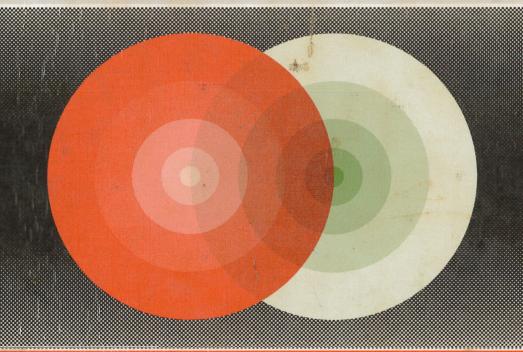
Geometry, Fields and Cosmology

Techniques and Applications

Edited by

B.R. Iyer and C.V. Vishveshwara

Kluwer Academic Publishers



Fundamental Theories of Physics

TABLE OF CONTENTS

	Preface		χV
1.	Geometrical methods for physics $N. Mukunda$		1
1.	Introduction and Scope		1
2.	Sets, Mappings, Equivalence Relations		3
3.	Action of a Group on a Set		5
4.	Algebraic Operations on Vector Spaces		8
4.1.	Dimension, Linear Independence, Basis		8
4.2.	Frames, the Group GL(n,R), Orientation		8
4.3.	Direct Sums and Products of Vector Spaces		10
4.4.	Tensors over \mathcal{V}		11
4.5.	Forms over \mathcal{V}		13
4.6.	Inner Contraction, Simple forms		15
4.7.	<i>n</i> -Forms and Volume Elements for $\mathcal V$		16
4.8.	Introduction of a Metric on \mathcal{V}		17
4.9.	The Duality Operation		19
5.	Topological Spaces		21
5.1.	Open Sets		21
5.2.	Continuity of Maps		22
5.3.	Equivalent Topologies		22
5.4.	Comparing Topologies		23
5.5.	Topology on a Subset		24
5.6.	Basis for a Topology		24
5.7.	Hausdorff, Countability Properties		25
5.8.	Connectedness, Compactness		25
5.9.	Homeomorphisms		26
5.10.	The Case of a Metric		26
5.11.	Composition of Continuous Maps,		
	Homeomorphisms	· ·	27
	-		- 1

6.	Differentiable Manifolds, Smooth Maps,				
	Diffeomorphisms, Smooth Functions and Curves,				
	Pullback of Functions	27			
6.1.	Charts	27			
6.2.	Atlas	27			
6.3.	Manifold of Dimension n	28			
6.4.	Differentiable Manifold of Dimension n	29			
6.5.	Smooth Maps between Manifolds	31			
6.6.	Diffeomorphisms	31			
6.7.	Smooth Real-Valued Functions on a Manifold				
	- An Example	32			
6.8.	The Pull-back of Functions	33			
6.9.	Smooth Parametrised Curves on a Manifold	34			
7.	Tangent, Cotangent and Tensor Spaces at a Point;				
	Smooth Tensor Fields on a Manifold; Orientability	35			
7.1.	Tangent Space at a Point	35			
7.2.	Cotangent Space at a Point	37			
7.3.	Tensor Spaces at a Point	39			
7.4.	Tensor Fields	39			
7.5.	Orientability	41			
7.6.	Commutator of Vector Fields	42			
7.7.	Wedge Product of Fields of Forms	43			
8.	The Tangent Map; Classifying Smooth Maps;				
	Pull-back Extended; Case of Diffeomorphisms	43			
8.1.	The Tangent Map	43			
8.2.	Examples of Tangent Maps	45			
8.3.	Rank of a Smooth Map	46			
8.4.	Classifying Smooth Regular Maps	47			
8.5.	Extending the Pullback	48			
8.6.	Pull-back Versus Differential and Wedge Product	49			
8.7.	The Case of Diffeomorphisms	50			
9.	Intrinsic Differentiation Processes on a				
	Differentiable Manifold	52			
9.1.	The Lie Derivative	53			
9.2.	Relation to a Diffeomorphism	57			
9.3.	Exterior Differentiation	57			
9.4.	Relation Between Pull-back and Exterior Differentiation	61			
9.5.	The Cartan Family Identity and Other Relations Among	61			
	L_X, i_X and d				

