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There has been a surge of research activity recently on the role of joint measurability of unsharp observables
in nonlocal features, viz., violation of Bell inequality and EPR steering. Here, we investigate the entropic
uncertainty relation for a pair of noncommuting observables (of Alice’s system) when an entangled quantum
memory of Bob is restricted to record outcomes of jointly measurable positive operator valued measures. We
show that with this imposed constraint of joint measurability at Bob’s end, the entropic uncertainties associated
with Alice’s measurement outcomes—conditioned by the results registered at Bob’s end—obey an entropic
steering inequality. Thus, Bob’s nonsteerability is intrinsically linked to his inability to predict the outcomes of
Alice’s pair of noncommuting observables with better precision, even when they share an entangled state. As a
further consequence, we prove that in the joint measurability regime, the quantum advantage envisaged for the
construction of security proofs in quantum key distribution is lost.
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I. INTRODUCTION

In the classical domain physical observables commute with
each other and they can all be jointly measured. In contrast,
measurements of observables, which do not commute, are
usually declared to be incompatible in the quantum scenario.
However, the notion of compatibility of measurements is
captured entirely by commutativity of the observables if one
is restricted to sharp projective valued (PV) measurements.
In an extended framework, which includes measurements
of unsharp generalized observables, comprised of positive
operator valued measures (POVMs), the concept of joint
measurability gets delinked from that of commutativity [1–10].
Though noncommuting observables do not admit simultaneous
sharp values through their corresponding PV measurements,
it is possible to assign unsharp values jointly to compatible
positive operator valued (POV) observables. Active research
efforts are dedicated [1,3–5,7,12–15] to exploring clear,
operationally significant criteria of joint measurability for two
or more POVMs and also to determining whether incompatible
measurements, which cannot be implemented jointly, are
necessary to bring out nonclassical features. In this context,
it is recognized [1,3–5,7,12,14,15] that if one is confined to
local compatible POVMs on parts of an entangled quantum
system, it is not possible to witness nonlocal quantum features
such as steering (the ability to nonlocally alter the states of
one part of a composite system by performing measurements
on another spatially separated part [16]) and violation of Bell
inequality. More specifically, incompatible measurements are
instrumental in revealing violations of various no-go theorems
in the quantum world.

In this work, we investigate the entropic uncertainty relation
associated with Alice’s measurements of a pair of noncommut-
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ing discrete observables with d outcomes, in the presence of
Bob’s quantum memory [17]—by restricting to compatible
(jointly measurable) POVMs at Bob’s end. We first establish
that the sum of entropies of Alice’s measurement results,
when conditioned by the outcomes of compatible unsharp
POVMs recorded in Bob’s quantum memory, is constrained
to obey an entropic steering inequality derived in Refs. [18]
and [19]. This essentially brings out the intrinsic equivalence
between the violation of an entropic steering inequality and the
possibility of reducing the entropic uncertainty bound of a pair
of noncommuting observables with the help of an entangled
quantum memory. And as violation of a steering inequality
requires [14,15] that (i) the parties share a steerable entangled
state and, also, that (ii) the measurements by one of the parties
(Bob) [23] are incompatible, it becomes evident that informa-
tion stored in Bob’s entangled quantum memory is of no use
in reducing the uncertainty of Alice’s pair of noncommuting
observables when Bob can measure only compatible POVMs.
Consequently, we prove that the quantum advantage of the
construction of security proofs in quantum key distribution
(QKD) [17] is lost in the joint measurability regime.

The paper is organized as follows. In Sec. II we give
an overview of generalized POV observables and their joint
measurability. The entropic uncertainty relation for Alice’s
pair of discrete observables in the presence of Bob’s quantum
memory is discussed in Sec. III. It is shown that when Bob
is restricted to employing only jointly measurable POVMs,
it is not possible to achieve enhanced precision in predicting
Alice’s measurement outcomes, even if an entangled state is
shared between them. Implications of this identification for
security proofs in QKD are also outlined. Section IV reports
our concluding remarks.

II. JOINT MEASURABILITY

We begin by giving an outline of generalized measurement
of observables in terms of POVMs. A POVM is a set
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E = {E(x)} of positive self-adjoint operators 0 � E(x) � 1,
called effects, satisfying

∑
x E(x) = 1; 1 denotes the identity

operator. When a quantum system is prepared in state ρ,
measurement of E gives an outcome x with probability
p(x) = Tr[ρ E(x)]. If {E(x)} is a set of complete, orthogonal
projectors, then the measurement reduces to the special case
of PV measurement.

