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ABSTRACT
Energetic winds and radiation from massive star clusters push the surrounding gas and blow
superbubbles in the interstellar medium (ISM). Using 1D hydrodynamic simulations, we study
the role of radiation in the dynamics of superbubbles driven by a young star cluster of mass
106 M�. We have considered a realistic time evolution of the mechanical power as well as
radiation power of the star cluster, and detailed heating and cooling processes. We find that
the ratio of the radiation pressure on the shell (shocked ISM) to the thermal pressure (∼107 K)
of the shocked-wind region is almost independent of the ambient density, and it is greater
than unity before �1 Myr. We explore the parameter space of density and dust opacity of the
ambient medium, and find that the size of the hot gas (∼107 K) cavity is insensitive to the
dust opacity [σ d ≈ (0.1–1.5) × 10−21 cm2], but the structure of the photoionized (∼104 K)
gas depends on it. Most of the radiative losses occur at ∼104 K, with sub-dominant losses at
�103 K and ∼106–108 K. The superbubbles can retain as high as ∼10 per cent of its input
energy, for an ambient density of 103 mH cm−3. We discuss the role of ionization parameter and
recombination-averaged density in understanding the dominant feedback mechanism. Finally,
we compare our results with the observations of 30 Doradus.

Key words: hydrodynamics – methods: numerical – ISM: bubbles – H II regions – galaxies:
star clusters: general.

1 IN T RO D U C T I O N

The study of interactions between stars and their surrounding
medium is crucial in understanding the evolution of galaxies. The
formation of H II regions (Strömgren 1939) and the expansion of gi-
ant gas shells (Castor, McCray & Weaver 1975) are manifestations
of these interactions. These feedback processes affect subsequent
star formation as well as control the chemical enrichment of galax-
ies (Hopkins, Quataert & Murray 2011; Dale 2015; Federrath 2015;
Skinner & Ostriker 2015).

An important aspect of this interaction is mechanical feedback
that arises from the mechanical energy deposited by the stars in the
form of stellar winds and supernovae (SNe); (Taylor 1950; Parker
1965). The ionizing radiation of massive stars is so strong that it can
remove the surrounding gas before the supernova (SN) occurs (Geen
et al. 2015). For a young star cluster, the bolometric luminosity
(Lbol) is ∼100 times larger than the mechanical luminosity (Lw;
cf. Fig. 1), and the momentum deposition rate due to radiation
∼Lbol/c is almost comparable to the momentum deposition rate due
to mechanical energy ∼Lw/vw (vw is the cluster wind velocity).
However, previous authors have either considered the effect of the
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winds (Mac Low & McCray 1988; Rogers & Pittard 2013) or that
of the radiation (Dale, Ercolano & Bonnell 2013; Sales et al. 2014).
The combined effect of radiation and winds has not been studied in
detail in a simple set up.

A useful way to characterize the importance of winds and ra-
diation is to compare thermal and radiation pressures in the bub-
ble (Silich & Tenorio-Tagle 2013). The supersonic winds inter-
act with the ambient medium, produce a shock wave and sweep
up the surrounding matter into a thin shell [shocked interstellar
medium (ISM), hereafter ‘shell’]. During this process, the wind
loses kinetic energy, gets thermalized and thereby a high-pressure
zone (shocked-wind region, hereafter ‘SW’) is formed. The ther-
mal pressure in the SW region (Psw) is expected to scale as
ρamb (Lw/ρambt

2
dyn)2/5 ∝ R

−4/3
cd (Rcd is the location of the contact dis-

continuity between the shocked ISM and SW, ρamb is density of the
ambient medium and tdyn is the dynamical time; Weaver et al. 1977).
The radiation pressure (Prad) can be estimated as Lbol/(4π R2

cd c),
which falls (∝ R−2

cd ) faster than Psw as the bubble expands. There-
fore, the radiation pressure is believed to be important at early
times. In a dense ISM, the radiation pressure can be more important
because radiative cooling removes a large fraction of mechanical
energy (Yadav et al. 2016).

Some authors have highlighted the role of radiation pressure for
massive star clusters (Krumholz & Matzner 2009; Murray, Ménard
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Effects of radiation on superbubbles 4533

Figure 1. Star cluster output as a function of time. The solid red line and
violet dashed line represent the mechanical luminosity (Lw) and mass-loss
rate (Ṁ). The blue dot–dashed, green dot–dashed and black dotted lines
display the bolometric luminosity (Lbol), the ionizing (energy >13.6 eV)
photons luminosity (Li) and flux (Qi), respectively.

& Thompson 2011). Lopez et al. 2011 observed 30 Doradus and
concluded that radiation pressure may have a significant role on its
dynamics. However, Pellegrini, Baldwin & Ferland (2011) analysed
the same object and by modelling different line ratios found that
radiation pressure is weak compared to the thermal pressure of the
X-ray emitting gas. Yeh & Matzner (2012) measured ionization
parameter of local starburst galaxies and concluded that radiation
pressure controls the dynamics.

For a better understanding of the relative role of mechanical and
radiation feedback, Silich & Tenorio-Tagle (2013, hereafter ST13)
revisited the standard model of interstellar bubbles (ISBs; Weaver
et al. 1977). They found that in a dense medium the SW region cools
rapidly, thereby draining its thermal energy and making it disappear.
They concluded that radiation pressure is important only in such a
case when there is no SW region. In their example of a superbubble
being driven by a cluster of mass 106 M�, in an ambient medium
of particle density 103 cm−3, radiation pressure becomes important
during a short interval of ≈ 1.6–2 Myr. However, their estimates of
the cooling time-scale of the SW region are based on the adiabatic
calculations of Mac Low & McCray (1988), and it is not clear if
they hold in the presence of radiative cooling in the dense shell.

In this work, using 1D hydrodynamic (HD) simulations, we
present more realistic calculations and discuss the importance of
thermal conduction, radiative cooling, heating, and radiation pres-
sure. We find that, in dense media (ρamb � 102 mH cm−3), despite
the rapid cooling of the shell, the SW region does not disappear.
We also find that the ratio of the radiation pressure to thermal pres-
sure ratio is greater than unity before �1 Myr. This paper improves
the understanding of ISBs in the dense medium.

The plan of this paper is as follows. We start with a compara-
tive study of the constant luminosity model and a more realistic
time-dependent luminosity model. In the case of time-dependent
luminosity, the radiation power and mechanical power of a typical
star cluster are obtained using STARBURST99 (Leitherer et al. 1999),
the details of which are discussed in Section 2. In Section 3, we

discuss the analytical model of an ISB. In Section 4, we describe
our simulation set-up. The results of simulations are discussed in
Section 5. In Section 6, we explore the parameter space, compare
our results with other theoretical models and with observations.
Finally, in Section 7, we summarize the main results of this paper.

2 SE T- U P A N D O U T P U T O F STARBURST99

We use STARBURST99 v7.0.1 (Leitherer et al. 1999) to generate the
mechanical and radiation source profile of a coeval star cluster of
mass 106 M�. We have chosen the standard Kroupa initial mass
function (Kroupa 2002) where lower and upper cut-off mass are
set to 0.1 and 100 M�, Padova evolutionary tracks with metallicity
Z=0.4 Z� (as in ST13).

Fig. 1 displays the output of the STARBURST99 synthesis model.
The jump in the mechanical luminosity profile at ≈3.4 Myr is due
to the first SN. After this, radiation luminosity (Lbol, Li) and the
ionizing photons flux (Qi) fall down rapidly. It is worth noting
that, after the first SN, the mechanical luminosity becomes almost
constant. This is because SNe become so frequent that on average,
the winds power approaches a steady state.

3 A NA LY T I C A L P I C T U R E

Consider a scenario in which radiation from a central source (a star
or star cluster) is incident on a neutral medium. The ionizing photons
produce a fast moving ionization front (IF) [R-type]. Ionization
raises the gas temperature to T ∼ 104 K and increases the particle
number density, and hence the thermal pressure behind the IF is
increased. As soon as the IF becomes D-type, the thermal pressure
pushes the surrounding gas and piles it up into a thin shell (IF-
driven shocked ISM, should not be confused with the wind-driven
shell); (for details see chapter 37 in Draine 2011a, Bisbas et al.
2015, Haworth et al. 2015 and Kim, Kim & Ostriker 2016.) This is
the case if we neglect the stellar and/or the SN winds. In reality, the
photons and winds interact with ambient medium simultaneously.
Although the wind velocity is supersonic with respect to the sound
speed of ambient medium, its velocity is less than the velocity of
R-type front, and so, the winds initially move in a medium which
is already ionized. When the wind interacts with such a medium, it
produces a shock and forms a wind-driven hot (T ∼ 107 K) bubble.