	TABLE OF CONTENTS		vii
10.	Covariant Differentiation, Parallel Transport and		
	Affine Connection; Torsion, Curvature; Cartan		(4)
10.1.	Equations, Bianchi Identities; Metric Geometry		63
	Covariant Differentiation - an Affine Connection		64
10.2.	Local Coordinate Description of an Affine Conne	ction	65
10.3.	Parallel Transport		66
10.4.	Integral Curves of a Vector Field, Parallel Transp	ort	
10 5	along a Curve, Geodesics		67
10.5.	The Anholonomic Connection Coefficients		69
10.6.	Torsion and Curvature		72
10.7.	The Cartan Equations of Structure		74
10.8.	Connection to Familiar Notations		75
10.9.	The Bianchi Identities		78
10.10	Introduction of Metric - Riemannian Structure		80
	Metric Compatible Affine Connection		82
	New Interpretation for Geodesics		84
11.	Congruences, submanifolds, foliations, Frobenius'		
	Theorem; closed and exact forms; Poincaré's lemr	na	85
11.1.	Integral curves, congruences of a vector field		85
11.2.	Lie dragging of tensor fields		86
11.3.	Killing vector fields with respect to a metric		88
11.4.	Submanifolds		89
11.5.	Regular submanifolds		90
11.6.	Examples of regular submanifolds		91
11.7.	Integral curves and commutators of vector fields		92
11.8.	Foliations		95
11.9.	Frobenius' Theorem		96
11.10.	Conditions for coordinate-based frames	ų e	99
	Closed and Exact Forms, Simple Forms		100
11.12.	Poincare's Lemma		101
12.	Orientation, Volume forms, Pseudo Riemannian m	etric.	101
-	Hodge duality	200110,	104
12.1.	Defining an <i>n</i> -form		105
	Integral of an n -form		106
	Volume forms		107
	Bringing in a metric		107
	The Hodge duality operation		108
0.0	T ago additty opolation		109

Inner product for forms, duality and the wedge

The Co-differential operator

The Laplacian on forms

112

114

115

12.5.

12.6.

12.7.

12.8.

12.9.	The Hodge decomposition theorem	116
13.	Lie Groups as Differentiable Manifolds	117
13.1.	Left and right translations, conjugation	117
13.2.	Right and left invariant vector fields, commutators,	
	the Lie algebra	118
13.3.	An alternative view of the generators	122
13.4.	Conjugation, the adjoint representation and	
	further relations	123
13.5.	The Maurer-Cartan forms and relations	125
13.6.	The exponential map $\underline{G} \to G$	126
13.7.	Action of a Lie group on a differentiable manifold	127
14.	The Bundle Concept - Fibre, Principal, Associated	
	and Vector Bundles	129
14.1.	The Bundle Concept	130
14.2.	Fibre Bundles	130
14.3.	Sections in a fibre bundle	131
14.4.	Morphisms and Isomorphisms among FB 's	131
14.5.	Pullback of a FB - induced FB	133
14.6.	Subbundle in, restriction of, a FB	134
14.7.	Principal Fibre Bundles	135
14.8.	Transition functions in a PFB	137
14.9.	Constructing a PFB from transition functions	138
14.10.	Equivalent transition functions, trivial PFB	
	and global sections	139
14.11.	Examples of PFB 's - Frame bundles,	
	Lie group coset spaces	140
14.12.	Morphisms and isomorphisms among PFB's	142
14.13.	Pullbacks and restrictions of PFB's	144
14.14.	Associated bundles, vector bundles	144
14.15.	Morphisms and pull backs for AB 's	147
14.16.	Bundles associated to the frame bundle	148
14.17.	Parallelizable manifolds	150
14.18.	Another look at Lie group Coset spaces as PFB 's	151
14.19.	Lifting Lie group action to tangent	
	and cotangent spaces	155
15.	Connections and Curvature on a Principal Fibre Bundle	160
15.1.	Tangent spaces to a PFB - some properties	160
15.2.	Defining a connection on a PFB	163
15.3.	Local descriptions of a connection	166
15.4.	Some useful results from Lie group	
	representation theory	170
15.5.	The Case of FM - Recovering Affine Connections	175

