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We study the Quantum Measurement Process in a Stern–Gerlach setup with the spin of a silver atom 
as the quantum system and the position as the apparatus. The system and the apparatus are treated 
quantum-mechanically using unitary evolution. The new ingredient in our analysis is the idea that the 
probes determining the position of the silver atom are limited in resolution. We show using a Wigner 
matrix that due to the coarseness of the detection process, the pure density matrix appears to evolve to 
an impure one. We quantify the information gained about the spin in a coarse position measurement.
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1. Introduction

Quantum mechanics is a very successful theory for describing 
the microscopic world of atoms. However, ever since its incep-
tion there are certain fundamental aspects of quantum theory that 
have remained obscure. This has to do with the relation between 
unitary evolution which is central to the theory, and the mea-
surement process, which gives us information about the quantum 
system. The challenge that remains is a self-consistent formulation 
of quantum theory which explains unitary evolution and outcomes 
of a measurement within a single framework.

Bohr had taken a semiclassical approach in which he viewed 
the apparatus classically and treated the system (spin) quantum 
mechanically. Such a point of view is unsatisfactory since at a fun-
damental level the world is governed by quantum mechanics. In 
this letter, we present a completely quantum mechanical analy-
sis of the Stern–Gerlach experiment. Our purpose is to explore, 
in a simple solvable context, the idea that coarseness of the ex-
perimental probes is responsible for apparent non-unitarity in the 
measurement process.

We focus on the Stern–Gerlach experiment as a context for 
understanding the measurement process in quantum mechanics 
without invoking any ad hoc assumption beyond pure unitary evo-
lution. Let us begin by summarizing the Stern–Gerlach experiment. 
The set up consists of a beam of silver atoms (spin- 1

2 particles)
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moving along the z direction passing through an inhomogeneous 
magnetic field along the y direction. Two spots appear on the 
screen corresponding to the y component of the spin, S y = 1

2 and 
S y = − 1

2 . There have been a few analytical studies of this experi-
ment in the past couple of decades [1–8]. Some studies [7] invoke 
Ehrenfest’s Theorem to address the issue of measurement in a 
Stern–Gerlach setup. There have also been detailed analyses of the 
Stern–Gerlach experiment from the point of view of environment 
induced decoherence [1,2,6,9]. In this letter we invoke the new 
idea that there is an inherent coarseness in the detection process. 
The role of coarseness of the measurement process in the quantum 
to classical transition has been explored in the past [10–12]. In 
[10,11] coarseness of the measurement process has been investi-
gated by using the Leggett–Garg inequality as a way of probing the 
quantum to classical transition. In [12] coarse graining has been 
used as a probe for detection of entanglement between a micro-
scopic system and a macroscopic system. We present an analysis 
which offers a new perspective on the Stern–Gerlach experiment 
from the point of view of the coarseness of the measurement pro-
cess.

The letter is organized as follows. We first summarize the mea-
surement process. Then we present a theoretical analysis of the 
Stern–Gerlach experiment using unitary evolution. We show with 
a Wigner function matrix approach, that a coarse measurement 
with a finite spatial resolution leads to an apparently non-unitary
evolution for the Wigner matrix. Finally we end our letter with a 
concluding discussion.
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2. The measurement process

Let us summarize the measurement process in quantum me-
chanics. Our system is initially in a coherent superposition of states 
|S〉 = ∑

i ci |Si〉 in an orthonormal basis which diagonalizes the 
quantity being measured. To begin with, the system plus appara-
tus is in the product state |ψ〉 = |S〉|A〉, in which the system and 
apparatus are unentangled. It is useful to logically break up the 
measurement process into three steps. The first step in the mea-
surement process entails coupling between the quantum system 
and the measuring apparatus so that the total state evolves unitar-
ily to an entangled state U |ψ〉 = ∑

i ci |Si〉|Ai〉.1 This state can be 
represented as a pure density matrix

ρ = |ψ〉〈ψ | =
∑

i j

c∗
j ci |Si〉|Ai〉〈S j|〈A j| (1)

