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Characterization of quantum dynamics using quantum error correction

S. Omkar,1 R. Srikanth,1,2,* and Subhashish Banerjee3

1Poornaprajna Institute of Scientific Research, Sadashivnagar, Bengaluru 560080, India
2Raman Research Institute, Sadashivnagar, Bengaluru 560060, India

3Indian Institute of Technology, Jodhpur, Rajasthan 342011, India
(Received 2 June 2014; revised manuscript received 17 December 2014; published 15 January 2015)

Characterizing noisy quantum processes is important to quantum computation and communication (QCC),
since quantum systems are generally open. To date, all methods of characterization of quantum dynamics (CQD),
typically implemented by quantum process tomography, are off-line, i.e., QCC and CQD are not concurrent, as they
require distinct state preparations. Here we introduce a method, “quantum error correction based characterization
of dynamics,” in which the initial state is any element from the code space of a quantum error correcting code
that can protect the state from arbitrary errors acting on the subsytem subjected to unknown dynamics. The
statistics of stabilizer measurements, with possible unitary preprocessing operations, are used to characterize the
noise, while the observed syndrome can be used to correct the noisy state. Our method requires at most 2(4n − 1)
configurations to characterize arbitrary noise acting on n qubits.
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I. INTRODUCTION

The principal difficulty in implementing quantum computa-
tion physically is environment-induced noise, which decoheres
the quantum system, resulting in the loss of superposition
and of entanglement. The noise acting on a quantum system
starting initially in a product state with its environment is
described by a completely positive (CP) map and is represented
by the Kraus operators [1] Ej ≡ ∑

i αi,jFi , where Fi is
an element from an operator (or error) basis satisfying the
orthogonality condition Tr(FiF

†
j ) = dδi,j , where δi,j is the

Kronecker δ, and d = 2p is the dimension of the system,
consisting of p qubits. Thus, if ρ represents the initial quantum
state, then

E(ρ) =
∑

j

EjρE
†
j =

∑
m,n

χm,nFmρF †
n , (1)

where χm,n ≡ ∑
j αj,mα∗

j,n is a Hermitian matrix (the “pro-
cess matrix”) in the d2-dimensional Hilbert-Schmidt space
of linear operators acting on the system of dimension d.
From the completeness condition, we have

∑d2

j=1 E
†
jEj =∑

m,n χm,nF
†
mFn = I, which imposes d2 conditions, so that the

matrix χ has d4 − d2 independent real elements. Since taking
traces on both sides yields

∑
j χj,j = 1, the (positive) diagonal

elements of χ can be interpreted as probabilities. In this work,
Fj are multiqubit Pauli operators, which is appropriate for
employing the QEC formalism.

The characterization of noisy quantum processes, namely,
determination of the matrix elements χm,n, was ini-
tially addressed by standard quantum process tomography
(SQPT) [1,2]. Here the system undergoing the unknown noisy
dynamics is initially prepared in suitable states and subjected
to state tomography measurements. In ancilla-assisted process
tomography (AAPT) [3], the principal system P and an
ancillary system A are prepared in suitable initial states,
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and information about the dynamics of P is extracted via
quantum state tomography on the joint system using separable
or nonseparable basis measurements. SQPT and AAPT are
indirect in that they first obtain full state tomographic data
μm,n = Tr(ρmE(ρn)) on input states ρn and then invert these
exponentially large data (of size d4 − 1 in SQPT and d4 − d2

in AAPT under trace-preserving noise) to derive χ .
By contrast, direct characterization of quantum dynamics

(DCQD) [4,5], bypasses the state tomography. It uses quan-
tum error detection measurements augmented by normalizer
measurements in a code space determined by stabilizers
corresponding to Bell-state measurements. Other recent devel-
opments include the characterization of noise using an efficient
method for transforming a channel into a symmetrized (i.e.,
having only diagonal elements in the process matrix) channel
via twirling [6], suitable for identifying quantum error correct-
ing codes (QECCs) [7]. Recently, three independent proposals
have been presented to rapidly estimate the channel using
quantum error correction (QEC) techniques [8–10], which aim
for concurrent preservation of quantum information, rather
than for process tomography of the dynamics of P. A method
similar to [6], but extended to efficiently estimate any given
off-diagonal term, was introduced in Ref. [11].

