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We consider a gas of point particles moving in a one-dimensional channel with a hard-core interparticle
interaction that prevents particle crossings—this is called single-file motion. Starting from equilibrium
initial conditions we observe the motion of a tagged particle. It is well known that if the individual particle
dynamics is diffusive, then the tagged particle motion is subdiffusive, while for ballistic particle dynamics,
the tagged particle motion is diffusive. Here we compute the exact large deviation function for the tagged
particle displacement and show that this is universal, independent of the individual dynamics.
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The motion of particles in narrow channels where the
particles cannot overtake each other is referred to as single-
file motion [see Fig. 1]. This concept was introduced by
Hodgkin and Keynes [1] to describe ion transport in
biological channels. The motion of a tagged particle in
such a single-file system has been of great interest since the
classic papers by Jepsen [2] and Harris [3]. These papers
showed that, in a gas of hard rods evolving with
Hamiltonian dynamics, a tagged particle moves diffusively
[2] with the mean square displacement (MSD) growing
linearly with time t, whereas for a gas of Brownian
particles, the tagged particle shows subdiffusion [3] with
the MSD growing as

ffiffi
t

p
. There has been a revival of

interest in tagged particle diffusion, as several experiments
have been able to show this in both colloidal and atomic
single-file systems [4–9], and some of the theoretical
predictions have been verified.
There have been a number of studies to understand

tagged particle motion in systems with deterministic as well
as stochastic dynamics [10–27]. Attempts have been made
to obtain the full probability density function (PDF) for the
tagged particle displacement. The N-particle propagator
has been obtained using the “reflection principle” [16] and
the Bethe ansatz [18], and from this the tagged particle
distribution has been obtained by integrating out all other
particles. However, the resulting form of the distribution is
complicated and not very illuminating. An approximate
scheme relying on Jepsen’s mapping to noninteracting
particles has been used in [19,22]. A recent work [28]
has used macroscopic fluctuation theory [29] to compute
the cumulant generating function corresponding to the
tagged particle PDF.
In this Letter, we show that it is possible to compute the

exact large time asymptotic form of the PDF of tagged
particle displacement. Our method is applicable to deter-
ministic as well as stochastic systems that are initially in
equilibrium. This leads to a universal form for the PDF.
We consider a collection of hard-point identical particles

distributed with an uniform density ρ on the one-
dimensional line from −∞ to ∞. Each particle moves
independently using the same dynamics, except that the
hard-core repulsion prevents the crossing of particles. We
consider a single-particle propagator of the general form

Gðy; tjx; 0Þ ¼ 1

σt
f

�
y − x
σt

�
; ð1Þ

where fð−wÞ ¼ fðwÞ ≥ 0,
R
∞
−∞ fðwÞdw ¼ 1, and hjy−xji=

σt¼
R∞
−∞ jwjfðwÞdw¼Δ is finite. Using a mapping to the

noninteracting gas picture, we show that the PDF of the
displacement Xt, of the tagged particle, has the large
deviation form

PtagðXt; tj0; 0Þ ∼ e−ρσtIðXt=σtÞ; ð2Þ

where the exact large deviation function is given by

IðzÞ ¼ 2QðzÞ − ½4Q2ðzÞ − z2�1=2; ð3aÞ

with QðzÞ ¼ z
Z

z

0

fðwÞdwþ
Z

∞

z
wfðwÞdw: ð3bÞ

We also compute the exact leading order correction [see
Eqs. (19) and (20)].
We first outline the strategy used in the calculation.

Initially, we consider 2N þ 1 particles, independently and
uniformly distributed in the interval [−L, L]. In the compu-
tation, we assume bothN andL to be large and keep only the

FIG. 1 (color online). A schematic diagram of single-file
motion of particles in a narrow channel where they cannot pass
each other. We study the motion of a single tagged particle (say,
the red colored one).
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terms which survive in the limit N → ∞, L → ∞ while
keeping N=L ¼ ρ fixed. Since during a collision each
particle acts as a reflecting hard wall for the other and the
particles are identical, one can effectively treat the system of
the interacting hard-point particles as noninteracting by
exchanging the identities of the particles emerging from
collisions. In the noninteracting picture, each particle exe-
cutes an independent motion and the particles pass through
each other when they “collide.” The position of each particle
at time t is given independently by the propagator in Eq. (1).
In many physical problems, the propagator is Gaussian,
i.e., fðxÞ ¼ e−x