TA	RI	F.	OF	CC	N	PEI	V	TS

ix

15.6.	Parallel transport - horizontal lifts - in a PFB	179
15.7.	Covariant differentiation in the PFB context	184
15.8.	The Curvature two-form and the Cartan Theorem	188
15.9.	The Bianchi identities	195
16.	Integration of differential forms, Stokes' theorem	197
16.1.	Introduction	197
16.2.	Integrating an n -form over M	197
16.3.	Integrating an n -form over a portion of M	198
16.4.	Integrating a 0-form over M ?	199
16.5.	Integrating a one-form $\alpha \in \mathcal{X}^*(M)$	199
16.6.	Case of an exact one-form	200
16.7.	Integrating forms of general degree -	
	basic questions	201
16.8.	Domains of integration and the integral of a form	
	of general degree	201
16.9.	Integrating an exact form-towards Stokes' Theorem	203
16.10.	Stokes' Theorem for exact n-forms	208
16.11.	Regular domains of lower dimensions,	
	Stokes' Theorem for exact forms	211
16.12.	The boundary of a boundary - Cartan's Lemma	213
	A glance at de Rham Cohomology	215
17.	Homotopy and Holonomy	216
17.1.	Introduction	216
17.2.	The components of a topological space	218
17.3.	Paths and path-connectedness	218
17.4.	Operations with paths-homotopic equivalence	219
17.5.	Loops and based loops	222
17.6.	The fundamental (first homotopy) group $\pi_1(X; x_0)$	223
17.7.	Fundamental groups at different points -	
	simple and multiple connectedness	224
17.8.	Path-dependence of isomorphism between π_1 's	227
17.9.	Free homotopy of general loops	229
17.10.	Comparing fundamental groups - homotopy types -	
	contractible spaces	231
17.11.	The higher homotopy groups $\pi_n(X)$ -introduction	234
	Models for the spheres S^n	235
	Definition and properties of n-loops and $\pi_n(X; x_0)$	-237
	$\pi_n(X;x_0)$ is Abelian if $n\geq 2$	238
	Higher homotopy groups at different points	240
	Homotopy properties of Lie groups - preliminaries	245
	Path-connected components of a Lie group	245
	The Lie algebra and the universal covering group	246

17.19.	The fundamental group $\pi_1(G)$, and the second	
	homotopy group $\pi_2(G)$ in the compact case	247
17.20.	Lie group coset spaces, their connectivities	
	and fundamental groups	249
17.21.	The second homotopy group of a coset space -	
	case of compact G	254
17.22.	Path dependence of parallel transport - the holonomy	
	group in a PFB	263
18.	Concluding remarks and some references	267
	References	268
2.	Problems on geometrical methods for physics Ravi Kulkarni	269
	Note to the Reader	269
1.	Manifolds and Smooth Maps	270
2.	Differential Forms	271
3.	Vector-fields and Lie Derivatives	273
4.	Miscellaneous Problems	274
5.	Frobenius' Theorem	275
6.	Connections and Curvature	275
7.	Lie Groups and Lie Algebras	276
8.	Fibre Bundles	277
9.	Supplementary Problems	278
3.	Tetrads, the Newman-Penrose	
	formalism and spinors	289
	S. V. Dhurandhar	
1.	Introduction	289
2.	The Minkowski Space and Lorentz Transformations	290
3.	Tetrads in Curved Spacetimes	293
4.	Directional Derivatives and Ricci Rotation Coefficients	295
5.	Null Tetrads and Spin Coefficients	296
6.	Null Tetrads Geometry and Null Rotations	297
7.	Spin Coefficients and Weyl Scalars	299
8.	The Maxwell Equations in the NP Formalism	301
9.	The Optical Scalars, Propagation of Shadows	303
10.	Spinors	305
11.	Null vectors in terms of the projective coordinates	308
12.	$\mathrm{SL}(2,\mathcal{C})$ Group Transformations	309
13.	Spinor Algebra	311
14.	Connection between tensors and spinors	315
15.	Geometrical Picture of a First Rank Spinor	316

16.	Dyad Formalism	318
17.	The Application of Spin or Algebra to Petrov Classification	319
18.	Spin Structure and Global Considerations	323
19.	Spinor Analysis	325
20.	Spin Dyads and Spin Coefficients	327
21.	Conclusion	330
	References	330
4.	Problems on tetrads, the Newman-Penrose	
	formalism and spinors	331
	Sai Iyer	
1.	Problems	331
2.	Solutions	337
	References	350
5 .	Aspects of quantum field theory	351
	$T.\ Padmanabhan$	
1.	General Introduction	351
2.	The Path Integral	353
2.1.	Introduction	353
2.2.	Amplitudes from 'sum over paths'	353
2.3.	Sum over paths for quadratic actions	356
2.4.	Path integral with external source	363
2.5.	The Euclidean time	366
2.6.	Path Integrals from time slicing	369
2.7.	Kernels and Ground-state expectation values	370
2.8.	Harmonic Oscillators	377
2.9.	Infinite number harmonic ocillators	380
2.10.	Path integrals with Jacobi action	388
2.11.	Rigorous evaluation of the Jacobi path integral	393
3.	The Concept of Fields	396
3.1.	Introduction	396
3.2.	Path integral for a relativistic particle	396
3.3.	Fields and oscillators	398
4.	The Technique of Effective Action	403
4.1.	Introduction	403
4.2.	The concept of effective action	403
4.3.	Renormalisation of the effective lagrangian	412
4.4.	'Running' coupling constants	416
4.5.	Effective action in Electrodynamics	417
4.6.	Effective lagrangian from path integral	425
4.7.	Renormalisation of the effective action	429

