then increment dac_input,

else decrement dac_input.

If abs(bits—L_require)<2, then go to step-8
else apply dac_input to DAC, go to step-5.

Set channels for V,L T with noise_sw Off,T with noise_sw On.

Measure ADC output.

10.Apply reverse conversion to the data.
11.Store the data into dcfile.
12.Repeat step-1 to step-12 for all current settings.

Acquire::dc_measure {
unsigned int dc_mux[]={ 0x11, 0x18, Ox2b, Ox7b };
unsigned int dc_adc [|={ 0x81, 0x80, 0x84, 0x83 };
unsigned int i_require[]={ Oxfae, Oxe66, Oxcce, 0x000 };
int dac_input=0,k;
for (int j=0;j<8;j++)
{ k=(1%4);

do

{ outport(DIO_PORTB,0x11);
delay(time1);
outport(ADC_MODE,0x80);
delay(time2),
int bits=inport{ADC_LOWB);
if (bits<i_require) dac_input++;
if (bits>i_require) dac_input—;
outport(DAC_IN,dac_input);

} while (abs(bits—i_require[k])>2);

for (int i=0;i<4;i++)
{ outport(DIO_PORTB,dc_muxi});

delay(time1); :
outport(ADC_MODE,dc_adc]i});
delay(time2),
bits=inport(ADC_LOWB),

float value=bits*resolution-5000;
data[i]=value/gain(i}; }

Chapter 3 DESIGN 34

fp=fopen(dcfile,"w+");
for (i=0;i<4;i++) fprintf(fp,” %" data[i]); }
}

The function of ‘rf measure’ operation is as follows.

Input the LO frequency value freq.

Set the mux-demux input channels to V.

Delay for ‘timel’.

Set the ADC channel for input V.

Delay for ‘time2’.

Measure the bits at the ADC output.

Display the output voltage.

Get key stroke for adjusting voltage.

If (key=‘T‘) then increment dac_input

else if (key="{*) then decrement dac_input

else if (key="Pgup’) then increment dac_input by 10 counts

else if (key="Pgdn”) then decrement dac_input by 10 counts.

10.Set dac_input into DAC.

11.If (key<‘enter’) then go to step-0.

12.Give message to set the power in power meter.

13.Set channels of mux-demux, ADC for P, V, I, T with noise_sw Off, T
with noise_sw On, T with noise source in liq. N».

14 Measure ADC output.

15. Apply reverse conversion to the measured data.

16.Calculate the derived measurements.

17.Store the data into the rffile.

18.Repeat step-1 to step-17 for other LO frequencies, Power settings.

NI NI e

Acquire::rf_measure() {
unsigned int rf_mux[]={ Ox1a, 0x18, 0x11, Ox2b, Ox7b, 0x2b }
unsigned int rf_adc[] ={ 0x85, Ox81, 0x80, 0x84, 0x83, Ox84 };
unsigned int key;
for (int f=0;f<3;f++)
{ outport(DIO_PORTB,0x18);
delay(time1);
outport{ADC_MODE,0x80),
delay(time2),
printf(*Adjust the bias voltage by T,{,Pgup,Pgdn keys *);
do {
bits=inport(ADC_LOWB);

Chapter 3 DESIGN 35

printf(“Voltage = %f",bits*resolution-5000);
key=bioskey(0);
switch(key)
{ case 18432 : dac++; break;

case 18688 : dac+=10; break;

case 20480 : dac—; break;

case 20736 : dac—=10; break;

default : break;}
outport{(DAC_IN,dac);

} while (key!=7181);

printf(“Set the Power in the power meter.”);

getch(); | -

for (int i=0;i<6;i++)

{ outport(DIO_PORTB,rf_mux]i]);
delay(time1);
outport(ADC_MODE,rf_adc]i]);
delay(time2);
bits=inport(ADC_LOWB),
float value=bits*resolution-5000;
data[i]=value/gaini];

/* calculation of derived measurements here */
fp=fopen(rffile,”w+”);
fprintf(fp,” %", datali]);}
}
}

The class ‘set-up’ is a special class meant for providing the hardware set-
up details to the user. It will give the information like ADC voltage range,
input mode selected, the channels wired for different input signals, DAC
voltage range, DIO mode, ports selected, I/O operation .. etc. These
information are stored in the particular file ‘setup.doc’ so that it can be
updated whenever there is a change made in the set-up.

The declaration of this class is as follows.

Class setup {
public:
- void show()
{ char c;
fp=fopen(“setup.doc’,’r’),
- while ((c=fgetc(fp)!=EOF) putchar(c);
fclose(fp); } '
}

The summary of these operations and their relation are depicted in the
following object diagram.

36

Object diagram

Acquires :offset_gain

5:Ready for measure()

Y

‘ 1:startup()

Acquires :dc_measure

Windowset :heading §
) : §$ ‘L 6:Ready for measure()

V’"
‘ 2:menusetup() Acquires :rf_measuore
left,top,right,bot, 7- .
backcolor, textc Opinmg dafaﬁle()
Acquires :datafile
iy
o,
L
N\,

Windowset :normal()

Setupscreen :show()

Fig : Object diagram

Chapter 4 EVOLUTION 37

Chapter 4 EVOLUTION

The interfacing hardware have been constructed as designed and its
functioning has been tested incrementally at various stages. Now we proceed
with the incremental development of the system’s function points. The
process proceeds as follows.

¢ Developing minimal functionality acquisition, which measures one signal.

0 Developing the control mechanism for current setting in the measurement
system.

0 Calibrating the exact conversion and reverse conversion among the data
acquired.

0 Completing the functions of data analysis and formatted storage of data to
the file, to give expected information to the user.

Class acquire::offset_gain() :

This operation needs no external signal mputs, since the 0 v and the
standard input signal -0.5 v are available within the interface board. So this
module is straight away tested. The appropriate delay time required for
settling the mux-demux, op-amps are obtained after several tests. This delay
time plays vital role in the proper analog-to-digital conversion of signals.

Class acquire::dc_measure(),rf_measure() :

Tnitially for setting the bias current, the DAC output is directly used as the
signal for the Iy input line and the ADC is made to acquire the Ino, signal.
For the comparison of the I and I_require, the actual voltage values are used
first and then the bit level comparison is performed. , ,

For the rf measure also, the DAC output is used as the signal for the
voltage setting. For both the measurements the data file format is adjusted
after several tests and displays of data file information.