After the second step, the density matrix of the system takes the 
impure form

ρ̃ =
∑

i

|ci |2|Si〉〈Si| (2)

which is interpretable as a classical mixture of states. Finally, the 
impure diagonal density matrix (2) goes over to a pure state 
ci |Si〉〈Si |c∗

i . The first step can be explained entirely in terms of 
unitary evolution and therefore is not controversial. The final step, 
sometimes called “collapse”, has been debated extensively as the 
“quantum measurement problem”. This singling out of one out-
come from many possibilities is not addressed here. Let us note 
that, even in classical probability theory, there is a singling out 
of one from several outcomes (only one horse wins the race). We 
address here the second step; the transition from quantum super-
positions to classical mixtures. This is the focus of our letter. In 
this letter, we investigate the Stern–Gerlach experiment from the 
perspective of coarse quantum measurement (CQM), in which we 
recognize the fact that all experiments are constrained by bounded 
resources. We model these constraints by using a screen whose 
size and spatial resolution are fixed. The spatial resolution of the 
screen is given by the pixel size and the size of the screen de-
termines the total number of pixels. Experimentally one can only 
say that an atom was incident on our screen somewhere within a 
pixel. Fixing these resources imposes ultraviolet as well as infrared 
cutoffs on the experimental probes. In this letter we are more con-
cerned with the short distance cutoff.

3. Stern–Gerlach

Consider silver atoms with spin 1
2 at rest in the laboratory, in a 

magnetic field given by

B = (B0 y, B0x,0).

Notice that this field is both divergence and curl free. We confine 
the atoms to the x–z plane and thus set y = 0. The Hamiltonian 
for the system is

H = p2

2m
+ F xσy (3)

where

F = −gμB
h̄

2
B0,

with g the Landé g factor and μB the Bohr magneton. The 
Schrödinger equation for the system is given by (see Appendix A)

1 We note that in general, the |Ai〉s need not be orthonormal.
ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + Fxσyψ, (4)

where ψ is a two component Pauli spinor. This problem can be 
solved exactly by transforming from the laboratory frame to a 
freely falling frame ξ = x − 1

2 at2 and T = t , with a = F/m the 
acceleration and ψ = ei f φ (where, f = maT

h̄ (ξ + 1
3 aT 2)), (which re-

duces it to a free particle problem as in the Einstein elevator) 
and then transforming back to the laboratory frame [13] (see Ap-
pendix A). Such an analysis is entirely quantum mechanical. We 
view the spin as a quantum system and the position of the silver 
atom as the apparatus or pointer. We do not invoke any semiclassi-
cal approximation. The formulation above results in a separation in 
time of the two spin states. This can be mapped to the formulation 
(see Appendix A), of a typical experiment, where the separation of 
the spins happens in space and we will sometimes use the spa-
tial notation and language with the understanding that t = zm/kh̄, 
where h̄k = √

2mE . We start with an initial Gaussian wave packet 
of width σ . Setting t = t f − ti our analysis gives the following ex-
act propagators K ++(x, xi; t), K −−(x, xi; t) and K +−(x, xi; t) [14,
15] (see Appendix A), where the symbols + and − refer to the 
two components φ+ and φ− of the Pauli spinor φ.

K ++(x, xi; t) =
√

m

2π ih̄t
expi[m (x − xi)

2

2h̄t

− Ft(x + xi)

2h̄
− F 2t3

24mh̄
] (5)

K −−(x, xi; t) =
√

m

2π ih̄t
expi[m (x − xi)

2

2h̄t

+ Ft(x + xi)

2h̄
− F 2t3

24mh̄
] (6)

K +−(x, xi; t) = 0 (7)

The final wave function is got by “folding” the initial Gaussian with 
the propagator matrix (Eqs. (5)–(7)). It has the form

φ(x, t) = c+φ+(x, t)|+〉 + c−φ−(x, t)|−〉,
where |+〉 and |−〉 are eigenstates of σy and φ+(x, t) and φ−(x, t)
are Gaussian wave packets (see Appendix A). We can identify two 
relevant time scales (Eqs. (A.16) and (A.17) of Appendix A): τ1 =√

2σ
a , the time over which the centers of mass of the two wave 

packets separate and τ2 = mσ 2

h̄ , the timescale over which the indi-
vidual wavepackets spread. We use the values m = 1.79 ×10−25 kg, 
F = 9.27 ×10−22 N and σ = 10−6 m which are experimentally rea-
sonable. Typical values for the two time scales are τ1 = 10−5 s and 
τ2 = 10−3 s.