We consider a simple ISB model, where wind and radiation from
the individual stars work cumulatively. We also consider a uniform-
density ISM and therefore, we neglect all the effects which sustain
density stratification. The structure of a wind-driven bubble with a
constant mechanical luminosity is discussed in Castor et al. (1975)
and Weaver et al. (1977) [for a detailed discussion see Bisnovatyi-
Kogan & Silich 1995]. Assuming adiabatic evolution, the position
of contact discontinuity (Rcd), the thermal pressure in the SW region
(Psw) and the position of the reverse shock (Rrs) are

Rcd =
(

375(γ − 1)

28π(9γ − 4)

)1/5

L1/5
w ρ

−1/5
amb t

3/5
dyn (1)

Psw = 7

(
3(γ − 1)

700π(9γ − 4)

)2/5

L2/5
w ρ

3/5
amb t

−4/5
dyn (2)

Rrs =
(

Lw

2π vwPsw

)1/2

, (3)

where Lw is the mechanical luminosity of the driving source, ρamb

is the ambient density, γ is the adiabatic index (chosen to be 5/3)
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and tdyn is the dynamical time. These equations are valid as long as
the system is adiabatic, i.e. when the dynamical time of the system
is much shorter than the cooling time-scale of various zones. In the
adiabatic stage, the expansion of the bubble is determined by thermal
energy of the SW region. This is known as energy-dominated wind-
driven bubble (ST13). Due to high density, the shell cools down and
its cooling time-scale (also see Mac Low & McCray 1988) is

τshell = 2.7 × 104 Z
−25/59
ISM n

−42/59
ISM L

17/59
38 yr, (4)

where L38 = Lw/1038 erg s−1, nISM and ZISM are the particle num-
ber density and metallicity of the ambient medium. Shell cooling
enhances the radiation pressure as the ionizing photons are trapped
within it. A simple estimate of radiation force (Frad) is

Frad = ftrap
Lbol

c
, (5)

where c is the speed of light and ftrap is the fraction of bolometric
luminosity trapped within the shell. Numerical implementation of
the radiation force is discussed in Section 4.6.

In addition to shell cooling, the interior of the bubble (shocked-
wind and free-wind region) also lose energy, radiative cooling be-
comes important when the SW region is dominated by the mass
evaporated due to thermal conduction. The radiative cooling time-
scale of the SW region (for details see section 2 in Mac Low &
McCray 1988) is

τsw = 1.6 × 107 Z
−35/22
ISM n

−8/11
ISM L

3/11
38 yr. (6)

If the dynamical time becomes longer than this time-scale, the
SW region disappears and the free winds hit the shell directly and
the expansion of bubble enters the momentum-dominated regime
(ST13; Martı́nez-González, Silich & Tenorio-Tagle 2014). Using
the above expressions, one can find the contribution of radiation
pressure in different regimes (see section 3 in ST13).

The estimates in equations (4) and (6), however, depend on few
crucial but probably invalid assumptions. First, the expressions for
time-scales (equations 4 and 6) have been calculated using the adi-
abatic bubble model. If tdyn � τ shell, then a significant amount of
energy is lost within the shell and the expansion rate of the bubble
becomes slower than in the adiabatic case. Secondly, although the
expression for τ sw does not show any direct dependence on the mass-
loss rate Ṁ , it assumes that the temperature of SW region (Tsw) lies
between 105 and 107 K, and therefore, it indirectly contains the in-
formation about the wind velocity vw (because Tsw ∼ (mH/kB ) v2

w),
and hence the mass-loss rate (Ṁ ≈ 2Lw/v2

w) of the driving source.
Therefore, the conclusions drawn using these cooling time-scales
may be off. The details about cooling time-scales are discussed in
Sections 5.1 and 5.2.

4 SIMULATION SET-UP

In this section we describe the simulation set-up corresponding to
results discussed in Section 5.

4.1 Code settings

We use publicly available code PLUTO (Mignone et al. 2007) to study
the role of mechanical and radiation feedback on the ISM. We solve
following set of HD equations:

∂ρ

∂t
+ ∇.(ρ v) = Sρ (7)

∂

∂t
(ρ v) + ∇.(ρ v ⊗ v) + ∇p = ρ arad (8)

∂e

∂t
+ ∇. [(e + p) v] = Se − ∇.Fc − q− + q+ + ρ v. arad (9)

Here, ρ is the mass density, p the thermal pressure, v the fluid ve-
locity, e = ρ ε + ρ v2/2 the total energy density and ε the specific
thermal energy. The terms Sρ and Se in equations (7) and (9) are
related to the mass-loss rate (Ṁ) and the mechanical power (Lw)
of the driving source, and therefore, they represent the mechanical
source. Here, we are assuming that the wind energy is completely
thermalized within the source region such that there is no additional
mechanical momentum source term (Chevalier & Clegg 1985). Fc,
q− and q+ represent thermal conduction, cooling and heating, re-
spectively. The term arad refers to acceleration due to radiation
pressure.

Equations (7)–(9) are solved in spherical 1D geometry. Therefore,
we cannot study the effects of gas clumping and the opening of low
density channels1 in the swept-up ISM [these effects are discussed
in Harper-Clark & Murray (2009), Dale et al. (2013) and Rogers &
Pittard (2013)]. The simulation time step is limited by CFL number
which is set to 0.4 for numerical stability. Paying special attention
to mass and energy conservation, we find that the best-suited solver
for this problem is HLLC (Toro, Spruce & Speares 1994). In all our
models, the simulation box starts from rmin = 0.2 pc to rmax, where
the maximum box length rmax is chosen depending on the ambient
density and physical processes. The details of all models are given
in Table 1.

Note that all the terms on the right-hand side of equations (7)–(9)
are zero for ideal HD equations. Also note that some of these terms
have non-zero values depending on some physical criteria and the
details are discussed in the following sections.

4.2 Adding mechanical source

We consider the initial density (ρamb) and temperature (Tamb) of the
ambient medium to be uniform and at rest. For later times, mass
and energy are continuously added into a small region of radius
rsrc. Therefore, the mechanical source terms, Sρ = Ṁ/Vsrc and Se

= Lw/Vsrc (where Vsrc = (4π/3)r3
src is the volume of the source

region) have non-zero value at r ≤ rsrc (see equations 7 and 9). The
radius of this region has been chosen such that the input energy rate
is greater than the energy loss rate due to radiative cooling (Sharma
et al. 2014, hereafter SRNS14), which gives

rsrc � 5 L
1/3
40 ρ

−2/3
amb, 3 �

−1/3
−24 pc (10)

where L40 = Lw/1040 erg s−1, ρamb, 3 = ρamb/103 mH cm−3 and �−24

= �N/10−24 erg cm3 s−1 (�N is the normalized cooling function).
In all our simulations, we set rsrc = 1 pc and this is consistent with
the radius for a star cluster of mass ∼106 M� (e.g. Fig. 1 in Murray
et al. 2011).

Our mechanical source injection is similar to the model of Cheva-
lier & Clegg (1985), and therefore, we are assuming that the input
energy is thermalized within the source region. It is worth noting
that although adding momentum source term (kinetic energy model
‘KE’ in SRNS14) is more realistic then a luminosity driven (LD)
or thermal energy (TE) addition, both of them converge to similar
profiles very quickly (<0.01 Myr) for a compact [small ejecta ra-
dius (rsrc)] and massive star cluster as we have taken; for details see
section 5.2 in SRNS14.

1 The dominance of radiation pressure, as shown in Section 5.4, may last
shorter than obtained here because of the escape of the ionizing radiation
through the low-density channels.
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Effects of radiation on superbubbles 4535

Table 1. Details of all models. In the extreme right column, nsrc and nrest denote the number of uniformly distributed grid points in the source region and
in rest of the box. The symbol ‘T’ stands for Thermal conduction, ‘C’ for Radiative cooling and ‘H’ for Heating. The symbols ‘N’ and ‘Y’ indicate that the
corresponding process is switched off and on, respectively. The symbol ‘sb99’ represents that it uses the output of STARTBURST99 (Fig. 1), and also indicates that
the corresponding set-up is on. ‘R’ represents the radiation pressure. ρamb is the initial density of the ambient medium. For all models, the initial temperature of
the ambient medium is Tamb = 100 K. Model labels I1, I2 stand for the idealized cases i.e. constant luminosity model. ‘SB’ stands for the realistic model which
uses the output of STARBURST99. Therefore, label ‘SB d3 HCT’ represents a model which uses STARBURST99 (SB ), in which ρamb = 103 mH cm−3 (SB d3 ) and
which includes thermal conduction, radiative cooling and heating.

Source details Physical processes Simulation box details
Model ρamb Lw Ṁ R H C T Box size (pc) Grid points

(mH cm−3) (erg s−1) (M� yr−1) (Rad. prs) (Heating) (Cooling) (Thrm. cd.) [rmin, rsrc, rmax] [nsrc, nrest]

I0 d3a 103 1040 0.0315 – – – – – –
I1 d3 103 1040 0.0315 – N N N [0.2, 1.0, 257.0] [16, 2048]
I1 d3 T 103 1040 0.0315 – N N Y [0.2, 1.0, 257.0] [16, 2048]
I1 d3 CT 103 1040 0.0315 – N Y Y [0.2, 1.0, 161.0] [16, 6400]
I2 d3 103 1040 0.0079 – N N N [0.2, 1.0, 257.0] [16, 2048]
I2 d3 T 103 1040 0.0079 – N N Y [0.2, 1.0, 257.0] [16, 2048]
I2 d3 CT 103 1040 0.0079 – N Y Y [0.2, 1.0, 161.0] [16, 6400]
SB d3 103 sb99 sb99 N N N N [0.2, 1.0, 257.0] [16, 2048]
SB d3 T 103 sb99 sb99 N N N Y [0.2, 1.0, 257.0] [16, 2048]
SB d3 CT 103 sb99 sb99 N N Y Y [0.2, 1.0, 161.0] [16, 6400]
SB d3 HCT 103 sb99 sb99 N sb99 Y Y [0.2, 1.0, 161.0] [16, 6400]
SB d3 RHCT 103 sb99 sb99 sb99 sb99 Y Y [0.2, 1.0, 161.0] [16, 6400]
SB d0 RHCT 100 sb99 sb99 sb99 sb99 Y Y [0.2, 1.0, 701.0] [16, 17 500]
SB d2 RHCT 102 sb99 sb99 sb99 sb99 Y Y [0.2, 1.0, 251.0] [16, 6250]
SB d4 RHCT 104 sb99 sb99 sb99 sb99 Y Y [0.2, 1.0, 101.0] [16, 4000]

Note. aLabel I0_ stands for a bubble which follows analytical results as described in Section 3.