The development of each of the module are made iteratively and it is
performed in the following way.

Chapter 4 EVOLUTION 38
(i) ‘Offset-Gain’ operation :

For upgrading the gain values to be used in the reverse conversion
process, the program module has to receive the channel setting of
intermediate devices. These values are obtained and have to be set through
the DIO PORTB register. These values are to be pre-determined for the
program.

The Port-B has to set the 3 control bits for Multiplexer, 3 control bits for
demultiplexer and 1 for each of the two relays L, II.

The BITS =

Rel2 |Rell |DemC|DemB|Dem A |MuxC |MuxB | Mux A

Gain Input | Chls M-D BITS m Hex |Chlin ADC

2Vi+5 0 v 5 2 00 010 101 0x15 | 0x80 '
05v 4 2 00010100 | Ox14

4V; 0 v 53 00 011 101 Ox1d 0x82

7 -05v 4 3 00011100 | Oxlc

8Vi+5 0 v 53 00 011 101 Ox1d 0x81
05v 4 3 00011 100 | Oxlc

10V; 0 v 55 00 101 101 0x2d 0x84
-05v 4 5 00101100 | 0x2c

5V; 0 v 57 00111101 | 0Ox3d 0x83
05v 4 7 00111100 | 0x3c ,

1V; 0 v 51 00 001 101 0x0d 0x85
-05v 4 1 00 001 100 | 0x0c

These values of channel setting are stored into arrays in the program and the
DIO PORTB is set accordingly whenever required, from the arrays. These
channels selected in each part are also seen in the front panel LED’s of the
mterfacing device. ‘

These bits values are stored in the arrays with the following declaration.

{ unsigned int off_mux[]={ 0x15, Ox1d, Ox1d, Ox2d, Ox3d };
unsigned int set_adc []={ 0x80, 0x82, 0x81, 0x84, 0x83 };
unsigned int gn_mux[]={ 0x14, Ox1c, Ox1c, Ox2c, Ox3c },
i}

The flow chart of this module is as follows.

Chapter 4 EVOLUTION

Flow chart : Offset Gain calculation

Set DIO_PORTB by off mux(i)
[setting mux-dem for OV]

v

delay for DC_DELA@

y

read ADC o/p (bits)
off=bits*resolution-3000

A A

Set DIO_PORTB by gn_mux(i)
[setting mux-dem for -0.5V]

v

delay for DC_DELA@

A 4

read ADC o/p (bits)
value=bits*resolution-3000

Chapter 4 DEVELOPMENT

B N

,

Y g10=abs(value-off)/0.5
N .
Y g5=abs(value-off)/0.5
N

é

set i=i+1

g2=abs(value-off)/0.5

volt3=off

gd=abs(value-off)/0.5

g8=abs(value-off)/0.5

\ 4

é

(=)

Chapter 4 EVOLUTION 41
(ii) ‘dc-measure’ operation :

This module has to be checked for providing automatic bias current-setting
which includes comparison of ADC measured value and the required I value.
This also has to acquire the I, V, Ty, Tis after every time, the bias current had
been reached automatically to required level. Since the comparison is made
at the bit level, the bit values for the I require, which passes through a
conversion phase are calculated and used in the program as follows.

Vi V=x2+5 bitinhex array()

Ov +5000mV fif -
1pA=-100mV +4800 mV fae i_require(0)
5uA=-500mV +4000 mV = e66 1_require(1)
10pA=-1000mV +3000 mV ccc i_require(2)

50pA=-5000mV -5000 mV 000 1_require(3)

These bits are stored in the array ‘i_require’ and used for the comparison.
When acquisition of I, V, T, Tig are to be started the program has to obtain
the channel setting bits corresponding to these for giving into the DIO port.

It is calculated as before as follows.

Rel2 |Rell |DemC|DemB|Dem A |MuxC |MuxB | Mux A

Signal |setRLRL M D BITS in Hex | Chlm ADC
I 0 01 2 00010001 0x11 0x80
A" 0 0 0 3 |00011000 | Ox18 0x81
Tie 0 0 3 5 00101011 0x2b 0x84
Tig 0 1 3 7 (01111011 0x7b 0x83

These are stored in the arrays with the following declaration.

{ unsigned int dc_mux{] ={ 0x11, 0x18, Ox2b, Ox7b };
unsigned int dc_adc[] ={ 0x80, 0x81, 0x84, Ox83 };
unsigned int i_require[]={ Oxfae, 0xe66, Oxccc, 0x000 };

The flow chart of this module is given below.

Chapter 4 EVOLUTION

DC Characteristics

- start

4

Print "Enter the Mixer details "

Input mixer,diode ident.n,choke,
whisker len,hgt,protrusion,
plate_t,amb _tligN. i

A
/ Open 'dcfile’ /
A

y

Put mixer,diode ident.n,choke,
whisker len,hgt,protrusion,
plate_t,amb_t)iq N._t to file

Y

set dac,lowb,highb to 0
set DIO_7th bit 'O’
(setting Noise_sw OFT)

v

Print "Set Mixer I range in 0.1 mA &
then connect the Mixer"

set dac,lowb,highb to 0

(Wait for key stroke)
v
set j=0
; ©
compute k=rem(j/4) '
Y
N

> set sum=0

Chapter 4 EVOLUTION

set ADC i/p to channel-0
get bits=ADC ofp

set dac=dac+1

'

, If _
(bits>1_require(k)) ?

set dac=dac-1

A 4

Y

set dac in DAC i/p

If
(abs(bits-i_require(k))>3)?

set MUX-DEM channels to dc_mux(i)
set ADC channel to dc_adc(i)

Y

delay dc_delay(m@

A 4

for dc_samples times :
delay dc_delay
get bits=ADC o/p
compute sum=sum-+tbits

\ 2

compute aver=sum/dc_samples

Chapter 4 EVOLUTION

compute sum= X, [x=1 to dc_samples]

compute o=V(sum)

(sample(x)-aver)/(dc_samples-1)

A 4

set data(i)=aver*resln-5000.0

A\

set i=i+1

If (i<4) ?

lN

compute bias_i=(data(0)-v5)/g2
bias_v=(data(1)-v5)/g8
temp_if=data(2)/gl0
temp_ifr=data(3)/g5

A 4

Put bias_i,bias v,temp_if
temp_ifr into dcfile

Y

print "Disconnect the MIXER &
set I range in 10 mA."
(wait for key stroke)

r

set j=j+1

l

If(G<8)?

