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Chapter 1

Introduction

In this Chapter, we give a brief introduction to the materialsand experimental methods used

in this thesis.

1.1 Lyotropic liquid crystals

Liquid crystals are phases of materials having features of both the solid and the liquid

phase. There are two types of liquid crystal materials, thermotropic and lyotropic. Ther-

motropic liquid crystals show phase transitions upon change in temperature, whereas ly-

otropic liquid crystals are those that exhibit transitionson changing concentrations of water,

oil, surfactants, or other species. Many materials exhibitboth thermotropic and lyotropic

liquid crystalline transitions, i.e.mesomorphisms[1].

Amphiphilic molecules in water display a variety of lyotropic liquid crystalline

mesophases. Lipid molecules are amphiphilic molecules with hydrophilic and hydrophobic

parts. In this thesis experiments are done using the lipid called DOPC (1,2-dioleoyl-sn-

glycero-3-phosphocholine) (Fig. 1.1 (a)) in water, and water-glycerol mixtures.

In a mixture of lipid/water, the hydrophilic part forms hydrogen bonds with water,

whereas hydrophobic part does not. The hydrogen bond network in the mixture gains entropy

if lipid molecules spontaneously self-assemble in such a way that the hydrophilic part is

hydrated with water and hydrophobic part is shielded [2]. Geometrical constraints imposed

by the aggregate decides the effective shape of molecules (Fig. 1.1 (b)).
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(a) (i) DOPC is a glycero-phospholipid, with PC headgroup and
two hydrocarbon tails made up of oleic acid (18:1). The nomen-
clature represents the number of carbon atoms followed by num-
ber of double bonds (one double bond at the 9-10 positions of
both the sn-1 and sn-2 chain), (ii) Symbolic representation.

(b) Packing parameterP describes the effective shape of molecules in an
aggregate, wherev is the effective chain volume,a is the optimal head-
group area, withl as effective hydrophobic chain length of the molecule
in an aggregate, taken from [2].

Figure 1.1
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Lyotropic mesophases Phase-transition from one lyotropic phase to other can be induced

by varying the hydration level, changing the temperature, changing the degree of unsatura-

tion in the lipid tails, changing the hydrostatic pressure,screening the charge of headgroup

by putting ions in the solvent,etc. [2].

Cylindrical molecules form flat bilayers (which consist of two monlayers, arranged

such that the hydrophobic tails in each monolayer are facingtowards each other). Several

bilayers can self-organize to form 3-dimensional bilayer-stacks, a phase called thelamellar

or smectic-like phase. Lamellar phases are one dimensional “solids” composed of fluid

layers exhibiting quasi-long-range order in the directionorthogonal to the layers [3, 4].

A lipid bilayer is a soft fluid interface. In order to confine the lipid molecules

within the bilayers various forces act inside the bilayer which are studied by thelateral

pressure or stress profile, p(z) (Fig. 1.2). The interfacial tension of a fluid-bilayer interface

is defined asγ = (∂G/∂A)v whereG is the Gibbs excess free energy required to increase the

area of the interface by adding one lipid molecule at constant volume,A is the area of the

interface andv is the volume.

(a)

Figure 1.2: Schematic illustration ofp(z) of a lipid bilayer, revealing regions of expansive (positive)
pressures and regions of large tensile (negative) pressures.

Due to the motion of the lipid molecules in a bilayer, individually, as well as

collectively, the area of a lipid molecule fluctuates from its equilibrium area and costs energy.

The time scales of different motions [2] depend on the type of the lipid molecule andthe

temperature. The spatial rotation of carbon-carbon bonds in the hydrocarbon chains takes

time of the order of ps, rotation of a lipid molecule around its own axis takes a few ns.
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The hydrocarbon chains can wobble or change direction within the bilayer in a time≃ 10

ms. A lipid molecule can diffuse in the plane of the bilayer in≃ 10 ns, and can protrude

out of bilayer plane in≃ 10 ps. It can move from one monolayer to the other monolayer

(flip-flop), in the time scale of hours. Typical values ofγ ≃ 50 mN/m, dL ≃ 3 − 5 nm give

p(z) = (2γ/dL)v ≃ 350 atm [2] within the hydrophobic region.

Lipid aggregates can also undergo internal phase transitions without changing morphol-

ogy. PC headgroup lipids within a lamellar phase undergo different kinds of such phase

transitions. The main transition (or chain-melting phase transition) is associated with two

phases, one in which the lipid chains are more ordered-solid ordered phase,Lβ (gel phase)

and second in which are more disordered-liquid disordered phase,Lα (fluid phase). The

thickness of bilayerdL and area per moleculeaL changes in the main transition.

1.2 DOPC phases: structure and properties

DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) molecules at room temperature form the

Lα phase upon hydration. The Lβ → Lα transition temperature for DOPC is 232.7 K [5] in

water at ambient pressure and is 240to260 K [6] in mixtures ofglycerol/water (Fig. 1.3).

The experiments are done at room temperature≃ 24 °C (well within the Lα phase).

Figure 1.3: Schematic phase diagram of DOPC in glycerol/water mixtures. The phase transitions are
illustrated by dotted lines. The vertical line separates two-phase regions from the Lα and gel phases.
Taken from [6].
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Figure 1.4: Taken from [8].

When aligned/oriented dried lamellar stacks are hydrated, the spacing between bilayers

changes and reaches the maximum value at which hydrostatic equilibrium between all the

forces [7] within the bilayers can be attained. Beyond this hydration, the bilayers peel off and

become free. A phase separation between the fully hydrated bilayers and the excess water

is attained. For two neutral bilayers separated by a distance D (Fig. 1.4) with water spacing

Dw and bilayer thicknessDB the total force per unit area as a function of fluctuating water

thicknessz [8] is given by

P(z) = Pvw(z) + Ph(z) + Pf (z) (1.1)

WherePvw = −(H/6π)[1/z3 + 1/(z+ 2dL)3 − 2/(z+ dL)3)] is the Van der Waals pressure (H

is the Hamakar’s constant),Ph = Ah exp(−z/λh) is the hydration pressure (lambdah is the

decay length of the hydration pressure), andPf = (Af/λf ) exp(−z/λf ) is the fluctuation pres-

sure (lambdaf is the decay length of the fluctuation pressure). Bilayer structural parameters

(Fig. 1.5) at different degrees of hydration are studied by mainly two methods, the osmotic

pressure method and the hydration method, using x-ray or neutron diffraction techniques.

The values forAh = 0.55× 108J/m3 andλh = 2.2Å at 30 °Care reported in [8].
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Figure 1.5: Structural and material parameters of DOPC (fully hydrated multi-lamellar sample), taken
from [8].

DOPC lamellar phase in glycerol/water 91: 9 (w/w) mixture reaches its maximum

swelling at about 50% (w/w) of DOPC [6]. The refractive index of theLα phase composed

of 80% DOPC in a 91: 9% mixture of glycerol and water has been determined as a function

of temperature [6].

1.3 Rhd-DHPE structure and properties

In our experiments we have used a head-group labelled

phospholipid fluorochrome rhodamine-DHPE (lissamine rhodamine B 1,2-dihexadecanoyl-

sn-glycero-3-phosphoethanolamine, triethylammonium salt) (Fig. 1.6) withλabs = 560nm

andλem = 580nm for the peak intensity. The absorbance and the emission fluorescence for

this probe are discussed in [9]. The fluorescence anisotropyof rhodamine-DHPE in phos-

phatidylcholine bilayers has been studied in [10] where it is reported that (i) the dye does

not induce intrinsic curvature in fluid bilayers, and (ii ) in the fluid phase the in-plane diffu-

sion constant of the dye molecules is the same as that of the lipid molecules in which it is

incorporated. The effect of concentration of the probe on fluorescence is studied in [11].

The fluorescence life-timeτf is defined as the mean time a fluorescent molecule

(fluorochrome) spends in the excited state before returningto the ground state. The rota-
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(a) Structure.

(b) Dotted line shows absorption and continuous line shows
emission spectra of the rhodamine probe.

Figure 1.6: rhodamine-DHPE.

tional diffusion timeτrd is the time taken by the fluorochrome to complete one free rotation

around its long axis. Forτrd > τf the emission transition dipole moment can be assumed

to be parallel to the absorption transition dipole moment. Effects of pH, temperature, ionic

strength, viscosity and the presence of dissolved oxygen onfluorescence have also been

studied. The properties of this dye are summarised in Table 1.1.

Table 1.1

λabs(nm) λem(nm) Dtd (m2/s) τf (ns) τrd (ns) Vth (mole/mole)
560 580 10−10 4 10 0.005

7



The amount of probe used in the experiments reported in this thesis is 0.002 mole per mole

of DOPC which is much belowVth (threshold above which dye molecules self aggregate)

[12]. Orientation of this probe in DOPC bilayers [12] has been studied (Fig. 1.7). The

experiments are done at room temperature≃ 24 °C at which the lipid and the dye are in the

fluid phase.

Figure 1.7: Orientation of the fluorescence probe in lipid bilayer, taken from[12].

Figure 1.8: Taken from [13].

Maximum fluorescence anisotropyrmax, fluorescence lifetimeτf , rotational correlational

timeφc, ordinaryno and extra-ordinaryneo refractive indices and order parameterS (for the
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absorption and emission transition dipole moments) of octadecylrhodamine-B/DOPC/water

in theLα phase have been studied [13] at different temperatures (Fig. 1.8).

1.4 Experimental methods

For optical observations we have used (i) unpolarized fluorescence microscopy and (ii ) Flu-

orescence confocal microscopy (FCM) with He-Ne laser line (543 nm), equipped with emis-

sion filter adjusted in the wavelength band for rhodamine dye. The sample is maintained at

room temperature (≃ 24°C).

1.4.1 Fluorescence microscopy

Fluorescence (Fig. 1.9) is a phenomenon in which an electronwhich is typically in the lowest

vibrational level of the ground state absorbs incident light of wavelengthλabsand gets raised

to an excited singlet state [14]. The molecule spends≃ 10−4 s in the excited singlet state

and dissipates some energy rapidly from a higher vibrational state to the lowest vibrational

level within the excited singlet state. If more energy is notdissipated by collisions with

other molecules then the electron returns to the ground state with the emission of energy at

a longer wavelengthλem. Fluorescence probes (also known as fluorochromes or fluorescent

Figure 1.9: Jablonski diagram.

dyes) exhibit this phenomenon. A fluorochrome has two characteristic spectra corresponding

to absorption emission.