2=2=
ffiffiffiffiffiffi
2π

p
, where σt is simply the standard

deviation. For example, for Hamiltonian dynamics with
initial velocities chosen independently from Gaussian dis-
tribution with zero mean and variance v̄2, we have σt ¼ v̄t.
On the other hand, for Brownian particles, σt ¼

ffiffiffiffiffiffiffiffi
2Dt

p
,

whereD is the diffusion coefficient. For fractional Brownian
motion, σt ∝ tH, where H is the Hurst exponent. However,
our analysis is valid for a general propagator. Note that the
dependence on time appears only through the characteristic
displacement σt in time t.
The joint probability density of the middle tagged particle

being at x at time t ¼ 0, and at y at time t, can be expressed
in terms of properties of the noninteracting particles. In the
noninteracting picture, there are two possibilities: (i) the
middle particle at time 0 is still the middle particle at time t
and (ii) a second particle has become the middle particle at
time t. We need to sum over these two processes.
To compute the contribution from process (i), we pick

one of the noninteracting particles at random with a density
ρ, multiply by the propagator [Eq. (1)] for the particle to go
from (x, 0) to (y, t), and then multiply by the probability
that it is the middle particle at both t ¼ 0 and t. Thus one
obtains

Pð1Þðx; 0; y; tÞ ¼ ρGðy; tjx; 0ÞF1Nðx; y; tÞ; ð4Þ
where F1Nðx; y; tÞ is the probability that there are an equal
number of particles to the left and the right of x and y at
t ¼ 0 and t, respectively.
To compute the contribution from process (ii), we first

pick two particles at random at time t ¼ 0 and multiply by
the propagators for the particles to go from (x, 0) to (~y, t)
and (~x, 0) to (y, t), respectively. We then multiply by the
probability that there are an equal number of particles on
both sides of x and y at t ¼ 0 and t, respectively. Finally,
integrating with respect to ~x, ~y, we get

Pð2Þðx; 0; y; tÞ

¼ ρ2
Z

∞

−∞
d~x

Z
∞

−∞
d~y

×Gð~y; tjx; 0ÞGðy; tj~x; 0ÞF2Nðx; y; ~x; ~y; tÞ; ð5Þ

where F2Nðx; y; ~x; ~y; tÞ is the probability that there are an
equal number of particles on both sides of x and y at t ¼ 0

and t, respectively, given that there is a particle at ~x at time
t ¼ 0 and a particle at ~y at time t. The exact joint PDF of the
tagged particle is given by

Pðx; 0; y; tÞ ¼ Pð1Þðx; 0; y; tÞ þ Pð2Þðx; 0; y; tÞ: ð6Þ

To proceed further, we need the expressions for F1N and
F2N . Let p−þðx; y; tÞ be the probability that a particle is to
the left of x at t ¼ 0 and to the right of y at time t. Similarly,
we define the other three complementary probabilities.
Clearly,

p−þðx; y; tÞ ¼ ð2LÞ−1
Z

x

−L
dx0

Z
∞

y
dy0Gðy0; tjx0; 0Þ; ð7aÞ

pþ−ðx; y; tÞ ¼ ð2LÞ−1
Z

L

x
dx0

Z
y

−∞
dy0Gðy0; tjx0; 0Þ; ð7bÞ

p−−ðx; y; tÞ ¼ ð2LÞ−1
Z

x

−L
dx0

Z
y

−∞
dy0Gðy0; tjx0; 0Þ; ð7cÞ

pþþðx; y; tÞ ¼ ð2LÞ−1
Z

L

x
dx0

Z
∞

y
dy0Gðy0; tjx0; 0Þ; ð7dÞ

and pþþ þ pþ− þ p−þ þ p−− ¼ 1. In terms of these prob-
abilities, F1N can be expressed as (see the Supplemental
Material [30]),

F1Nðx; y; tÞ ¼
Z

π

−π

dϕ
2π

Z
π

−π

dθ
2π

½Hðx; y; θ;ϕ; tÞ�2N;

where

Hðx; y; θ;ϕ; tÞ ¼ pþþðx; y; tÞeiϕ þ p−−ðx; y; tÞe−iϕ
þ pþ−ðx; y; tÞeiθ þ p−þðx; y; tÞe−iθ: ð8Þ