Let us consider a collection of POV observables Ei =
{Ei(xi)}. They are jointly measurable if there exists
a grand POVM G = {G(λ); 0 � G(λ) � 1,

∑
λ G(λ) = 1}

from which the observables Ei can be constructed as follows.
Suppose a measurement of the generalized observable G is
carried out in state ρ and the probability of obtaining the out-
come λ is denoted p(λ) = Tr[ρ G(λ)]. If the elements of the
POVMs Ei = {Ei(xi)} can be constructed as marginals of the
grand POVM G = {G(λ), λ = {x1,x2, . . .} }, i.e., E1(x1) =∑

x2,x3,...
G(x1,x2, . . .), E2(x2) = ∑

x1,x3,...
G(x1,x2, . . .), and

so on, the set {Ei} of POVMs is jointly measurable [1].
In general, if the effects Ei(xi) can be constructed in terms

of G(λ) as [15,20]

Ei(xi) =
∑

λ

p(xi |i,λ) G(λ) ∀ i, (1)

where 0 � p(xi |i,λ) � 1 are positive numbers satisfying∑
xi

p(xi |i,λ) = 1, then the POVMs Ei are jointly measur-
able [21]. For all jointly measurable POVMs, the probability
p(xi |i) of outcome xi in the measurement of Ei can be
postprocessed based on the results of measurement of the grand
POV observale G:

p(xi |i) = Tr[ρ Ei(xi)] =
∑

λ

p(λ) p(xi |i,λ). (2)

More specifically, measurements of compatible POVMs Ei

can be interpreted in terms of a single grand POVM G [i.e.,
given the positive numbers p(xi |i,λ), one can construct the
probabilities of measuring compatible POVMsEi based solely
on the results of measurement of G]. An important feature to
be highlighted here is that the generalized POV observables
are jointly measurable even if they do not commute with each
other.

Reconciling to joint measurability within quantum theory
results in subsequent manifestation of classical features [15].
In particular, as measurement of a single grand POVM can
be used to construct results of measurements of all compatible
POVMs, joint measurability entails a joint probability distribu-
tion for all compatible observables (though for unsharp values
of the observables) in every quantum state. The existence of
joint probabilities in turn implies that the set of all Bell inequal-
ities is satisfied [22] when only compatible measurements
are employed. Wolf et al. [7] have shown that incompatible
measurements of a pair of POVMs with dichotomic outcomes
are necessary and sufficient for violation of Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality. Further, Quintino
et al. [14] and Uola et al. [15] have established that a set
of POVMs (with arbitrarily many outcomes) is not jointly
measurable if and only if they are useful for nonlocal quantum
steering. It is of interest to explore the limitations imposed
by joint measurability on quantum information tasks. In the
following, we study the implications of joint measurability on

the entropic uncertainty relation in the presence of quantum
memory.

III. ENTROPIC UNCERTAINTY RELATION
IN THE PRESENCE OF QUANTUM MEMORY

The Shannon entropies H (X) = −∑
x p(x) log2 p(x) and

H (Z) = −∑
z p(z) log2 p(z), associated with the probabil-

ities p(x) = Tr[ρEX(x)] and p(z) = Tr[ρEZ(z)] of mea-
surement outcomes x and z of a pair of POV ob-
servables X ≡ {EX(x)|0 � EX � 1;

∑
x EX = 1} and Z ≡

{EZ(z)|0 � EZ � 1;
∑

z EZ = 1}, quantify the uncertainties
of predicting the measurement outcomes in a quantum state
ρ. Trade-off between the entropies of observables X and Z
in a finite-level quantum system is quantified by the entropic
uncertainty relation [24,25],

H (X) + H (Z) � −2 log2 C(X,Z), (3)

where C(X,Z) = maxx,z||
√

EX(x)
√

EZ(z)||. Here, ||A|| =
Tr[

√
A†A].

Consider the following uncertainty game [17]: two players,
Alice and Bob, agree to measure a pair of observables X and
Z. Bob prepares a quantum state of his choice and sends it to
Alice. Alice measuresX orZ randomly and communicates her
choice of measurements to Bob. To win the game, Bob’s initial
preparation of the quantum state should be such that he is able
to predict Alice’s measurement outcomes of the chosen pair of
observables X and Z with as much precision as possible when
Alice announces which of the pair of observables is measured.
In other words, Bob’s task is to minimize the uncertainties in
the measurements of a pair of observables X and Z that were
agreed upon initially, with the help of an optimal quantum
state. The uncertainties of X, and Z are bounded as in (3)
when Bob has only classical information about the state. On
the other hand, with the help of a quantum memory (where
Bob prepares an entangled state and sends one part of the state
to Alice), Bob can beat the uncertainty bound of (3).