9



1.4.2 Fluorescence confocal microscopy

LEICA TCS-SP2 with galvo-scanning mechanism was used [15] in the experiments. A

collimated linearly polarized laser beam (Fig. 1.10) passes through the AOTF-(Acousto-

Optical-Tunable-Filters), excitation pin-hole (illuminating aperture), AOBS (Acousto-

Optical-Beam-Splitters), the scan head, and into the rear ofthe objective lens that focuses

the light on a diffraction limited spot in the specimen (the focal point). Before starting the

experiment it is necessary to configure the AOTF and AOBS depending on the dye used. The

reflected light from focal point passes back through the samelens, followed by the AOBS,

and is focused into the detection pin-hole (PH) in front of the PMT (photo-multiplier tube)

such that the focal point and the pin-hole are in conjugate focus (confocal). The pin-hole

blocks all light except that which emerges from the focal point.

Figure 1.10: Schematic of a point-scanning confocal system in the reflection imaging mode.
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Chapter 2

Materials, calibration and compilation of
experimental observations

There has been much interest in structural and dynamical studies of amphiphilic systems

driven far from equilibrium by strong external perturbations such as shear [1, 2, 3]. In con-

trast, there is not much systematic study on the morphology and dynamics of structures

following a quench from an equilibrium phase. In this Chapter, we compile some broad ex-

perimental results on the dissolution of amphiphiles in contact with excess water and discuss

possible mechanisms which can qualitatively interpret these observations.

2.1 Materials

We have used the following materials in the experiments without further purification: DOPC

(1,2-dioleoyl-sn-glycero-3-phosphocholine) from Sigma, Egg-PC from Sigma, rhodamine

DHPE (lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, tri-

ethylammonium salt) from Molecular Probes, Fluorescent polystyrene beads (200nm,λex =

488nm,λem = 515nm ) from Polysciences. We have used reagent grade glycerol, de-ionized

water (millipore), chloroform and methanol from commercial sources.

2.2 Calibration of the optical system

The degree of spreading (blurring) in the image of a point source is a measure of the quality

of the optical system and is called the point spread function(psf) of the optical device. The
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lateral and axial psf completely specify the response of theconfocal microscope to a point

source (for a given objective, and at a given wavelength of the confocal microscope to a point

source).

2.2.1 Confocal resolution

Two self-luminous points will be seen as two distinct points(Fig. 2.1) only if their psfs are

distinct. According to the Rayleigh criterion there is sufficient contrast between two objects

if the central maximum of the Airy disc of one object lies on the first minimum of the Airy

disc of second object, givingdxy = (0.61λ/NA), where NA is the numerical aperture.

Figure 2.1

Theoretical calculations for confocal resolution [4] withno refractive index mismatch be-

tween the bead and the objective front-lens givedxy = 0.42(λav/NA) anddz = 0.81(λav/(n−
√

n2 − NA2)) for PH = 1 Airy Unit (AU) with λav =
√

2λemλabs/(
√
λem+ λabs), wheren is

refractive-index of the objective immersion medium.

2.2.2 Measuring psf

Ideally, the measurement of the psf should be made under conditions approximating those in

the actual specimen. But injecting the beads into the specimen and then measuring the psf is

difficult. The psf was measured by taking xyt- and xyz-scans of 200nm isolated polystyerene

fluorescent beads (λabs = 488nm,λem = 515nm) settled on the cover-slip in water [5]. We

follow the following procedure :
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• We work with a dilution of 1: 10000 of beads in water, so that the density of the beads

in water is low enough and the Airy pattern of one bead does notoverlap with the

Airy-pattern of the second bead.

• We pipette about 10µl of bead solution into a cover-slip cell (two bare cover-slips of

thickness 0.15mm glued at two parallel edges) and allow the beads to settle down. We

seal the other two open edges of the cell with silicone glue after the solvent fills the

whole cell. After half-an-hour we find many beads stuck to thesurface of the bottom

cover-slip. We have used 40× dry objective with NA= 0.85 to image the sample.

• The two-dimensional image of a point source (Fig. 2.2) isI = I0(2J1(x)/x)4, the

Airy pattern with normalised intensity distribution, where J1 is Bessel function of the

first kind, x = (ak sinθ), a is the radius of aperture,I0 is the peak intensity,θ is the

angle of observation andk = 2π/λ is the wavenumber withλ as the wavelength of

observation. The central lobe of the Airy profile can be approximated as a Gaussian

IG = Ae−(x2/σ2).

• We analyzed the intensity profiles of 10 fluorescence beads. From the Gaussian fit

(Fig. 2.3) we get dx = dy ≃ 0.56µm and dz ≃ 2.56µm, where d is the fwhm of the

Gaussian fit.

Figure 2.2: Each of the images corresponds to the Airy profile at a different depth (z), starting from
the bottom of the bead towards the top. To be seen from top left in rows.

2.2.3 Positional accuracy

Rayleigh criterion considers only the limited NA of the objective to define resolution. Orhaug

[6] , Falconi [7] and Fried [8] showed that the uncertainty indetermining the position of
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(a) Axial psf, 10 pixels= 2µm, intensity in arbi-
trary units (a.u.).

(b) In-plane psf, 30 pixels= 0.92µm

Figure 2.3: Solid line shows the Gaussian fit.

a point source also depends on the signal to noise ratio (SNR= Iav/σ). The positional

uncertainty is defined by [9]

△x =
(σ/Iav)

√

(

∑

k (∆Ik/∆xk)
)2
, (2.1)

whereσ is the root mean square deviation of the noise and has the dimension of intensity,Iav

is the average intensity,I k
n is the normalised intensity atkth point, with N points in the profile.

2.3 Sample preparation

2.3.1 Sample cells

Two types of sample cells are used in the experiments (Fig. 2.4). In the cover-slip sample

cell, two cover-slips (one is sample-coated and the other isbare) are separated by a thin

layer≃ 100µm of silicone glue. In the Pt-wire sample cell, a Pt- wire (length ≃ 10mm,

diameter≃ 250µm) is positioned at the center across a chamber of height≃ 4mm. The

bottom of the chamber is sealed with a glass cover-slip. The gap between the wire and the

bottom cover-slip is≃ 50µm so that observations under an inverted microscope (Olympus

IX70) are facilitated.

Before coating the sample, Pt-wire is carefully cleaned withchloroform/ethanol.

The cover-slips are cleaned in an ultrasonic methanol bath for about 10 minutes and sub-
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Figure 2.4: (a) The cover-slip, and (b) The Pt-wire sample cell, red and blue colors represent the
sample and glue respectively.

sequently rinsed in methanol followed by millipore water. Both cells are dried in nitrogen

stream and kept in vacuum overnight.

2.3.2 Sample coating

Smooth cover-slips are selected after scanning under the AFM [10]. Typical histogram of

surface height variation of bare coverslips has width of distribution ±3.5nm. Sample is

coated (Fig. 2.5) on cover-slips in two ways; using either Hamilton’s syringe or a spin-coater.

Syringe-coating is done by pipetting 4µl of the lipid solution (0.5 mg/ml lipid in chloroform)

and deposited on a dried substrate. In spin-coating [11, 12], lipid solution is pipetted and

deposited centrally onto the dried substrate spun at 4000 rpm (from the beginning because

chloroform in the sample evaporates fast). The coated lipidforms a lipid reservoir which is

subsequently hydrated.

(a) DOPC syringe-coated cover-slip,
image size≃ 1.12 mm.

(b) Egg-Lecithin spin-coated cover-slip, image
width ≃ 364µm.

Figure 2.5: Unpolarized fluorescence image of sample before hydration.
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2.4 Hydration of the sample

In cover-slip sample cells the solvent (water/water-glycerol mixture) is added at one of the

open edges. Hydration takes place due to capillary action. In the Pt-wire sample cell, solvent

is pipetted into the chamber from top. After the Pt-wire is fully immersed in the solvent the

chamber is covered, but not sealed by a cover-slip at the top to prevent evaporation. Sample

cells are then left undisturbed till the completion of the experiment. Syringe-coated cover-

slips upon hydration does lead to the formation of multi-lamellar structures (Fig. 2.6) and

we do not observe similar structures on spin-coated cover-slips upon hydration.

(a) DOPC hydration with glycerol-water
(1: 4) v/v, image size 331µm× 331µm.

(b) DOPC hydration with water,
scale bar= 20µm.

Figure 2.6: Upon contact of solvent with the concentrated surfactant, multi-lamellar structures like
blobs, thick tubules≃ 50µm and vesicles start growing from the lipid reservoir.

2.5 An abrupt instability (the burst)

We have seen that subsequent to the nucleation of multilamellar amphiphilic structures the

system under study initially evolves slowly and multilamellar structures nucleate (Fig.2.7c),

followed by a dramatic and sudden instability (movie 2.5, see the cd inside the back cover).

In unsealed cells a sudden explosive event (burst) occurs after about 20 to 40 minutes of

hydration and debris of the lipid material gets pitched intothe solvent. These lamellar blobs

are attached to the lipid reservoir through thin tethers (Fig. 2.7). The burst occurs at arbi-

trary parts of the reservoir and not everywhere and therefore it is not possible to make any

18



systematic studies of the time elapsed before the burst. In sealed cells, we do not observe the

burst, but we observe structures similar to those seen post-burst in unsealed cells. In sealed

cells, the time gap between hydration and observation of thesample is≃ 30 minutes.

(a) Before burst.

(b) Burst: after about 22 minutes of adding
water.

(c) About 20 minutes post-burst.

Figure 2.7: Scale bar= 20µm.
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2.5.1 Growth of tubules post-burst

The burst leads to growth of new multi-lamellar tubules (MLTs) (Fig. 2.7(c)) with outer

diameter≃ 10µm. Some of these MLTs retract into the reservoir. The growth and retraction

of tubules is discussed in the section 2.6.2. All MLTs retract into the reservoir as the solvent

evaporates (it takes 4 to 5 hours for the solvent to evaporatecompletely). MLTs grow again

upon rehydration, but the growth is not preceded by the burst. Some of the cover-slip sample

cells are sealed immediately after filling the cell with the solvent. In the sealed chambers

post-burst growth and retraction of multi-lamellar structures gets arrested for about a day or

so (movie 2.5.1).

