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We consider the inelastic Maxwell model, which consists of a collection of particles that are characterized
by only their velocities and evolving through binary collisions and external driving. At any instant, a particle is
equally likely to collide with any of the remaining particles. The system evolves in continuous time with mutual
collisions and driving taken to be point processes with rates τ−1

c and τ−1
w , respectively. The mutual collisions

conserve momentum and are inelastic, with a coefficient of restitution r . The velocity change of a particle with
velocity v, due to driving, is taken to be �v = −(1 + rw)v + η, where rw ∈ [−1,1] and η is Gaussian white
noise. For rw ∈ (0,1], this driving mechanism mimics the collision with a randomly moving wall, where rw is
the coefficient of restitution. Another special limit of this driving is the so-called Ornstein-Uhlenbeck process
given by dv

dt
= −�v + η. We show that while the equations for the n-particle velocity distribution functions

(n = 1,2, . . . ) do not close, the joint evolution equations of the variance and the two-particle velocity correlation
functions close. With the exact formula for the variance we find that, for rw �= −1, the system goes to a steady
state. Also we obtain the exact tail of the velocity distribution in the steady state. On the other hand, for rw = −1,
the system does not have a steady state. Similarly, the system goes to a steady state for the Ornstein-Uhlenbeck
driving with � �= 0, whereas for the purely diffusive driving (� = 0), the system does not have a steady state.
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I. INTRODUCTION

A gas of particles undergoing elastic collisions evolves to an
equilibrium state where the single-particle velocity distribution
is Gaussian (Maxwell distribution). For such an isolated
system, the collisions merely distribute energy among the
particles while keeping the total energy constant. In contrast,
if the collisions between particles are inelastic, the system
dissipates energy upon collisions; the change of energy in each
binary collision is given by �E = − 1

2 (1 − r2)[ 1
2m(�v)2],

where r is the coefficient of restitution, m is the mass of the
particles, and �v is the relative velocity along the direction of
the collision. It is indeed possible to go from an inelastic to a
quasielastic system of particles within the same experimental
setup using tunable repulsive interactions [1]. In a system of
inelastic gas starting from a spatially homogeneous state, the
total energy initially decreases according to the famous Haff’s
law [2] with E(t) = E0(1 + t/t∗)−2, where t∗ ∝ (1 − r2)−1.
At long times the particles form high-density clusters [3]
with typical mass growing with time as M ∼ t δ . In this late
time regime, the conservation of momentum dictates that the
energy of the system decreases with time as E(t) ∼ t−δ .
In one dimension, in this late time regime, the inelastic
gas behaves like a perfectly inelastic sticky gas (ballistic
aggregation model), which can be described by the inviscid
Burgers equation [4]. For the sticky gas, scaling arguments
[5] as well as exact calculation [6] gives δ = 2/3. There is
no exact calculation for higher dimensions, and the validity of
scaling arguments as well as the Burgers-like equation is not
clear [7,8].

In order to keep an inelastic gas in a steady state, it is clearly
necessary to inject energy into the system. It has been found
that, if energy injection (heating) into the system takes place
only at the boundaries, then clustering of the particles still
persist in the bulk of the system [9–11], although there is some
evidence of nonclustering for rod-shaped objects [12]. These

studies indicate the need of uniform heating in order to obtain a
spatially homogeneous steady state for regular granular matter.
For such a uniformly driven system of inelastic particles, one
of the most interesting questions is the velocity distribution
in the steady state. Experiments on driven granular systems
have found non-Gaussian velocity distributions [13,14]. The
velocity distribution found in some of the experiments [15–
17] follow the form P (v) ∼ exp(−A|v|α) with α ≈ 1.5. Our
interest in this paper is in the uniformly driven inelastic
granular gas.