The angular integrals enforce the condition that the total
number of particles crossing the middle particle from left to
right is the same as the total number from right to left. This
can be seen by explicitly performing the multinomial
expansion above and computing the angular integrals.
Using the fact that 2N is even and the integrand is
unchanged if both θ and ϕ are shifted by π, we can write
F1N in the form

F1Nðx; y; tÞ ¼
Z

π=2

−π=2

dϕ
π

Z
π

−π

dθ
2π

½Hðx; y; θ;ϕ; tÞ�2N: ð9Þ

A similar argument can be used to compute F2N .
However, in this case, one has to keep track of the order
of the positions (x, ~x) and (y, ~y). One finds (see the
Supplemental Material [30])
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F2Nðx; y; ~x; ~y; tÞ ¼
Z

π=2

−π=2

dϕ
π

Z
π

−π

dθ
2π

½Hðx; y; θ;ϕ; tÞ�2N−1

× ψðθ;ϕjx; y; ~x; ~yÞ; ð10Þ

where the extra phase factor is given piecewise by
ψ ¼ e−iϕ, eiϕ, e−iθ, and eiθ for the situations (a) ~x < x
and ~y < y, (b) ~x > x and ~y > y, (c) ~x < x and ~y > y, and
(d) ~x > x and ~y < y, respectively.
Now, substituting the above form of F2N into Eq. (5) and

performing the integration over ~x and ~y, while using
Eq. (1), we get

Pð2Þðx; 0; y; tÞ

¼ ρ2
Z

π=2

−π=2

dϕ
π

Z
π

−π

dθ
2π

½Hðx; y; θ;ϕ; tÞ�2N−1

× ½2A1ðzÞA2ðzÞ cosϕþ A2
1ðzÞe−iθ þ A2

2ðzÞeiθ�; ð11Þ

where z ¼ ðy − xÞ=σt and the functions A1;2ðzÞ are given
by

A1ðzÞ ¼
Z

∞

z
fðwÞdw and A2ðzÞ ¼ 1 − A1ðzÞ: ð12Þ

Now we explicitly compute the expressions for p��
using Eq. (1). Keeping only the dominant terms up to
Oð1=LÞ, which survive in the limit N → ∞, L → ∞ while
keeping N=L ¼ ρ fixed, we get

p−þ ¼ σt
2L

�
−
z
2
þQðzÞ

�
þ � � � ; ð13aÞ

pþ− ¼ σt
2L

�
z
2
þQðzÞ

�
þ � � � ; ð13bÞ

p−− ¼ 1

2
þ σt
2L

�
z̄
2
−QðzÞ

�
þ � � � ; ð13cÞ

pþþ ¼ 1

2
þ σt
2L

�
−
z̄
2
−QðzÞ

�
þ � � � ; ð13dÞ

where z ¼ ðy − xÞ=σt, z̄ ¼ ðyþ xÞ=σt, and the function
QðzÞ is given by Eq. (3b).
To compute H2N for large N, it is useful to express H in

the form

H ¼ 1 − ð1 − cosϕÞðpþþ þ p−−Þ þ i sinϕðpþþ − p−−Þ
− ð1 − cos θÞðpþ− þ p−þÞ þ i sin θðpþ− − p−þÞ:

ð14Þ

Now, substituting p�� in the above expression of H and
keeping only the most dominant terms (for large N), one
finds

H2N ¼ e−2Nð1−cosϕÞe−iρσtz̄ sinϕe−2ρσtQðzÞð1−cos θÞeiρσtz sin θ:
ð15Þ

Thus we have explicitly obtained Pð1Þ, Pð2Þ, and
hence Pðx; 0; y; tÞ, as defined in Eq. (6). Using this we
can finally write down the propagator for the displacement
Xt ¼ y − x of the tagged particle as PtagðXt; tj0; 0Þ ¼R R

δðXt − ½y − x�ÞPðx; 0; y; tÞdxdy. Now, making a
change of variables from x, y to z, z̄, we get

PtagðXt ¼ σtz; tj0; 0Þ

¼ lim
N→∞

Z
∞

−∞

dz̄
2

Z
π=2

−π=2

dϕ
π

Z
π

−π

dθ
2π

ρBðz; θ;ϕÞ

× e−2Nð1−cosϕÞe−iρσt z̄ sinϕe−2ρσtQðzÞð1−cos θÞeiρσtz sin θ;