2.6 Post-burst observations

Sealing the sample-cell enables us to image the MLTs using confocal microscopy. These

quasi-static observations reveal the structure of the MLTs(and that of beadsetc.see below).

Using the unsealed sample-cells we make measurements of dynamical phenomena (such as

growth and retraction of tubules, coalescence of beads,etc, movie 2.6).

2.6.1 Structural observations

2.6.1.1 Multi-lamellar tubules

The tubules have a jelly-roll structure with a core, they aremulti-lamellar (Fig. 2.8 and Fig.

2.9).
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Figure 2.8: FCM observation of (a) Giant-unilameller-vesicle (GUV) (b) cross-sectional view of a
tubule showing that the tubules are not unilamellar.

Figure 2.9: Different tubules, fluorescence images.
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MLTs are rooted at defects in the lamellar structure in the lipid reservoir (see confocal

xyz- scans shown in the series of images (Fig. 2.10 and movies2.6.1.1).

Figure 2.10: Each of the constituted images is 51µm × 51µm. Succesive images corespond to in-
creasing z-values.
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The roots of tubules which do not grow (most likely because ofsealing the cell) are also

observed (Fig. 2.11, movie 2.6.1.1).

Figure 2.11: Hemispherical capped structures which have not grown, single image size 21µm×21µm.
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2.6.1.2 Another instability - formation of beads

Some MLTs undergo a further instability. Bead-like structures develop on these MLTs (Fig.

2.12). Dynamical measurements on beads are discussed in section 2.6.2.

(a) Unpolarized fluorescence microscope im-
ages, scale bar= 20µm.

(b) Confocal xyz-scans, at the mid-plane of the beads. Arrows show the
direction of incident beam polarization.

Figure 2.12
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2.6.1.3 Dense multilamellar structures

After a day or two, the sample cell fills up with dense multi-lamellar structures (Fig. 2.13

and movies 2.6.1.3). After 3 days, further optical observations cannot be made.

(a) image 40µm× 10µm.

(b) image≃ 26µm× 13µm. (c) image≃ 26µm× 13µm.

(d) 3rd day, image≃ 750µm× 750µm.

Figure 2.13

2.6.2 Dynamics

We use unsealed sample cells to observe dynamical phenomena. Nucleation of new tubules

continues as long as the solvent does not evaporate. We observe many interesting phenomena
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such as retraction of MLTs into lipid reservoir, formation of bulges due to retraction,etc.

2.6.2.1 Growth and retraction

We track the tip of an appropriately selected tubule and find that growth and retraction

speed of tubules ranges roughly from 1µm/s to about 40µm/s Figs. (2.14 to 2.16 and movie

2.6.2.1).

(a) Scale bar= 20µm.

(b)

Figure 2.14: Growth.
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(a) Scale bar= 20µm. (b) Retraction.

(c) Scale bar= 20µm. (d) Jerky retraction.

Figure 2.15: Retraction.
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(a) Scale bar= 20µm.

(b) Retraction followed by growth. A1: 1st tubule from left, A2 is the enlarged portion of A1.

(c) Fast retraction, B1: 2nd tubule from left. B2 is the magnified portion of B1.

Figure 2.16
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2.6.2.2 Branching and bulging of tubules

Tubules having branches and bulge are observed (Fig. 2.17 and movies 2.6.2.2).

(a) Branching.

(b) Branch to bead.

(c) A significant fraction of tubules form a bulge at the tip.

Figure 2.17: Scale bar= 20µm.
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2.6.2.3 Bead formation

Beads (Fig. 2.18) form on most MLTs, typically near the reservoir. These beads move away

from the reservoir end as the MLT grows. Beads also form between two beads approaching

each other.

Figure 2.18: Scale bar= 20µm.

2.6.2.4 Dispersion of beads into MLTs

Many of the beads shrink gradually and disappear altogether(Fig. 2.19 and movies 2.6.2.4).

Figure 2.19: Scale bar= 20µm.
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2.6.2.5 Coalescence of beads

Some MLTs have multiple beads. These approach each other andcoalesce (Fig. 2.20). Beads

of different size approach each other at different speed; smaller beads move faster towards

larger beads and coalesce. Some larger beads are stationaryand fatten by swallowing up

smaller beads on the same MLT (movies 2.6.2.5). By sealing thesample-cell, coalescence

of beads on the same MLT is not arrested but bead formation from the reservoir end stops.
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(d) ∆d = 18.45 − 0.298t.

Figure 2.20:∆d is the distance between two beads, scale bar= 20µm.
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2.7 Discussion

It is quite clear that the nonequilibrium morphology of the structures discussed, as well as

the dynamics of the process leading to these are very complexand diverse. Because of the

complexity of the observed phenomena it is not possible to precisely state the causes leading

to the burst. However, some general conclusions can be drawnfrom our observations.

It is of interest to note that the stability of the cylindrical tubular structures such as

myelins (over a considerably long period) is not yet fully understood [13]. The terminol-

ogy “myelins” is used somewhat loosely in the literature. Inthis thesis, we use the term

multilamellar tubules to avoid possible confusion. In whatfollows we describe a possible

scenario leading to the burst.

At first lipid molecules self-assemble to form a fluid bilayerstack and attain maximum

swelling over a long time scale [14]. In the much slower next step the maximally swollen

lamellar stack is brought in contact with excess water, so that the lipid film starts to disperse

in water in the form of various structures made up of bilayers(Fig.2.7a). This is followed by

the burst. We note that evaporation of the solvent plays an important role in the initiation of

the burst (Figs.(2.10) and (2.11)). In the language of phaseseparation kinetics, we make a

deep quench across the first-order phase boundary to a phase where swollen lamella coexist

with excess water.

The fact that the instability does not occur in spin-coated samples (which are of uniform

thickness, in contrast to syringe-coated ones) suggests that the tubules emerge from defects

(such as dislocation loops, holes,etc.) on the lamellar stack. Growth of tubules in the lipid

reservoir has been previously reported [15, 16]. The thickness of the lipid film is not uniform

and the lamellar stack has a large number of defects. Thus what we have is essentially a

sample full of defects in the fluid lamellar phase with syringe-coated samples., and not a

well-defined microstructure of uniform thickness. This explains the occurence of instability
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only in syringe-coated samples. That the tubular instability originates from defects on the

lamellar sample is further corroborated by images in the Fig.2.10.

The defects locally enhance permeation, and the excess water can cause local unbinding

of the layers. This leads to a gradient in tension between reservoir-bound and the unbound

parts of the membranes, which in turn causes rapid flow towards the unbound region. These

stresses can be relieved by a tubular instability, althoughthe causes for the burst instability

are different from discussed in [17].

We believe that the beads are also caused by local dynamic change in tension. In Chapter

5, we show that the solvent cores of beads have diameters different from the core-diameters

of the tubues on which they reside. This lends support to the hypothesis that the beads also

have a structure which is teeming with defects, particularly near the neck joining the tubule.

There is a large variation in the relatively rapid linear growth and retraction rates of MLTs

(ranging from 1 to 40µ m/s). These rates depend upon the nature of the MLT, and on the

environment (such as lipid and solvent supply) in the vicinity of the reservoir-end of the

MLT. Coalescence (Fig.2.20) and dispersion (Fig.2.19) of beads is usually a slower process

as compared to the growth and retraction of MLTs. These dynamical phenomena are very

complex (Figs.2.15c and 2.16). In the chapters to follow, our focus is on morphological

studies rather than on the dynamical properties.

In our view, it would be fair to state that the interplay between elasticity, defects and flow

plays a major role in initiating the burst as well as the bead formation instabilities.
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Chapter 3

Modeling FCM images

In this chapter we propose a model to calculate the FCM intensity profile of tubules which

are roughly cylindrical in shape. The simplest tubules havea single core. The model has

four fitting parameters; the inner and outer radii of the tubule, the confocal slice thickness,

and a scaling factor which is related to the lipid density. Weshow that in devising the

model it is essential to account for total internal reflection at the solvent - lamella interfaces,

whereas the birefringence of the lamellar structure can be safely ignored. A straightforward

generalization of this model can be used to analyze the more complicated structures such as

asymmetric tubules, and central sections (the region near the maximum bulge) of beads.

In what follows we set up the model and compare its performance against hypothetical

intensity data which is free of noise. In this process we establish the proper procedure to

analyze experimental data. Real images are of course contaminated with noise. This aspect

(image processing) is discussed in Chapter 4. The method we follow is designed to glean as

much information as possible from FCM images.

To our knowledge detailed FCM studies of the kind reported in this thesis have not been

made.

36



3.1 Fluorescence intensity detected from a voxel

The fluorescence intensity detected per unit confocal volume ID ∝ Ie fV, where Ie is the

total fluorescence intensity of light emitted isotropically from all excited dye molecules per

unit confocal volume, andfV is the fractional confocal volume from which rays enter the

objective.

Let us consider a uniform cylindrical tubule of outer radiusro and core radiusrc with its

axis along ˆx (Figs.3.1).

(a) (b)

Figure 3.1: Sections of a simple (single-core) tubule.

Let l̂, d̂a andd̂e respectively denote the unit vectors parallel to the long axis, absorption

and emission transition dipole moments of the dye molecule.For the dye moleculeŝl = r̂ =

(0, cosθ, sinθ), d̂a andd̂e are in a plane perpendicular to ˆr, as discussed in section 1.3. Thus

the Cartesian molecular frame of reference is ( ˆx, r̂ × x̂, r̂). We define cosφ1 = d̂a · (r̂ × x̂) and

cosφ2 = d̂e · (r̂ × x̂). Thus

d̂a = cosφ1 x̂+ sinφ1 sinθ ŷ− cosθ sinφ1 ẑ, (3.1)

d̂e = cosφ2 x̂+ sinφ2 sinθ ŷ− cosθ sinφ2 ẑ, (3.2)

The incident laser beam is linearly polarized withÊi = cosψ x̂+sinψ ŷ. In our experiments

we use giant unilamellar vesicles (GUVs) to determineÊi (Fig.3.2).
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The probability that an incident photon is absorbed by a dye moleculePa ∝ I0〈(d̂a · Êi)2〉,

where the angular brackets denote the average overφ1 (since all possible orientations of the

dye molecule are equally likely), andI0 is the normalized intensity of the incident beam.

The fluorescence intensity detected isId ∝ Pa fV, wherefV is the fractional confocal volume.