N

D

Chapter 4 EVOLUTION 45
(iii) ‘rf-measure’ operation :

In the RF measurement part there is automatic voltage/ bias setting. The
parameter power is set manually in the intermediate time by the user. The
voltage is adjustable through the keypad by the user. After every set of
power and bias voltage, the program has to set the channels for starting
acquisition of P, V, [, Tp,, T;, and T..

These channel settings are constructed as follows.

Signal |setRLRI; M D BITS in Hex | Chlin ADC
P 0 0 2 1 |00001010 | OxOa 0x85
\Y 0 0 0 3 |00011000 | Ox18 0x81
I 0 01 2 |00010001 | Oxl1 0x80
Ty 0 0 3 5 |00101011 | Ox2b 0x84
T, 0 1 3 7 (01111011 | Ox7b 0x83
T, 0 0 3 5 |00101011 | 0x2b 0x84

These bit values are stored into the arrays with the following declaration.

{ unsigned int rf_mux[]={ Ox0a, 0x18, 0x11, 0x2b, Ox7b, 0x2b };
unsigned int rf_adc[] ={ 0x85, 0x81, 0x80, 0x84, 0x83, Ox84 };

see gy

}

The construction of this module is made with the following flow chart.

First the DAC output has been fed as the signal for the Vi, input. The
arrow keys and the pgup, pgdn keys are used to set the Vio, at the required
values such as 0.60 v, 0.65, 0.70 ... etc. For other input lines, the DAC 0 v
has been connected as the signal. The acquisition is made for these mputs.
The data file storage is displayed on the screen and the format of the data file
information is adjusted incrementally.

Later the actual signals are fed to the input channels and the Vi 1s set
when the DAC signal conditioned output (gain -1/6) is applied to the bias
voltage supply pin. This time all other information such as diode
identification, mixer details, amb. temperature, whisker detail ... etc. are
added to the data file and these information are to be displayed along with the
data tables.

Chapter 4 EVOLUTION RF Analysis

()

/ print "Give the LO freq." / ¢
/ Input frq /

set j=0

\4

print "Set the voltage using T 4 Pgup Pgdn" / - @

Input key

If (key="Esc") ?

(stop } Y

> set ADC i/p to channel-1

A4

get bits=ADC o/p
compute value=bits*resin-5000.0

Y

/ print "Bias voltage=value mv" /

Chapter 4 EVOLUTION

set dac=dac+10

Y

set dac=dac-1

set dac=dac-10 >

If (key=Pgdn) ?

set dac in DAC ip

If (key<>Enter) ?

print "set the Power to ---"
(wait for the key stroke)

set i=0

set MUX-DEM channels to rf mux(i)
set ADC i/p channel to rf_adc(i)

/ Y. print "set the Power to ---"
(wait for the key stroke)

© ©

Chapter 4 EVOLUTION

delay rf_delay(m@

v
get bits=ADC o/p

Y

for rf samples times :
delay rf_delay
get bits=ADC o/p
compute sum=sum-+bits

A

A compute aver=sum/rf_samples

A

compute sum= 3, [x=1 to rf_samples]
(sample(x)-aver)?/(xf_samples-1)
compute o=V(sum)

\ 4

set data(i)=aver*resin-5000.0

\

set 1=1+1

'

< If (i<6) ?

N

set freq=frq

set power=data(0)

compute volts=(data(1)-v5)/g8

compute current=(data(2)-v5)/g2

compute th=data(3)/g10

compute tr=data(4)/g5

compute tc=data(5)/g10

compute step,r,vswr,lm,la,
tm,ta,td

A

Put freq,power,volts,current,th,tr.tc
step,r,vswr,lm,la,tm,ta,td to rffile

v

I

Chapter 4 EVOLUTION

set j=j+1

If (j<6) ?

set =+1

'

If (f<3) ?

N

(stop

D

Chapter 4 EVOLUTION 50
(iv) Date file Report and printing :

At every mode of measurements, the acquired data are stored into a
unique data file. The data filename for this is created by using the system
clock. To distinguish and to make it unique, the dc_measure acquisition are
stored into the files with name ‘dcyymm.dd’ and the rf measure acquisition
are stored with file names ‘rfyymm.dd’. The yy,mm,dd stands for current
year’s last two digits, month and day. If more acquisition is made on the
same day, the extension can be added up with new numbers.

When the stored data files are needed to open for viewing and printing,
the files are checked by their file-heads ‘dc’ and ‘rf. This file-heads are
used for generating different formats for the dc-characteristics and rf-analysis
parts separately. They have different format and displays for viewing and
printing.

The process of making the hard copy of the data file is performed with the
constructs of ‘ifstream’ and ‘ofstream’ functions as follows.

{ ifstream infile;
infile.open(“temp.prn”);
ofstream outfile;
outfile.open(“PRN");

while (infile.get(c)!=0) outfile. put(c)

where ‘temp.prn’ is the file in which the formatted information of the
data-file are stored in.

The flow chart of this ‘data-file’ report generation is as follows.

Chapter 4 EVOLUTION ' 51
Data files

C =

\4

@ Arint "Enter the Datafile name /

as deyymmdd/rfyymmdd" «
Input filename

A4

/ open file filename /

A4

set thead=string(chr(1)+chr(2))
of filename

If key="Esc'?

If file is empty ?

» / open file 'temp.prn’ / ' (stop)

If (thead="dc") ?

If (fhead="rf) ?

A

/ print "DC characteristics" / / print "RF analysis" /

Y Y

print bias_i,bias_v,temp_iftemp_ifr print freq,power,volts,current,th, tr.tc
: print step,r,vswr,lm,la,tm,ta,td

Y

A

put displays into 'temp.prn’

put displays into 'temp.prn’

Y

Chapter 4 EVOLUTION 50
® S

If (fhead<>'dc' or 'tf’) ?

lN

print "press 'p' to print,'Esc’ to stop
any other key to continue”"

v

print "Cannot open !
It is not a smts data file"

print "temp.prn’

Chapter 4 EVOLUTION
Software :Functional block diagram

INITTIALIZATION J

User Interface ————>

~.