In analytical studies based on kinetic theory methods,
one constructs the evolution equation for the single-particle
velocity distribution function (ignoring spatial correlations
for the homogeneous gas). Due to the binary collisions,
the equation for the single-particle distribution depends on
the two-particle distribution, the two-particle distribution
depends on the three-particle distribution, and so on, creating
a hierarchy of equations for the probability distributions,
similar to the BBGKY hierarchy. Usually one circumvents this
problem by invoking the molecular chaos hypothesis, which
assumes that the colliding particles are uncorrelated before
a collision and, hence, factorize the two-particle distribution
into two one-particle distributions, resulting in a closed
(Boltzmann) equation for the single-particle velocity distri-
bution. Modeling the uniform heating by adding a diffusive
term in the Boltzmann equation, van Noije and Ernst [18]
have calculated the steady-state velocity distribution. They
found a stretched exponential tail with α = 1.5 for inelastic
hard sphere gas (where the collision rate is proportional to the
relative velocity of the colliding particles). On the other hand,
the numerical studies by van Zon and McKintosh [19] have
found a continuous spectrum of possible exponents ranging up
to α < 2 rather than a universal exponent α = 1.5. Intrigued by
the differences in the two results, in this paper we investigate
one of the simplest, yet nontrivial, models of inelastic gases,
namely the Maxwell model.
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In the inelastic Maxwell model, introduced by Ben-Naim
and Krapivsky [20], the Boltzmann equation for the single-
particle velocity distribution (assuming product form of two-
point distribution) is further simplified by taking the rate of
collision to be independent of the velocities of the colliding
particles. In this case it was shown [21,22] that, with the
diffusive driving, the steady-state velocity distribution has a
form P (v) ∼ exp(−A|v|), while it becomes Gaussian in the
elastic limit [23]. Recently [24], we studied a discrete time ver-
sion of the inelastic Maxwell model and showed that some
exact results could be obtained without taking recourse to the
molecular chaos hypothesis. In particular, it was observed that
the equations for the variance and the two-particle correlations
of the velocities close within themselves exactly, even though
the equations for the velocity distributions have the usual
hierarchy. From the exact evolution of these equations, we
find that purely diffusive driving is not enough to sustain the
steady state, as it causes the variance and the correlations to
increase linearly with time. This simply follows from the fact
that the total momentum of the system also diffuses. As a
result, the assumption of “molecular chaos” is invalid. We
then showed that this problem has a physically motivated
resolution—namely by introducing a different scheme of
driving. Wall collisions of vibrated particles do not conserve
total momentum and, is the typical way of driving in real
systems—we incorporate this into the driving forces and
studied the resulting steady state. Importantly, we were also
able to obtain the exact tails for the velocity distributions in
the steady state.

In this paper, we extend the results of discrete time
dynamics to a system evolving in continuous time. For the case
of continuous time dynamics, we again illustrate that the evo-
lution equations for the variance and the two-point correlations
form a closed set, even though the equations for the distribution
functions themselves do not close. An exact mapping to the
discrete model enables us to obtain the high-energy tail of the
velocity distribution for the continuous time model. We also
find that the Ornstein-Uhlenbeck driving is a special case of our
model. This makes it possible to obtain the exact tail behavior
of the velocity distribution in a steady state when driven by
an Ornstein-Uhlenbeck process. Thus our work compliments
the previous studies [25–27] where the probability density
function (PDF) of the velocity is calculated as a series ex-
pansion around the Maxwellian. The exact coupled equations,
for the variance and correlation, permits one to predict the
existence of steady states in different parameter regimes of
the system. In particular, we show the absence of a steady
state for a continuous time system driven by purely diffusive
driving, which is a special case of the Ornstein-Uhlenbeck
process.

The continuous time model, introduced here has another
significance in connection with real systems. In experimental
studies of driven granular systems, the driving is caused by
the collisions of the particles with the vibrating walls of
the container. Like interparticle collisions, the wall collisions
also occur as a point process in time, with finite change in
particle velocities. In contrast, the typical analytical models
employ continuous driving schemes like diffusive or Ornstein-
Uhlenbeck processes. We propose that the model that is
introduced here is a better scheme of driving in the sense

that the driving is taken to be a point process in time with a
rate associated with it.

The rest of the paper is organized as follows. We first
define the rules for the inelastic collision between a pair of
particles as well as the driving mechanism in Sec. II. Next,
in Sec. III, we discuss the Maxwell gas with continuous
time dynamics with both collision and driving occurring as
Poisson processes. We find an exact formula for the coupled
evolution for the variance and the two-particle correlation
function. We also obtain the exact tail of the steady-state
velocity distribution in the thermodynamic limit of large
number of particles. We point out the correspondence between
this continuous time model and the discrete model discussed
in Appendix A. In Sec. IV, we take a particular limit of the
driving parameters to obtain the Ornstein-Uhlenbeck process.
The absence of steady state for a system with diffusive
driving is easily obtained from the evolution equations. Finally,
we conclude in Sec. V. The Maxwell model evolving with
discrete dynamics and some of the details are given in the
Appendix.

II. COLLISION RULE AND DRIVING MECHANISM

For simplicity, we assume the velocities of the particles
to be single component (one dimensional). In the inelastic
collisions between two particles (say, i and j ), their velocities
are modified from (v∗

i ,v
∗
j ) to (vi,vj ) according to (vi − vj ) =

−r(v∗
i − v∗

j ) while keeping the total momentum unchanged
vi + vj = v∗

i + v∗
j , where r is the coefficient of restitution and

we have set the masses of the particles to unity. Combining the
above two rules, one gets the postcollision velocities in terms
of the precollision velocities as

vi = (1 − r)

2
v∗

i + (1 + r)

2
v∗

j , (1a)

vj = (1 + r)

2
v∗

i + (1 − r)

2
v∗

j . (1b)

Our model of driving is inspired by the collision of particles
with a vibrating wall, where the postcollision velocity vi of a
particle is related to its precollision velocity v∗

i by (vi − Vw) =
−rw(v∗

i − V ∗
w), with rw being the coefficient of restitution

between the wall and particle collision. However, the velocity
of a massive wall remains unchanged during a collision,
V ∗

w = Vw. Therefore, one has vi = −rwv∗
i + (1 + rw)Vw. One

can further assume that the velocity of the wall in each collision
is an uncorrelated random variable. Therefore, in our model
of driving, the velocity of a particle is modified according
to

vi = −rwv∗
i + η, (2)

where η is a Gaussian random variable with zero mean and
variance σ 2, drawn independently at each time.