The confocal slice∆z contains a large number of fluorescent molecules. Fig.3.3 shows the

yz-section of the tubule.

In order to obtain the detected intensity we divide∆z into hypothetical blocks of width

equal to the pixel width in thexy-plane and sum the intensities from each of these blocks.

3.1.1 Calculation of fV and ray tracing

We consider a sphere of unit radius centred at P (Fig. 3.4). Inthe absence of any refractive

index mismatch between the objective and the sample,fV =
∫ 2π

0

∫ δmax

0
sinδdδdφ. We need

to modify this to account for the different refractive indices of the cover slip (nc), solvent

(ns), and the lamellar structure (nl). For the sake of simplicity, we consider uniformly spaced

lamellae and assumenl = constant. In addition, we need to account for total internalreflec-

tion at lamella - solvent interfaces. We have written a computer code to computefV based

upon the above considerations (which, although straightforward, are tedious to implement).

In what follows, we discuss the roles of birefringence and total internal reflection in devising

our model.

Figure 3.2: Arrows indicatêEi , Scale bar= 20µm.
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Figure 3.4

3.1.1.1 Refractive index of the lamellar phase

Since the concentration of the dye is small, we can safely ignore the contribution of dye

molecules to the lamellar refractive index. As discussed in[1], ordinary refractive index

of the lamellar phase decreases linearly with increase in the solvent volume fraction. The

ordinary refractive index of DOPC lamellar phasenlo = noφl + nsφs, whereno andns are

respectively the ordinary refractive index of DOPC and the refractive index of the solvent,

andφl andφs stand for the volume fractions of the lipid and solvent. DOPChas positive

birefringence with∆n ≃ 0.026 [2]. The effective refractive indexnl of the lamellar phase
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[3, 4, 5] is
1

n2
l

=
cos2 t

n2
le

+
sin2 t

n2
lo

, (3.3)

wherenlo andnle are respectively the ordinary and extraordinary refractive indices of the

lamellar phase, and cost = Êi · r̂. We discuss the effect of ignoring birefringence in section

3.2.3.

3.1.1.2 Total internal reflection (TIR) at the lamella - solvent interface

Rays incident on both inner as well as outer lamella - solvent interfaces undergo TIR if the

angle of incidence exceeds the critical angleθc. Moreover, a ray can bounce off the inner

interface, undergo refraction at the outer interface and reach the objective. To computefV,

we need to trace the rays emanating from a point P in the lamellar bulk and account for

only those rays which reach the objective. Although essential for the computation offV, ray

tracing is somewhat tedious when TIR is taken into account. The effect of ignoring TIR are

discussed in section 3.2.4. In order to simplify the discussion, we first consider theyz-cross-

section of the tubule atx = 0 (Fig. 3.5), and then consider rays not restricted to theyz- plane.

ΘP

Α

y

z

O

Q

P

Figure 3.5

The unit vector along OP is ˆrP = (0, cosθP, sinθP). The raysR̂PQ emanating from P and

lying in the yz-plane can be represented asR̂PQ = (0, cos(θP + α), sin(θP + α)). The angle
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of incidenceθi is given by the relation cosθi = R̂PQ · n̂Q, wheren̂Q = (0, cosθ, sinθ) is the

unit normal to the interface at Q (which always lies in theyz- plane). The condition for TIR

(θi ≥ θc) can then be tested and the ray- path traced further.

For rays not necessarily lying in theyz- plane,R̂PQ = (cosθ cosφ, cosθ sinφ, sinθ) (note

that these are not the standard spherical polar coordinates, in particular,θ is the complement

of the usual azimuthal angle used in spherical polar coordinates) with 0≤ φ ≤ 2π. As before,

the angle of incidence is defined via cosθi = R̂PQ · n̂Q.

With these considerations in mind, straightforward use of the laws of reflection and refrac-

tion gives us the dependence of the angle of the marginal rayson the position of the point

P. We take successivez- scans with sampling widths∆x,∆y such that we oversample the

object of interest (in this instance, the tubule). Because ofaberration caused by the refractive

index of the medium and the shape (curvature) of the tubule,∆z , dz, furthermore, the shape-

aberration in thexy- plane is less than that alongz [6]. Therefore, in addition torc andro we

include∆z as an additional fitting parameter in our model.

Aberration due to curvature is the least when∆z is centered at thez = 0 plane. For this

reason we use thisz- scan to measure the radii of the tubule. Most objects of interest (simple

tubules, multi-core tubules, beads,etc.) are not cylindrically symmetric. The manner in

which we address the asymmetry is discussed in the section 3.2.1.

3.2 Assessment of the model using hypothetical intensity
profiles

In order to gauge the performance of the model we check it against hypothetical intensity

profiles (Figs. 3.6) which are free of noise. We test the modelfor the (i) effect of birefrin-

gence, and (ii ) effect of total internal reflection (TIR).

In contrast to hypothetical profiles, real images are not cylindrically symmetric, and are

polluted with noise. The analysis of hypothetical intensity profiles allows us to formulate
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Figure 3.6

the standard procedure that we adopt to analyze real intensity data. In what follows we first

discuss the determination of the symmetry axis of the intensity profile, followed by (i) and

(ii ), described above.

3.2.1 Determination of the symmetry axis of a tubule

The images of structures of interest (tubules, beads,etc.) are not rotationally symmetric

about an axis. Shape as well as the density of molecules contribute to the asymmetry in the

intensity profile. In order to optimize the position of the symmetry axis we first notice that

scrutinizing the images obtained by changing the confocal slice thickness∆z gives us rough

estimates of the position of the axis of symmetry as well asrc, ro, and∆z. This initial choice

of the symmetry axis allows us to divide the image into two halves, right (R), and left (L).

Using the initial choices for the symmetry axis and the confocal slice thickness we maximize

the intensity cross-correlation function (overlap function) discussed below.

For the sake of simplicity we first restrict ourselves to the discussion of simple tubules,i.e.

those with a single core. The analysis of the more complicated structures is a straightforward

generalization of the procedure discussed above section 3.3. The intensity cross-correlation

function is defined asφ( j, rc, ro,∆z) =
∑N

k=1 IL( j + k, rc, ro,∆z)IR(k, rc, ro,∆z), where j is the

pixel number corresponding to the initial choice for the symmetry axis, N is the number of

pixels in each half, after padding the profile with pixels with zero intensity so that both halves
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of the intensity profile have the same number of pixels,I is the intensity (the subscripts L and

R stand for folded left half and right half respectively withthe initial choice of the symmetry

axis) . The “symmetry axis” of the intensity profile is then positioned at j = j0 at which

φ( j, rc, ro,∆z) is maximum (Fig. 3.7).
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(b) For asymmetric data.

Figure 3.7: Cross-correlation functionφ( j, rc, ro,∆z).
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Figure 3.8: Folded left (L) (black) and right (R) (red) halves of the hypothetical data with the sym-
metry axis given by maximum of the cross-correlation function.
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To assess the result of cross-correlation, we plot the folded left-half and right half on top

of each other (Fig. 3.8) after finding the symmetry axis. Determination of the symmetry axis

of the structure gives us estimates of the core radiusrc, the outer radiusro, and the confocal

slice thickness∆z. Using these estimates as initial values in the model yieldsthe model

intensity profileIM(i).

3.2.2 Further analysis of the intensity data

We evaluate

χ2(α, rc, ro,∆z) =
N

∑

i=1

[IO(i) − αIM(i, rc, ro,∆z)]
2, (3.4)

whereIO(i) is the observed intensity profile. The best fits (Fig. 3.9) are obtained by mini-

mizing χ2(α, rc, ro,∆z) with respect to the parameters of the modelα, rc, ro, and∆z). In the

analysis of real, noisy data

χ2(α, rc, ro,∆z) =

∑N
i=1(1/σ

2
i )[IO(i) − αIM(i, rc, ro,∆z)]2

∑N
i=1(1/σ

2
i )

, (3.5)

whereσ2
i is the noise variance (see Chapter 4) associated with each pixel.
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Figure 3.9: Hypothetical data (black), best fit model intensity profileIM(i) (red), rc = 10 pixels,
ro = 20 pixels andαL ≃ 173.
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We note that the parameterα is a measure of the density of the fluorescent dye molecules,

which in turn depends upon the lamellar spacing. However,α does depend upon∆z, and it is

not possible to cleanly separate the shape- asymmetry from that due to asymmetry in density

from the observed intensity profiles (although this can be done for the simple hypothetical

intensity profiles discussed here).

3.2.3 Effect of birefringence of dye molecules

For ψ = 0 birefringence has no effect. Fig.3.10 demonstrates that forψ = π/2, the change

in the calculated fluorescence intensity due to birefringence is small. Moreover, ignoring

birefringence does not lead to significant errors in determining rc andro. Thus the effect of

birefringence can be safely ignored.
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(b) ∆z = 10 pixels,rc = 10 pixels,ro = 20 pixels and
α ≃ 29.

Figure 3.10: Best fit considering birefringence (red), without birefringence (blue) with hypothetical
data (black).
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3.2.4 Effect of total internally reflected rays

The rays that undergo total internal reflection (TIR) at the core interface can enter the ob-

jective if these do not undergo TIR again at the cylinder outer solvent-lamella interface.

Figs.3.11 show that the core diameter increases when TIR at the core interface is not taken

into account. Thus it is essential to incorporate the effect of TIR at the interfaces in setting

up the model, particularly for detecting features such as very smallrc.
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Figure 3.11: Best fit considering TIR (red), without TIR (blue) with the hypothetical data (Fig.
3.6(a)). The peak to peak distance for the blue curve is increased by 4 pixels compared to the red
curve.rc = 10 pixels,ro = 20,∆z = 50 pixels andα ≃ 173.
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3.2.5 Effect of changingdz in the model

Fig.3.12 show the effect of changingdz by 20 pixels in the model.
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Figure 3.12: Hypothetical data (black),∆z = 50 pixels (red),∆z = 30 pixels (green) and∆z = 10
pixels (blue) withrc = 10 pixels,ro = 20 pixels andα ≃ 173.
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3.3 Modeling multiple tubules

A multi-lamellar tubule consists ofq number of tubules within and can be modeled as Im =

(

ρ1Im1 + ρ2Im1 + ... + ρqImq

)

where Imk andρk are the intensity and density of lamella for the

kth tubule. We estimateχ2 =
∑N

i = 1 (1/σ2
i )

[(

α1I i
m1 + α2I i

m2 + ... + αqI i
mq

)

− I i
e

]2
/
∑N

i = 1(1/σ
2
i ),

whereσ2
i is the variance [7] of the noise (see Chapter 4). By minimizing theχ2 with respect

to all theαq we getq simultaneous equations inq variables which in matrix form can be

written as;


































x11 x12 · · · x1q

x21 x22 · · · x2q
...