53

>

CONTROL
ACQUISITION

)

DATA ACQUISITION]

ARITHMATIC OPERATION

ONDATA

J

STATISTICAL ANALYSIS J

/

A

DISPLAY

J<———User Interface

\

DATA STORAGE
TOFILE

v

DATA ANALYSIS

FORMATTED DATA

J
J
j

Chapter 4 EVOLUTION 54

e

SEsenEEEs S Spe e e e
e S e
e e e

E
e S
= e
= e =
= e o
e

EEsmsea
Sn e s S e e e
e e

e e
P e e e

e e e
e e = e e et
e e = = =
e

EEe e e e

e S St
e 5 e oses R
e

s

-
e

e
=

EEm e
s e e H

L namm

= o S e

e e e e e

= 2 = e
e

Fig. Program main menu

55
Chapter 4 EVOLUTION ~ Flow chart - main program

Initialisation :
exec 'initialise.initialise’
call 'acquires.offset_gain'

Display menu
call 'windowset.headmg'

4

_/ pd

select from menu / «

If (select="setup”) ?

call 'setupscreen.show'

e

If (select="dc charact’) ?

call 'acquires.dc_measure’

>

If (select="dc and 1f") ?

call 'acquires.dc_measure'
call ‘acquires.rf measure'

If (select="data files") ?

call 'acquires.datafile’

If (select="analysis") ?

N,
call 'acquires.rf_measure'

=

If (select="Exit") ?

Chapter 4 EVOLUTION 56

CODE

* Program SMTS Data Acquisition - For DC characteristics,RF measurements™/
/* Sets Bios Current, acquires Current,Voltage,Power, Temperatures
and controls Noise switch - Performs the Analysis®/

#include <iostream.h>
#include <fstream.h>
#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <math.h>
#include <dos.h>
#include <bios.h>

#define GAIN_SAM 10

#define DC_CMP_SAM 5

#define DC_SAMPLES 10

#define DC_DELAY 200 /* Delay in milliseconds */
#define RF_CMP_SAM 5

#define RF_SAMPLES 10

#define RF_DELAY 2 /* Delay in milliseconds */

#define BA 0x320

#define ADC_LOWB BA+0x014
#define ADC_HIGHB BA+0x015
#define ADC_STATUS BA+0x016
#define ADC_MODE BA+0x018

#define DAC_LOWB BA+0x01c
#define DAC_HIGHB BA+0x01d

#define DIO_PORTA BA+0x008
#define DIO_PORTB BA+0x009
#define DIO_PORTC BA+0x00a
#define DIO_CONTROL BA+0x00b

struct dc_data
{ float bias_i;
int bias_v;
int temp_if;
int temp_ifr;

3

Chapter 4 EVOLUTION 57

struct rf_data
float freq;
float power,;
float volts;
float currnt;
float th;
float tr;
float ic;
int step;
doubler;
double vswr;
double Im;
double lg;
double tm;
double ta;
double td;

8

struct rf_analyse
{ char mixer|[7];

char diode[12];
char choke[7];
float wis_len;
float wis_ht;
float wis_pro;
float plate_t;
float ambient_t;
float lign2_t;
I

int off_mux[]={ 0x15,0x1d,0x1d,0x2d,0x3d };
int set_adc[]={ 0x80,0x82,0x81,0x84,0x83 };
int gn_mux[]={ 0x14,0x1c,0x1c,0x2¢,0x3¢c };

unsigned int dc_mux[] ={ 0x11,0x18,0x2b,0x7b };

unsigned int dc_adc[] ={ 0x80,0x81,0x84,0x83 };

unsigned int i_require[] ={ Oxfae,0xe66,0xcce,0x000 };
unsigned int rf_mux[] ={ 0x0a,0x18,0x11,0x2b,0x7b,0x2b };
unsigned int rf_adc[] ={ 0x85,0x81,0x80,0x84,0x83,0x84 },
float resoln =2.441406; : :

float offsets = 0.0;

float g2=2.0,g4=4.0,g5=5.0,g8=8.0,g10=10.0;

char dcfile[12]="dc",

Chapter 4 EVOLUTION 58

char rffile[12]="rf";
date today;
rf_analyse index;
FILE *fp;

class initialise
{ public : initialise()
{ char year[3],mon[3],day[3];
unsigned int low,high,count=0x030; /* zero set 0x030 */
intij;
outport(DIO_CONTROL,0x80);
low=(count & OxOff);
high=(count & 0xf00);
high=(high>>8);
outportb(DAC_HIGHB, high);
- outportb(DAC_LOWB,low),
struct date g;
getdate(&d);
itoa((d.da_year-1900),year,10);
itoa(d.da_mon,mon,10);
itoa(d.da_day,day,10);
strcat{dcfile,year); strcat(dcfile,mon);
strcat(dcfile,"."); strcat(dcfile,day);
strcat(rffile,year); strcat(rffile,mon);
strcat(rffile,"."); strcat(rffile,day);
today = d;
¥
void connectivity() :
{ unsigned int Ibyte,hbyte,countf]={ 0x000, Oxb34},bits[2];
for (int i=0;i<2;i++) '
{ Ibyte=(count[i] & OxOff);
hbyte=(count[i] & 0xf00);
hbyte=(hbyte>>8);
outportb(DAC_HIGHB, hbyte);
outportb(DAC_LOWB, Ibyte);
outport(DIO_PORTB,0x11);
delay(DC_DELAY),
outportb(ADC_MODE,0x80);
delay(DC_DELAY);
bits[i}=(inpw(ADC_LOWB)&Oxfff),
}
if ((bits[0]<0xeb8)||(bits[1]>0xeff))
{ printf("\a\n Two way communication failure...");
printf("\nThe SMTS may not be in the "AUTO mode™);
printf(" or cable connection is not proper.....");