4.3 Thermal conduction

The term (−∇.Fc) in equation (9) represents thermal conduction,
where Fc is the conduction flux. As long as the electron mean free
path (λm) is smaller than the temperature gradient length-scale (lT),
the conduction flux can be defined as Fc = Fclassical = −κ ∇T ,
where κ is the coefficient of thermal conductivity (Spitzer 1962).
But if λm > lT, then the definition of classical conduction breaks
down and |Fc| = Fsat ≈ (2 kB T /π me)1/2 ne kB Te (Cowie & Mc-
Kee 1977). PLUTO deals with this by allowing a smooth transition
between classical and saturated conduction fluxes.2 We evolve ther-
mal conduction using super-time-stepping (Alexiades, Amiez &
Gremaud 1996), and in classical regime, we use κ = C T5/2 (Mac
Low & McCray 1988).

Note that when the temperature is below 104 K, atomic diffusion
becomes important and κ ≈ Ca T1/2 (e.g. Ferrara & Shchekinov
1993). However, we find that thermal conduction for the gas of
temperature �104 K is negligible and the simulation results are
independent of this choice. The effects of thermal conduction are
not discussed explicitly in this paper; for details see SRNS14 and
Weaver et al. (1977).

4.4 Cooling

PLUTO uses operator splitting method to include the effect of radiative
cooling (see the term q− in equation 9). It solves

∂(ρε)

∂t
= −q−, (11)

where q− = ni ne �N(T, Z). �N is the normalized cooling function
which is set to zero below 100 K (i.e. when the gas temperature
<Tamb). We have confirmed that the final results do not depend on

2 For details see the user’s guide of PLUTO http://plutocode.ph.unito.it/files/
userguide.pdf and references therein.

the assumption of Tamb below <1000 K, corresponding to that of
cold neutral medium. ne is electron number density and ni is ion
number density. The numerical value of these quantities depends on
metallicity and the ionization state of the gas. We use a special tech-
nique to account for the temperature dependence of the ionization
state of the gas, for details, see Appendix A. The tabulated cooling
function is taken from PLUTO which has used CLOUDY (Ferland et al.
1998) to generate a normalized cooling table.

4.5 Heating

The dominant heating processes in our problem are photoelectric
(PE) and photoionization heating (PI), which are described as fol-
lows.

4.5.1 Photoelectric heating

We use the prescription of PE heating rate per unit volume given by
Wolfire et al. (2003),

n �PE = 1.3 × 10−24 n ε G0 erg cm−3 s−1, (12)

where G0 is far-ultraviolet (FUV) radiation field normalized to
Habing radiation, n is the average number density of hydrogen
nuclei and ε represents heating efficiency, which is approximated
by a fit,

ε = 4.9 × 10−2

1 + 4.0 × 10−3(G0T 1/2/neφPAH)0.73

+ 3.7 × 10−2(T /104)0.7

1 + 2.0 × 10−4(G0T 1/2/neφPAH)
. (13)

Here, φPAH is a parameter (0.25 ≤ φPAH ≤ 1.0) which scales the
electron–polycyclic aromatic hydrocarbon (PAH) collision rates
and ne is the average number density of electrons. We have chosen
φPAH = 0.5 as the standard value.
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4.5.2 Photoionization heating

The physics behind PI is not straightforward because it depends
on the shape of the incident spectrum as well as on the ionization
potential of individual elements. In present approach, we have con-
sidered photoionization only for hydrogen. Therefore, the PI rate
per unit volume is

n �PI ≈ αB n2 x2 Ee (14)

where αB is ‘Case B’ radiative recombination coefficient,
x ≡ n(H+)/n = ne/n is the ionization fraction of hydrogen atom and
Ee is the mean energy of the photoelectrons. The above heating pre-
scription assumes that hydrogen is nearly fully ionized (and ignores
other elements) and that the number of Lyman continuum photons
absorbed in the ionized region are equal to the total number of re-
combinations to levels excluding the ground state (for details see
section 27.1 in Draine 2011a). We have used temperature dependent
αB (see section 14.2 in Draine 2011a), and assume Ee � (〈hν〉i −
hν0), where 〈hν〉i ≡ Li/Qi is the mean energy of the ionizing pho-
tons and hν0 = 13.6 eV is the threshold energy for photoionization
from the ground state of hydrogen atom. Note that the numerical
values of Li and Qi depend on the age of the cluster (Fig. 1) and
hence the term 〈hν〉i is a function of time.

To find x, we have used the condition for the photoionization
balance i.e. the rate of ‘Case B’ recombinations per unit volume
is balanced by the rate of photoionization per unit volume. The
photoionization balance condition gives

αB n2 x2 = Qi(r)

4π r2
n (1 − x) σpi, (15)

where Qi(r) is the rate at which the ionizing photons cross a spherical
surface of radius r, σ pi = 6.8 × 10−18 cm2 is the photoionization
cross-section of hydrogen.

Note that the gas is heated up by the radiation field only when
photons are able to interact with the gas. To consider this, we have
introduced two attenuation factors φn and φi which represent the
fraction of the FUV and extreme-ultraviolet photons that able to
reach at distance r from the cluster. Therefore, we replace G0 →
G0 φn(r) and Qi(r) → Qi φi(r). The details of φn, φi are discussed
in next section.

We add total heating rate per unit volume (i.e. sum of PE and PI,
q+ = n �PE + n �PI for r � Rcd) at the right-hand side of equation
(11), and therefore, for a given time, these two terms are calculated
self-consistently.

Other than above-mentioned heating processes, heating due to
the X-ray photons (which are coming from the hot gas �107 K)
and cosmic ray particles can also be important, but in the present
approach, we have not considered them. This is because, in this
problem, the X-ray luminosity (LX ∼ 1036–37 erg s−1) is several
orders of magnitude lower than the luminosity of the input radiation
source (Lbol ∼ 1042 erg s−1, see Fig. 1; also see section 2 in Pellegrini
et al. 2011) and moreover, the heating prescriptions of X-ray and
cosmic ray are strongly model dependent.

4.6 Adding radiation source

We use a phenomenological approach to include the effect of ra-
diation pressure. From the discussion in Section 3, we note that
the temperature of the free-wind and SW regions are much higher
than the ionization temperature of the gas and the gas acts as a
plasma. The total column density of the free-wind and SW region is
�1025 cm−2, and therefore, Thomson scattering is negligible. This

makes the interior of the bubble almost transparent to the incident
radiation. However, in the presence of dust, the shell need not be
optically thin.

The radiation force per unit volume in the region r � Rcd can be
written as

ρ arad = n σd
Lnφn + Liφi

4πr2c
(16)

Here, σ d is dust opacity, Ln and Li are the luminosities of non-
ionizing and ionizing photons, respectively, φn and φi are the frac-
tion of non-ionizing and ionizing photons that are able to reach a
distance r. We have assumed φi ≈ φn = e−τ (for details see Ap-
pendix B), where τ = ∫

n σ d dr is the dust absorption optical depth.
We set σ d = 10−21 cm2 (Draine 2011b) as the standard value, but
we also consider different values of σ d to test the dependence of
our results on it (see Section 6.1). Note that this approach is similar
to Draine (2011b) except that he has considered a static H II region,
whereas by considering arad as source term in equations (8) and (9),
we allow its evolution with time.

5 SI MULATI ON R ESULTS

In this section, we present the results from our simulations. The
model parameters are summarized in Table 1. The verification of
the simulation set-up is confirmed by comparing3 with the analytical
expressions and this is discussed in Section 5.1. In Section 5.2, we
discuss how the structure of the bubble differs from the adiabatic
model in the presence of radiative cooling. Radiation can control the
dynamics in two ways: through the heating and through radiation
pressure. We have considered these two cases separately. The effect
of heating is discussed in Section 5.3. We discuss the contribution
of radiation pressure on bubble dynamics in Section 5.4.

5.1 Adiabatic model

Here, we study the difference between the constant luminosity and
time-dependent luminosity model. We also discuss the cooling time-
scales of the shell and the SW region.