...
...

...

xq1 xq2 · · · xqq
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
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
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
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
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






























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































C1

C2
...

Cq



































where

xjk =

N
∑

i=1

I i
mjI

i
mk

Cj =

N
∑

i=1

I i
eI

i
mj

Solving for q variables gives scaling for theq tubules for minimumχ2. αq is the intensity

scaling of individual tubules such thatαq is a function of (ρq).

3.4 Discussion

We have proposed a simple model to calculate fluorescence intensity profile of a tubule

as observed in the FCM. The nature of the intensity profiles obtained for the hypothetical

data closely resembles the observed intensity data shown inthe Chapter 5. Our model can

successfully detect a core smaller as well as larger thandz. Incident beam is linearly polarized

and fluorescence intensity is collected from all the excitedmolecules with all polarizations.

Confocal volume can change due to birefringence of molecules. We find that the change

in the calculated fluorescence intensity due to birefringence is very small and therfore we

can neglect it for data analysis. It is important to considerrays that are reflected at the core

interface to find the correct intensity profile around the core.
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Chapter 4

Image processing

4.1 Understanding noise in the measurements

Accurate quantitative analysis of image-data requires that we distinguish between the fluo-

rescence intensity (true signal) and the noise inherent to its measurements [1, 2] to the extent

possible. Understanding the nature of this noise also helpsin optimizing image processing

to detect features (such as very small cores) in the observedmulti-lamellar objects, which

would otherwise remain hidden.

Figure 4.1: A uniform tubule with fixedrc andro. The image size is (140× 256) pixels, or 6.4µm×
11.7µm with sampling pixel width∆x = ∆y = 0.046µm.

For simplicity, let us consider a uniform tubule (Fig.4.1).The observed fluorescence in-

tensity I (x, y) at a pixel location (x, y) has contributions from the entire confocal slice of

thicknessdz. I (x, y) shows significant structural variation alongy for a fixedx, in contrast to
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the very small variation alongx for a fixedy. Hence we estimate the common intensity pro-

file 〈I (y)〉 by averaging alongx: 〈I (y)〉 =
∑Nx

j=1 I (xj , y)/Nx, with Nx = 140 in this case. Then

intensity deviation from the mean,IN(x, y) = [I (x, y) − 〈I (y)〉] gives the noise distribution

across the image.

In confocal microscopy, noise contaminating the intensitymeasurement can be classified

into three categories :

(i) Noise with its root-mean-square deviation (r.m.s.) proportional to〈I (y)〉 : The noise

generated in system electronics falls into this class. It isalso called the Johnson,

Nyquist or thermal noise (σt), and originates from thermal random motion of charged

particles within a material. The variance of this noise is proportional to the mean

square fluorescence intensity : (σt)2 ∝ 〈I2(y)〉 [3].

(ii) Noise with r.m.s. proportional to the
√

〈I (y)〉 : Photon counting noise, which arises

from random fluctuations in photon arrival time at the detector, belongs to this class.

It is also referred to as Poisson noise (σp) because the number of photons that arrive

over a fixed period of time (given the mean) follows the Poisson distribution [4]. Pho-

tons associated with the true signal as well as those from thebackround contribute to

this noise. Thus variance of the Poisson noise is proportional to the observed mean

fluorescence intensity :σ2
p ∝ 〈I (y)〉.

(iii) Noise which is independent of the fluorescence intensity : Dark noise (σd) which is

the random signal produced by photosensitive devices such as PMTs, photodiodes, or

CCDs (charge-coupled devices) in the absence of any incident signal falls into this

class. Noise generated in the process of analog-to-digitalconversion in the instrumen-

tation also generates noise with this statistics. The variance of this noise is therefore

independent of the fluorescence intensity;i.e., σd = constant.

We estimate the variance of the fluctuations in fluorescence intensityσ2(y) =
∑Nx

j=1[ I (xj , y)−

〈I (y)〉]2/Nx in the image and perform minimumχ2 fitting to assess the following dependences
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on 〈I (y)〉 separately, namelyσ2(y) = [a〈I (y)〉 + b] andσ2(y) = [c〈I2(y)〉 + d] (Fig.4.2) with

respective minimumχ2 valuesχ2
lin andχ2

sq. The Poissonian noise model appears to fit the

data better asχ2
lin ≃ χ

2
sq/2 (Table4.1), although less dominant contribution fromσt cannot be

ruled out.

σ2(y) = a〈I (y)〉 + b σ2(y) = c〈I2(y)〉 + d
a b χ2

lin c d χ2
sq

2.3× 10−3 1.04× 10−4 2.8× 10−6 7.3× 10−3 1.43× 10−4 5× 10−6

Table 4.1
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(a) Linear fit to noise variance.
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(b) Quadratic fit to noise variance.

Figure 4.2

4.2 Image processing methods

As seen from our noise modeling, for cases in which Poission noise dominates, higher signal-

to-noise-ratio SNR (∝
√

〈I (y)〉) is obtained at high values of fluorescence intensity. High

SNR renders desired positional accuracy with which we can resolve features of interest [5].

We use the following image processing methods to improve SNRwithout smearing the de-

tails of features of interest. For example, one of the brightbands in the image (Fig.4.1) has

a width wy ≃ 36pixels= 1.65µm with peak mean intensity〈I (y)〉 ≃ 0.37 (Fig.4.3(a)) and

σ(y) ≃ 0.007 (Fig.4.3(b)). Thus the peak SNR of this particular feature is〈I (y)〉/σ(y) ≃ 53.
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We have improved the SNR of this feature upto 175 (Fig.4.5a) by using optimum smoothen-

ing. We describe the details of our procedures in the following Section.
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(b) σ(y) vs. 〈I (y)〉.

Figure 4.3

4.2.1 Optimum smoothening

In most, if not all, of our images, we have sampled some of the narrow features with adequate

fineness. With this oversampling in our images we explore thepossibility of smoothening

the images optimally. The justification for this exploration stems from the fact that the ran-

dom fluctuations in the observed intensities are uncorrelated from one pixel to another, and

this implies a statistically uniform spread of noise acrossspatial frequencies, i.e. in Fourier

domain of the data. Thanks to our finer than Nyquist sampling the Fourier components

corresponding to the “signal ” in our images are expected to be confined to lower spatial

frequencies, as the signal features have width larger than spatial sampling interval. Hence,

the noise in the higher spatial frequencies can preferentially be attenuated (without of course

affecting the signal contribution), using suitable spatial frequency filter (low-pass), amount-

ing to smoothening in the image domain. Although one could have increased the sampling

interval after smoothening , we retain the images with theiroriginal sampling which offers

advantage at the model fitting stage. We have used a 1−d Hann filterH2n(qy) = cos2n(πqy/qys)
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for |qy| ≤ qys/2 andH2n(qy) = 0 for |qy| > qys/2 in Fourier domain to smoothen our images

wheren is a positive integer, wherein the smoothening is optimizedfor a particular feature

of interest (e.g. one of the bright bands in the image). This filter response smoothly goes

to 0 at |qy| = qys/2 and beyond.qys defines the extent of the Fourier domain window and

corresponds tomq = (qys/∆qy) spectral points (mq is rounded off to nearest integer). We

restrict our discussion to 1−d variation of the fluorescence intensity alongy at fixedx. Let

ys be the scale of smoothening in the image domain (corresponding toqys) with m= (ys/∆y)

pixels (m is rounded off to nearest integer). For an image havingNy pixels (or data points)

along y, the m and mq are related asmq = (Ny/m). If ∆qy is the sampling width in the

Fourier domain (where∆qy = 1/[Ny∆y]), the window function at discrete values ofqy can

be expressed asH2n(qy = tq∆qy) = cos2n(πtq/mq) for |tq| ≤ mq/2 and 0 otherwise, where

tq ∈ [−(Ny/2), (Ny/2) − 1]. H2(tq) and H4(tq) are shown in Fig.4.4(a) formq = 160. In

the image domain the associated smoothening function ofH4(tq) has lower side-lobe levels

than forH2(tq). This reduces possible “ringing ”effect in the image, however the effective

smoothening scale is relatively larger than forH2(tq) for a givenmq.
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(a) H2(tq) (red) andH4(tq) (black) formq = 160.
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(b) H4(tq) plotted form = dyp/2 (brown),m = dyp

(blue).

Figure 4.4

54



We have usedH4(tq) for Fourier domain windowing to smoothen our data. Withdyp =

dy/∆y as the confocal psf width in pixels alongy, Fig. (4.4(b)) showH4(tq) for m = dyp/2

andm= dyp.

To assess the optimum smoothening scale for a given image or feature, we systematically

vary trial values ofm and examine the resultant SNR, as well as the profile. Fig.4.5ashows

SNR as a function ofm for a selected feature in a sample.
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(b) m = 0.5 dyp (red), raw image (black).
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(c) m = dyp (red), raw image (black).
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(d) m = 1.5 dyp (red), raw image (black).

Figure 4.5
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As we increasem, the SNR initially increases, reaches a maximum, and reduces due to

excess smoothening of the feature. For the data shown in the plot (Fig.4.5a) we find that

the best SNR≃ 175 for m = 1.5dyp. However, at them suggested by maximum SNR, the

smoothening smears the feature more than desired . Hence, atthe expense of (i.e. with

less) SNR we choose conservative smoothening, to retain thefeature shape as intact as pos-

sible. For this purpose, we always compare the raw intensityprofile of the tubule with the

smoothened intensity profile (Fig.4.5 (b)-(d)). As can be seen, the peak (or knee) intensity

of the selected feature starts to come down form > 0.5dyp, and hencem = 0.5dyp would be

considered optimum for this feature, with SNR≃ 130.

We discuss below an image processing method that has the potential to correct for the blur

caused by the microscope optics (during image formation) and the effect of these methods

on the SNR of features of our interest. The results from application of these deconvolution

methods were not used for further modelling etc., for reasons discussed in Section 4.2.2 and

4.3.