Chapter 4 EVOLUTION 59

getch();};
}
h

class acquires
{ private : unsigned int lowb;
unsigned int highb;
public : void off_gain()
{ float off,value,v5_ref;
int i,j,k,bits,sample,sum;
for (i=0;i<0;i++) '
{outport(DIO_PORTB,off_mux{i]);
delay(DC_DELAY),
outportb(ADC_MODE ,set_adcli]);
for (j=0;j<1;j++) { k=0;
while (((inportb(ADC_STATUS)&0x02)==1) && (k<220))
{ k++;
if ((inportb(ADC_STATUS)&0x02)==0) break;}
if (k==220) printf("<ADC st wrong>"); '
else printf("<ADC st OK>");
delay(DC_DELAY);
bits=(inport(ADC_LOWB)&0xIff);
off=bits*resoln-5000;
bits=0; }
outport(DIO_PORTB,gn_mux{il);
delay(DC_DELAYY);
outportb(ADC_MODE,set_adcli]); k=0;
while (((inportb(ADC_STATUS)&0x02)==1) && (k<220))
{ k++;
if ((inportb(ADC_STATUS)&0x02)==0) break;}
if (k==220) printf("<ADC st wrong>");
else printf("<ADC st OK>");
delay(DC_DELAY);
bits=(inpw(ADC_LOWB)&O0xfff);
value=bits*resoin-5000;
switch(i) '
{ case 0: g2 =fabs(value-off)/500;
v5_ref=off, break; -
case 1: g4 =fabs(value-off)/500; break;
case 2: g8 =fabs(value-off)/500; break;
case 3: g10=fabs(value-off)/500; break;
case 4: g5 =fabs(value-off)/500; break;
default:break;
}
}

Chapter 4 EVOLUTION 60

}

void dc_measure()
{intijk,Itnr=2100;
unsigned int bits,dac;
float sample[200],value,sum,aver,data[4], ff-
float r3[8],ciif[8],r=0.08557,vo,eta,rs,rd,avi=0, b|2—0 ev,evo;
double dca[8][4],di;
char c;
dc_data dc;
rf_analyse g;

printf("\nEnter the Mixer details #");
b=bioskey(0); ‘
if (b1=283) {
printf("\n Mixer identification :"); scanf("%s",a.mixer);
printf("\n Diode identification :"); scanf("%s",a. diode);
printf("\n Plate temperature (K): "); scanf("%f",&a.plate_t);
index=a; },
fp=fopen(dcfile,"w+"),
fprintf(fp,"%7s %12s %7s %4.3f %4.3f %4.3f %4.3f %4.3f
%4.3f\n" a.mixer,a.diode,a.choke,a.wis_len,a.wis_ht,a.wis_pro,a. plate_t,a. ambie
nt_t,a.lign2_t);
outport(DIO_PORTB,0x00);
dac=2; bits=0; lowb=0; highb=0; gotoxy(2,8);
printf("\n ## Set Mixer | RANGE in 0.1 mA & then Connect the
MIXER ##"),
getch();
for (j=0;j<8;j++)
{ k=(1%4),
if (k==3) continue;
if (j==4)
{ dac=2; lowb=0;
highb=0; bits=0;};
do
{ sum=0.0;
outport(DIO_PORTB,0x09);
delay(DC_DELAY);
outportb(ADC_MODE,0x85);
delay(DC_DELAY);
bits=(inport{ADC_LOWB)&0xiff);
gotoxy(2,10);
printf("\n Bias current (V)! %.5f Volts count_ADC>
%X",bits*2.4414-5000,bits); :
printf("\n Difference---------- <%4d>" abs(bits-i_require[k]));

Chapter 4 EVOLUTION 61

if (bits>i_requirelk]) dac--;
if (bits<i_require[k]) dac++;
printf(" count_DAC> %x ",dac);
lowb = (dac & 0xOff);
highb = (dac & 0xf00);
highb = (highb>>8):
outportb(DAC_HIGHB, highb);
outportb(DAC_LOWB, lowb);
c=getch(); '
if (j==4)
{ printf("\n dac=%x, 1=%x,h=%x
‘bits=%x, %X",dac,lowb,highb,bits,i_requirelk]);
getch(); return; };*/

} while ((abs(bits-i_require[k])>2)&&(c!="*"));
printf("** REACHED %x count ***",i_require[K]);
c=getch();
if (c==""") return;

for (i=0;i<4;i++)

{ outport(DIO_PORTB,dc_mux]i]);
outport(ADC_MODE,dc_adc]il);
printf("\n channels set for data %d ",i);
getch();
delay(DC_DELAY);
lowb=(inpw(ADC_L OWB)&0xfff);
for (I=0;I<DC_SAMPLES;|++)

{ delay(2);

bits =(inpw(ADC_LOWB) & Oxfff);

sample[i]=(bits*resoln)-5000.0; gotoxy(2,12);

printf("\n chl%x > %x sample(%2d)= %2f

".dc_adc]i],bits,I+1,sample[l]);

sum =sum+samplell];

|3

aver=sum/DC_SAMPLES,; sum=0;

for (i=0;i<DC_SAMPLES;i++) sum=sum-+pow((sample]i]-aver),2);

sum =sqrt(sum/(DC_SAMPLES-1));

data[il=aver;*/

3

dc.bias_i =(data[0]-v5)/g2; dc.bias_v =int((data[1]-v5)/g8);

de.temp_if=int(data[2]/g10); dc.temp_ifr=int(data[3)/g5);

for (i=0;i<4;i++) dca]j][i]=data]i];

if (j1=1)

{ r3[jl=(data[3]-data[2])/tnr;
ciifj]=(data[2]-(r3[j]*a.plate_t))/(1.0-r3[j]);};
fprintf(fp,"%4.3f %4d %4d
%4d\n",dc.bias_i,dc.bias_v,dc.temp_if dc.temp_ifr);

Chapter 4 EVOLUTION 62

if (j==3)
{ gotoxy(2,8);
printf("\n *** Disconnect the MIXER & then Set Mixer |
RANGE in 10 mA **);
dac=0; lowb=0; highb=0; value=0;
highb=(highb>>8);
outportb(DAC_HIGHB, highb);
outportb(DAC_LOWB, lowb);
3
outport(DIO_PORTB,0x11);
getch();
2
for (i=0;i<3;i++)

{if (i==1) continue,
avi=avi+(dca[il[1]*log(dcal[i}[0]));
bi2=bi2+log(dca[i][0])*log(dca[i}[0]);
ev =ev+dca[i][1];

di =di+log(dca[il[0]);}

vo =r*a.plate_t;

eta=((avi-(di*ev)ff)/(bi2-(di*di)/ff))/vo;

evo=eta*vo;

rs=(evo*2.3025-(dca[71[1]-dca[5][1]))/(-4.5);

rd=evo/dca[4][0]; '

printf("\n eta=%5.2f, Rs=%5.2f, Rd=%5.2f,
evo=%4.2{" eta,rs,rd,evo);

fclose(fp);