We restrict our discussion to a situation where the detection 
screen is placed at a location just at the point where the atom exits 
the magnetic field. However, in general one can have a further free 
evolution of the separated wavepackets beyond this region in the 
field free space (see Appendix A).

The full density matrix (see Appendix B) is of the form:

ραβ(x, x′) = cαφα(x)c∗
βφ∗

β(x′), (8)

where α and β take values + and −. In Eq. (8) we have suppressed 
the time dependence in the notation.

4. Entanglement and coarse graining

The total density matrix of the system has entanglement be-
tween the spin and atomic position. The degree of entanglement 
can be measured by the entanglement entropy [16], which is most 
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Fig. 1. Figure shows the entanglement entropy as a function of time in units of μs.

easily computed by tracing over the position and diagonalizing the 
2 × 2 reduced density matrix ρspin for the spin. The result is

Sent = −Tr[ρspin logρspin]
= log 2 − (1 + A(t))

2
log (1 + A(t))

− (1 − A(t))

2
log (1 − A(t)) (9)

where A(t) = exp− t2(t2+τ 2
2 )

τ 4
1

. Here and below, we set c+ = c− =
1/

√
2 for simplicity. The entanglement entropy is plotted in Fig. 1, 

which shows that Sent(t) starts from zero at t = 0, then increases 
and finally settles down to an asymptotic value of log 2 over a 
time scale of the order of 10−7 s. This entanglement timescale is 
given by τ3 = τ1

2/τ2 and is shorter than the separation or spread-
ing timescales. For τ1 ∼ t >> τ3, the entanglement is high even 
though the wavepackets have not cleanly separated in real space 
(Fig. 2).

From the density matrix ραβ(x, x′) we construct the Wigner 
matrix W(q, p) [9], using the standard variables q = (x + x′)/2 and 
y = (x − x′). The matrix elements of W(q, p) are:

Wαβ(q, p) = 1

2π h̄

+∞∫
−∞

ραβ(q + y/2,q − y/2)e
ipy
h̄ dy (10)

with α, β = ±. W(q, p) is a 2 × 2 Hermitean matrix (not neces-
sarily positive). All components of W(q, p) can in principle be mea-
sured by having a Stern–Gerlach setup at the screen to measure 
Tr[W(q, p)(1 + n̂.
σ)/2]. In Figs. 3 and 4, we display the function 
W (q, p) = Tr[W(q, p)(1 +σx)/2], which shows the diagonal as well 
as off diagonal terms in the |+〉, |−〉 basis.

We now use the fact that the detection is done coarsely: the 
phase space resolution is poor and so we integrate the Wigner ma-
trix over volumes of phase space which are large compared to h. 
The coarse grained Wigner matrix W(q, p) (see Appendix B) has 
elements:

W αβ(q, p) = 1

�δ

�/2∫
−�/2

du

δ/2∫
−δ/2

dvWαβ(q + u, p + v), (11)

with � and δ, the pixel size in position and momentum respec-
tively. The off diagonal term W+−(q, p) is oscillatory due to a term 
eiq2π/d , which oscillates on a length scale d = h̄

2Ft (see Appendix B), 
which is about 10−8 m. On a coarse scale these off-diagonal ele-
ments average to zero and we have a diagonal matrix of the form 
(see Appendix B):
Fig. 2. Figure shows the spatial distribution of the wavepacket at t = 22.5 μs. We 
have used the typical values m = 1.79 ×10−25 kg, F = 9.27 ×10−22 N, σ = 10−6 m.

Fig. 3. Figure shows a plot of the function W (q, p) (defined in the text) as a func-
tion of q and p at t = 1 μs. The central hump showing oscillations is the real part 
of the off-diagonal element of the Wigner matrix and the others are diagonal ele-
ments. The remaining parameters and axes units are as mentioned in the caption of 
Fig. 2. The W (q, p) axis has been rescaled by multiplying by a factor of 10−33. q is 
displayed in m and p in kg m/s.