5.1.1 Constant luminosity versus time-dependent luminosity

A comparison between constant luminosity and time-dependent
luminosity runs is shown in Fig. 2. Left-hand panel displays the
position of the contact discontinuity (Rcd) and reverse shock (Rrs).
The volume-averaged pressure in the SW is shown in the right-
hand panel. For both panels, black lines represent analytical results
(equations 1–3) for constant luminosity. In the right-hand panel,
there is a hump in Psw at ≈3.4 Myr, which is due to the first SN
(see Fig. 1). This figure shows the differences between the constant
luminosity and time-dependent luminosity. For both cases, we find
that the analytical result matches with the simulation result even for
the time-dependent luminosity (not shown in Fig. 2).

5.1.2 Cooling time-scales

The cooling time-scale is usually calculated by taking the ratio of
the thermal energy to the instantaneous energy loss rate : τ cool ≈
kBT/[(γ − 1) n �N], where �N is the normalized cooling function.
Since, in this problem, the density and temperature of various zones

3 In addition, conservations laws have been confirmed for all models; for
details see Appendix C.
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Effects of radiation on superbubbles 4537

Figure 2. Comparison between constant luminosity and time-dependent luminosity model. Left-hand panel displays the position of contact discontinuity
(Rcd) and reverse shock (Rrs). Right-hand panel shows the volume-averaged thermal pressure (Psw) in the SW region. In both panels, black colours represent
analytical result (equations 1–3) where Lw = 1040 erg s−1 and Ṁ = 3.15 × 10−2 M� yr−1, red colours represent the idealized simulation using the same Lw

and Ṁ , and blue colours show time-dependent luminosity model (STARBURST99). For model details see Table 1.

Figure 3. Cooling time-scales of the shell and the SW region as a function of time. Black solid line in left-hand panel represents the dynamical time (tdyn) of
the system. This panel shows that shell cooling time is much shorter than tdyn, whereas cooling time-scale of the SW region is close to tdyn. Right-hand panel
displays the ratio of URL to UTE (equations 17 and 18) for three different models as a function of tdyn which cross unity at ≈2.9, 6.4 and 6.2 Myr. The diamond
mark represents τ sw = 1.8 Myr (equation 6).

vary with time, τ cool also becomes a function of time. The time
evolution of τ cool for different models is shown in the left-hand
panel of Fig. 3. It shows that the cooling time-scale of the shell
is much shorter than the dynamical time, and therefore, the shell
can loss a significant amount of energy from an early time. How-
ever, for the SW region, τ sw is close to the dynamical time, and
because of this, it is difficult to conclude when the SW region be-
comes radiative. One can also estimate the cooling time-scale (as
has been done to derive equation 6) by estimating the total radiative
losses until a given epoch. In this method, τ cool of the SW region
is obtained by equating the total energy loss (URL) from the SW

region with the thermal energy (UTE) in that region at that time.
Therefore,

URL =
∫ t

t=0

∫ Rcd

r=Rrs

dt d3r ni ne �N(T , Z) (17)

UTE =
∫ Rcd

r=Rrs

d3r
p

γ − 1
, (18)

where p is the thermal pressure and γ = 5/3 is the adiabatic index.
The radiative losses in the SW region are important when URL/UTE
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4538 S. Gupta et al.

Figure 4. Snapshots of density and temperature profiles near the shell region in the presence/absence of different physical processes and radiation pressure at
four different times : tdyn = 0.01, 1.0, 3.4 and 6 Myr. For all snapshots, we show a zone extending 6 pc, except for the last three snapshots of panel (a) which
extends 30 pc. Panel (a) shows adiabatic model (i.e. cooling is turned off, Model : SB d3 T) which is similar to Weaver bubble (Weaver et al. 1977), except
that, here the mechanical source is a function of time. Panel (b) displays the shell structure in the presence of thermal conduction and radiative cooling (Model :
SB d3 CT). Panel (c) shows the shell structure in the presence of thermal conduction, radiative cooling and heating (Model : SB d3 HCT). Panel (d) represents
the shell structure for a realistic bubble in presence of radiation pressure, thermal conduction, heating and cooling (Model : SB d3 RHCT). The symbols SW,
SHL and AMB denote the shocked-wind region, shell and ambient medium, respectively. A comparison of the shell structures of different panels at 0.01 Myr
shows that the radiation pressure launches the shock much faster than any other cases. At early times, the shell is transparent to the input radiation [e.g. see
panels (c) and (d)], and a balance between heating and cooling keeps the temperature of the outside medium at ∼104 K (also see fig. 4 in Martı́nez-González
et al. 2014).

� 1 (Mac Low & McCray 1988). The plot of URL/UTE as function of
time for different models is shown in the right-hand panel of Fig. 3.
The diamond mark represents the analytical result τ sw ≈ 1.8 Myr,
which is obtained by using equation (6). This figure shows that

URL/UTE crosses unity at different times for models with different
mass-loss rates but the same mechanical luminosity and ambient
density, which means that the cooling time-scale depends on the
mass-loss rate.
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Effects of radiation on superbubbles 4539

Figure 5. Time evolution of ϒ sw [equation (20), left-hand panel] and thermal pressure in the SW region (Psw, right-hand panel) for three different models (see
Table 1). The black curves (in both panels) display the expected results from equation (6) for the constant luminosity model, which shows the disappearance
of the SW region at tdyn � τ sw (see Section 3). Other curves represent the results from our simulations. The insets (in both panels) display the zoomed-out
view of the red curve (i.e. large mass-loss rate), where horizontal and vertical axes represent the same variable as in respective panels. This figure shows that
for high mass-loss rate (red curve, model I1_d3_CT), the excessive radiative losses cause a sawtooth behaviour in (Rcd − Rrs)/Rcd and in pressure (Psw), and
the reasons are discussed in Section 5.2.2.

5.2 Effects of radiative cooling

In this section, we study the effects of radiative energy loss on the
shock structure.

5.2.1 Structure of the shell

As expected from the discussion of the cooling time-scale for the
shell (see equation 4 and Fig. 3), the results of our simulations show
that the shell is radiative right from the beginning. The snapshots of
density and temperature profiles near the shell at different dynamical
times are shown in panel (b) of Fig. 4. This figure shows that the shell
temperature is same as the ambient temperature (because, cooling
function is set to zero below 100 K, see Section 4.4) and the width
of the shell is small compared to the adiabatic case [see panel (a) in
Fig. 4]. This indicates that the bubble is in isothermal phase. For an
isothermal shock, the shell density is

ρshell ≈ M2 ρamb, (19)

where M = v/cs is the upstream isothermal Mach number, cs is
the isothermal sound speed of the gas and v is the velocity of the
upstream materials (for details, see chapter 16 in Shu 1992). The
shell width can be determined by equating the swept-up ISM mass
with the mass in the shell which gives �R ≈ (1/M)2 Rcd/3.

5.2.2 Structure of the SW region

To discuss the effects of radiative energy loss in the SW region, we
define a parameter ϒ sw

ϒsw = Rcd − Rrs

Rcd
. (20)

Therefore, ϒ sw → 0 corresponds to the disappearance of the SW
region. The plot of ϒ sw as a function of time is shown in Fig. 5. The
solid black line in the left-hand panel is obtained by using equations

(1) and (3), and a sudden drop of ϒ sw is predicted by equation (6).
The other lines of this figure represent the results from simulations.
The red curve refers to an arbitrary4 large mass-loss rate, and is
included here to illustrate the effects of excessive radiative cooling.
This figure shows that the width of the SW region is small compared
to the adiabatic model. This can be explained by the right-hand panel
which displays the pressure in the SW region in the presence of ra-
diative cooling. In the presence of radiative cooling, a significant
amount of thermal energy is radiated away, and as a result, thermal
pressure in the SW region becomes less than in the adiabatic case.
The position of the reverse shock is determined by the balance be-
tween the thermal pressure of the SW and the ram pressure of the
wind. Thus, in the presence of radiative losses, the ram pressure
pushes the reverse shock towards the shell, and the width of
the SW region becomes smaller, but it does not disappear. We note
that, the formation of the SW region depends on the mass-loss rate
(e.g. red line) of driving source which can be explained as follows.

Consider a scenario in which the ejecta material is accumulating
near the contact discontinuity and the reverse shock just starts to
form (i.e. Rrs ≈ Rcd). At this moment, if a large fraction of the
thermal energy is radiated away from the pre-shocked-wind layer
(or transient SW region which later appears as the SW region), then
the thermal pressure becomes insufficient to overcome the force
of the free wind (ram pressure) and hence, radiative cooling can
suppress the formation of the SW region. Therefore, the SW region
is formed if the radiative cooling time-scale of the pre-shocked-
wind layer (τ ej, cd) is longer than the dynamical time. In presence

4 If N∗ is the number of stars that becomes SN over the lifespan t∗, then the
mechanical luminosity is Lw ≡ (N∗/t∗)ESN and the mass-loss rate Ṁ =
(N∗/t∗)MSN = (Lw/ESN)MSN, where ESN/MSN is the average ejected en-
ergy/mass in each SN. For a given Lw = 1040 erg s−1, ESN = 1051 erg, and
Ṁ = 0.0315 M� yr−1, MSN ≈ 100 M� which is extremely larger than the
mass of OB stars.
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4540 S. Gupta et al.