Suppose we have a situation where it is known with
reasonable confidence that an arbitrary noise is restricted to
a certain known, sufficiently small subsystem of a quantum
computation and communication (QCC) device, say a quantum
computer. One can construct QECCs that would protect against
the noise. On the other hand, the statistics of the measured
syndrome outcomes could be used for characterization of
that noise, which could be useful for other quantum in-
formation processing tasks. A method that helps combine
QCC and characterization of quantum dynamics (CQD)
would thus surely help save valuable quantum resources.
In this work, we present such a method, a QEC-based
characterization of quantum dynamics (QECCD). The reason
that the noise must be restricted to a known subsystem of
the quantum computer is that the allowed errors must form
a group, for a reason that will become clear later. Without
the subsystem restriction, our method can still be used to
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determine the diagonal terms of the process matrix in the Pauli
representation.

From the perspective of CQD, our method allows initial
states that are not fixed but, instead, can be anything in
the code space of a QECC. This means that the noise
characterization is indifferent to certain kinds of errors in
state preparation, namely, those that keep the state within the
stabilized code space. Our method is presently restricted to
CP—but not necessarily trace-preserving—maps, though the
QEC formalism is known [12] to be applicable even to non-CP
maps.

The remainder of this work is as follows. Section II presents
the basic motivation for using QECC for CQD. The basic
intuition here is an isomorphism that can be established
between the allowed noise and the erroneous version of the
logical state. In Sec. II A, we introduce a different type of
stabilizer codes that are suitable for CQD. These are QECCs
that correct all possible errors that occur on known coordinates
and form a group. Here we give an example of a five-qubit
QECC that corrects all errors on the first two qubits and,
furthermore, is perfect (i.e., it saturates the quantum Hamming
bound). In Sec. II B, we show how the statistics of syndrome
outcome data on this kind of QECC can be used to read off the
diagonal terms of the process matrix. Accessing off-diagonal
terms is a bit more involved. In principle, a suitable unitary
can be used to rotate off-diagonal terms in such a way that
a syndrome measurement can access them. We show how
this is done in Sec. II C. However, this method can only
access the real or imaginary part of off-diagonal terms. In
Sec. II D, we show how a “toggling” can be customized to
the above unitary, such that the real and imaginary parts
of the accessed off-diagonal terms can be “toggled,” i.e.,
exchanged, so that after toggling, the method in Sec. II C can
be used. In Sec. III, we consider experimental aspects. We
point out that various QECCD experiments are well within the
reach of an experimental facility (NMR, quantum optics, etc.)
where entanglement generation and manipulation are done.
An example of QECCD of a single-qubit noise that would
be suitable for experimental implementation is worked out in
detail. To this end, we introduce a three-qubit perfect stabilizer
code, which is applied to an amplitude damping channel on
the first qubit. Finally, we conclude in Sec. IV.

II. NOISE CHARACTERIZATION AND QECCs

Like DCQD, our method is direct and requires initial
entangled states. However, unlike DCQD and other quantum
process topography (QPT) methods, QECCD requires no
special initial-state preparation: any state in the 2k-dimensional
code space of an [[n,k]] n-qubit stabilizer code for QEC is
appropriate, provided the code corrects arbitrary errors on
m (<n) known coordinates of P. The syndrome obtained from
the stabilizer measurement can be used to correct the noisy
state, while the experimental probabilities of syndromes will
contain information about the noise channel.

We recollect that the code is a subspace C, whose projector
�C satisfies the error correcting condition �CF

†
a Fb�C =

Cab�C , where Cab is a Hermitian matrix [13]. In the case of
nondegenerate QECCs (where Cab is nonsingular), this defines

preparation
  Ancilla

 System

   State Unitary operation

syndrome measurement
        and

FIG. 1. (Color online) Scheme for QECCD. The principal system
P (subjected to the uncharacterized noise E) plus CQD ancilla A
(assumed to be noiseless) are prepared in a QECC-encoded state.
After P is subjected to channel E (assumed correctable by the QECC
used), the stabilizers are measured on the joint system, possibly
following unitary operation U or US+.

a bijective mapping between the allowed noise channel and
states in the error ball about any QECC-encoded state |�L〉,
akin to a Choi-Jamiolkowski isomorphism [14]. This follows
from the one-to-one correspondences,