For physical collisions, the coefficients of restitution
{r,rw} ∈ [0,1], where {r,rw} = 1 corresponds to the elastic
collision, whereas {r,rw} = 0 corresponds to the sticky colli-
sion. However, it is important to note that, as a mathematical
model of a driven dissipative system, Eqs. (1) and (2) are well
defined over the entire range {r,rw} ∈ [−1,1]. Therefore, we
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investigate this model over this entire range and treat rw and
σ as independent parameters.

III. THE MAXWELL MODEL

The model consists of a set of N identical particles
characterized by only their one-component velocities vi , with
i = 1,2, . . . ,N . The initial velocities are taken independently
from a Gaussian distribution. There is no spatial structure in
the model. The system evolves in continuous time and we
consider both the interparticle collisions and the driving to be
uncorrelated random processes in time (see Appendix A for
the model with discrete time dynamics). We let the particles
of each pair collide at a rate gτ−1

c , according the the collision
rule given by Eq. (1). On the other hand, each particle is driven
at a rate gτ−1

w , according to the driving mechanism given by
Eq. (2).

Let us define a set of distribution functions for the system,

F1(u1,t) ≡
N∑

i=1

〈δ(u1 − vi(t))〉, (3a)

F2(u1,u2,t) ≡
N∑

i=1

N∑
j �=i

〈δ(u1 − vi(t))δ(u2 − vj (t))〉, (3b)

F3(u1,u2,u3,t) ≡
N∑

i=1

N∑
j �=i

N∑
k �=i,j

〈δ(u1 − vi(t))δ(u2 − vj (t))

× δ(u3 − vk(t))〉, (3c)

and so on. The evolution equations of the above distributions
form a hierarchy, and the first two such equations are given by

∂

∂t
F1(v1,t) = gτ−1

c

[∫
dv2T (v1,v2)F2(v1,v2,t)

]
+ gτ−1

w

[∫
dv∗

1F1(v∗
1 ,t)〈δ(v1 − [−rwv∗

1 + η1])〉η1 − F1(v1,t)

]
, (4a)

∂

∂t
F2(v1,v2,t) = gτ−1

c

[
T (v1,v2)F2(v1,v2,t) +

∫
dv3[T (v1,v3) + T (v2,v3)]F3(v1,v2,v3,t)

]
+ gτ−1

w

[∫
dv∗

1F2(v∗
1 ,v2,t)〈δ(v1 − [−rwv∗

1 + η1])〉η1

+
∫

dv∗
2F2(v1,v

∗
2 ,t)〈δ(v2 − [−rwv∗

2 + η2])〉η2 − 2F2(v1,v2,t)

]
. (4b)

The first square bracket in the right-hand side of Eqs. (4a) and
(4b) gives the contribution from the interparticle collisions,
with T (vi,vj ) defined as T (vi,vj )S(vi,vj ) = r−1S(v∗

i ,v
∗
j ) −

S(vi,vj ). The operator T acts only on the two variables
designated by the arguments of the operator. The second set
of square brackets in Eqs. (4a) and (4b) are the contribution
from the driving, where the angular brackets refer to the
averaging over the noise distribution. Various approximation
schemes have been used in the past to break the hierarchy
of similar equations [27,28]. In the following, we show
that exact closed set of coupled equations can be obtained
for the variance and the two-particle correlation function,
whose solution, in turn, can be used to close the hierarchy
for the single-particle distribution function in the N → ∞
limit.

The variance and the two-particle correlation func-
tion can be obtained using the above-defined distributions
as


1(t) = 1

N

∫
dv1v

2
1F1(v1,t), (5a)


2(t) = 1

N (N − 1)

∫
dv1dv2v1v2F2(v1,v2,t). (5b)

Now, multiplying Eq. (4a) by v2
1 and then integrating

over v1 and multiplying Eq. (4b) by v1v2 and integrating
over both v1 and v2 yields a closed set of equations for

X(t) = [
1(t),
2(t)]T , given by

dX(t)

dt
= g[RX(t) + C], (6)

where

R =
⎡⎣−{ (1−r2)(N−1)

2τc
+ 1−r2

w

τw

} (1−r2)(N−1)
2τc

(1−r2)
2τc

−{ (1−r2)
2τc

+ 2(1+rw)
τw

}
⎤⎦ (7)

and C = [τ−1
w σ 2,0]T . Note that Eq. (6) is exact and no

approximation is made in arriving at it from Eq. (4).
Now, in the Maxwell model with the collision rates propor-

tional to the typical velocity [29], one uses g = 

1/2
1 . However,

it makes Eq. (6) nonlinear, and hence, the analysis becomes dif-
ficult. On the other hand, it is clear from both Eq. (4) and Eq. (6)
that the steady-state properties are independent of the choice of
g. Therefore, we set g = 1 as in Ref. [20], which makes Eq. (6)
linear. This would, of course, change the time-dependent
properties. For example, in the absence of the driving (σ = 0),
the two cases, g = 