Fig. 4. Figure shows a plot of the function W (q, p, t) (defined in the text) as a func-
tion of q and p at t = 30 μs. The remaining parameters are as mentioned in the 
caption of Fig. 2. The W (q, p) axis has been rescaled by multiplying by a factor of 
10−33. q is displayed in m and p in kg m/s.
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Fig. 5. Mean information per event H versus time in μs. The remaining parameters 
are as mentioned in the caption of Fig. 2.(

W ++(q, p) 0
0 W −−(q, p)

)

What can one learn from a coarse measurement? Let us sup-
pose as is usual in experiments that we only detect the posi-
tion of the silver atom with low resolution and do not measure 
the momentum at all. We integrate the Wigner matrix over all 
momenta and integrate over a pixel to find that if an atom is 
detected at pixel location X , we would assign relative probabili-
ties P±(X) = 1/2 

∫ �/2
−�/2 |φ±(X + u)|2du and to its being spin ±. 

By detecting an atom at pixel X we do gain information about 
the spin. If we set, P (X) = P+(X) + P−(X) and define q±(X) =
P±(X)/P (X), the entropy of the spin probability distribution is 
S(X) = −q−(X) log q−(X) − q+(X) log q+(X). The information we 
gain is so given by

I(X) = log 2 − S(X) (12)

per event at X . Note that the arrivals at X values away from 0 give 
us more information. The mean information per event is given by 
[17]:

H =
∫

P (X)I(X)dX = log 2 −
∫

P (x) log P (x)dx

+
∫

P+(x) log P+(x)dx

+
∫

P−(x) log P−(x)dx. (13)

At any time, H cannot of course exceed Sent the entanglement 
entropy, which is the maximum possible information that can be 
gained about the spin, by interrogating the position variable. It 
follows from Eq. (13) that H starts out from zero at t = 0 and 
approaches log 2 over a timescale of τ1 = 10−5 s (see Fig. 5). The 
fact that H is positive means that we do gain some information 
about the spin of the atoms by detecting their positions, even be-
fore the two wave packets have separated cleanly. After the wave 
packets have separated, the coherence between the two wavepack-
ets is still manifest in the Wigner function. As is well known, the 
Wigner function is only a quasiprobability distribution. On coarse 
graining it becomes positive [10] and can be viewed as a proba-
bility distribution in the phase space of the atomic position. This 
constitutes coarse measurement.

5. Conclusion

In this letter we have addressed the Quantum Measurement 
Process in the context of the Stern–Gerlach experiment. An exact 
solution of the Schrödinger equation permits us to analyze unitary 
evolution in an idealized mathematical model of the experiment. 
Coarse Quantum Measurement (CQM) is based on the idea that ev-
ery measurement is done with limited resources of resolution. The 
key conclusion of our analysis is that, the apparent loss of unitar-
ity in a quantum measurement is a consequence of the coarseness 
of the experimental probes. Previous literature on coarse measure-
ments [10–12] has not applied the idea to understand the classic 
Stern–Gerlach experiment which is of great interest as a paradigm 
for quantum measurement.

In the context of statistical mechanics, the authors of Ref. [18,
19] note that entropy is a subjective notion depending upon the 
resources available to the experimenter, to distinguish between 
statistical states. This follows the Bayesian approach to probabil-
ity theory. The view we advocate is very similar in the context of 
quantum mechanics. The idea of “coarse measurement” is clearly 
a subjective one. Depending on the resources available to the ex-
perimenter, the evolution may appear unitary or otherwise. Thus, 
with a high enough resolution one can always detect interference 
effects. When the interference between the two wave packets is 
detectable, we must conclude that the spin is both up and down si-
multaneously. This does not constitute a measurement of the spin 
component σy . In a low resolution experiment, the interference 
apparently gets washed out and we can obtain information about 
the spin. This is the regime of interest in this letter.