}

void rf_measure()
{intijkUftnr=2011;
unsigned int bits=0,dac=0x5¢2,adjust,b;
double
a1,a2,a3=0,a4=0.15,b1,02,b3,b4,r2,r3,bif brf,rim,rla,dim,dla,to,tm,tm1 tmo,tmr td,
av,
float sample[80],value,sum,data[7],frq;
float rfa[6][15],dt,dtcal,teq;
float rfloss[7][3]={ 78.1, 1.02, 0.55,
83.4, 0.98, 0.47,
92.4, 0.96, 0.45,
108.5, 0.70, 0.60,
110.3, 0.70, 0.60,
112.0, 0.70, 0.60,
114.0, 0.80, 0.42 },
rf_data rf;

Chapter 4 EVOLUTION 63

Keys

rf_analyse a;

fp=fopen(rffile,"w+");

printf("\nEnter the Mixer details #");

b=bioskey(0);

if (b!1=283) {

printf("\n Mixer identification :"); scanf("%s",a.mixer);
printf("\n Diode identification :"); scanf("%s",a.diode);
printf("\n Choke :"); scanf("%s",a.choke);

printf("\n Whisker length (mm): "); scanf("%f",&a.wis_len);
printf("\n Whisker height (mm): "); scanf("%f",&a.wis_ht);
printf("\n Whisker protrusion (mm): "); scanf("%f",&a.wis_pro);
printf("\n Plate temperature (2K): "); scanf("%f",&a.plate_t);
printf("\n Ambient temperature(aK): "); scanf("%f",&a.ambient_t);
printf("\n Liquid N2 temp. (8K): "); scanf("%f",&a.lign2_t);
index=a; }; '

for (f=0;f<3;f++)
{ gotoxy(2,2);
printf("Select the LO frequency #"),
printf("\n1-78.1, 2-83.4, 3-92.4, 4-108.5, 5-110.3, 6-112, 7-114

scanf("%f",&frg);
data[O]=rfloss[frg-1][0];
outport(DIO_PORTB,0x36),
for (j=0;j<6;j++)
{ gotoxy(2,4);
printf(" ##4### Set the VOLTAGE using %c %c Pgup & Pgdn
"24,25);
printf("\n\n [Press "Enter' after setting,");
printf(’"\n Press *f to skip to next LO freq.,-or");
printf("\n Press "Esc' to stop this measurement "),
b=bioskey(0); :
if ((b==8550)||(b==8518)) break;
if (b==283) return;
do
{ lowb = (dac & OxOff);
highb = (dac & 0xf00);
highb = (highb>>8);
outportb(DAC_HIGHB, highb);
outportb(DAC_LOWB, lowb);
outport(DIO_PORTB,0x18);
outport(ADC_MODE,0x81);
delay(5),
bits=(inpw(ADC_LOWB)&O0xfff);
value=bits*resoin-5000.0;

Chapter 4 EVOLUTION 64

5000)/8, bits);

gotoxy(2,10);
printf("\n Bias Voltage - V> %6.4f mV bits_ ADC=%Xx",(value-

printf("\n bits DAC=%X",dac);
adjust=bioskey(0);
switch(adjust)
{ case 18432 : dac++, break;
case 18688 : dac=dac+10; break;
case 20480 : dac—; break;
case 20736 : dac=dac-10; break;
default : break; };
} while (adjust!=7181);
gotoxy(2,9);
printf(" ** Set the required POWER value manualy ** "Y
getch();
for (i=0;i<6;i++)
{ outport(DIO_PORTB,rf_mux[i]);
outport(ADC_MODE,rf_adcli]);
if (i==5)
{ gotoxy(2,9);
printf("~~ Show COLD Load and "press space bar’ ~~");
getch();

¢
delay(2); value=0;
bits=(inpw{ADC_LOWB)&0xfff);
for (I=0;1<RF_SAMPLES;++)
{ delay(RF_DELAY);
bits =(inpw(ADC_LOWB) & Oxfff);
sample[l]=bits*2.441406-5000.0; gotoxy(2,12);
printf("\n chl%x > %x sample(%2d)= %2f

" rf_adc]i],bits,I+1,sample[l});

value),2);

value =valuet+samplell];
3
value=value/RF_SAMPLES;
for (i=0;i<RF_SAMPLES;i++) sum=sum-+pow((sample[i]-

sum =sart(sum/(RF_SAMPLES-1));*/
printf("\n chl set for data %d",i); getch();
data[i+1]=value;

}
rf.freq =data[0];
rf.power =data[1]; rf.volts=(data[2]-5)/8;
rf.currnt=(data[3]-5)/2; rf.th=data[4)/10;
rf.tr =data[5)/5; rf.tc=data[6]/10;

Chapter 4 EVOLUTION 65

for (i=0;i<6;i++) printf("%6.2f ", datali]);

/* analysis portion */

b3=pow(10,(-a3/10));

- b4=pow(10,(-a4/10)),

bif=b3*b4;

dt=rf.th-rf.tc;

teq=(a.ambient_t+a.plate_t)/2;

r3=(rf.tr-rf.th)/tnr;

r2=(r3/pow(bif,2.0));

atl=rfloss[frg-1][1];

a2=rfloss[frg-1]{2];

b1=pow(10,(-a1/10));

b2=pow(10,(-a2/10)),

brf=b1*b2;
[* dtcal is step at the mixer input (RF loss accounted for) */

dtcal=brf*(a.ambient_t-a.lign2_t), ,
/* rim is the mixer conv loss corrected for IF loss & not for IF mismatch */

rim=2*dtcal*bif/dt;

dim=10*1og10(rim);

/* rla is available mix conv loss corrected for IF mismatch also */

rla=rim*(1-r2);
dla=10%*log10(ria); \

/* to is DSB Tmix corrected for RF, IF and IF mismatch */
to=(rf.th-((r3*a.ambient_t)+((1-bif)*r2*bif*teq)+((1-bif)*teq)))*dtcal/dt-
((a.ambient_t*brf)+(b2*(1-b1)*a.ambient_t)+((1-b2)*teq));