Figure 6. Upper panel displays the cooling time-scale of the SW region (or
pre-shocked-wind layer) in the presence of radiative cooling as a function of
time. The solid black line represents the dynamical time (tdyn). The cooling
time-scale, which is shown in this panel, is similar to the left-hand panel
of Fig. 3. However, it is worth noting that Fig. 3 shows cooling time-scale
in the absence of radiative cooling; this discrepancy arises because of the
radiative energy loss from the dense shell. The vertical dashed line represents
τ cd, ej for red line (equation 21). Red line (in upper panel) shows spikes at
early times because of the rapid cooling of the pre-shocked-wind layer (also
see Appendix D which displays τ sw as a function of time for different
resolutions). Bottom panel displays the snapshot of density profiles at 0.1
and 1.0 Myr. This panel shows that, for a high mass-loss rate (red line), the
SW region is formed at late time. This figure also shows that the internal
structure of ISB depends on the mass-loss rate of the driving source.

of radiative cooling, the cooling time-scale of the SW region (or
pre-shocked-wind layer) is shown in upper panel of Fig. 6. Bottom
panel displays snapshot of density profiles at two different times.
At early times, for the high mass-loss rate driving source (red line),
the cooling time-scale of the pre-shocked-wind layer is shorter than
the dynamical time, and therefore, it is strongly radiative.

To elaborate the above discussion, here we present an ana-
lytical criterion for the formation of the SW region by calcu-
lating the cooling time-scale of the pre-shocked-wind layer. We
obtain an upper limit of the cooling time-scale by assuming the
density/pressure to be same as the free-wind density/pressure
at the contact discontinuity. Therefore, the cooling time-
scale is τ ej, cd ≈ Pej, cd / [(ρej, cd/mH)2 �N/(μiμe)], where ρej, cd ≈
0.056 Ṁ3/2 L−1/2

w R−2
cd and Pej, cd ≈ 0.0106 r4/3

src Ṁ1/2 L−1/2
w R

−10/3
cd

are density and thermal pressure of the free wind at the position of
contact discontinuity (Chevalier & Clegg 1985). This gives

τej, cd ≈ 2.31 r
20/9
src, 1 L

49/18
40 ρ

−2/9
amb,3 Ṁ

−25/6
−2 �

−5/3
−22 Myr (21)

where rsrc, 1 = rsrc/1pc, Ṁ−2 = 10−2 M� yr−1 and �−22 =
�N/10−22 erg cm3 s−1.

In Figs 5 and 6, red line corresponds to Ṁ−2 = 3.15 and τ ej, cd ≈
0.02 Myr, and green line corresponds to Ṁ−2 = 0.79 and τ ej, cd ≈

6.2 Myr. This indicates that if Ṁ is large, then the pre-shocked-wind
layer becomes radiative. This explains why at early time the SW
region is absent for Ṁ−2 = 3.15 but it is present for Ṁ−2 = 0.79,
although both have same Lw = 1040 erg s−1. At later time, ρfw

decreases (because, ρfw ∝ r−2), which increases the cooling time-
scale and when it becomes longer than tdyn, then SW is formed.
Once the SW region is formed, the temperature becomes so high
(∼107 K) such that, �N drops to a small value �10−24 erg cm3 s−1

which increases the cooling time-scale almost abruptly (as shown
in upper panel of Fig. 6). At later times, the SW region does not
disappear.

From the next section onward, we drop the comparison with
constant luminosity model and discuss the realistic bubble scenario
which uses the output of STARBURST99 (Fig. 1).

5.3 Effects of heating

For a realistic evolution, we should consider heating in addition to
cooling (for set-up details, see Section 4.5).

The results of heating (plus cooling) are shown in panel (c) of
Fig. 4. By comparing panels (b) [without heating] and (c) [with
heating], we notice that heating diminishes the effect of radiative
energy loss (see the horizontal axis which denotes the radial co-
ordinate) and also changes the structure of the shell. The part of
shell facing the cluster has a temperature ≈104 K (Ti), whereas the
temperature of outer part is 102 K (≈Tamb). This is because, when
radiation passes through a dusty medium, the dust absorbs radiation
flux and does not allow it to propagate further. The neutral part
of the shell is kept isothermal with the ambient medium and the
density jump can be found by using equation (19). The density of
ionized part of the shell can be found by assuming pressure balance
between ionized (Pi shell) and neutral part (Pn shell) of the shell and
this gives

ρi shell

ρamb
≈ M2

(
Tamb μ(Ti)

Ti μ(Tamb)

)
= 1.21 v2

s,1 T −1
i,4 μ(Ti), (22)

where μ(T) is the mean mass per particle in the gas at temperature T
(see Appendix A), vs, 1 = (vs/10 km s−1) is the shock velocity and

Figure 7. Density of the ionized region of the shell as a function of time.
Black dotted line shows the analytical result using equation (22), where
M is calculated from the simulation, and the green solid line shows the
volume-averaged density in the ionized shell obtained from the simulation.
Labels a, b and c are discussed in Section 5.3.
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Effects of radiation on superbubbles 4541

Figure 8. The ratio εrad (≡ Prad/Psw) of radiation pressure (Prad) to thermal
pressure of the SW region (Psw) as a function of time in the presence/absence
of different physical processes. The coloured palette at right-hand side dis-
plays the position of the shell (Rcd) at a given epoch. The shaded region shows
the range of εrad for 1 � ρamb � 104 mH cm−3 for the runs SB_d0_RHCT,
SB_d2_RHCT, SB_d3_RHCT and SB_d4_RHCT (Table 1). The horizontal
dashed line corresponds to εrad = 1. This figure shows that for a realistic
bubble, εrad is weakly sensitive to the ambient density.

Ti, 4 = (T/104 K). Fig. 7 shows the ratio of the volume-averaged
density in the ionized region of the shell (ρi shell) to the ambient
density (ρamb). This figure shows that equation (22) holds well only
at late time. This can be explained as follows.

The density jump at time ta (time corresponding to label ‘a’) is
≈8, which indicates that the shell is radiative from the early time,
but the neutral layer of the shell is not formed till tb (see panel (c) in
Fig. 4). For the time between tb and tc, the simulation result follows
equation (22) approximately, but equation (22) slightly underesti-
mates its value because Pi shell > Pn shell. At tc, there is a jump in
(ρi shell/ρamb) because the mechanical energy suddenly increases at
that time (Fig. 1) which pushes the contact discontinuity.

5.4 Effects of radiation pressure

Radiation pressure on the shell is defined as

Prad = ftrap
Lbol/c

4πR2
cd

(23)

where ftrap is the trapping fraction of bolometric luminosity which
is chosen to be unity. Using equations (1) and (2), the ratio of the
radiation pressure (Prad) to thermal pressure (Psw) can be written
as

εrad = Prad

Psw
� 0.016 ρ

−1/5
amb,3 η

−4/5
mech L

−4/5
w,40 Lbol,42 t

−2/5
6 . (24)

Here, we have replaced Lw by (ηmech Lw), where ηmech is the me-
chanical efficiency of the superbubble and t6 = (tdyn/106 yr). For
adiabatic case ηmech = 1, however for realistic bubble, ηmech (<1)
depends on ρamb, and also on heating and cooling (a general defi-
nition of ηmech is given in Section 6.3). The time evolution of εrad

is shown in Fig. 8. The coloured palette on right-hand side of this

Figure 9. The size of the bubble in presence/absence of different physical
processes. This figure shows that the radiation pressure is important only at
early times.

figure shows the position of contact discontinuity at that epoch.
From adiabatic bubble model, εrad is expected to follow the bottom
dashed line in Fig. 8. The shaded region shows εrad for 1 � ρamb

� 104 mH cm−3. Therefore, the result of realistic simulation shows
that the radiation pressure dominates over the thermal pressure of
the SW region before � 1 Myr.

Note that εrad is almost insensitive to the ambient density (Fig. 8).
Therefore, at a given epoch, εrad is roughly proportional to L

1/5
bol (see

equation 24), because the ratio of Lbol to Lw does not depend on
the mass of the star cluster (Leitherer et al. 1999). Hence, the role
of radiation pressure is important for the massive star clusters (see
Appendix E).

In the presence of radiation pressure (for set-up details see Section
4.6), the snapshots of density and temperature profile at different
times are shown in panel (d) of Fig. 4. By comparing the shell
structure at 0.01 Myr in different panels, we find that the radiation
pressure helps to launch the shock into the ISM at early times. Fig. 9
shows the size of the cavity (Rcd) in presence/absence of different
physical processes and radiation pressure. The effect of radiation
on the dynamics of ISB is important at an early time, but as time
evolves, ISB slowly makes transition from the radiation-pressure-
dominated regime and enters into the thermal-pressure-dominated
regime.

6 D I SCUSSI ON

Most of the results discussed in previous sections are based
on a fixed ambient density model (ρamb = 103 mH cm−3) and
single opacity parameter σ d = 10−21 cm2 (Draine 2011b). In Sec-
tions 6.1 and 6.2, we first explore the dependence of simulation
results on those parameters, and then we discuss the energetics
of the superbubbles in Section 6.3. We compare our results with
other models, and with observations of 30 Doradus in Sections 6.4
and 6.5.
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4542 S. Gupta et al.