4.2.2 Deconvolution

Deconvolution in our context would involve correcting for the blur/spread (noise) caused by

microscope optics in the process of image formation of an object and hence offers a way

of recovering finer details in the images, which are otherwise lost due to available finite

resolution of the measurements. The deconvolution operation requires adequate knowledge

of the response of the measuring system (including optics etc.) which is often specified in

terms of “point spread function” (psf). If a point object denoted byδ(r ) (at r = 0) is imaged,

the observed pattern would be so called psf,i.e., p(r ) (Fig.4.6(a)). In general, for an object

f (r ) the observed image is the convolution of the object with thepsf, i.e.h(r ) = f (r ) ⊗ p(r )

whereh(r ) represents the image formed by microscope optics as a function of the positionr

(Fig.4.6). Givenh(r ) andp(r ), the process of findingf (r ) is calleddeconvolution.
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(a) Microscope image of a point and extended ob-
jects. Taken from [1].

(b) http : //en.wikipedia.org/wiki /Point-spread-
function.⊛ denotes convolution

Figure 4.6

For the image (Fig.4.1) leth(x0, y), f (x0, y) andp(x0, y) respectively represent the 1−d “im-

age” formed by microscope optics (before detection), object (tubule) and the psf as a function

of the positiony at fixedx = x0, with their respective FTs denoted byH(x0,qy), F(x0,qy) and

P(x0,qy). In our case the psf alongy does not depend onx thereforep(x0, y) = p(y) for all x.

We discuss two methods of implementing deconvolution below.

4.2.2.1 Direct deconvolution

Direct deconvolution involves computingF(x0,qy) = [H(x0,qy)/P(qy)]. FT of F(x0,qy)

yields f (x0, y). The difficulties in computingF(x0,qy) are :

(i) The divisionH(x0,qy)/P(qy) cannot be performed blindly without assessing possible

blowing up of noise at Fourier components for whichP(qy)→ 0,

(ii) In reality the detected image is̃h(r ) = h(r ) + η, whereh(r ) = f (r ) ⊗ p(r ) is the

image formed by the microscope optics before it is detected and η is the noise (as

described in the Section 4.1) contributed to the image subsequent to the microscope

optics (Fig.4.7) and therefore has not undergone convolution. In Fourier domain we

haveH̃(q) = H(q) + ηq whereH̃(q), H(q) andηq are respectively the FTs ofh̃(r ),
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h(r ) andη. Thus deconvolution operation amounts to computingH̃(x0,qy)/P(qy) =

0
x( y ),

~
h

0
x( y ),h

η

Microscope

optics Noiseobject

Image

detected

Figure 4.7

[F(x0,qy) + (ηq/P(qy))], and the noiseηq gets amplified even whenP(qy) is not→ 0,

in particular, forP(qy) < 1.

4.2.2.2 Deconvolution using a low pass step-filter

To address some of the difficulties with direct deconvolution, we can use a one-step fil-

ter S(qy) (Fig.4.8) of width 2qc such that we perform the divisioñH(x0,qy)/P(qy) for

q ∈ [−qc,qc]. qc can be determined as follows.S(|qy| < |qc|) = 1 and S(|qy| >

|qc|) = 0. If 〈H̃(qy)〉 is the mean signal of the tubule as a function ofqy andσ(qy) =

q
c− q

c

q
y

q
y( )S

0

1

Figure 4.8: Low pass step-filter.

√

∑Nx
j=1[H̃(xj ,qy) − 〈H̃(qy)〉]2/Nx is the r.m.s. value of noise as a function ofqy, then we

determine the cut-off qc at which P(qc) → (|σmax|/|〈H̃max〉|). In the illustrative exam-

ple (Fig.4.1), we get|〈H̃max〉| ≃ 0.12 (Fig.4.9(a)) and|σmax| ≃ 0.0019 (Fig.4.9(b)) giving

|(σmax|/|〈H̃max〉)| ≃ 0.016. P(qy) obtained from our calculation (described in Section 2.2) is

shown in Fig.4.10. We estimate cut-off tqc = (qc/∆qy) such thatP(tqc) = |(σmax|/|〈H̃max〉|)

which in our case gives|tqc| ≃ 11.
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Figure 4.10: Point spread function in the Fourier domain withdyp ≃ 12 pixels.
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Figure 4.11:|H̃d(tq)| after deconvolution.

The |H̃d(tq)| (after deconvolution) as a function oftq is shown in Fig.4.11.|H̃d(tq)| is high

at |tqc| ≃ 11. This happens because we perform the divisionH̃(x0, tq)/P(tq) upto |tqc|. At |tqc|,

|H̃d(tqc)| is enourmously high. One may opt for a smaller value of cut-off |tqc| (largerP(ttqc)),

or consider conservative windowing rather than the sharp truncation, while still retaining the

same cut-off |tqc|, as described below.
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(a) |H̃od(tq)| after optimum deconvolution.
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(b) |H̃sm(tq)| after optimum smoothening.

Figure 4.12
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4.2.2.3 Optimum deconvolution

Here we use a smooth truncation of intensities in the Fourierdomain instead of sudden

truncation. In optimum deconvolution, in addition to the division byP(qy), we use the Hann

filter (Fig.4.6) as a window function which smoothly goes to 0at |qc| and beyond. We perform

the correction with Hann windowH2n[qc = (tqc∆qy)] = cos2n(πtq/2tqc) andP[qc = (tqc∆qy)]

for tq ∈ [−tqc, tqc]. Fig.4.12 shows|H̃od(tq)| (with optimum deconvolution) and|H̃sm(tq)| (with

optimum smoothening) as a function oftq.

4.3 Discussion

With the image we estimate the noise power (
∫ ∞

0
|σ(qy)|2dqy) as a result of one-step de-

convolution
( ∫ ∞

0
|σd(qy)|2dqy = 3.5 × 10−3

)

, optimum deconvolution
( ∫ ∞

0
|σod(qy)|2dqy) =

1.5× 10−5
)

and optimum smoothening
( ∫ ∞

0
|σsm(qy)|2dqy) ≃ 10−5

)

.

Thus noise power increases as a result of deconvolution. Clearly, for the image shown in

Fig.4.1, where the feature width is (3×) larger than our psf width, it is sufficient to perform

optimum smoothening, as the width estimates are not significantly affected by the blur. We

estimate the blur caused by the convolution operation (microscope imaging). For simplicity

let us assume thath(x0, y) for this feature is a Gaussian functionh(x0, y) = exp(−y2/w2
h). Then

usingh(x0, y) = f (x0, y) ⊗ p(y), we get f (x0, y) = exp[−y2/w2
f ] wherew2

f = (w2
h − w2

p) and

wp = dy. We knowwp = 0.56µm, wh = 1.65µm, which giveswf ≃ 1.6µm. Therefore, if we

do not perform deconvolution for this feature then we make anerror of (wh − wf ) ≃ 0.05µm

in estimating the true width which corresponds to 1 pixel of the image.

For features narrower than that shown in Fig.4.1, the observed width (say after optimum

smoothening) can be significantly affected by the uncorrected blurring. However by using

the relationw2
f = (w2

h − w2
p) we can estimate the true width. Of course, the deconvolution

could provide us refined image that has the potential of revealing features otherwise hidden

due to blurring.
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Chapter 5

Analysis of representative structures

In this chapter we fit the model (Chapter 3) by analyzing the processed image profile (as

discussed in the Chapter 4) of representative observed structures. The simplest observed

structures are simple tubules which have uniform inner and outer radii and small asymmetry.

We also study more complicated asymmetric structures and describe the salient features of

these structures.

5.1 Tubules

5.1.1 Simple tubule

We first consider the simple tubule (Fig. 5.1). We find that thetubule consists of a single

core. The best fit is summarized in the Table 5.1 and shown in the Fig.(5.2). The jump in

intensity at the central pixel is an artifact; the best fits tothe two halves of the intensity profile

yield slightly different values ofα because of asymmetry. Since the best fit assigns only one

value ofα to each region, this jump is inevitable. In principle, it is possible to makeα a

function of the pixel number, but this does not lead to significant qualitative information, as

witnessed by the fits given below.

We have analyzed the image profiles of a large number of tubules. We find that almost all

tubules have a core, with very few tubules with core diameterclose to the resolving limit.

This is unlike the structure of “onions”which have a lamellar structure with singular density

at the core [1]. Some discussions on myellae assume the core radius to be half the layer
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spacing [2]. The tubules that we observe have much longer cores.

Figure 5.1: Confocal xyt-scan of a simple tube at the mid-zplane. The image size is 6.4µm×11.7µm
(140× 256) pixels. Arrows indicate polarization settings for the incident beam.
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(a) q polarization best fit (green).
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(b) ⊥ polarization best fit (green).

Figure 5.2

Table 5.1

Best Fit,∆z = (4.5− 5)µm,

q polarization ⊥ polarization

2rc(µm) 2ro(µm) ro/rc α 2rc(µm) 2ro(µm) ro/rc α

L 3.48 6.87 1.97 0.33 3.75 6.87 1.83 0.12
χ2 2× 10−5 3× 10−6

R 3.48 6.87 1.97 0.36 3.94 6.87 1.74 0.11
χ2 5× 10−5 2× 10−6
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5.1.2 Asymmetric tubules

5.1.2.1 Asymmetric coaxial tubule - I

We now describe the structure of some asymmetric tubules. Asdiscussed in Chapter (3),

these tubules have asymmetry in shape as well as in density. Although the shape and density

asymmetry cannot be fully separated, these can be reasonably characterized in terms of the

sizes (given here in terms of the radii) and the parameterα. The image shown in the Fig.5.3

(movie xyz-scans 5.1.2.1) is that of a tubule which requirestwo distinct values of radii and

α for a proper fit. The parameter values of best fit are summarized in the Table 5.2 where the

different cross-sections of the tubule are denoted by T1, T2 etc. The radii of various regions

are denoted by r1, r2 etc. Fig.(5.4) shows the best fit.

Some comments regarding these fits are in order, apply to all subsequent figures in this

Chapter, and should be borne in mind: (i) we choose the parallel setting of polarization in all

the following figures because we find that this setting is superior to the perpendicular setting

in detecting lamella - solvent interfaces (edge detection). In the parallel polarization (parallel

to the long-axis of the tubules) setting the dipole moment ofdye molecules is predominantly

in the plane of polarization, and (ii ) the reason for the jump in intensity at the central pixel,

as discussed above.