1/2
1 and g = 1, yield different cooling

laws, as discussed in Appendix B and shown in Fig. 1.
In the presence of the driving (σ �= 0), one again expects

the approach to the steady state to differ for the two
choices of g. We analyze Eq. (6) for the particular choice
of g = 1. In this case, the linear equation can be exactly
solved. The variance and the two-particle correlation are given
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FIG. 1. (Color online) The variance 
1(t) and the two-particle
correlation 
2(t) of the velocities for a cooling inelastic gas with
1000 particles with r = 1/2 in the absence of the driving (static
walls) for the two cases: (a) The rate of collision is independent of
the variance g = 1 and (b) the rate of collision is proportional to the
variance g = 


1/2
1 (t). For g = 1, the lines plot the exact analytical

expressions given by Eq. (B1). For g = 

1/2
1 (t), the lines plot the

approximate expressions given by Eqs. (B5) and (B6), while the
points are obtained by exact numerical evaluation of the equation
Eq. (B3).

by


1(t) = 
1(0)

λ+ − λ−
[(R22 − λ−)e−λ−t + (λ+ − R22) e−λ+t ]

+ τ−1
w σ 2

λ+ − λ−

[
R22 − λ−

λ−
(1 − e−λ−t )

+ λ+ − R22

λ+
(1 − e−λ+t )

]
, and (8a)


2(t) = 
1(0)R21

λ+ − λ−
[e−λ−t − e−λ+t ]

+ τ−1
w σ 2R21

λ+ − λ−

[
1

λ−
(1 − e−λ−t ) − 1

λ+
(1 − e−λ+t )

]
,

(8b)

respectively, where −λ± are the eigenvalues of R, given by
Eq. (B2), and Rij = |Rij |.

Now, for the case rw = −1, one of the eigenvalues of R
becomes zero (λ− = 0), while the other is negative (λ+ =
R11 + R22 > 0). For these particular values of λ±, the above
expressions become


1(t) = 
1(0)

λ+
[R22 + R11 e−λ+t ] + σ 2

τw

R11

λ2+
[1 − e−λ+t ]

+ σ 2

τw

R22

λ+
t, (9a)


2(t) = 
1(0)R21

λ+
[1 − e−λ+t ] − σ 2

τw

R21

λ2+
[1 − e−λ+t ]

+ σ 2

τw

R21

λ+
t. (9b)

Thus, both 
1(t), and 
2(t) eventually increase linearly
with time and the system does not have a steady state for
rw = −1 when the driving is present (σ �= 0), which is shown
in Fig. 2.

On the other hand, for −1 < rw � 1, since both the
eigenvalues of R are negative (λ± > 0) (see Appendix B), the
system reaches a steady state as shown in Fig. 3. The steady
state values of 
1 and 
2 can be obtained by either taking
the limit of t → ∞ in Eq. (8) or by setting the left-hand side
of Eq. (6) to zero. From the latter, it is clear that the steady-
state values are independent of the choice of g. We denote
the steady-state values of the variance and the two-particle
correlation by 
ss

1 and 
ss
2 , respectively, and they are given by


ss
1 = σ 2[(1 − r2) + 4(1 + rw)(τc/τw)](

1 − r2
w

)
(1 − r2) + 2(1 + rw)

[
(1 − r2)(N − 1) + 2

(
1 − r2

w

)
(τc/τw)

] , (10a)


ss
2 = σ 2(1 − r2)(

1 − r2
w

)
(1 − r2) + 2(1 + rw)

[
(1 − r2)(N − 1) + 2

(
1 − r2

w

)
(τc/τw)

] . (10b)

We now analyze the above expressions for various relative
rates τc/τw. Let us take τc/τw ∼ Nξ for large N , where ξ

is a real number. From Eq. (10), we observe that for ξ < 0,
both 
ss

1 and 
ss
2 vanish as O(1/N) for large N . Similarly,

for 0 < ξ < 1, they again vanish as 
ss
1 ∼ O(1/N1−ξ ) and


ss
2 ∼ O(1/N ) for large N . Only for ξ � 1 do we get a nonzero

steady-state variance for large N , given by


ss
1 = 2σ 2(τc/τw)

N (1 − r2) + 2
(
1 − r2

w

)
(τc/τw)

, (11)

whereas the two-particle correlation function vanishes as

ss

2 ∼ O(1/Nξ ).
Due to the mean-field nature of the problem, it is reasonable

to assume that the rate, τ−1
c , of interparticle collisions is

inversely proportional to the total number of pairs [τc ∝
N (N − 1)/2] whereas the rate, τ−1

w , of driving is inversely
proportional to the total number of particles (τw ∝ N ). This
is analogous to taking the coupling constant proportional
to 1/N in infinite-ranged spin models. Indeed, if we set
τc/τw = γ (N − 1), then Eq. (10) becomes identical to those
obtained for the discrete time dynamics [see Eq. (A4)]. In
particular, in the limit N → ∞, the steady-state variance
becomes independent of N ,


ss
1 = 2γ σ 2

(1 − r2) + 2γ
(
1 − r2

w

) . (12)