ð16Þ
where Bðz; θ; ϕÞ ¼ fðzÞ þ ρσt½2A1ðzÞA2ðzÞ cos ϕ þ
A2
1ðzÞe−iθ þ A2

2ðzÞeiθ�. For large N, the major contribution
of the integral over ϕ comes from the region around ϕ ¼ 0.
Therefore, the ϕ integral can be performed by expanding
around ϕ ¼ 0 to make it a Gaussian integral (while
extending the limits to �∞). Subsequently, one can also
perform the Gaussian integral over z̄. This leads to the exact
expression

PtagðXt ¼ σtz; tj0; 0Þ ¼
1

σt

Z
π

−π

dθ
2π

Bðz; θÞ

× e−ρσt½2QðzÞð1−cos θÞ−iz sin θ�; ð17Þ
where

Bðz;θÞ≡Bðz;θ;0Þ
¼ fðzÞ þ ρσt½2A1ðzÞA2ðzÞ þA2

1ðzÞe−iθ þA2
2ðzÞeiθ�:

ð18Þ
Since σt is an increasing function of time, the integral over
θ can be evaluated for large t, using the saddle point
approximation. This gives the large deviation form given
by Eq. (2) with the large deviation function given by

IðzÞ¼2QðzÞð1−cosθ�Þ− izsinθ�; with tanθ� ¼ iz
2QðzÞ:

Eliminating θ� yields the form given by Eq. (3a). The
full asymptotic form of the propagator of the tagged
particle displacement, obtained from the saddle point
approximation, is

PtagðXt ¼ σtz; tj0;0Þ≈
1

σt

ffiffiffiffiffiffiffi
ρσt

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πg2ðzÞ

p g1ðzÞe−ρσtIðzÞ; ð19Þ

where g2ðzÞ ¼ ½4Q2ðzÞ − z2�1=2 has come from performing
the Gaussian integral around the saddle point θ� and
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g1ðzÞ ¼ ðρσtÞ−1Bðz; θ�Þ

¼ 2A1ðzÞA2ðzÞ þ A2
1ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QðzÞ þ z

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QðzÞ − z

p

þ A2
2ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QðzÞ − z

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2QðzÞ þ z

p þOð½ρσt�−1Þ: ð20Þ

Note that the process (i), where—in the noninteracting
picture—the same particle happens to be the middle
particle at both the initial and final times, does not
contribute at this order but to Oð½ρσt�−1Þ in the expression
of g1ðzÞ. In fact, one can systematically obtain the
corrections to the above expression of g1ðzÞ, order by
order. By keeping terms beyond the second order in the
expansion of the argument of the exponential function
around the saddle point θ� in Eq. (17), subsequently
expanding the exponentials of the higher order terms
in the power series and also expanding Bðz; θÞ around
θ� in the power series, the resulting integrals in Eq. (17)
are doable exactly in terms of gamma functions. In the
limit z → 0, we get g1ð0Þ ¼ 1, g2ð0Þ ¼ 2Qð0Þ ¼ Δ, and
IðzÞ ¼ z2=ð2ΔÞ þOðz4Þ. Therefore, in this limit, Eq. (19)
reduces to a Gaussian form with a variance

hX2
t ic ¼

Δσt
ρ

; ð21Þ

which is the so-called Percus relation [12,22]. The correc-
tions to this result can be obtained following a similar
procedure to that explained above [between Eqs. (20) and
(21)]. The Gaussian form is expected to hold near the
central region jXtj ≲Oð ffiffiffiffiffiffiffiffiffi

σt=ρ
p Þ. However, away from this

central region, the Gaussian approximation breaks down
and one needs the complete form given by Eq. (19).
For a Gaussian propagator, we explicitly get

QðzÞ¼e−z
2=2ffiffiffiffiffiffi
2π

p þ z
2
erfðz=

ffiffiffi
2

p
Þ and A1ðzÞ¼

1

2
erfcðz=

ffiffiffi
2

p
Þ:

Using these expressions, in Fig. 2 we plot the (numerically
normalized) large deviation form given by Eq. (2), the
complete form given by Eq. (19), and its Gaussian
approximation, and compare them with numerical simu-
lation results. We note that the large deviation form of the
PDF, given by Eq. (2), really implies the mathematical
equality

IðxÞ ¼ − lim
σt→∞

1

ρσt
lnPtagðXt ¼ xσtÞ:

However, achieving the required large time limit for
comparison with real data is often difficult, and it is
necessary to include the subleading correction. Indeed,
Eq. (19), which includes the correction term, agrees
extremely well with the numerical simulation results.