Figure 10. The dependence of bubble size on the dust absorption coefficient
(σ d). This figure displays the position of contact discontinuity (Rcd) as a
function of time. The inset shows the density profile near the shell region
for different values of σ d, −21 where σ d, −21 = (σ d/10−21) cm2.

6.1 The choice of dust absorption coefficient

The dust absorption coefficient (σ d) within ISM is not well char-
acterized because it depends on various factors such as grain size
distribution, dust-to-gas ratio, wavelength of the incident radiation
etc. The dependence of our results on the choice of σ d is shown in
Fig. 10 which indicates that the position of contact discontinuity is
almost independent on the choice of σ d. The inset shows that the
width of the photoionized region increases with a decrease in σ d.
This can be explained as follows.

A larger σ d corresponds to a stronger radiation pressure at the
inner edge of the shell (i.e. ftrap → 1) but it decreases the heating
efficiency because of the optical depth (τ ) which diminishes its
strength by a factor e−τ . A lower value of σ d decreases the strength
of radiation pressure at the inner edge of the shell, but it increases
heating efficiency which reflects on the shell structure.

6.2 Different regimes in a diagnostic diagram

We use the dimensionless diagnostic diagram proposed by Yeh &
Matzner (2012, hereafter YM12) to identify the dominant feedback
mechanism (see fig. 1 in YM12). YM12 suggested two dimension-
less parameters � and �. The parameter � = RIF/Rch, where RIF is
the radius of the outer edge of the ionized shell and Rch is the radius
of a dust-free Strömgren sphere whose gas pressure is equal to the
total unattenuated radiation pressure Lbol/4πR2

stc. The expression
of Rch is given as,

Rch = αBL2
bol

12π (kBTicμi/μ)2 Qi
, (25)

where Lbol is the bolometric luminosity and Qi is flux of the ionizing
photons, μ and μi are the mean mass per atom and the mean mass
per ion, respectively, Ti is temperature of ionized medium. Since
Lbol and Qi depend on the age of a cluster, the numerical value
of Rch ∼ 30 L2

bol,42 Q−1
i,52 T −2

i,4 pc is a function of time. According to
this definition, if � > 1 (i.e. Rch < RIF), the bubble expands either in
standard H II regime (Strömgren sphere) or wind-dominated regime,

Figure 11. Snapshots of density (ρ), pressure (P) and the normalized tem-
perature (with respect to Ti = 104 K) near the shell at 0.39 Myr for the
runs SB_d3_RHCT (top panel) and SB_d0_RHCT (bottom panel). Psw

is the volume-averaged pressure in the SW region at that time. The top
panel shows that for a high-density ambient medium (SB_d3_RHCT), the
shell is partially ionized. Bottom panel shows that for a low-density am-
bient medium (SB_d0_RHCT), the shell is completely ionized. For the
model SB_d3_RHCT : Psw ≈ 30.97 × 10−10 cgs, Rcd ≈ 15.83 pc, Pedge ≈
96.77 × 10−10 cgs, Redge ≈ 16.88 pc, which gives � � 0.36. Similarly, for
SB_d0_RHCT : Psw ≈ 1.32 × 10−10 cgs, Rcd ≈ 80.65 pc, Pedge ≈ 1.43 ×
10−10 cgs, Redge ≈ 81.14 pc, which gives � � 9.7. These values of � are
shown in Fig. 12.

and if � < 1 then the size of the bubble is smaller than the standard
case. Therefore, � is a measure of compactness of H II region.

The second parameter � is defined as

� = PINVIN

PIFVIF − PINVIN
, (26)

where PIN is the pressure at the inner edge of the ionized shell
and PIF is the pressure at the IF. Therefore, PIFVIF − PINVIN

represents the difference of the product of the pressure and vol-
ume between IF and inner edge of the ionized shell. In our case,
RIN ≈ Rcd and PIN ≈ Psw, and PIF is the pressure at outer edge
of the ionized shell (i.e. Redge ≈ RIF and PIF ≈ Pedge), there-
fore � = PswR3

cd/
[
PedgeR

3
edge − PswR3

cd

]
(Martı́nez-González et al.

2014). To illustrate the significance of these parameters see Fig. 11.
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Effects of radiation on superbubbles 4543

Figure 12. Evolutionary track of the diagnostics parameter � in � − �

parameter space for four different ambient densities but for a fixed dust
opacity σ d = 10−21 cm2. The coloured palette on right-hand side of this
figure represents the dynamical time. The marked circle and pentagon denote
� for the models SB_d3_RHCT and SB_d0_RHCT at 0.39 Myr, respectively
(see Fig. 11).

In thin shell limit, � ≈ 1/(Pedge/Psw − 1), where Pedge can be sim-
ply assumed to be Pedge ≈ Psw + Prad and therefore, Log[�]<0
represents radiation-dominated regime and Log[�]>0 represents
wind-/thermal-pressure-dominated regime. It is worth mentioning
that, for the realistic case, Redge �= Rcd, and we find that Pedge de-
pends not only on the radiation pressure but also on heating and
column density of the shell. Therefore, although we have seen that
εrad = Prad/Psw depends weakly on the ambient density (Fig. 8),
here we find that � is density dependent (Fig. 11).

The evolutionary tracks of � for four different ρamb but for a
fixed σ d are shown in Fig. 12. The coloured palette on right-hand
side of this figure represents the dynamical time. We see a sim-
ilar evolution for different σ d (not shown in Fig. 12). At early
times, the size of the bubble is much smaller than Rch (≈70 pc)
i.e. � < 1. With time the bubble size increases, and therefore,
� keeps increasing until the first SN. After that, Qi falls so
rapidly that Rch (�175 pc) increases faster than the bubble, and
� starts to decrease. Note that, for high-density media (ρamb � 102

mH cm−3), � is always less than unity. This figure shows that, for
high-density media, the bubble moves into the radiation-dominated
regime (i.e. Log[�]<0) from an early time (�0.1 Myr). It makes
transition to the thermal-/wind-dominated regime after �3 Myr (i.e.
Log[�] � 0) which corresponds to the epoch of steep decrease
in Prad/Psw in Fig. 8. For a low-density medium (ρamb ≈ 1
mH cm−3), and bubbles always remain in the thermal pressure/
wind-dominated regime.

Note that, the diagnostic parameter � slightly overestimates the
radiation-dominated regime because the shell is not geometrically
thin (Redge �= Rcd). In reality, the radiation-pressure-dominating
regime ends at �1 Myr (see Fig. 8).

6.3 Temperature distribution of cooling losses and the
retained energy

To compare with observations, we calculate the radiative output of
our superbubble (model SB_d3_RHCT) at various temperatures.

Figure 13. Temperature distribution of cooling losses at 0.5 Myr and at
5.0 Myr. Cooling losses are confined to three different temperature bands
which are denoted by red colour for molecular emission (�103 K), green
colour for nebular emission (103 � T � 105 K) and blue colour for X-rays
(T � 105 K). This figure shows that most of the radiative losses occur at
∼104 K, with sub-dominant losses at �103 K and ∼106–108 K.

We create logarithmic bins in temperature (�Log[T/K]) and calcu-
late the total radiative losses per unit time in each temperature bin.
Fig. 13 shows that radiative losses occur at molecular (�103 K),
nebular (∼104) and X-ray temperatures (∼106–108 K). The molec-
ular radiation comes from the radiative relaxation layer ahead of
the dense shell (see the top panel of Fig. 11). The nebular emission
comes from the ∼104 K shell and X-rays come from the shock-
heated, conductively mass-loaded shocked wind. A similar temper-
ature distribution of luminosity is seen for most of our models. The
highest luminosity comes from the gas at ∼104 K, which should
emit in nebular lines and continuum. The luminosity in the nebular
temperature band is ∼1042 erg s−1, comparable to the ionizing lu-
minosity from driving source. A significant fraction of optical and
X-ray emission is expected to be absorbed by the large column den-
sity material in the shell. In reality, the radiation leaks out because
of the clumpiness in the shell. The X-ray luminosity is ∼1036–37 erg
s−1, comparable to the observed X-ray luminosity of 30 Doradus
(Wang & Helfand 1991; Townsley et al. 2006).

To find the fraction of the retained input energy in superbubble,
we have defined efficiency as

η = �TE + KE

EIN
, (27)

where EIN is the total amount of injected energy (i.e. work done by
the radiation Erad and mechanical energy Ew) until a given epoch,
�TE is the change in thermal energy [i.e. �TE = TE(tdyn) − TE(tdyn

= 0)] and KE is the total kinetic energy in the simulation box at
a given time (for details see Appendix C). Fig. 14 displays η as
a function of dynamical time for four different ambient densities.
The inset (a) shows that η decreases monotonically as the density
of the ambient medium increases, but asymptotically approaches a
constant value in time. The inset (b) displays the time evolution of
η for the runs SB_d3_CT, SB_d3_HCT and SB_d3_RHCT. This
figure shows that, for the runs SB_d3_HCT and SB_d3_RHCT, η

asymptotically approaches a nearly coincident value after �3 Myr
(corresponds to the epoch of the first SN; see Fig. 1).