Moreover, since the two-particle correlation function vanishes
in the limit of large N , we can factorize the multiparticle
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FIG. 2. (Color online) The variance 
1(t) and the two-particle
correlation 
2(t) of the velocities, for an inelastic gas with 1000
particles with r = 1/2 driven by wall collisions with σ = 1 and rw =
−1 for the two cases: (a) The rate of collision is independent of the
variance g = 1 and (b) the rate of collision is proportional to the
variance g = 


1/2
1 (t). For g = 1, the lines plot the exact analytical

expressions given by Eq. (9). For g = 

1/2
1 (t), the points are obtained

by exact numerical evaluation of the equation Eq. (6).

distribution functions in terms of the single-particle distri-
bution function in Eq. (4), e.g., F2(v1,v2) = F1(v1)F1(v2).
Therefore, in the steady state [the time derivatives in Eq. (4) are
zero], multiplying Eq. (4a) by exp(−λv1) and then integrating
over v1 we obtain the equation satisfied by the generating
function Z(λ) as

Z(λ) = qZ(ελ)Z([1 − ε]λ) + (1 − q)Z(rwλ)f (λ), (13)
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Σ 1(t
)
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FIG. 3. (Color online) The variance 
1(t) of the velocities for
an inelastic gas with 1000 particles with r = 1/2 driven by wall
collisions with σ = 1 and rw = 1 for the two cases: (a) The rate
of collision is independent of the variance g = 1 and (b) the rate
of collision is proportional to the variance g = 


1/2
1 (t). For g = 1,

the line plots the exact analytical expressions given by Eq. (8). For
g = 


1/2
1 (t), the points are obtained by exact numerical evaluation of

the equation Eq. (6). The dotted line highlights the steady-state value
calculated from Eq. 10(a).

where q = 1/(1 + γ ) and f (λ) = exp(λ2σ 2/2). Since the
velocity distribution is even, we have Z(−λ) = Z(λ). The
above equation is identical to Eq. (A6) obtained for the discrete
time dynamics. Therefore, as expected, both the continuous
time and the discrete time dynamics yield the same steady
state.

For the particular case rw = 1, we can obtain Z(λ) as an
infinite product involving simple poles by iteratively solving

Z(λ) = [1 − (1 − q)f (λ)]−1 qZ(ελ)Z([1 − ε]λ).

Therefore, the tail of the velocity distribution is exponential
P (v) ∼ exp(−|v|/v∗), where v∗ is determined by the pole
closest to the origin, coming from the prefactor [1 − (1 −
q)f (λ)]−1.

On the other hand, for |rw| < 1, if we assume the form
P (v) ∼ exp(−A | v |α) for the PDF, then for α > 1 the
function Z(λ) is analytic. If Z(λ) is known, then the large
deviation tail of the velocity distribution can be obtained by
the saddle-point approximation,

P (v) ≈ exp[μ(λ∗) + λ∗v]√
2π |μ′′(λ∗)| , (14)

where μ(λ) = ln Z(λ) and the saddle point λ∗(v) is implicitly
given by the equation μ′(λ∗) = −v. Now, if near the saddle
point μ(λ) ∼ b|λ|β , one finds

λ∗ = −sgn(v)

[ |v|
(bβ)

]1/(β−1)

. (15)

As a result, P (v) ∼ exp(−A|v|α), where α = β/(β − 1) and
A = b(β − 1)(bβ)−α . Therefore, we substitute the ansatz
Z(λ) ∼ exp(b|λ|β) with β > 1 in Eq. (13). Since εβ + (1 −
ε)β < 1 for ε ∈ (0,1) and β > 1, the first term on the right-
hand side of Eq. (13) becomes negligible compared to the
left-hand side for large |λ| ∼ |v|1/(β−1). Thus, comparing the
exponent of the left-hand side to that of the second term on
the right-hand side, we get β = 2 and b = (σ 2/2)(1 − r2

w)−1.
This implies the Gaussian tail

P (v) ≈
√

1 − r2
w

2πσ 2
exp

[
− v2

2σ 2

(
1 − r2

w

)]
. (16)

We have verified this result in Ref. [24] for the case of discrete
time dynamics. Figure 4 summarizes the results for different
case of rw.

rw = −1 rw = +1

No steady state P (v) ∼ e−|v|/v∗
P (v) ∼ e−av2

FIG. 4. (Color online) The summary of the results for the PDF
of the velocity distribution for different cases of rw ∈ [−1,1]. For
rw = −1, the system does not reach a steady state, and the average
energy and the two-particle correlation eventually increases linearly
with the time. For rw = 1, the steady-state PDF has an exponential
tail, whereas for −1 < rw < 1, the tail of the PDF for very large
velocities is Gaussian.
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IV. ORNSTEIN-UHLENBECK DRIVING