We note that, for diffusive systems, our result can be
recovered by taking appropriate limits of the corresponding
expressions in [16].
Now, we look at the cumulant generating function of the

tagged particle displacement Xt, defined through

ZðλÞ ¼ heλρXti ¼ eρσtμðλÞ: ð22Þ

Using the large deviation form of PtagðXt; tj0; 0Þ given by
Eq. (2) and then evaluating the integral over z using the
saddle point approximation, we have μðλÞ ¼ λz� − Iðz�Þ,
where z� is implicitly given by the equation λ ¼ I0ðz�Þ.
Using the expression of IðzÞ obtained above in terms of θ�
with the substitution θ� ¼ iB, we can express μðλÞ in the
parametric form

μðλÞ ¼
�
λþ 1 − eB

1þ eB

�
z; ð23aÞ

λ ¼ ð1 − e−BÞ½1þ ðeB − 1ÞA1ðzÞ�; ð23bÞ

e2B ¼ 2QðzÞ þ z
2QðzÞ − z

: ð23cÞ

For the case of the Gaussian propagator with a variance
σ2t , the first three even cumulants can be obtained as

2 1 0 1 2
10 10

10 8

10 6

10 4

10 2

1

z

P
ta

g
X

t
t
z,

t
0,

0

t 10

1

FIG. 2 (color online). The (blue) points represent the simulation
results for the PDF of the displacement of the tagged middle
particle in a gas of 2N þ 1 particles initially distributed uniformly
in a box between [−N, N] with N ¼ 1000. Using the mapping to
the noninteracting picture, each particle is evolved independently
according to the Gaussian propagator with σt ¼ 10 and the
difference in positions of the middle particles at the initial and
final times, respectively, is the displacement of the tagged middle
particle in the interacting particle system. The PDF is computed
using 32 × 109 realizations. The (red) thick dashed line corre-
sponds to the analytic result in Eq. (19), while the (magenta) dot-
dashed line plots the (numerically normalized) large deviation
form given by Eq. (2). The (black) dashed line is the Gaussian
distribution with the variance given by Eq. (24a).
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hX2
t ic ¼

ffiffiffi
2

p

ρ
ffiffiffi
π

p σt; ð24aÞ

hX4
t ic ¼

3
ffiffiffi
2

p ð4 − πÞ
ðρ ffiffiffi

π
p Þ3 σt; ð24bÞ

hX6
t ic ¼

15
ffiffiffi
2

p ð68 − 30π þ 3π2Þ
ðρ ffiffiffi

π
p Þ5 σt: ð24cÞ

Figure 3 compares the above analytic expressions with
the simulation results, for the case where individual
particle motion is diffusive. Note that at large times,
finite size effects kick in and the curves start deviating
from the expected infinite size behavior. The higher
cumulants sense the boundary effects at earlier times than
the lower ones.
In conclusion, we have explicitly computed the exact large

time asymptotic form of the probability distribution of a
tagged particle in a single-file system and have shown that this
is universal. This unifies the treatment of single-file motion of
particles with hardcore interactions, within a general frame-
work, as was also attempted in some earlier work [20,22]. For
the case of Brownian particles, our results have been verified
using macroscopic fluctuation theory [28]. However, our
microscopic approach is more intuitive from a physical point
of view, it is more general, and it directly gives the large
deviation function as well as the important corrections often
required for comparison with real data. The methods of this
Letter can be extended to more general initial conditions.
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FIG. 3 (color online). Points connected by dotted lines are the
simulation results for (a) second, fourth, and (b) sixth cumulants
(scaled) of the displacement of the tagged middle particle in a gas
of 2N þ 1 hard-point diffusing particles (D ¼ 1), initially dis-
tributed uniformly in a box between [−N, N]. The data are for
system sizes N ¼ 250 (red, lowest curve), 500 (blue, middle
curve), and 750 (magenta, upper curve). All cumulants are seen to
approach our theoretical predictions (black dashed lines) with
increasing system size.
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