E ←→ {χm,n} ←→
∑
m,n

χm,n

∣∣�m
L

〉〈
�n

L

∣∣, (2)

where the first correspondence follows by definition, and the
second from the fact that {|�m

L 〉 ≡ Fm|�L〉} forms a basis in
the error ball about |�L〉. QECCD can be seen as exploiting
the QECC isomorphism to determine matrix χ in that various
measurements on E(|�L〉〈�L|), the noisy version of the initial
logical state |�L〉, will suffice to extract all information about
E , while extracting no information about the encoded state
|�〉. This result is nontrivial, since such an isomorphism exists
quite generally for arbitrary QECCs, but the experimental
accessibility of off-diagonal terms of the process matrix in
the Pauli representation is possible in this approach only when
the allowed errors form a group. Thus a general QECC cannot
necessarily serve QECCD.

The scheme for QECCD is depicted in Fig. 1. Some of the
qubits will be allowed to be noisy and others are assumed to
be clean. The former qubits constitute the principal system P;
the latter, the CQD ancilla A.

Suppose the full system P + A is in the state |�L〉 ≡∑2k−1
j=0 βj |jL〉, where {|jL〉} denotes a logical basis for the

code space of a [[p + q,k]] QECC (which encodes k qubits
into n ≡ p + q qubits) such that allowed errors in the p

known coordinates of P can be detected and corrected. An
assumption here is that no (appreciable) errors occur on the
q ancillary qubits. The stabilizers Sj are a set of p + q − k

mutually commuting binary n-qubit observables that stabilize
the code space (i.e., Sj |jL〉 = |jL〉). Correctable errors Fi are
such that for any pair Fi,Fj (i �= j ), there is at least one Si

that anticommutes with the product FiFj . This ensures that
the eigenvalue pattern for each correctable error, which is
the error syndrome, is distinct. The Hamming bound [13]
in this case is given by 2kV � 2p+q , where V is the size
of the error ball, here the set of all possible errors in P, so
that V = ∑p

r=0

(
p

r

)
3r · 1p−r = 4p = d2 (since d = 2p). The

Hamming bound for QECCD is thus q � k + p.

A. A class of stabilizer codes suitable for CQD

To see the connection between QEC and CQD, consider the
[[5,1]] code that saturates the Hamming bound for an arbitrary
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single-qubit error on any qubit:

|0L〉 = 1

2
√

2
(|00000〉 + |00110〉 + |01001〉 − |01111〉

− |10011〉 + |10101〉 + |11010〉 + |11100〉),
|1L〉 = XXXXX|0L〉, (3)

where the states are represented in the computational basis, and
X is the Pauli-X operator. We note that the above code words
satisfy the error correcting conditions when the allowed errors
are arbitrary errors on the first two qubits. Thus, let the first two
qubits constitute P, subjected to unknown dynamics, while the
remaining three are CQD ancillae. There are 16 basis elements
for the general noise acting on these two qubits, represented by
XuZv, where u = (u1,u2) and v = (v1,v2) are vectors defined
over GF (2).

The stabilizer generators

G ≡ {IZZZZ,XXXII,ZXZIX,ZZXXI } (4)

uniquely determine the four syndromes to be (u2, v1 ⊕
v2, u1 ⊕ v2, u1 ⊕ u2). It is worth stressing that code (3) is
different from that in Ref. [15] because the stabilizers, and
thus the set of correctable errors, are different, even though
the code words are the same. The main point for QECCD
is that the set E of correctable errors (up to scalar factors
±1 and ±i), form a group, the error group. This is reflected
in the above Hamming bound for QECCD. Suppose the
unknown dynamics is a (correlated) noise given by the
Kraus operators {√1 − pI,

√
pX1X2}. From Eq. (1) one finds

that the probability that no error happens, and thus that
to experimentally find the no-error syndrome (1,1,1,1), is
χI,I = 1 − p. Similarly, the syndrome (−1,1,−1,1) for error
X1X2 occurs with probability χX1X2,X1X2 = p. The syndrome
carries information only about the noise, and nothing about
the encoded state, and can be used to correct the noisy version
of |�L〉, while the error statistics determined by the syndrome
outcomes helps determine the elements of matrix χ . (There
are no off-diagonal terms of χ for this channel in the Pauli
operator representation.)