5.	Quantum Theory in Curved Space –	
	Selected Examples	431
5.1.	Casimir Effect	431
5.2.	Vacuum fluctuations in the Rindler frame	434
5.3.	Pair creation in electric field and expanding	
	universe	437
5.4.	Quantum theory in a Milne Universe	439
5.5.	Spacetime manifold in singular gauges	442
6.	Quantum field theory methods,	
	Dirac equation and perturbation theory	447
	$Urjit \ Yajnik$	
1.	Lorentz Group and its representations	447
1.1.	SO(3) and $SU(2)$	447
1.2.	Lorentz group	450
2.	The electron and the Dirac equation	453
2.1.	Deducing the Dirac equation	453
2.2.	γ -matrices	457
2.3.	Orthogonality and normalisation	458
2.4.	Quantization	459
2.5.	Physical interpretation	460
3.	Interaction picture and the S-matrix	461
3.1.	Interactions among (otherwise) free particles	461
3.2.	In, out states and the interaction picture	462
3.3.	Evolution operator	464
3.4.	Covariance	467
3.5.	Existence of S	468
4.	Rates and cross-sections from the S-matrix	469
5.	Perturbation expansion and the Feynman rules	
	(example of Yukawa theory)	471
5.1.	Evaluating matrix elements	471
5.2.	Feynman rules	475
	References	478
7.	Relativistic cosmology	479
	J.V.Narlikar	
1.	Large scale structure of the universe	479
1.1.	Distance Scale	479
1.2.	Discrete Sources	480
1.3.	Radiation Backgrounds	480
1.4.	Hubble's Law	481
2.	Models of the universe	483

	TABLE OF CONTENTS	xiii
2.1.	Weyl's Postulate	483
2.2.	The Cosmological Principle	485
2.3.	The Energy Tensor	487
2.4.	The Friedman Models	489
2.5.	The Red Shift, Luminosity Distance and Hubble's Law	491
2.6.	Horizons	494
2.7.	Singularity	496
3.	The early universe	497
3.1.	The Distribution Functions	498
3.2.	The Behaviour of Entropy	500
3.3.	The Decoupling of Neutrinos	501
3.4.	Neutron to Proton Ratio	504
3.5.	The Primordial Nucleosynthesis	506
3.6.	Massive Neutrinos	509
3.7.	The Cosmic Microwave Background Radiation	509
4.	The very early universe	510
4.1.	The Baryon to Photon Ratio	512
4.2.	Some Problems of standard big band	513
4.3.	The Inflationary Universe	516
4.4.	The New Inflationary Model	519
8.	The cosmological constant: A tutorial	525
	Patrick Dasgupta	
1.	Introduction	525
2.	Vacuum and the cosmological constant	527
3.	Energy-momentum tensors in FRW models	528
4.	Hot big-bang model when $\Lambda \neq 0$	532
5.	Virial radius of a spherically collapsing dust-ball	540
6.	The Flatness problem	544
7.	Conclusion	547
	References	547
	Index	549

Geometry, Fields and Cosmology

Techniques and Applications

Edited by

B. R. IYER

Raman Research Institute, Bangalore, India

and

C. V. VISHVESHWARA

Indian Institute of Astrophysics, Bangalore, India

This volume is based on the lectures given at the First Inter-University Graduate School on Gravitation and Cosmology organized by IUCAA, Pune, India. The material offers a firm mathematical foundation for a number of subjects including geometrical methods for physics, quantum field theory methods and relativistic cosmology. It brings together the most basic and widely used techniques of theoretical physics today. A number of specially selected problems with hints and solutions have been added to assist the reader in achieving mastery of the topics.

Audience

The style of the book is pedagogical and should appeal to graduate students and research workers who are beginners in the study of gravitation and cosmology or related subjects such as differential geometry, quantum field theory and the mathematics of physics. This volume is also recommended as a textbook for courses or for self-study.

ISBN 0-7923-4725-0