The entropic uncertainty relation, when Bob possesses a
quantum memory, was put forth by Berta et al. [17],

S(X|B) + S(Z|B) � −2 log2 C(X,Z) + S(A|B), (4)

where S(X|B) = S(ρ(X)
AB ) − S(ρB) and S(Z|B) = S(ρ(Z)

AB ) −
S(ρB ) are the conditional von Neumann entropies of the
post measured states ρ

(X)
AB = ∑

x |x〉〈x| ⊗ ρ
(x)
B with ρ

(x)
B =

TrA[ρAB(EX(x) ⊗ 1B)] and ρ
(Z)
AB = ∑

z |z〉〈z| ⊗ ρ
(z)
B with

ρ
(z)
B = TrA[ρAB(EZ(z) ⊗ 1B)], obtained after Alice’s mea-

surements of X and Z on her system. [Here, the measurement
outcomes of the effects EX(x) [EZ(z)] are encoded in an
orthonormal basis {|x〉} ({|z〉}) and the probability of mea-
surement outcome x (z) is given by p(x) = Tr[ρ(x)

B ] (p(z) =
Tr[ρ(z)

B ]); S(A|B) = S(ρAB) − S(ρB) is the conditional von
Neumann entropy of state ρAB .]

When Alice’s system is in a maximally entangled state
with Bob’s quantum memory, the second term on the right-
hand side of (4) takes the value S(A|B) = − log2 d, and as
−2 log2 C(X,Z) � log2 d (which can be realized when Alice
employs pairs of unbiased projective measurements [26]), a
trivial lower bound of 0 is obtained in the entropic uncertainty
relation. In other words, by sharing an entangled state with
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FIG. 1. (Color online) Alice and Bob decide on the pair of noncommuting observables X and Z. Bob prepares an entangled state ρAB

and sends the subsystem A to Alice. Then Alice measures X or Z randomly and conveys her choice to Bob. At his end, Bob measures X′ or
Z′ and predicts Alice’s outcomes. (a) Alice and Bob both perform sharp measurements. In this case, Bob can predict Alice’s outcomes with
an enhanced precision, as the entropic uncertainty bound [see (5)] can be smaller than −2 log2 C(X,Z) when the conditional von Neumann
entropy S(A|B) of the entangled state ρAB is negative. (b) Alice performs sharp measurements of the chosen observable X or Z, while Bob
correspondingly records the outcomes of compatible unsharp measurements of X′ or Z′. In the joint measurability range of X′ and Z′, Bob’s
quantum memory fails to predict Alice’s outcomes more precisely because the sum of entropies H (X|X′) and H (Z|Z′) is constrained to obey
an entropic steering inequality: H (X|X′) + H (Z|Z′) � −2 log2 C(X,Z).

Alice, Bob can beat the uncertainty bound given by (3) and
can predict the outcomes of a pair of observables X and Z with
improved precision by performing suitable measurements on
his part of the state.

Let us denote X′ or Z′ as the POVM which Bob chooses to
measure when Alice announces her choice of measurements
of the observable X or Z. The uncertainty relation, (4),
can be recast in terms of the conditional entropies [27]
H (X|X′) and H (Z|Z′) of Alice’s measurement outcomes of
the observables X and Z, conditioned by Bob’s measurements
of X′ and Z′. As measurements always increase the entropy,
i.e., H (X|X′) � S(X|B) and H (Z|Z′) � S(Z|B), the entropic
uncertainty relation in the presence of quantum memory can
be expressed in the form [17]

H (X|X′) + H (Z|Z′) � −2 log2 C(X,Z) + S(A|B). (5)

On the other hand, the conditional entropies H (X|X′)
and H (Z|Z′) are constrained to obey the entropic steering
inequality [18,19],