/* tm is same but SSB and new flexible formula */
tm=(rf.th-((r3*(a.ambient_t))+(b3*bif*r2*(1-b4)*teq)+(bif*r2*(1-
b3)*a.plate_t)+(b4*(1-b3)*a.plate_t)+((1-b4)*teq)))*2*dtcal/dt-
2*((a.ambient_t*brf)+(b2*(1-b1)*a.ambient_t)+((1-b2)*teq));

/* tm1 is to be corrected for mistakes */
tm1=(rf.th-bif*((1-b4)*(1+(1/bif))*teq+((1-
b3)*(r3+b4/bif)*a.plate_t)+(r2*bif*a.ambient_t)))*rla/(bif*(1-r2))-
(2*(a.ambient_t*b2+(1-b2)*teq));

/* tmo is to be corrected for mistakes */
tmo=(rf.th-bif*((1-b4)*(1+1/bif)*teg+a.plate_t*(1-b3)/b3))*(rim/bif)-
(2*(a.ambient_t*b2+(1-b2)*teq));

[* tmr is calculated assuming perfect IF match and rim */
tmr=(rf.th-((b4*(1-b3)*a.plate_t)+((1-b4)*teq)))*2*dtcal/(dt*(1-r2))-
2*((a.ambient_t*brf)+(b2*(1-b1)*a.ambient_t)+((1-b2)*teq));
td =tm/(rla-2),
av =(1+sqrt(r3))/(1-sqrt(r3));

rf.step=dt; rf.r =r3;
rf.vswr=av; rf.lm=dla;
rfla =dim; rf.tim=tm;
rf.ta =tmr; rf.td=td;

Chapter 4 EVOLUTION 66

printf("Data
-step=%4.1f,r=%5.3f, vewr=%5.3,Im=%5.3f,1a=%5.3f, Tm=%4d, Ta=%4d, Td=%4d",
rf.step,rf.rrf.vswr rf.lm,rf.la,int(rf.tm),int{rf.ta), int(rf.td));
- geteh();
fprintf(fp,"%5.2f %4.2f %4.2f %4.2f %4d %4d %4d %3d %5.3f %5.3f %4.2f
%4.2f %4d %4d
“%4d\n" rf freq,rf.power, rf.volts, rf.currnt,rf th, rf.tr rf tc,rf.step,rf.r,rf.vswr,rf.Im,rf.Ia,in
t(rf.tm),int(rf.ta),int(rf.td));

outport(DIO_PORTB,0x00);

getch();*/

h
h
~ fclose(fp);
}

int datafile()
{ dc_data dc;
rf_data rf;
char filename[12],fhead[3],c;
unsigned int key;
FILE *tm;
do{
*filename="\0'"; *fhead="0'";
printf("\n\n Enter the DataFile name (dcyymm.dd/rfyymm.dd) :

scanf("%s" filename);
if ((fo=fopen(filename,"r"))==NULL)
{ printf(" No such file exist ! Press 'Esc' to stop,any
other key to continue ™); |
key=bioskey(0); }
else
{ strncat(fhead filename,2);
tm=fopen("temp.prn”,"w+");
fhead[O]=tolower(fhead[0]); fhead[1]=tolower(thead[1]);
if (stremp(fhead,"dc")==0)
{printf("\n%c DC CHARACTERISTICS %c %cC %s
%c\n",178,178,17 filename, 16);
fprintf(tm,"\n DC CHARACTERISTICS File : %s
\n\n" filename);

printf("A AAAAAA AAAAAA AAAA A\n"):
forintf(tm," \n'"Y);
printf(" Bias| V(mV) T_ifK T_ifR K\n"),
fprintf(tm,"” Bias! V(mV) T_ifK T_ifR K\n");

Chapter 4 EVOLUTION 67

printf("A A A AAAAAAAAAAAAL AAAAAAAN"Y:
fprintf(tm," \n");
while (Ifeof(fp))
{ fscanf(fp,"%f %d %d
%d\n",&dc.bias_i,&dc.bias_v,&dc.temp_if,&dc.temp_ifr);
printf(" %8.3f %4d %A4d
%4d\n",dc.bias_i,dc.bias_v,dc.temp_if,dc.temp_ifr);
fprintf(tm," %8.3f %4d %A4d
%4d\n",dc.bias_i,dc.bias_v,dc.temp_if,dc.temp_ifr);

t
printf(" .
fprintf(tm,"” : \n");
fcloseall(); };
if (strcmp(thead,"rf")==0)
{fp=fopen(filename,"r");
printf("\n%c RF ANALYSIS %c %c %s %c\n”,176,176,17 filename, 16);
fprintf(tm,"\n\n RF ANALYSIS File : %s \n\n"filename);

fprintf(tm," \n");
printf{" P V(mV) | Th Tr Tc/Tnstep R VSWR LM LA TM TA
TD\n");

fprintftm,” P V(mV) | Th Tr Tc/Tnstep R VSWR LM LA T™M
TA TD\n");

AAAAAAA,AAAAAAVAtAAVLFAiAAAliALLiiiLAAALAAAA,A_AAAAALAAVA

AAAAAAAAAAAAAAAAAAAAAAAAAAAA\N;
forintf(tm," \n");
while (Ifeof(fp))
{fscanf(fp,"%f %f %f %f %d %d %d %d %f %f %f %f %d %d
%d\n" &rf.freq,&rf.power, &rf.volts,&rf.currnt,&rf.th, &rf.tr,&rf.tc, &rf.step, &rf.r,&rf.vs
wr, &rf.Im, &rf.1a,&rf.tm, &rf.ta, &rf.td);
printf("%5.2f %4.2f %4.2f %4.2f %4d %4d %4d %3d %5.3f %5.3f %4.2f %4.2f
%4d %4d
%4d\n",rf.freq,rf.power,rf.volts,rf.curmt,rf.th, rf tr,rf.tc,rf. step rf.r.rf. VW, rf Im rf Ia n‘
Am,rf.ta,rf.td);
fprintf(tm, "\n%>5.2f %4.2f %4.2f %4.2f %4d %A4d %4d %3d %5.3f %5.3f %4.2f
%4.2f %4d %4d
%4d\n" rf freq,rf.power, rf.volts,rf.currnt,rf.th, rf tr,rf.tc, rf.step, rf.r,rf.vswr,rf.im,rf.1a,rf
tm,rf.ta,rf.td);

}.