Now consider a variant of the above example, wherein we
consider letting P be all five qubits, while the noise is taken to
be an arbitrary one-qubit error on any one qubit. This is just
the five-qubit code of Ref. [15]. Though the above five-qubit
QECC is suitable for QEC here, still the correctable errors do
not form a closed set and, thus, do not constitute an error group:
e.g., while X1 and Y2 can be corrected, their product X1Y2

cannot. Although the diagonal terms of the process matrix
can still be calculated, for the off-diagonal terms, our method
requires this closure property.

B. Determining the diagonal terms of χm,n

Given E known to be correctable by a nondegenerate QECC
Q, but otherwise uncharacterized, a single configuration suf-
fices to determine all diagonal elements χm,m via measurement
of the (mutually commuting) stabilizers of Q. We refer to
the corresponding observable as the syndrome operator, 	.
The measurement of syndrome x, corresponding to error Fx ,
collapses the noisy state into the pure state Fx |�L〉, which
can be corrected by applying F

†
x = Fx . The probability of

obtaining outcome x is

ξ (x) = Tr

⎛
⎝E(|�L〉〈�L|)

⎡
⎣2k−1∑

J=0

|J x〉〈J x |
⎤
⎦

⎞
⎠

= 〈
�x

L

∣∣
⎡
⎣d2−1∑

m,n

χm,n

∣∣�m
L

〉〈
�n

L

∣∣
⎤
⎦ ∣∣�x

L

〉

=
d2−1∑
m,n=0

χm,nδx,mδx,n = χx,x, (5)

where it is convenient to take the tracing basis to be any
completion of {Fj |�L〉}.

C. Determining the off-diagonal terms of χm,n

Off-diagonal terms are obtained by preprocessing the
noisy state using a unitary U or US+, prior to stabilizer
measurement. [Equivalently, measurements are made in one
of two bases: the “rotated basis” U	U † or the “toggled and
rotated basis” (US+)	(US+)†, as explained below.] Here,
again, the state just after measurement will be Fx |�L〉, for
some correctable Fx . Consider a unitary operator U (a,b) =
Fa+Fb√

2
, where allowed errors Fa and Fb anticommute (else,

we choose U = Fa+iFb√
2

), such that FaFx and FbFx represent
correctable errors. This is guaranteed by choosing a QECC
whose correctable Pauli errors form a group (up to a scalar
factor ±1 or ±i) under multiplication. This requirement is met,
as in the first example above, by choosing a QECC that corrects
arbitrary errors on subsystem P. Let gAFA ≡ FaFx , where
FA is a Pauli operator and the Pauli factor gA ∈ {±1, ± i}.
Similarly, let gBFB ≡ FbFx . For example, if Fa = X, Fx = Y ,
then FA = Z and gA = +i. If gA and gB are both real or both
imaginary, then we say that the Pauli factors are of the same
type. If one of gA and gB is imaginary and the other real, we
say that the Pauli factors are of distinct type.

Operation U (a,b) rotates one correctable state to another
correctable state. This alters the statistics of the stabilizer mea-
surement without affecting the correctability. The probability
of finding the syndrome corresponding to error Fx is now

ξ (a,b,x) ≡ Tr

⎛
⎝U (a,b)E (|�L〉〈�L|) (U (a,b))†

⎡
⎣2k−1∑

J=0

Fx |J 〉〈J |Fx

⎤
⎦

⎞
⎠ =

∑d2−1
m,n χm,n〈Fx(Fa�m + Fb�m)〉L〈(Fn�a + Fn�b)Fx〉L

2

= 1

2

d2−1∑
m,n

χm,n(g∗
AδA,m + g∗

BδB,m)(gAδA,n + gBδB,n) = χA,A + χB,B

2
+ g∗

AgBχA,B + gAg∗
BχB,A

2

= 1

2
(χA,A + χB,B) + Re(g∗

AgBχA,B), (6)
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where we have used the notation Fm�n ≡ FmFn, and the
expectation value 〈· · · 〉L is with respect to |�L〉. The first
term in the final expression of Eq. (6) contains only di-
agonal elements of χ , which are determined by stabilizer
measurements without the application of any preprocessing
unitaries. It follows from the second term in (6) that if gA and
gB are of the same (different) type, then ξ (a,b,x) depends
only on the real (imaginary) part of χA,B . For example,
suppose a = X, b = Y, x = Z, in which case gA = −i and
FA = Y , while gB = i and FB = X. Thus an application of
U (X,Y ) followed by a Z-error syndrome extracts the real
part of χX,Y . In particular, ξ (X,Y,Z) = 1

2 (χX,X + χY,Y ) −
Re(χX,Y ). Note that the state obtained after measurement
in Eq. (6) is ρf = |�x

L〉〈�x
L|(UE |�L〉〈�L|U †)|�x

L〉〈�x
L| =

ξ (a,b,x)|�x
L〉〈�x

L|; that is, the use of U does not alter the
QEC procedure, but only modifies the error statistics to be
dependent on off-diagonal terms according to the choice of U .