We now show that the driving mechanism introduced above
becomes an Ornstein-Uhlenbeck process in a special limit. Let
us, for the time being, ignore the interparticle collisions and
also set g = 1. Then Eq. (4a) becomes

∂F1(v1,t)

∂t
= τ−1

w

[∫
dv∗

1F1(v∗
1 ,t)〈δ(v1 − [−rwv∗

1 + η1])〉η1

−F1(v1,t)

]
. (17)

In terms of the characteristic function, F̃1(k1,t) ≡∫
dv1F1(v1,t) e−ik1v1 , the above equation can be written as

∂F̃1(k1,t)

∂t
= τ−1

w

[
F̃1(−k1rw,t) e−k2σ 2/2 − F̃1(k1,t)

]
. (18)

The term exp(−k2σ 2/2) is the characteristic function for a
Gaussian noise with variance σ 2. We now consider the limiting
case when τw → 0, εw = (1 + rw) → 0, and σ 2 → 0, while
keeping appropriate ratios fixed. Replacing rw with −(1 − εw)
in Eq. (18), and expanding and keeping only up to the lowest-
order terms in the small parameters, we obtain

∂F̃1(k1,t)

∂t
= τ−1

w

[
− εwk1

∂F̃1(k1,t)

∂k1
− σ 2k2

1

2
F̃1(k1,t)

]
. (19)

Therefore, in the limit τw → 0, εw → 0, and σ 2 → 0, while
keeping

� = lim
τw→0
εw→0

εw

τw

and D = lim
τw → 0
σ 2 → 0

σ 2

2τw

(20)

fixed, Eq. (19) becomes

∂F̃1(k1,t)

∂t
= −�k1

∂F̃1(k1,t)

∂k1
− Dk2

1F̃1(k1,t). (21)

This is nothing but the Fokker-Planck equation of an Ornstein-
Uhlenbeck process in the Fourier space, which, in the velocity
space, is given by

∂F1(v1,t)

∂t
= �

∂

∂v1
[v1F1] + D

∂2F1

∂v2
1

. (22)

Thus, in the limit given by Eq. (20), our model of wall
driving becomes an Ornstein-Uhlenbeck process, with the
parameters defined as in Eq. (20). The matrix R in this case
becomes

R =
[−{ (1−r2)(N−1)

2τc
+ 2�

} (1−r2)(N−1)
2τc

(1−r2)
2τc

−{ (1−r2)
2τc

+ 2�
}] , (23)

and C = [2D,0]T . The eigenvalues of R are given by −2� and
−2� − N (1 − r2)/(2τc), with the corresponding eigenvectors
[1,1]T and [1,−1/(N − 1)]T , respectively. For g = 1, we
can solve Eq. (6) easily by diagonalizing R. This results in
two decoupled equations for the elements of [y1(t),y2(t)]T =

S−1X, where

S =
[

1 1
1 − 1

(N−1)

]
and S−1 = N − 1

N

[
1

N−1 1
1 −1

]
,

(24)

and S−1RS is a diagonal matrix with the eigenvalues of R
being the diagonal elements. It is straightforward to find the
solutions as

y1(t) = y1(0) exp (−2�t) + D

N�
[1 − exp(−2�t)] (25a)

and

y2(t) = y2(0) exp

{
−

[
N (1 − r2)

2τc

+ 2�

]
t

}
+ (N − 1)4Dτc

N [N (1 − r2) + 4�τc]

×
(

1 − exp

{
−

[
N (1 − r2)

2τc

+ 2�

]
t

})
. (25b)

The initial values, y1(0) and y2(0), are obtained in terms of

1(0) and 
2(0) = 0. Finally, 
1(t) and 
2(t) can be obtained
by using X = S[y1(t),y2(t)]T .

Thus, for any nonzero values of �, we see from Eq. (25)
that as t → ∞, both y1(t) and y2(t), and hence 
1(t) and 
2(t)
approach steady-state values. They are given by

lim
t→∞ 
1(t) = D

�

[
1 − r2 + 4�τc

N (1 − r2) + 4�τc

]
, (26a)

lim
t→∞ 
2(t) = D

�

[
1 − r2

N (1 − r2) + 4�τc

]
. (26b)

These can be also obtained from Eq. (10) by taking the limits
given by Eq. (20).

Let us consider the special case, where the dissipative term
� = 0. Here the driving is modeled by a Weiner process
(diffusive driving), dvi/dt = √

2D ηi . In this case, one of the
eigenvalues of R becomes zero, while the other is −N (1 −
r2)/(2τc). The zero eigenvalue indicates a nonstationary state.
The exact solution in the diagonal basis is given by

y1(t) = y1(0) + 2Dt

N
, (27a)

y2(t) = y2(0) exp

[
−N (1 − r2)t

2τc

]
+ (N − 1)4Dτc

N2(1 − r2)

[
1 − exp

(
−N (1 − r2)t

2τc

)]
.