Chapter 4 EVOLUTION 68

printf(uA,;g
fprintf(tm,"\n \n"");
fcloseall(); };
if ((stremp(fhead,"dc")!=0)&&(strcmp(fhead,"rf")!=0))
{ printf("\n Cannot Open. It is nota SMTS DATA ACQUISITION file! Press
'Esc'to stop");
key=bioskey(0);}
else
{printf("\n ppp Press 'P' for printer,'Esc' to stop, any other keys to continue ");
key=bioskey(0);
if ((key==6512)||(key==6480))
{ifstream infile;
infile.open("temp.prn");
ofstream outfile;
outfile.open("PRN");
printf("..... PRINTING");
while (infile.get(c) != 0) outfile.put(c); };
2

h
} while (key!=283);
return (1);
}
h

class setupscreen
{ public : void show()
{ char c;

fp=fopen("setup.doc”,"r");
while ((c=fgetc(fp))!=EOF) putchar(c);
fclose(fp);
}

b3

class windowset
{ public : void heading()
{ window(1,1,80,2);
textbackground(LIGHTCYAN); textcolor(WHITE); clrscr();

printf(" SMTS DATA ACQUISITIONY;
printf("

%d.%d.%d\n" today.da_day,today.da_mon,(today.da_year-1900));
}

void setting(int |,int t,int r,int b,int back,int text)
{ window(l t,r,b);

Chapter 4 EVOLUTION 69

textbackground(back); textcolor(text);
clrscr();

}

void normai()

{ window(1,1,80,25);
textbackground(BLACK); textcolor(WHITE);
clrser();

}
¥

main()
{ char opt,key,buffer1[480],buffer2[2516];
int x=2,y=2,
unsigned int b;
initialise init;
acquires acquire;
setupscreen setup;
clrser();
acquire.off_gain();
windowset windows;

windows.heading();
windows.setting(1,2,80,2,7,0),
printf(" Set Up DC charact DC and RF Data Files Analysis Exit"); -
windows.setting(1,3,80,25,11,7),
for(int i=1;i<=80;i++) printf("%c",205);
do { y=x;
windows.setting(y,2,y+12,2,11,0);
switch(y)
{ case 2 :printf(" SetUp "); break;
case 15:printf(" DC charact "); break;
case 28:printf(" DC and RF "); break;
case 41:printf(" Data Files "); break;
case 54:printf(" Analysis "); break;
case 67:printf(" Exit "); break;
default:break;}
b=bioskey(0);
switch(b)
{ case 19200 : if (x==2) x=67,
else x-=13; break;
- case 19712 : if (x==67) x=2;
else x+=13; break;
default : break;}
if (b==7181) windows.setting(1,4,80,25,11,7),
else windows.setting(y,2,y+12,2,7,0);

Chapter 4 EVOLUTION 70

switch(y)

{ case 2 : if (b==7181) { gettext(4,6,77,22 buffer2);
windows.setting(4,6,77,22,7,0);
setup.show(); geteh();
puttext(4,6,77,22 buffer2);
windows.setting(1,4,80,25,11,7);
break;}

else printf(" SetUp "); break;
case 15:if (b==7181) { init.connectivity(),
acquire.dc_measure(); break;}
else printf(" DC charact"); break;
case 28: if (b==7181) { init.connectivity();
acquire.rf_measure(); break;}
else printf(" DC and RF "); break;
case 41: if (b==7181) { gettext(1,1,80,3,buffer1);
windows.normal();
acquire.datafile(); clrscr();
puttext(1,1,80,3,buffer1);
windows.setting(1,4,80,25,11,7);
break; }
else printf(" Data Files "), break;
case 54: if (b==7181) { printf("\n\n\n\t analysis ********"); break;}
else printf(" Analysis "); break;
case 67: if (b==7181) { windows.normal();
exit(2); }
else printf(" Exit "); break;
default: break;}
} while (1);
return O;

}

Chapter 4 EVOLUTION 71

-

T
Eeeme——e

mw%mmu

e S e S e R, e e e e S e

= =
e

,mmnmmmmmmmmm‘“ S mmw';“—«vmwmmmmmmmw N

Fig. Program main menu display

”vxm'ﬂwm&mmm S

e e
e

Chapter 5 CONCLUSION 72

Chapter 5 CONCLUSION

The software for the mixer characterisation - Data acquisition
and Analysis has been developed with the construction of
interfacing hardware. The software makes the required access to
the hardware devices. It acquires the different signals from the
Mixer Test System and performs all analysis part which is required
for the mixer characterisation.

The interfacing hardware are tested and tuned to the required
performance. The on-line testing has been performed with a
sample mixer. The interfacing hardware has improved the
resolution factor for each measurements on the Mixer Test System
in using the ALS-PC Add On card.

The overall system is integrated and the tuning of the system is
going on. This requires several steps to reach the required
performance. o

With the application of some electronic instruments, the
system can be easily upgraded for complete automation. After this
the entire measurement and analysis process would be completely
automatic.

Chapter 6 BIBLIOGRAPHY 73

Chapter 6 BIBLIOGRAPHY

1. “Object-Oriented Programming in Turbo C++”
by Robert Lafore - Galgotia publications Pvt. Ltd.

2. “Object-Oriented Analysis and Design with Applications”
by Grady Booch - The Benjamin/Cummings Publishing Company,Inc.

3. “Micro computer Interfacing Handbook A/D & D/A”
by Joseph J.carr - TAB Books Inc.

4. “Analog-Digital and Digital-Analog Conversion™
by Bemard Loriferne - Heyden & Son Ltd., London.

5. “Analog-to-Digital / Digital-to-Analog Conversion Techniques”
by David F. Hoeschele, Jr. - John Wiley & Sons, Inc., Newyork.

6. “Analog-Digital Conversion Handbook™
by The Engg. Staff of Analog Devices, Inc. - Prentice Hall.

7. “LINEAR Data Book”
by National Semiconductor Corporation.

8. “INTEL Peripheral Design Handbook - 1980~
by Intel corporation.

9. “MOTOROLA Master Selectioﬁ Guide and Catalog”
by Motorola Semiconductor Products Inc.

10. “INTERFACE IC - Integrated Circuit D.A.T.A. Book”
by Electronic Information Series, D.A.T.A. Inc., New Jersey.

11. “TTL Logic Data Manual 1982”
by Signetics.

; (‘”"’/»

\
”//””r'mum\\