If Fa and Fb do not commute, then U = (Fa + iFb)/
√

2.
In place of Eq. (6) we obtain

ξ (a,b,x) = 1
2 (χA,A + χB,B + i[gAg∗

BχB,A − g∗
AgBχA,B])

= 1
2 (χA,A + χB,B) + Im(g∗

AgBχA,B). (7)

It follows from the second term in (7) that if gA and gB

are of the same (different) type, then ξ (a,b,x) depends on
the imaginary (real) part of χA,B . For example, suppose
a = I, b = Y, x = I , in which case gA = 1 and FA = I , while
gB = 1 and FB = Y . An application of U (I,Y ) followed by
the no-error syndrome is a function of the imaginary part
of χI,Y . In particular, ξ (I,Y,I ) = 1

2 (χI,I + χY,Y ) + Im(χI,Y ),
where χI,I is the probability of obtaining no error.

In general, this will leave the real or imaginary parts of off-
diagonal terms undetermined. In the first example above, the
only other measurements that can extract information on χX,Y

are the no-error outcome in the U (X,Y ) configuration [i.e.,
the term ξ (X,Y,I )] and the X- and Y -error outcomes in the
U (I,Z) configuration [i.e., the terms ξ (I,Z,X) and ξ (I,Z,Y )],
all of which can yield only information about Re(χX,Y ).

D. Toggling operation

We solve this problem by preprocessing the noisy state as
follows. Let S ≡ Diag(eiθ0 ,eiθ1 ,eiθ2 , · · · ,eiθV −1 ) be a V × V

diagonal matrix where θj ∈ {±π
4 }, with equal entries of both

signs. Prior to U , we apply the operation

S+ =
2k−1⊕
J=0

SJ ⊕ I′ =
V −1∑
m=0

[
eiθm

∑
J

∣∣Jm
L

〉〈
Jm

L

∣∣] ⊕ I′, (8)

where SJ is the S gate acting on the error space of the J th
code word and I′ is the identity operation on the space � of
states lying outside the error ball of all code words. From the
perspective of experiment,

S+ = exp

⎛
⎝i

⎧⎨
⎩

2k−1⊕
J=0

⎡
⎣ε

⎛
⎝ V/2∑

{m,n}=0

σ z
(Jm,J n)

⎞
⎠

⎤
⎦

J

⊕ 0 · I′

⎫⎬
⎭

⎞
⎠ ,

(9)

where the subscript J labels the error space spanned by basis
{Fi |JL〉} of the J th code word (Fi being the allowed errors),

with suitable pairing {m,n}, i.e., one that ensures that Smm =
S∗

nn. The term within the curly braces defines the Hamiltonian
HS suitable to generate S+.

Any correctable pure state is an eigenstate of S+: S+|�m
L 〉 =

S+(
∑

J αj |Jm
L 〉) = ∑

J αJ eiθm |Jm
L 〉 = eiθm |�m

L 〉. We thus
have S+[E(ρ)](S+)† = ∑

m,n χm,nS
+|�m

L 〉〈�n
L|(S+)† =∑

m,n χm,ne
i(θm−θn)|�m

L 〉〈�n
L| ≡ ∑

m,n χ ′
m,n|�m

L 〉〈�n
L|. Thus,

under the action of S+, χ −→ χ ′ = SχS†, which leaves
the diagonal terms of χ invariant, while the real and
imaginary parts of the off-diagonal elements of term χ ′

m,n

are interchanged if θm = −θn but are invariant otherwise
(θm = θn). Therefore, a syndrome measurement following an
application of suitable U on the toggled (i.e., S+-applied)
noisy state can reveal the real or imaginary part of χj,k that is
inaccessible otherwise.