Some of the quantum measurement literature concerns itself 
with von Neuman measurements, which can be regarded as in-
stantaneous. One talks about “before” and “after” the measure-
ment, but not during. Exceptions are weak [20] and nonideal 
measurements [21]. In weak measurements one tries to continu-
ously extract information from a quantum system causing minimal 
disturbance using a weak probe, that does not destroy the inter-
ference pattern. In coarse measurements, one explicitly loses the 
interference pattern. Regarding non-ideal measurements Ref. [21]
discusses the subtleties in the notion of distinguishability of appa-
ratus states: even states which are orthogonal in the Hilbert space 
sense can have considerable spatial overlap. In contrast, our fo-
cus is on how a coarse measurement results in the apparent loss 
of coherence of the final wavepacket in a Stern–Gerlach setup. As 
has been emphasized by Ref. [10], the coarse measurement ap-
proach is conceptually different from the decoherence paradigm. 
Decoherence involves interaction with environmental degrees of 
freedom. Information is lost from the system by tracing over the 
environment. The coarse measurement approach does not invoke 
new degrees of freedom or new dynamics. It is essentially kine-
matical, dealing with the experimenter’s inability to measure or 
control fine details.

There have been other parallel developments [22,23] which ad-
dress the issue of imperfect measurements. In [22] the authors 
model the detector as a phase randomizer or dephaser, which 
leads to a mixed state density matrix starting from a pure state 
density matrix. In [23], the formalism of coarse-graining has been 
framed in a formal mathematical language. We go beyond this 
discussion by providing a physical basis in terms of resource limi-
tation. Ref. [23] also touches upon the issue of non-idealness as in 
Ref. [21]. There has even been a suggestion [24] that the “reduc-
tion of the wavepacket” happens just when the atom enters the 
magnetic field.

In the actual experimental setup for the Stern–Gerlach exper-
iment the atoms are heated in an oven to about 450 K. At this 
temperature, the two spin states of the silver atom are in an inco-
herent or classical superposition of the two spin states. As a result, 
the interference effects dealt with here will not be visible. To see 
the quantum interference effects discussed here, the internal state 
of the atom must be in a coherent superposition of spin states. 
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An optical analog of the Stern–Gerlach experiment [25] may be a 
more practical candidate for realizing this experiment.
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Appendix A. Propagator for the Stern–Gerlach setup

We consider a Stern–Gerlach setup with a magnetic field B =
(B0 y, B0x, 0). The Hamiltonian for the problem is:

H = p2

2m
− μ.B (A.1)

with μ = gμB
h̄
2 σ and the stationary solution satisfies:

Hψ = Eψ

(
ψ = ψ(x, z), ψ(x,0) = e

− x2

2σ2

)
(A.2)

Restricting to the x–z plane by setting y = 0, the Hamiltonian can 
be written more explicitly as

H = p2
x + p2

z

2m
+ xFσy (A.3)

where F = −gμB
h̄
2 B0 and if we assume a solution of the form 

ψ(x, z) = φ(x, z) eikz (since this is a propagating wave along 
z-direction), Eq. (A.2) in the paraxial approximation reduces to the 
following:

ih̄

(
kh̄

m

)
∂φ

∂z
= − h̄2

2m

∂2φ

∂x2
+ xFσyφ (A.4)

if we set E = k2h̄2

2m .
This equation can be identified with the time dependent 

Schrödinger equation, by setting t = zm
kh̄ :

ih̄
∂φ

∂t
= − h̄2

2m

∂2φ

∂x2
+ xFσyφ (A.5)

Since the eigenvalues of σy are +1 and −1 we get the correspond-
ing components of the spinor φ as φ+ and φ− , respectively. Thus 
Eq. (5) reduces to:

ih̄
∂φ+
∂t

= − h̄2

2m

∂2φ+
∂x2

+ xFφ+ (A.6)

ih̄
∂φ−
∂t

= − h̄2

2m

∂2φ−
∂x2

− xFφ− (A.7)

To solve these equations we move to an accelerated frame along 
the x-axis and employ the following transformations in x, t and φ, 
which reduce the above equations to a free particle equation for 
φ̃±(ξ, T ) where ξ is related to x as follows:

x = ξ ± 1

2
aT 2 (A.8)

and

t = T (A.9)

Thus we have:

φ±(x, t) = φ̃±(ξ, T ) ei f (ξ,T ) (A.10)
We outline the solution to Eq. (A.6). Substituting Eqs. (A.8), (A.9)
and (A.10) in Eq. (A.6) we reduce Eq. (A.6) to a free particle equa-
tion and find f and a:

f = maT

h̄
(ξ + 1

3
aT 2), a = − F

m
(A.11)

The kernel (propagator) for the free particle problem correspond-
ing to Eq. (A.6) is:

K̃ (x, xi; t) =
√

m

2π ih̄t
e i

m(x−xi)
2

2h̄t (A.12)

where x is the position at time t and xi is position at ti = 0. We 
can find the propagator for the Hamiltonian under consideration 
by applying the following transformation.