From Fig. 14, we find that the asymptotic value of the energy
efficiency η ≈ 0.1 for ρamb = 103 mH cm−3, and for ρamb �
100 mH cm−3, the scaling of η with ambient density is roughly
η ∝ ρ

−1/3
amb . It is worth noting that low-resolution simulations can

show a lower efficiency due to overcooling of unresolved regions
(as highlighted by Gentry et al. 2016; Yadav et al. 2016). We note
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Figure 14. Fraction of input energy retained in the superbubbles (η) as a
function of time for the different ambient densities. For all plots, the vertical
axis denotes η. The coloured palette and the horizontal axis of the insets
(a), (b) represent the dynamical time. This figure shows that η decreases as
the density of the ambient medium increases but asymptotically approaches
a constant value in time [see the inset (a)]. The black solid line shows a
rough scaling η ∝ ρ

−1/3
amb , which matches well at almost all times for density

ρamb � 100 mH cm−3. The inset (b) displays η in the presence/absence of
different physical processes for the runs ‘SB_d3_ ’. This figure shows that
the dotted red curve (SB_d3_HCT) and the solid red curve (SB_d3_RHCT)
coincide after �3 Myr (the time when the first SN occurs, Fig. 1).

that the typical resolution (for the realistic runs) in our simulation
is δr = 0.025 − 0.04 pc (see Table 1) which is much higher than in
typical 3D simulations.

Note that the mechanical efficiency ηmech introduced in equation
(24) is similar to the definition of η (equation 27), except that,
for ηmech, EIN represents only the mechanical energy (i.e. ηmech =
(�TE + KE)/Emech). However, after the end of radiation-pressure-
dominating regime, ηmech can be considered to be the same as η.
Therefore, we may expect a similar scaling i.e. ηmech ∝ ρ

−1/3
amb . In

that case, using equation (24), one can find that εrad ∝ ρ
1/15
amb . This

also explains the result that the ratio (εrad) of the radiation pressure
(Prad) to the thermal pressure (Psw) is insensitive to the ambient
densities for our realistic runs (Fig. 8).

6.4 Observational parameters

YM12 proposed various parameters to interpret observation and
concluded that the ionization parameter U can be used as a proxy
to determine the dominant feedback mechanism for massive star
clusters. The ionization parameter at the inner edge of the ionized
shell (r ≈ Rcd) is defined as

U = Qi

4π r2 n c
, (28)

which can be written as U ∼ (kBTi/ 〈hν〉i)(Prad/PH II) and therefore,
for a given 〈hν〉i (i.e. for a stellar source of given radiation tem-
perature), U ∝ Prad/PH II. Therefore, U is directly connected to the
observables. However, it is worth noting that for a realistic cluster,
〈hν〉i is a function of time.

The above definition of ionization parameter is useful when the
density of the ionized medium is uniform. For a non-uniform den-
sity, YM12 suggested an expression

U =
∫

U (r) n2 dV∫
n2dV

, (29)

where the integration begins at the inner edge of ionized shell and
ends at the outer edge of ionized shell, dV is the elementary vol-
ume which is equal to 4πr2dr (1D spherical). The recombination-
averaged density is given by

nem =
∫

n n2dV∫
n2dV

(30)

here the limit of the integration is same as in equation (29). Obser-
vationally, one can compute the value of U and nem by comparing
the strength of different spectral lines (for details see YM12).

Martı́nez-González et al. (2014, hereafter MST14) have esti-
mated U and found that U is almost constant in time but depends on
the density of the ambient medium in the absence of the SW region
(i.e. radiation dominated regime in their case; see fig. 8 in MST14).
Note that, they used equation (6) (Mac Low & McCray 1988) to
find the cooling time-scale of the SW region. However, we find that
in the presence of radiative cooling, SW region is always present
for a realistic source parameters (see model SB_d3_CT in Fig. 5).
A more realistic time evolution of the ionization parameter (U) for
four different ambient densities are shown in the left-hand panel of
Fig. 15.

The right-hand panel of Fig. 15 displays the recombination-
averaged density (nem) as a function of time for four different
ambient densities. The computed values of nem match well with
the estimates of nem ≈ ρi shell/(μmH) from equation (22) [shown
by black curves]. This match provides a method of estimating the
Mach number from observations of the strength of the spectral lines,
which is related to nem (YM12).

It is worth noting that, although nem depends on ρamb, U is not
sensitive to ρamb. This is because, for a given Qi, U ∝ (1/n r2) and
in presence of radiative energy loss, high-density medium suffers
more radiative energy loss compare to low-density medium which
makes n r2 almost independent of the ambient density (see Fig. 8,
which shows that Prad/Psw falls within the same range for 1 � ρamb

� 104 mH cm−3). Also note that, at early times (�3 Myr), −1.6
� Log[U] � − 2.5 which is consistent with observed value of U
for starburst galaxies (e.g. Log[U]≈− 2.3 for M82, NGC3256 and
NGC 253, see table 4 in YM12).

6.5 Application to 30 Doradus

Lopez et al. (2011) and Pellegrini et al. (2011) have interpreted
the observations of 30 Doradus differently and reached a somewhat
different conclusions with regard to its dynamics.

Lopez et al. (2011) estimated the radiation pressure at a distance
r due to individual star and then taking a sum over all stars, they
have defined Pdir = ∑

(Lbol/4πr2c). They compared Pdir with the
thermal pressure of X-ray plasma PX (which is equivalent to the
comparison of Prad with Psw) and found that Pdir � PX when r �
75 pc. From this, they argued that the expansion of 30 Doradus at
early time is in radiation-dominated regime (for details see sections
3 and 5 in their paper). Approaching the problem in a different way,
Pellegrini et al. (2011) have estimated the ionization parameter
of the photoionized region of the shell and defined the radiation
pressure at distance r due to absorption of incident starlight Pstar

= UnH〈hν〉Lbol/Li, where 〈hν〉 (≈20 eV) is the average energy
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Effects of radiation on superbubbles 4545

Figure 15. Observational parameters as a function of time for four different ambient density models. Left-hand panel displays time evolution of the ionization
parameter U . Time evolution of the recombination-averaged density nem is shown in the right-hand panel. Here, the symbol ρx represents the ambient density
10x mH cm−3. A sudden drop of U (left-hand panel) and hump in nem (right-hand panel) at ≈3.4 Myr are due to the drop in ionizing photons flux and huge mass
ejection because of SNe, respectively (see Fig. 1). The black lines in the right-hand panel represent results obtained using nem ≈ M2(Tamb/Tiμ)ρamb/mH, for
details see equation (22).

per photon. From this, they have shown that the ratio Pstar/Pgas

drops below 1/3 when r � 10 pc and concluded that radiation has
negligible importance in the dynamics of 30 Doradus (for details
see section 3 in their paper).

ST13 have shown that, in a high-density medium (∼103 cm−3),
Prad/Psw exceeds unity only after the bubble makes a transition from
energy-dominated regime to momentum-dominated regime (i.e. in
the absence of the SW region) and concluded that radiation pres-
sure is unlikely to control the dynamics of 30 Doradus. MST14 took
one special case (HDE: High-density with low heating efficiency)
where they used the same Qi and Li, Ln with one order magnitude
less Lw but even in that case they found that the role of radiation
pressure is important after ∼0.85 Myr. On the contrary, using real-
istic simulations, we have found that radiation pressure controls the
dynamics at early time �1 Myr. As time evolves, the strength of
radiation pressure decreases because of 1/r2 dependence and also
due to sudden fall of Li after 3.4 Myr. Therefore, we find that Lopez
et al. (2011) overestimated the role of radiation and Pellegrini et al.
(2011) underestimated it. However, our result is consistent with one
aspect that at early times the dynamics of 30 Doradus is controlled
by radiation pressure.

7 SU M M A RY

In this paper, we have focused on the effects of winds and radia-
tion on the dynamics of superbubbles in dense medium (ρamb �
102 mH cm−3). We have performed high-resolution 1D simulations
and used a realistic time evolution of the mechanical and radiation
power of a young star cluster of mass 106 M�. We stress the im-
portance of radiative cooling and heating in bubble evolution. We
have explored the parameter space of the ambient density and dust
absorption coefficient. We have calculated the temperature distribu-
tion of cooling losses and the energy efficiency of the superbubbles,
discussed the observational parameters and compared our results

with the observations of 30 Doradus. Our main results are summa-
rized as follows.

(i) Structure of a realistic ISB: in the presence of radiative cool-
ing, for a given mechanical luminosity, the internal structure of
ISB depends on the mass-loss rate of the driving source. For high
mass-loss rate, ISB can take longer time to form the SW region.
But, once the SW region is formed, its cooling time-scale becomes
longer than dynamical time and it does not disappear (Fig. 6).

(ii) The effective dynamical force : the ratio of radiation pressure
to thermal pressure in the SW region is greater than unity before
�1 Myr (Fig. 8). This conclusion remains same when the density of
the ambient medium 1 � ρamb � 104 mH cm−3, but it may depend
on the evolutionary profile of the input source. At an early time,
the radiation pressure may play an important role in launching
the shock (Fig. 4), as a consequence it can affect star formation
within the cluster volume itself. However, its strength decreases with
time, because Prad ∝ 1/r2 and also because the radiation luminosity
diminishes rapidly after the first SN. At a later time, the dynamics
of the bubble is controlled by radiation heating and by thermal
pressure of the SW, rather than the radiation pressure.