For a given U , we determine d2 off-diagonal real or
imaginary terms without S+. Now there exists a S+ such
that the configuration US+ suffices to cover all the remaining
real/imaginary counterparts of these terms. This follows from
noting that these d2 terms can be represented graph theo-
retically by a cyclic graph with d2 vertices, where correctable
errors are vertices, and edges are pairs of errors that occur in the
off-diagonal terms. The required S+ exists precisely because
an even cycle is always two-vertex colorable. For example,
suppose the U configuration determines the real or imaginary
parts of χ1,2,χ2,3, . . . ,χd2,1; then in Eq. (8), we choose θ1 =
θ3 = · · · = θd2−1 = π

4 and θ2 = θ4 = · · · = θd2 = −π
4 .

Now one configuration is enough to determine all d2 − 1
independent diagonal terms. This leaves d4 − 2d2 + 1 =
(d2 − 1)2 independent off-diagonal terms to be determined,
for which the number of configurations Nexp is at most

2 × 
 (d2−1)2

d2 � = 2(d2 − 1) = 2(4n − 1), including the exper-
iments with both U and US+. This compares favorably with
SQPT (Nexp = 16n), AAPT with mutually unbiased basis
measurements (Nexp = 4n + 1), and DSQD (Nexp = 4n) [4].
As when U alone is applied, similarly to S+ toggling, the
correctability is unaffected, allowing the encoded state to be
recovered. The observed syndrome will indicate the error to
be corrected, while no information about the encoded state is
revealed.

III. PRACTICAL IMPLEMENTATION

From an experimental perspective, quantum circuits that
implement computation can readily be adapted into those that
implement QECCD. For example, the five-qubit QECCD code
differs from the five-qubit code in Ref. [15] only in the choice
of stabilizer measurements, and not in the encoding. For an
[[n,k]]-qubit code that performs QECCD on an m-qubit noise,
the quantum Hamming bound may be stated as

2k|E| = 2k4m � 2n, (10)

from which it follows that the smallest nontrivial code for
QECCD is not a five-qubit code, but a three-qubit code, setting
k = m = 1 in inequality (10). Thus a suitable starting place
for an experimental implementation of our idea is a three-qubit
code (discussed in detail below) or an adaption of the five-qubit
code. One can devise a family of codes that satisfy bound (10)
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|0>

|0>
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M

X

X

Z

Y

Y

FIG. 2. Circuit to measure the stabilizer generators XIX and
YYZ for the [[3,1]] QECC, (11). The top two wires are the error
correction ancillae, while the bottom three wires are the code qubits.
Time flows from left to right. The boxes H and M represent a
Hadamard and measurement in the computational basis, respectively.
The circle with an operation U ∈ {X,Y,Z} represents a control-U
operation, with control at the filled circle on the other end of the
“stick.” Only two-qubit interactions are used.

and, correspondingly, a family of new experiments. QECCD
can be implemented with technologies like NMR [16] and
linear optics with postselection [17] that are used for quantum
computation.

Accordingly, let us consider a one-qubit system P, subjected
to an arbitrary CP channel. The Hamming bound is reached
with n = 3, and a [[3,1]] QECC (with qubits 2 and 3
constituting CQD ancilla A) that meets the requirement is

|0L〉 = 1
2 (|001〉 + |010〉 + |100〉 + |111〉),

(11)|1L〉 = 1
2 (|110〉 − |101〉 + |011〉 − |000〉),

whose stabilizer generators are XIX and YYZ, which con-
stitute the set G3. The logical operators are XL ≡ −ZXZ and
ZL ≡ XYX. We consider applying QECCD to characterize
an amplitude damping channel, determined by two Kraus op-
erators, E0 ≡ 1+√

1−λ
2 I2 + 1−√

1−λ
2 Z and E1 ≡

√
λ

2 X + i
√

λ
2 Y ,

where λ, the unknown parameter, is a measure of the vacuum
coupling strength. Figure 2 depicts the implementation of one
of the stabilizers for the code.