Figure 5.3: Confocal xyt-scan at the mid-z plane. The image size is 11.8µm × 6.87µm (256× 150)
pixels.
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(a) Best fit (green).
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(b) Tubule structure decomposed into regions.

Figure 5.4:q polarization.

Table 5.2

Best Fit,∆z = 5µm

q polarization

2r1(µm) 2r2(µm) r2/r1 α

L T1 0.28 3.07 11 0.53
T2 3.07 5.68 1.85 0.56
χ2 5.6× 10−11

R T1 0.18 3.07 17.1 0.5
T2 3.07 5.68 1.855 0.57
χ2 ∼ 10−10
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5.1.2.2 Asymmetric coaxial tubule - II

For the image shown in the Fig.5.5, best fit requires four values ofα. The best fit is summa-

rized in the Table 5.3 where different cross-sections of the tubule are denoted as T1, T2, etc.

Fig.(5.6) shows the best fit.

Figure 5.5: Confocal xyt-scan at the mid-z plane. The image size is 11.8µm × 4.58µm (256× 100)
pixels.
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(a) Best fit (green).
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(b) Tubule structure decomposed into regions.

Figure 5.6:q polarization.
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Table 5.3

Best Fit,∆z = 5.04µm

q polarization

2r1(µm) 2r2(µm) r2/r1 α

T1 0.18 0.6 3.3 0.027
T2 0.6 2.25 3.75 0.138

L T3 2.25 5.49 2.44 0.278
T4 5.49 7.78 1.42 0.201
χ2 2.3× 10−9

T1 0.18 0.55 3.1 0.038
T2 0.55 2.29 4.16 0.141

R T3 2.29 5.49 2.4 0.261
T4 5.49 7.78 1.42 0.228
χ2 1.7× 10−9

5.1.2.3 Asymmetric coaxial tubules - III

The parameters for the image Fig.(5.7) for the indicated cross-sections are shown in Table

5.4. Figs.(5.8 and 5.9) show the best fit.

Figure 5.7: Confocal xyt-scan at the mid-z plane. The image size is 11.7µm × 11.7µm (512× 512)
pixels.
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(a) Best fit (green).
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(b) Structure of the tubule decomposed into re-
gions.

Figure 5.8:q polarization, cross-section (1).
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(b) Structure of the tubule decomposed into re-
gions.

Figure 5.9:q polarization, cross-section (2).
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Table 5.4

Best Fit,∆z = 5.04µm

q polarization

2r1(µm) 2r2(µm) r2/r1 α

1 L T1 0.1 1.56 15.6 0.13
T2 1.56 3.57 2.3 0.21
χ2 ≃ 10−10

R T1 0.1 1.56 15.6 0.13
T2 1.56 3.66 2.35 0.21
χ2 5× 10−8

T1 0.1 0.73 7.3 0.27
2 L T2 0.73 3.78 5.2 0.26

T3 3.78 6.27 1.66 0.19
χ2 7× 10−10
T1 0.1 0.82 8.2 0.06

R T2 0.82 3.85 4.7 0.25
T3 3.85 6.64 1.73 0.19
χ2 8× 10−10

5.1.2.4 Asymmetric tubule - IV

The tubule depicted in Fig.5.10 ( movie xyz-scans 5.1.2.4) is very asymmetric. The pa-

rameters for the image for the indicated cross-sections aregiven inTable 5.5 where different

cross-sections of the tubule are denoted as T1, T2, etc. Figs.(5.11 to 5.13) show the best fit.
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Figure 5.10: Confocal xyt-scan at the mid-z plane. The image size is 13.5µm × 27µm (256× 512)
pixels.
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(a) Best fit (green).
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(b) Tubule structure decomposed into regions.

Figure 5.11:q polarization, cross-section (1).
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(a) Best fit (green).
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(b) Tubule structure decomposed into regions.

Figure 5.12:q polarization, cross-section (2).
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(a) Best fit (green).
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(b) Tubule structure decomposed into regions.

Figure 5.13:q polarization, cross-section (3).
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Table 5.5

Best Fit,∆z = 5.04µm

q polarization

2r1(µm) 2r2(µm) r2/r1 α

T1 0.84 2.56 3.1 0.07
1 L T2 2.56 5.05 1.97 0.55

χ2 6.5× 10−11
T1 1.05 2.7 2.57 0.08

R T2 2.7 4.84 1.79 0.58
χ2 4× 10−11

T1 1.05 2.73 2.6 0.08
2 L T2 2.73 4.84 1.77 0.61

T3 6.1 7.68 1.26 0.26
χ2 7× 10−11
T1 1.05 2.8 2.67 0.08

R T2 2.8 4.73 1.69 0.63
T3 6.52 7.78 1.19 0.28
χ2 4× 10−11

T1 1.05 2.67 2.54 0.184
T2 2.67 4.94 1.85 0.604

3 L T3 4.94 5.94 1.2 0.278
T4 5.94 7.57 1.27 0.33
χ2 8× 10−11
T1 1.05 2.73 2.6 0.208
T2 2.73 4.9 1.8 0.607

R T3 4.9 5.8 1.18 0.299
T4 5.8 7.36 1.275 0.302
χ2 3× 10−11
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Fig.(5.15) shows the intensity profile of a very asymmetric tubule at the marked cuts in

the Fig. 5.14.

Figure 5.14
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(b) (2).

Figure 5.15:q polarization.

5.2 Beads

As described in (2), beads are prolate-ellipsoidal structures which appear on some tubules.

In what follows, we study four types of archetypal beads. We note that the model developed

in Chapter (3) does not apply to objects having two nonzero principal curvatures such as a

bead. For this reason, we analyze the images in cross-sections which are flat, with some

exceptional cross-sections (see below). The quantitativedata obtained for the exceptional

cross-sections taken at regions which are not flat are not reliable, however, these do provide

important qualitative information.
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We have analyzed several beads, and find that near the neck of beads the inner core of the

tubules is not blocked by lipid material,i.e., the inner core runs continuously through the

tubules and the beads. Beads do not contain structures akin tomulti-lamellar vesicles within

them. However, the core radii of the tubule and the bead are different. Some beads trap the

solvent in significantly large regions near their neck (see Figs. 5.18 and 5.22).

5.2.1 Bead on tubules

5.2.1.1 Bead on a tubule - I

The parameters for the bead shown in the Fig.5.16 ( movie xyz-scans 5.2.1.1) are summarized

in Table 5.6 for the cross-sections shown and Fig.(5.17) shows the best fit.

Figure 5.16: Confocal xyt-scan at the mid-z plane. The image size is 11.8µm× 11.8µm (256× 256)
pixels.
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(a) q polarization, cross-section (1)
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(b) Best fit (green).
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(c) Bead structure decomposed into regions, cross-
section (2).

Figure 5.17:q polarization.
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Table 5.6

Best Fit,∆z = 5.04µm
q polarization

2r1(µm) 2r2(µm) r2/r1 α

1 L 0.46 2.11 4.6 0.25
χ2 3× 10−5
R 0.46 2.11 4.6 0.26
χ2 5× 10−5

2 L T1 3.2 4.4 1.38 0.41
T2 4.4 5.49 1.25 0.33
χ2 8.6× 10−8

R T1 2.93 4.6 1.57 0.38
T2 4.6 5.59 1.225 0.33
χ2 4.5× 10−8

5.2.1.2 Bead on a tubule - II

Parameters for the bead shown in Fig.5.18 ( movie xyz-scans 5.2.1.2) (with labeled cross-

sections) are summarized in Table 5.7. Figs.(5.19) show thebest fit.

Figure 5.18: Confocal xyt-scan at the mid-z plane. The image size is 11.9µm× 11.9µm (512× 512)
pixels.
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(a) Best fit (green) for the tubule cross-section (1).
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(b) Best fit (green).
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(c) Bead structure decomposed into regions, for the
bead cross-section (2).

Figure 5.19:q polarization.
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Table 5.7

Best Fit,∆z = 6.5− 6.7µm(bead),5.4− 5.5µm(tubule)
q polarization

2r1(µm) 2r2(µm) r2/r1 α

1 L 4.19 6.28 1.5 0.21
χ2 6× 10−6
R 4.42 6.28 1.42 0.2
χ2 2× 10−7

2 L T1 5.35 7.56 1.41 0.26
T2 7.56 10 1.32 0.26
χ2 7× 10−9

R T1 5.58 7.56 1.36 0.26
T2 7.56 10 1.325 0.26
χ2 4× 10−9

The intensity profiles for the bead shown in the Fig.5.20 are given in Fig.5.21.

Figure 5.20

79



0 200 400
0

0.11

0.22

pixel ð

I
H

a
.u

.
L

(a) (1).

0 200 400
0

0.11

0.22

pixel ð

I
H

a
.u

.
L

(b) (2).

0 200 400
0

0.1

0.2

pixel ð

I
H

a
.u

.
L

(c) (3).

0 200 400
0

0.1

0.2

pixel ð

I
H

a
.u

.
L

(d) (4).

0 200 400
0

0.09

0.18

pixel ð

I
H

a
.u

.
L

(e) (5).

0 200 400
0

0.08

0.16

pixel ð

I
H

a
.u

.
L

(f) (6).

Figure 5.21:q polarization.
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5.2.1.3 A bead which shows trapped solvent near the neck

Fig.5.22 ( movie xyz-scans 5.2.1.3) depicts a bead where theregion in which the solvent is

trapped is clearly visible. The best fit is summarized in Table 5.8 and shown in the Fig.(5.23).

Figure 5.22: Confocal xyt-scan at the mid-z plane. The image size is 18.1µm× 18.1µm (256× 256)
pixels.
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(a) Best fit (green).

0 100 200
0

0.45

0.9

pixel ð

I
H

a
.u

.
L

(b) Structure of the bead decomposed into regions.

Figure 5.23:q polarization.
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Table 5.8

Best Fit,∆z = 10− 12µm
q polarization

2r1(µm) 2r2(µm) r2/r1 α

L T1 8.64 11.5 1.33 0.6
T2 11.5 14 1.22 0.75
χ2 4.3× 10−10

R T1 8.64 11.5 1.33 0.57
T2 11.5 14 1.225 0.67
χ2 3× 10−10

Figs.(5.25) shows the intensity profile at the marked cuts inthe Fig. 5.24.