K (x, xi; t) = ei f (x,t) K̃ (x, xi; t) (A.13)

which gives Eq. (5) of the main text:

K ++(x, xi; t) =
√

m

2π ih̄t

× exp

{
i

(
m

2h̄t
(x − xi)

2 − Ft

2h̄
(x + xi) − F 2t3

24mh̄

)}
(A.14)

The solution to Eq. (A.6) can be cast as follows:

φ+(x, t) =
∞∫

−∞
K ++(x, xi, t)φ+(xi,0)dxi (A.15)

After solving Eq. (A.13) we get the final solution for φ+ . We employ 
the same procedure to find φ− . The solutions are:

φ+(x, t) =
√

mσ

(mσ 2 + ih̄t)
√

π

× exp

{
−m(12x2 + a2

h̄ (4imσ 2 − h̄t)t3 + 12axt
h̄ (−2imσ 2 + h̄t))

24(mσ 2 + ih̄t)

}

(A.16)

φ−(x, t) =
√

mσ

(mσ 2 + ih̄t)
√

π

× exp

{
−m(12x2 + a2

h̄ (4imσ 2 − h̄t)t3 − 12axt
h̄ (−2imσ 2 + h̄t))

24(mσ 2 + ih̄t)

}

(A.17)

In general, one can consider a further evolution beyond the 
region where the magnetic field is present and consider free evo-
lution which leads to solutions of the form given below:

|φ+(x, t)|2 =
√

m2σ 2

(m2σ 4 + h̄2t2)π

× exp

{
−m2[x − 1

2 at1
2 − at1(t − t1)]2

(m2σ 4 + h̄2t2)

}
(A.18)

|φ−(x, t)|2 =
√

m2σ 2

(m2σ 4 + h̄2t2)π

× exp

{
−m2[x + 1

2 at1
2 + at1(t − t1)]2

(m2σ 4 + h̄2t2)

}
(A.19)

where t1 is the amount of time spent by the atom in the magnetic 
field and t is the total time of evolution.
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Appendix B. Suppression of off diagonal elements of the Wigner 
matrix due to coarse graining

The Wigner matrix is of the form:

W(q, p) =
(

W++(q, p) W+−(q, p)

W−+(q, p) W−−(q, p)

)
(B.1)

Explicitly, for instance, we have:

W++(q, p) = 1

2π h̄

× exp

{
−

4p2t2

m2 − 4pt(at2+2q)
m +(at2+2q)2+ 4p2σ4

h̄2 − 8amptσ4

h̄2 + 4a2m2t2σ4

h̄2

4σ 2

}

(B.2)

W+−(q, p) = 1

2π h̄

× exp

[
−

{
(pt − mq)2

m2σ 2
+ p2σ 2

h̄2
+ iat(pt − 2mq)

h̄

}]
(B.3)

Notice that W+−(q, p) oscillates on a spatial scale d = h̄
2mat =

h̄
2Ft . The coarse grained Wigner matrix W(q, p) has elements

W αβ(q, p) = 1

�δ

�/2∫
−�/2

du

δ/2∫
−δ/2

dvWαβ(q + u, p + v), (B.4)

with � and δ, the pixel size in position and momentum respec-
tively. The numerically generated plots show how the offdiagonal 
terms W+−(q, p) and W−+(q, p) on coarse graining average to 
zero due to the presence of the oscillatory term eiq 2π

d , where d
is the spatial scale of oscillation. We finally get the following diag-
onal form for the coarse grained Wigner matrix:(

W ++(q, p) 0
0 W −−(q, p)

)

For instance, for q = 10−6 m and p = 0 kg m/s and t = 3 × 10−5 s
we get the following form for the coarse grained Wigner matrix, 
for the realistic experimental parameter values for a typical Stern 
Gerlach setup.

W(q, p) =
(

5.7 × 10−2 0
0 1.6 × 10−5

)
(B.5)
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