The state ρi ≡ |�L〉〈�L| transforms under this channel,
as per Eq. (1), to ρf = ∑

m,n χm,n|�m
L 〉〈�n

L| = 1
4 [(2 −

λ + 2
√

1 − λ)|�L〉〈�L| + (2 − λ − 2
√

1 − λ)|�Z
L 〉〈�Z

L | +
λ(|�L〉〈�Z

L | + |�Z
L 〉〈�L| + |�X

L 〉〈�X
L | + |�Y

L 〉〈�Y
L | −

i|�X
L 〉〈�Y

L | + i|�Y
L 〉〈�X

L |)]. Syndrome measurements on
this state yield the diagonal terms of χ as outcome
probabilities. The only nonvanishing off-diagonal terms are
χI,Z = χZ,I = λ and χX,Y = −χX,Y = −iλ.

Suppose U = UX,Y ≡ X+Y√
2

is applied to ρf , followed by
measurement of the above two stabilizers. From Eq. (6),
we see that this will reveal Re(χX,Y ) = 0 in the case of
outcomes corresponding to errors I and Z, and Im(χI,Z) = 0
in the case of outcomes corresponding to errors X and
Y , so that λ remains undetermined. To obtain information
about Re(χX,Y ) or Im(χI,Z), one applies, prior to U (X,Y ),
a toggling operation, which in the representation of the
basis, {|0L〉,|0x

L〉,|0y〉,|0z〉,|1L〉,|1x
L〉,|1y〉,|1z〉}, is given by the

diagonal 8 × 8 matrix

S+ ≡ 1√
2

(
S 0
0 S

)
, (12)

where S = Diag(γ,γ ,γ,γ ), with γ = 1 + i and γ = 1 − i.
For the toggled channel, χ ′

I,J = (SχS)I,J = iχI,J = iλ. Simi-
larly, χ ′

X,Y = iχX,Y = λ. Thus the full noise is determined. The
following three configurations are used for CQD: (i) immediate
stabilizer measurement, (ii) preprocessing with U (X,Y ) before
stabilizer measurement, and (iii) pre-processing with S+ and
then U (X,Y ) before stabilizer measurement.

IV. DISCUSSION AND CONCLUSIONS

We have proposed QECCD, a method for CQD that exploits
QEC techniques. Like DCQD [4], CQD is direct and requires
a separation of a clean qubit system A from the noisy qubit
system P. While this assumption is a bit restrictive, it is worth
noting that all AAPT methods (to our knowledge) require
this assumption. Expanding our method so that some noise is
allowed in the ancillary system would be an interesting future
direction of work. Another direction for expansion of our
method would be to incorporate fault tolerance, by allowing
the gate operations performed during CQD to be imperfect.
This approach may either aim to determine a threshold for
gate fidelity that would allow CQD to be accurate or relate the
gate fidelity to the variance in the estimated noise parameters.

Unlike earlier CQD techniques, the QECCD protocol is
not restricted to a fixed set of initial states but accepts
as input any encoded quantum information and, thus, can
be implemented concurrently with the QCC. This has the
economizing virtue that a quantum state used for CQD need
not be discarded from the quantum computation procedure.
Moreover, QECCD requires at most only twice the number
of experimental configurations as does DCQD or AAPT with
mutually unbiased basis measurements. Unlike AAPT with
POVMs, which requires many-body interactions, QECCD,
like DCQD, requires only one- and two-body interactions [18].

We now highlight some other insights that our method has
provided: First, we present in Eq. (2) a new channel-state
isomorphism, which is similar to the Choi-Jamiolkowski
isomorphism, but with an interesting twist. To turn the
Choi-Jamiolkowski isomorphism into a method for CQD, one
requires a full state tomography on the state obtained under
the isomorphism (the Choi matrix). By our method, however,
the QECC isomorphism only requires partial information
(syndrome outcome data) at each step.

Second, QEC involves destroying the coherence between
Pauli errors, and only gives the probability of those errors.
Nevertheless, the QECC isomorphism, (2), implies that the
noisy encoded state contains these coherence data and raises
the question whether this coherence information can be phys-
ically accessed using QEC techniques. Our method answers
this question in the affirmative.

Third, some of the mathematical tools we propose, such as
toggling to determine the real and imaginary parts of the off-
diagonal terms of the density operator, can be of independent
interest.

Last but not least, the QECCs which we introduced for
QECCD are different in that they are novel. They are stabilizer
codes that correct arbitrary errors on known coordinates, and
have the property that the set of allowed Pauli errors forms a
group. Codes (3) and (11) are examples of such QECCs suit-
able for QECCD. Interestingly, both these codes are perfect.
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