H (X|X′) + H (Z|Z′) � −2 log2 C(X,Z), (6)

if Bob is unable to remotely steer Alice’s state by his local
measurements. And, as proven recently [14,15], measurements
at Bob’s end can result in the violation of any steering
inequality if and only if they are incompatible (and, in addition,
the state shared between Alice and Bob is entangled so as to
be steerable). In other words, the entropic inequality, (6), can
never be violated if Bob’s measurements of X′ and Z′ are
compatible. Violation of the steering inequality, (6), would in
turn correspond to a reduced bound in the entropic uncertainty
relation, (5), in the presence of quantum memory [a reduction
in the bound is realized when Alice and Bob share an entangled
state with S(A|B) < 0]. If Bob is constrained to perform
compatible measurements on his system, he cannot beat the
uncertainty bound of (3) and win the uncertainty game by
predicting the outcomes as precisely as possible, even when
he shares a maximally entangled state with Alice (see Fig. 1).

A. An example

We illustrate the entropic uncertainty relation, (4), for a pair
of qubit observables X = |0〉〈1| + |1〉〈0| and Z = |0〉〈0| −
|1〉〈1|, when Alice and Bob share a maximally entangled
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two-qubit state, |ψ〉AB = 1√
2

(|0A,1B〉 − |1A,0B〉). Alice per-
forms one of the sharp PV measurements,

�X(x) = 1
2 (1 + x X), x = ±1,

(7)
�Z(z) = 1

2 (1 + zZ), z = ±1,

of the observable X or Z randomly on her qubit and announces
her choice of measurement, while Bob tries to predict Alice’s
outcomes by performing unsharp compatible measurements
of the POVMs {EX′(x ′), x ′ = ±1} or {EZ′(z′), z′ = ±1} on
his qubit. The effects EX′(x ′) and EZ′(z′) (corresponding to
binary unsharp measurements of the observables X′ and Z′)
are given by

EX′(x ′) = 1
2 (1 + η x ′ X′),

(8)
EZ′ (z′) = 1

2 (1 + η z′ Z′),

where x ′ and z′ are the measurement outcomes and 0 � η � 1
denotes the unsharpness of the fuzzy measurements. Clearly,
when η = 1, the POVM elements EX′ (x ′) and EZ′(z′) reduce
to their corresponding sharp PV versions [see (7)], �X′(x ′)
and �Z′(z′).

The joint probabilities p(x,x ′) [or p(z,z′)] of Alice’s sharp
outcome x (or z) and Bob’s unsharp outcome x ′ (or z′), when
they both choose to measure the same observable X (or Z) at
their ends, is obtained as

p(x,x ′) = 〈ψAB |�X(x) ⊗ EX(x ′)|ψAB〉
= 1

4 (1 − η x x ′)),

p(z,z′) = 〈ψAB |�Z(z) ⊗ EZ(z′)|ψAB〉
= 1

4 (1 − η z z′)). (9)

While the right-hand side of the entropic uncertainty rela-
tion, (5), reduces to 0 in this case, the left-hand side can be
simplified (see [27]) to obtain

H (X|X′) + H (Z|Z′) = −
∑

x,x ′=±1

p(x,x ′) log2 p(x|x ′)

−
∑

z,z′=±1

p(z,z′) log2 p(z|z′)

= 2 H [(1 + η)/2], (10)

where H (p) = −p log2 p − (1 − p) log2(1 − p) is the binary
entropy. As the binary entropy function H [(1 + η)/2] = 0
only when η = 1, the trivial lower bound of the uncertainty
relation, (5), can be reached if Bob too performs sharp PV
measurements of the observables X and Z at his end. In other
words, Bob can predict the outcomes of Alice’s measurements
ofX andZ precisely when he employs sharp PV measurements
of the same observables. But sharp measurements of X and Z
are not compatible. The joint measurability of the unsharp
POVMs {EX(x ′)} and {EZ(z′)} sets the limitation [1,5] η �
1/

√
2 on the unsharpness parameter.

If Bob is confined to the joint measurability range 0 � η �
1/

√
2, the entropic steering inequality, (6),

H (X|X′) + H (Z|Z′) � 1, (11)

is always satisfied [28]. In turn, this implies that Bob cannot
beat the entropic uncertainty bound of (3)—even with the help

of an entangled state he shares with Alice—if he is constrained
to employ jointly measurable POVMs.

The result demonstrated here in the specific example of
d = 2 (qubits) holds, in principle, for any d-dimensional
POVMs. An illustration in the d-dimensional example, how-
ever, requires that the compatibility or incompatibility range
of the unsharpness parameter η is known. However, optimal
values of the unsharpness parameter (η) of a set of POVMs is
known only for qubits.