Figure 5.24
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Figure 5.25:q polarization.
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5.2.1.4 Bead on an asymmetric tubule

The parameters for Fig.5.26 ( movie xyz-scans 5.2.1.4) are summarized in Table 5.9.

Figs.(5.27 and 5.28) show the best fit.

Figure 5.26: Confocal xyt-scan at the mid-z plane. The image size is 11.8µm× 11.8µm (256× 256)
pixels.
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(a) Best fit (green).
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(b) Tubule structure decomposed into regions, for
the cross-section (1).

Figure 5.27:q polarization.
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(a) Best fit (green).
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(b) Bead structure decomposed into regions, for the
cross-section (2).

Figure 5.28:q polarization.

Table 5.9

Best Fit,∆z = 5.04µm
q polarization

2r1(µm) 2r2(µm) r2/r1 α

1 L T1 0.18 2.25 12.5 0.23
T2 2.25 3.66 1.63 0.17
χ2 2 ∼ 10−10

R T1 0.18 1.37 7.6 0.21
T2 2.29 3.66 1.6 0.22
χ2 2× 10−10

T1 1.65 2.29 1.4 0.068
2 L T2 2.29 8.7 3.8 0.44

χ2 2.4× 10−8
T1 1.65 2.29 1.4 0.08

R T2 2.29 8.7 3.8 0.43
χ2 2× 10−8
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Chapter 6

A phenomenological model for the
stability of simple tubules

6.1 Introduction

Based upon our experimental observations (Chapter 2) and the elasticity theory of smectic-

A liquid crystals (Lα phase of lyotropics, and the thermotropic smectic-A phase have the

same symmetry) we propose a phenomenological model to analyze the stability of simple

cylindrical MLTs with uniform cross-section.

We list the pertinent experimental observations upon whichour analysis is based:

1. After the sample cell is sealed the tubules and beads are stable for over one day (Sec-

tion 2.6.1.3).

2. The tubules are capped at the end (Fig.6.1).

Figure 6.1: The end-cap of an MLT. Double arrow shows the incident laser polarization. Scale
bar= 10µm.
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Figure 6.2: Schematic of the undistortedLα phase, each line represents a bilayer.

3. Tubules emanate from defects in the lipid reservoir (Section 2.6.1.1).

4. Tubules have a broad range ofrc andro (see values in the tables, Chapter 5).

Given the above observations, in particular the long life-time of the structures, it is rea-

sonable to consider these as quasi-equilibrium structures. We can therefore utilize elasticity

theory in order to understand the stability and structure ofMLTs.

Spin-coating spreads the sample much more uniformly than syringe-coating [1, 2].

We have discussed (Section 2.4) that MLTs do not grow if spin-coated samples are hydrated

in excess water. Further, we have seen that MLTs originate from defects on the reservoir.

MLTs are capped. It is therefore possible that the solvent gets trapped in some MLTs from

both ends. The solvent pressures (including the osmotic pressure) inside and outside the

tubule can then be different. We note that the lamellar curvature at inner and outerinterfaces

of MLTs are different. The curvature- stress at the outer interfacero > rc is clearly smaller

than that at the core. The pressure difference across the MLTs can be stabilized by the solvent

trapped within closed regions at the reservoir end. Our analysis must therefore allow for this

possibility as well as the fact that MLTs have widely different core- and outer radii.

In the present treatment we do not address the question as to why the tubules are cylindri-

cal (this is not known), rather, we assume the shape to be cylindrical and find the conditions

for stability.

6.2 Elasticity of lyotropic smectics

Smectic liquid crystals are one dimensional “solids” composed of fluid layers exhibiting

quasi-long-range order in the direction orthogonal to the layers [3, 4]. For small distortions,

the elastic free energy (in Cartesian coordinates) is [3, 4]
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Fel =

∫

[B
2

(

∂zu
)2
+
κ

2
H2 + κG K

]

dxdydz, (6.1)

wherez is the “solid- like” layering direction (Fig.6.2),u(x, y, z) is the layer displacement

field. (B/2)
(

∂zu
)2

is the energy density for compression (or extension) of the layer spacing,

H = (1/2)(1/R1 + 1/R2) is the mean curvature andK = (1/R1R2) is the Gaussian curvature,

with principal radii of curvatureR1 andR2 (Fig.6.3).B is the compression modulus. (κ/2)H2

is the energy density for bending the layers, with bend modulusκ. The Gaussian curvature

term contributes to the energy only if the system under studyhas a boundary, or undergoes

change in topology (number of handles) [5].

Figure 6.3: Principle radii of curvatureR1 andR2 for a surface.

It is convenient to use cylindrical polar coordinates. The elastic free energy in cylindrical

polar coordinates is

Fel =

∫

[B
2

(

∂ru
)2
+
κ

2

(

∂2
r u +

1
r2
∂2
φu +

1
r
∂ru

)2 ]
rdr dφdz (6.2)

where the symbols have their usual meaning and∂r stands for the differential operator d/dr.

For cylindrically symmetric MLTs with uniform cross-section, ∂zu = ∂φu = 0. Thus the

elastic free energy reduces to
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Fel =
B
2

∫

[(

∂ru
)2
+ λ2

(

∂2
r u +

1
r
∂ru

)2 ]
rdr dφdz (6.3)

whereλ2 = κ/B. Note thatB has the dimension of pressure, andλ has the dimension of

length. Although the term with the coefficientλ2 is sub-dominant, it is crucial in stabilizing

cylindrical MLTs (see below).

6.3 Condition for stability

In equilibrium the Euler-Lagrange equationδFel/δu = 0 [6] holds within the bulk of the

lamellar region of the MLT:

2πB
(

(λ − r) u′(r) + r
((

−λ2 − r2
)

u′′(r) + λ2 − r2
(

ru(4)(r) + 2u(3)(r)
)))

r3
= 0, (6.4)

where the order derivatives ofu(r) is denoted by the superscript ofu. The solution to the

Euler-Lagrange equation is given by

u(r) = c1 log(r) + c2λ
2
(

I0

( r
λ

)

− 1
)

+ c3λ
2Y0

(

− ir
λ

)

+ c4, (6.5)

whereIn(x) andYn(x) [7] respectively represent modified Bessel function of the first kind

and Bessel function of the second kind and order n, and the fourconstants of integration are

denoted with the symbolc. The layer displacementu(r) is real. We therefore drop the term

proportional toY0 (−ir /λ) that is pure imaginary.

It now remains to find the constants of integration. In order that the MLT be stable, the

radial elastic stresses at inner and outer interfaces must balance the respective pressures. The

Euler-Lagrange equation has to solved using this stress- balance boundary conditions. Thus

σi = −pi, andσo = −po.

The radial stressσ(r) is extracted by noting that in cylindrical polar coordinates the

Euler-Lagrange equation can be written as (1/r)∂r [rσ(r)] = 0. This yields

σ(r) =
2πB

((

−λ2 − r2
)

u′(r) + λ2r
(

ru(3)(r) + u′′(r)
))

r2
. (6.6)
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Using the stress- balance boundary conditions at the interfaces [6] we obtain

c1 = r i

(

pir2
i

4πBλ2 + 2πBr2
i

+ c2λ

(

λr i I0 (r i/λ)

2λ2 + r2
i

− I1 (r i/λ)

))

, (6.7)

and

c2 =
pir3

i

(

2λ2 + r2
o

)

− por3
o

(

2λ2 + r2
i

)

2πBλ
((

2λ2 + r2
i

)

((

2λ2 + r2
o

)

(r i I1 (r i/λ) − roI1 (ro/λ)) + λr2
oI0 (ro/λ)

)

− λr2
i

(

2λ2 + r2
o

)

I0 (r i/λ)
) .

(6.8)

The constantc3 corresponds to uniform, rigid displacements of the entire MLT, and can

therefore be set to zero by an appropriate choice of the origin of the coordinate system. We

have thus solved the equation of stability (the Euler-Lagrange equation) subject to boundary

conditions stated above.

We choose the dimensionless unit of length as (r i/λ) = 1, and measure pressure in units

of B. For theLα phase under consideration,λ is of the order of a few layer spacings and

B ≃ 10atm. If the inner and outer pressures are zero, both the compression and the stress

is zero throughout the tubule. Fig.6.4 shows the layer compression∂ru(r) as a function of

radial coordinater in the dimensionless units mentioned above.
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Figure 6.4:Po = Pi = 1 atm.ro = 3 andr i = 1 in the units of (r i/λ).

Bilayer compression is a direct measure of change in density.We find that even if the
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inner and outer pressures are equal (1 atm for Fig.6.4), the MLT has varying, non-zero bilayer

compression.

The compressive and curvature- stresses have to balance within the bulk of the MLT for

stability. This is the reason why we need to include the sub-dominant term proportional the

λ2 in the elastic free energy.

Fig.6.5 compares the compression in the above case with one in which the pressure differ-

ence is 0.1 atmosphere. Even in this extreme case we find that the compression, and therefore

the density profile of lamellar material in the MLT does not change significantly.
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Figure 6.5: Red (Pi = 1.1 atm,Po = 1 atm), black (Po = Pi = 1 atm),ro = 3 andr i = 1 in the units
of (r i/λ).

A definitive statement cannot be made as to whether the above analysis assuming equi-

librium applies to MLTs generated via an explosive event. Notwithstanding this, we have

demonstrated that cylindrical morphologies are stable forelastic objects having compression-

and bend elasticity.

92



Bibliography

[1] U. Mennicke and T. Salditt, Langmuir 18, 8172 (2002).

[2] Seul and Sammon, Thin Solid Films 185, 187-305 (1990).

[3] P. G. de-Gennes and J. Prost,The physics of liquid crystals(Oxford University Press,

2nd edition, 1994).

[4] P. M. Chaikin and T. C. Lubensky,Principles of condensed matter physics(Oxford Uni-

versity Press, 1998).

[5] S. Safran,Statistical thermodynamics of Surfaces, Interfaces, and Membranes(West-

view Press, Cambridge, 2003).

[6] L. D. Landau, L. P. Pitaevskii, E.M. Lifshitz and A. M. Kosevich ,Theory of Elasticity

(Pergamon Press, 3rd edition, 1986).

[7] Milton Abramowitz and Irene Stegun,Handbook of Mathematical Functions(Dover,

New York, 1972).

93