(iii) Dust opacity dependence: for a given ambient density and
input source profile, the size of the central cavity depends weakly
on the dust opacity (σ d ≈ (0.1–1.5) × 10−21 cm2) of the ambient
medium. However, the structure of shell depends on σ d (Fig. 10).
A lower value of σ d enhances the heating efficiency of the input
radiation field, and hence, increases the width of the photoionized
region within the shell.

(iv) Cooling losses and the retained energy: most of the radiative
losses occur at ∼104 K, with sub-dominant losses at �103 K and
∼106–108 K (Fig. 13). For ρamb � 102 mH cm−3, the scaling of η

(fraction of the retained input energy in superbubble) with ambient
density (ρamb) is roughly η ∝ ρ

−1/3
amb . The asymptotic value of η is

≈0.1 for ρamb = 103 mH cm−3(Fig. 14).
(v) Observational parameters: the ionization parameter is

weakly sensitive to the ambient density (Fig. 15). The
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recombination-averaged density (nem) depends on the velocity of
the expanding shell. If some independent estimate of the shell ve-
locity and ambient density is available, then equation (22) can be
used to predict the density of the ionized shell.
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A P P E N D I X A : IO N I Z AT I O N STAT E O F A G A S

The state of ideal gas is mainly characterized by three variables :
pressure (P), density (ρ) and temperature (T). At a given time, Euler
equations can obtain the solutions for two of them, the third variable
temperature is directly calculated from relation

T = μmH

kB

P

ρ
, (A1)

where μ is the mean mass per particle (normalized with respect
to mH). The numerical value of μ depends on the gas composition
and the ionization state of the gas. For a completely neutral pure
hydrogen gas, μ is 1 and for completely ionized gas, μ = 0.5. In our
case, we assume metallicity of the gas Z ≈ 0.4 Z� and therefore,
for neutral ISM μ ≈ 1.26, and for completely ionized gas μ ≈ 0.61
and the mean mass per ion μi ≈ 1.275.

We have assumed the initial temperature of the ambient medium
to be Tamb = 100 K. At this temperature, chemistry is important and
one should do a full analysis of ionization fraction of each species.
But for practical purposes, we take this into consideration by using
a fitting function for μ which is shown in Fig. A1. At each step, the
calculation starts with μ = 1.0 to estimate a dummy T and then it
uses the fit function to minimize the error between consecutive T
< 0.1 per cent. Once it able to find T, it calculates mean mass per
electron (μe=1/[1/μ − 1/μi]) and also �N(T, Z) from the tabulated
cooling curve listed in PLUTO.

Figure A1. Dependence of the mean mass per particle μ (normalized with
respect to mH) on the gas temperature. The shaded region displays the
temperature range between the ionized state and neutral state, which is
obtained by considering the ionization of hydrogen and helium, and by
solving Saha equation for different gas densities. The red-dashed line is a
fitted function μfit(T) = 0.61[1 + 1.075/(1 + 2 × e(T − 4000)/700)].
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Effects of radiation on superbubbles 4547

A P P E N D I X B : L U M I N O S I T Y FR AC T I O N

When the ionizing and non-ionizing photons travel through a dusty
medium, a significant fraction of them are absorbed by the dust. The
attenuation fractions of the ionizing and non-ionizing luminosity are
determined by (see equations 2 and 3 in Draine 2011b)

dφi

dr
= −4π αB

Qi
n2 x2 r2 − nσdφi (B1)

dφn

dr
= −nσd φn, (B2)

where αB is ‘Case B’ recombination coefficient, x is the ionization
fraction of hydrogen (i.e. for completely ionized medium x = 1; for
details see Section 4.5) and the distance r is measured from the inner
edge of the H II region. The first term in equation (B1) represents
the loss of the ionizing photons due to photoionization of hydrogen
and second term represents dust absorption.

In equation (B1), if first term is small compare to second term,
then both equations have same solution φi ≈ φn = e−τ , where
τ = ∫

n σ d dr (σ d is the dust absorption coefficient). Assuming x
= 1, the solution of equations (B1) and (B2) for three different
uniform densities are shown in Fig. B1. This figure shows that
for high-density medium the difference between φi (=φcorrect) and
φn (=φapprox) is small (except at the edge where φi drops faster than
φn). Note that for a realistic case, the shell density is not uniform,
at the outer edge of the H II region x �= 1 and because of this, the
choice φi ≈ φn = e−τ is more robust compare to the actual solution.

Figure B1. Comparison of luminosity fractions (φ) as a function of the
distance r for three different densities (nx = 10x cm−3). Here, the distance
r is measured from the inner edge of the H II region i.e. r ≡ r − Rcd, Rcd is
the position of contact discontinuity. This figure shows that φapprox is almost
same as φcorrect.

APPENDI X C : C ONSERVATI ON TEST

Conservation test is essential for any simulation set-up. To check
this, we have defined simulation energy (E) efficiency as

εE(t) = TE(t) + KE(t) + Eeff,RL(t)

TE(t = 0) + EIN(t)
(C1)

where TE and KE are the total thermal energy and kinetic energy in
the simulation box at a given time (t), Eeff, RL is the effective energy
loss due to radiative cooling (plus heating) until a given epoch
(i.e. Eeff,RL = −|Eq− | + Eq+ , where Eq− and Eq+ represent the
terms associated with radiative cooling and heating, respectively).
EIN is the sum of total mechanical energy (Ew(t) = ∫

dt Lw) and
radiation energy [Erad(t) = ∫

t

∫
r

dt dr 4 π r2 v.(ρ arad), where ρ arad

is radiation force per unit volume, see equation (16)] until a given
epoch.

The mass (M) efficiency is defined as

εM(t) = Mbox(t)

Mbox(t = 0) + MIN(t)
, (C2)

where Mbox is the total mass in the simulation box at a given time t
and MIN is the total added mass until that time.

Therefore, according to above definitions, if εX = 1.0, then the
quantity X is conserved. Fig. C1 displays εX as a function of time
for all of the runs (see Table 1) and confirms that conservation holds
with accuracy �99.5 per cent.

Figure C1. Efficiency of energy and mass as a function of time for all runs.
Left plot (a) shows that maximum error in energy is �0.4 per cent, which
indicates accuracy in energy budget �99.5 per cent. Right figure (b) shows
that accuracy in mass budget is more than 99.9 per cent.
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A P P E N D I X D : C O N V E R G E N C E T E S T

In addition to conservation test, we have done the resolution test for
all the models and find that our conclusions remain same. Here, we
have shown one particular model that corresponds to the formation
of the SW region.

Fig. D1 displays cooling time-scale of the SW region (or pre-
shocked-wind layer) for the model I1_d3_CT as a function of time
for three different resolutions (δr). This figure shows that cooling
time-scale of pre-shocked-wind layer is shorter than tdyn at early
times, and it becomes longer than tdyn after �0.3 Myr. When τ sw

is longer than tdyn (�0.3 Myr) the SW region is formed. Before
∼0.3 Myr, there are few spikes which are due to the rapid cooling of
the pre-shock-wind layer. Note that, for the realistic models (model
label : SB_, Table 1), we have used output of STARBURST99 which
do not show these spikes (see blue curve in Fig. 6). Therefore,
the spikes shown here highlight a special case for unrealistically
large mass-loss rate, showing the formation of the SW region in the
presence of excessive radiative cooling.

Figure D1. Cooling time-scale of the pre-shocked-wind layer or SW region
(τ sw) as a function of time for three different resolutions δr = 0.025, 0.0125
and 0.00625 pc for the run I1_d3_CT (large mass-loss rate). Solid black
line represents the dynamical time (tdyn). The vertical dashed line represents
cooling time-scale of the pre-shocked-wind layer τ cd, ej using equation (21).
At early times, the sawtooth-like behaviour of the curves are connected with
thermal instability because of the excessive cooling of the pre-shock-wind
layer (also see Fig. 6 which displays τ sw for the resolution δr = 0.025 pc).

A P P E N D I X E : D E P E N D E N C E O N C L U S T E R
MASS

Throughout this paper, we have considered a star cluster of mass
106 M�, and we concluded that εrad = Prad/Psw is greater than
unity before 1 Myr. Here, we discuss the dependence of εrad on
the mass of the star cluster (Mcl). As already shown in Section 5.4,
εrad is insensitive to the ambient density, and at a given epoch, εrad

is roughly proportional to L
1/5
bol . For a given initial mass function,

Lbol ∝ Mcl (Leitherer et al. 1999), therefore εrad ∝ M
1/5
cl . Fig. E1

displays the ratio of Prad to Psw as a function of time for three
different masses of star cluster (Mcl = 107, 106 and 105 M�). This
figure shows that the role of radiation pressure is important for
massive star clusters.

Figure E1. Time evolution of the ratio of radiation pressure (Prad) to ther-
mal pressure of the SW region (Psw) for three different masses of star cluster.
The symbol Mcl, x = 10x M� denotes the mass of the star cluster. For all
cases, the ambient density is taken as 103 mH cm−3 and represents a realis-
tic run (i.e. SB_d3_RHCT; see Table 1). The colour palette represents the
position of the contact discontinuity (Rcd). This figure shows that the ratio
Prad to Psw slowly increases with Mcl. For Mcl = 106 M�, see Fig. 8.
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