B. Joint measurability and QKD

The entropic uncertainty relation in the presence of quan-
tum memory, (4), provides a quantification for the connection
between entanglement and uncertainty. Moreover, it has been
shown [17] to be useful to derive a lower bound on the secret
key rate that can be generated by Alice and Bob in a QKD
against collective attacks by an adversary, Eve. Subsequently,
a tighter finite-key bound on the discrete variable QKD was
derived based on generalized uncertainty relations for smooth
min and max entropies [29]. Entropic uncertainty relations
have also proved to be of practical use in identifying security
proofs of device-independent QKDs [30]. Recently Branciard
et al. [31] showed for the first time that the steering and security
of one-sided device independent QKDs are related. In the
following, we focus on the implications of joint measurability
for the secret key rate in a QKD against collective attacks by
an adversary, Eve.

Suppose that Eve prepares a three-party quantum state ρABE

and gives the A and B parts to Alice and Bob, keeping part E

with her. Alice measures the observablesX andZ randomly on
the state she receives and Bob tries to predict Alice’s results
by his measurements of X′ and Z′. In order to generate a
key, Alice communicates her choice of measurements to Bob.
Even if this communication is overheard by Eve, Alice and
Bob can generate a secure key—provided the correlations
between their measurement outcomes fare better than those be-
tween Eve and Alice. More specifically, if the difference
between the mutual information S(X : B) = S(ρX

A ) + S(B) −
S(ρX

AB) = S(ρX
A ) − S(X|B) and S(X : E) = S(ρX

A ) + S(E) −
S(ρX

AE) = S(ρX
A ) − S(X|E) (corresponding to the measure-

ment ofX at Alice’s end) is positive, Alice and Bob can always
generate a secure key.

The amount of key K that Alice and Bob can generate per
state is lower bounded by [32]

K � S(X : B) − S(X : E) = S(X|E) − S(X|B). (12)

It may be noted that when Alice’s measurement outcomes of
X and Z are simultaneously stored in the quantum memories
of Eve and Bob, respectively, the following trade-off relation
for the entropies S(X|E) and S(Z|B) ensues [17,33,34]:

S(X|E) + S(Z|B) � −2 log2 C(X,Z). (13)

And, employing (13) in (12), one obtains

K � S(X|E) + S(Z|B) − [S(X|B) + S(Z|B)]

� −2 log2 C(X,Z) − [S(X|B) + S(Z|B)]. (14)
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As H (X|X′) � S(X|B) and H (Z|Z′) � S(Z|B), the lower
bound of inequality (14) can be simplified to obtain [17]

K � −2 log2 C(X,Z) − [H (X|X′) + H (Z|Z′)]. (15)

It is clear that when Bob is constrained to performing mea-
surements of compatible POVMs X′ and Z′, the conditional
entropies H (X|X′) and H (Z|Z′) satisfy the entropic steering
inequality, H (X|X′) + H (Z|Z′) � −2 log2 C(X,Z) [see (6)],
in which case the key rate is not ensured to be positive.
Bob must be equipped to perform incompatible measurements
at his end [so that it is possible to witness violation of
the steering inequality by beating the bound −2 log2 C(X,Z)
on entropic uncertainties and attain the refined bound of
−2 log2 C(X,Z) + S(A|B) as in (5)] in order for a positive
key rate to ensue. In other words, a quantum advantage for
security in a QKD against collective attacks by Eve is not
envisaged when Bob is constrained to performing compatible
measurements only.

IV. CONCLUSIONS

Measurement outcomes of a pair of noncommuting observ-
ables reveal a trade-off, which is quantified by uncertainty
relations. The entropic uncertainty relation [24] constrains the
sum of entropies associated with the probabilities of outcomes
of a pair of observables. An extended entropic uncertainty
relation [17] brought out that it is possible to beat the lower
bound on uncertainties when the system is entangled with a
quantum memory. In this paper we have explored the entropic
uncertainty relation when the entangled quantum memory is
restricted to recording the outcomes of jointly measurable
POVMs only. With this constraint on the measurements, the
entropies satisfy an entropic steering inequality [18]. Thus, we
identify that an entangled quantum memory, which is limited
to recording results of compatible POVMs, cannot assist in
beating the entropic uncertainty bound. As a consequence,
we show that the quantum advantage in ensuring security
in a key distribution against collective attacks is lost, even
though a suitable entangled state is employed—but with the
joint measurability constraint.
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