(27b)

We can obtain 
1(t) and 
2(t) exactly for any time t by
inverting y1(t) and y2(t). There asymptotic forms for large
t are given by


1(t) = 
1(0)

N
+ (N − 1)4Dτc

N2(1 − r2)
+ 2D

N
t, (28a)


2(t) = 
1(0)

N
− 4Dτc

N2(1 − r2)
+ 2D

N
t. (28b)
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Since the variance 
1(t), as well as the two-particle correlation
function 
2(t), eventually grows linearly in time, irrespective
of the time scale of collisions and the strength of the driving
force, the system does not have a steady state for the diffusive
driving. Moreover, the molecular chaos hypothesis becomes
invalid as the particles in the system becomes more and more
correlated with time.

V. CONCLUSION

In this paper, we have considered a system of Maxwell
gas of identical particles evolving under inelastic binary
collisions and external driving. We illustrated that even
though the hierarchy for the evolution of the distribution
functions does not close, those involving the variance and
the two-particle correlation of the velocities close exactly—
without any approximations. We also find the exact tail of
the velocity distribution in the steady state. Both the driving
and the interparticle collisions are treated in continuous time
as Poisson processes. The Ornstein-Uhlenbeck driving (and
so also the diffusive driving) can be realized as a special
case. From the exact evolution of the variance and the
two-particle correlation function, the conditions for a system
to be in a steady state can be obtained. Our calculations
show that with the diffusive driving the system cannot have
a steady state as the energy and correlations eventually
increase linearly with time, as found earlier for discrete time
dynamics [24].
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APPENDIX A: MAXWELL MODEL WITH DISCRETE
TIME DYNAMICS

In this Appendix we briefly review the discrete-time version
of the model [24]. The system evolves in discrete time steps
as follows. At each time step, with a probability p, a pair of
particles (say, i and j ) is chosen [of N (N − 1)/2 pairs] at
random and the velocities are modified from (v∗

i ,v
∗
j ) to (vi,vj )

according to the rule of inelastic collision given by Eq. (1).
With the remaining probability 1 − p, a single particle is
selected (of N particles) at random and its velocity is modified
according to Eq. (2).

Note that this particular driving scheme differs slightly
from the one employed in Ref. [24] where the forcing was
done simultaneously on two particles independently. However,
this does not alter the qualitative behaviors. Also, unlike
the Maxwell model with the rate of collisions proportional
to the root-mean-square velocity at that time [29], here the
probability p is assumed to be constant over time, as in
Ref. [20]. This would, of course, change time-dependent
behaviors. For example, as discussed in Appendix B and shown
in Fig. 1, in the absence of the external drive, the mean energy
decays exponentially, as opposed to the Haff’s cooling law.
However, our main focus here is in the steady-state properties,
which are unchanged even if the collision rates or probabilities
are taken to be constant over time; this makes the analysis
relatively simpler.

Let vi(n) be the velocity of the i-th particle at the n-th time step. The variance 
1(n) and the two-particle correlation
function 
2(n) are defined as


1(n) = 1

N

N∑
i=1

〈
v2

i (n)
〉
, (A1a)


2(n) = 1

N (N − 1)

∑
i �=j

〈vi(n)vj (n)〉, (A1b)

respectively, with the angular brackets denoting the ensemble average. It turns out that their evolution follows an exact recursion
relation given by

Xn = RdXn−1 + Cd, (A2)

where

Xn =
[

1(n)

2(n)

]
, Cd =

[
(1 − p) σ 2

N

0

]
,

and

Rd =
⎡⎣1 −

[
p(1−r2)+(1−p)

(
1−r2

w

)]
N

p(1−r2)
N

p(1−r2)
N(N−1) 1 − [p(1−r2)+2(N−1)(1−p)(1+rw)]

N(N−1)

⎤⎦. (A3)

Now, for the case rw = −1, one of the eigenvalues of Rd is unity, resulting in the variance and the two-particle correlation to
eventually increase linearly with number of time steps n. Therefore, the system does not reach a steady state for this particular
case rw = −1.
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Since Rd is a positive matrix, the Perron-Frobenius theorem guarantees that it has a real positive eigenvalue (Perron-Frobenius
eigenvalue) such that the other eigenvalue is strictly less than this, in absolute value. This can be indeed verified easily for a
2 × 2 matrix by an explicit calculation. The other eigenvalue is also real, which also follows from the fact that the complex
eigenvalues of a real matrix must occur in conjugate pairs. The Perron-Frobenius eigenvalue is bounded from above (below) by
the maximum (minimum) of the row sums of the matrix. For −1 < rw � 1, it is immediately evident, from the explicit form of
the above matrix, that both the row sums are less than unity. Thus, both the eigenvalues are less than unity, in absolute value, and
hence the system reaches a steady state. In the steady state, the variance and the two-particle correlation function can be found as


ss
1 = σ 2

[
(1 − r2) + 4γ (1 + rw)(N − 1)

](
1 − r2

w

)
(1 − r2) + 2(1 + rw)(N − 1)

[
(1 − r2) + 2γ

(
1 − r2

w

)] , (A4a)


ss
2 = σ 2(1 − r2)(

1 − r2
w

)
(1 − r2) + 2(1 + rw)(N − 1)

[
(1 − r2) + 2γ

(
1 − r2

w

)] , (A4b)

where γ = (1 − p)/(2p). In the N → ∞ limit, the steady-
state variance, 
ss

1 becomes independent of N ,


ss
1 = 2γ σ 2

(1 − r2) + 2γ
(
1 − r2

w

) , (A5)

while the two-particle correlation function 
ss
2 vanishes as

O(N−1). Therefore, in the limit of large N , the steady-state
single-particle probability distribution closes; the moment-
generating function Z(λ) = 〈exp(−λv)〉 of the steady-state
velocities can be shown to satisfy the equation

Z(λ) = qZ(ελ)Z([1 − ε]λ) + (1 − q)Z(rwλ)f (λ), (A6)

where q = 2p/(1 + p), ε = (1 − r)/2. This equation is iden-
tical to Eq. (13) obtained for the continuous time dynamics.

APPENDIX B: HOMOGENEOUS COOLING STATE

Here, we obtain the freely cooling behavior of the system
in the absence of driving by setting C = 0, (i.e., σ = 0) in
Eq. (6), which mimics a system in a static box. We first consider
the linear case g = 1 and afterwards consider the case where
g = 


1/2
1 .

1. The linear case: g = 1

For g = 1, the linear equation (6) with C = 0 can be solved
exactly, which gives


1(t) = 
1(0)

λ+ − λ−
[(R22 − λ−)e−λ−t + (λ+ − R22)e−λ+t ],

(B1a)


2(t) = R21
1(0)

λ+ − λ−
[e−λ−t − e−λ+t ], (B1b)

where Rij = |Rij | denote the absolute values of the ele-
ments of the matrix R given by Eq. (7) and −λ± are the
eigenvalues of the matrix R, given by

λ± = 1
2 [(R11 + R22) ±

√
(R11 + R22)2 − 4(R11R22 − R12R21]

= 1
2 [(R11 + R22) ±

√
(R11 − R22)2 + 4R12R21]. (B2)

Note that λ± > 0 for −1 < rw � 1. In Fig. 1, we plot 
1,2 as
a function of t , as given by Eq. (B1).

2. The nonlinear case: g = �
1/2
1

In this case, 
1 and 
2 evolve by

d
1

dt
= −R11


3/2
1 + R12


1/2
1 
2, (B3a)

d
2

dt
= R21


3/2
1 − R22


1/2
1 
2. (B3b)

Equation (B3b) for 
2 can be solved exactly in terms of 
1

as


2(t) = R21

∫ t

0
dt1


3/2
1 (t1) exp

[
−R22

∫ t

t1



1/2
1 (t2) dt2

]
,

(B4)

where we have used the initial condition 
2(0) = 0. On the
other hand, it is difficult to obtain an exact solution of Eq. (B3a)
for 
1. Nevertheless, near t = 0, using the initial condition

2(0) = 0, we can write Eq. (B3a) as d
1/dt ≈ −R11


3/2
1 ,

which yields


1(t) ≈ 
1(0)(
1 + 1

2R11

1/2
1 (0) t

)2 . (B5)

Now, substituting the above expression for 
1(t) in Eq. (B4),
after carrying out the integration, we obtain


2(t) ≈ R21/R11

1 − θ

{
P


1(0)[
1 + 1

2R11

1/2
1 (0) t

]2θ
− 
1(t)

}
,

(B6)
for θ �= 1, where θ = R22/R11. For θ = 1, we get


2(t) ≈ 2(R21/R11) 
1(0) ln
[
1 + 1

2R11

1/2
1 (0) t

][
1 + 1

2R11

1/2
1 (0) t

]2 . (B7)

Therefore, for large t , we have 
2(t) ∼ t−2θ for θ < 1,
whereas 
2(t) ∼ t−2 for θ > 1. For θ = 1, there is a loga-
rithmic correction 
2(t) ∼ (ln t)t−2.

Now, if we take τc to be proportional to the total number
of pairs and τw to be proportional to the number particles,
then for large N , we have τc is O(N−2) and τw is O(N−1).
Consequently, we see from Eq. (7) that R11, R12, and
R22 are O(N−1), whereas R21 is O(N−2). Therefore, the
prefactor outside the square bracket in the expression (B6)
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is O(N−1), and hence the second term on the right-hand
side of Eq. (B3a) can be neglected even beyond the small
t region, for large N . As a result, the expression (B5) and
hence Eq. (B6) remain valid even for large times. Essentially,
for the freely cooling gas, the two-particle correlation is not
important. In the limit N → ∞, the exponent θ is given

by

θ = 4γ (1 + rw)

1 − r2 + 2γ
(
1 − r2

w

) . (B8)

Figure 1 compares the expressions (B5) and (B6) with the
exact values obtained by numerically solving Eq. (B3).
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