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SYNOPSIS

Non-classical features like non-locality, contextuality, temporal correlations,

uncertainty draw attention both from the conceptual point of view and also

in view of their impact on applications in quantum information technology.

They offer insights into why/how quantum information protocols outperform

their classical counterparts. Bringing forth new and distinct information the-

oretic signatures of non-classicality has attained renewed interest from this

perspective. The importance of understanding the quantum-classical similari-

ties/distinctions goes beyond the realm of foundational aspects and investiga-

tions in this direction are found to be significant in the new arena of quantum

information technology. Entanglement, coherence and uncertainties are central

features in the development of future quantum information technology. It is

from this view that information theoretic approach to explore foundational no-

tions is expected to throw light on aspects that are not envisioned so far.

Chapter 1 is basically a brief introduction of the background needed

to develop the content of the thesis. It covers the essentials of the counter

intuitive and puzzling features of quantum theory in brief.
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In Chapter 2, we discuss the notion of uncertainties in the classical

realm. More specifically, we address the question: how would the

uncertainty product of canonical observables in the quantum realm

compares itself with the corresponding dispersions in the classical

realm? In this chapter, parallels between the uncertainty product of position

and momentum in stationary states of quantum systems and the correspond-

ing fluctuations of these observables in the associated classical ensemble are

explored. Connection with area preservation in the underlying symplectic ge-

ometry of the classical phase space has also been identified. [1, 2, 3]

Macrorealism is a feature in the classical world that is at variance with the

quantum description. In 1985, Leggett and Garg (LG) designed an inequality

(which places bounds on certain linear combinations of temporal correlations of

a dichotomic dynamical observable) to test whether a single macroscopic object

exhibits classicality [4]. In chapter 3, we discuss possible extensions of

LG inequality to observables, which are not necessarily dichotomic.

This is based on information entropies in contrast to second order

correlations considered originally by LG. The entropic Leggett-Garg

inequalities enlarges the platform for investigating the role of non-

classicality (but not limited to) in biological processes [5].

Quantum description being intrinsically statistical (probabilistic) in nature

paves the way to seek how different is the nature of probabilities arising in the

quantum world (in various physical situations) in comparison with that of its

classical counterpart. Exploring the underlying nature of probabilities in the
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two domains helps to understand the physical context when classicality emerges

from quantum world. It becomes highly pertinent to explore and contrast the

attributes that form the characteristic features of both classical and quantum

physics. If one believes in the notion that the latter theory subsumes the for-

mer, a relevant question would be to ask how does the correspondence set in.

One of the ways to do that is through seeking the structure of probabilities

arising under both the classical and the corresponding quantum scenario of the

same physical situation. This forms the basis of various no-go theorems on

non-locality, contextuality and absence of macro realism. Chapters 4, 5, 6

focus on three distinct ways (sketched in the following) to probe the

contrasting nature of quantum probabilities compared to their clas-

sical statistical counterparts.

A. A sequence of moments obtained from statistical trials encodes a

classical probability distribution. We discuss how moments re-

alized in the context of quantum sequential measurements on a

single quantum system encode the signature of quantum probabil-

ities. This is based on a well-known issue of “moment inversion”

(to determine the probabilities from the moments) in classical

statistics. We show that quantum moment inversion in

connection with the sequential measurement of three ob-

servables brings out a clear distinction between quantum

and classical scenario.

B. Continuing further, we investigate whether a given set of moments,

arising from correlation measurements of three dichotomic observ-

ables in the quantum scenario, corresponds to a legitimate grand

joint probability distribution. A valid sequence of moments re-

quires that the corresponding moment matrix be positive. We
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bring out an interesting link between moment matrix

and the structure of admissible joint probability distri-

bution: positivity of the moment matrix necessarily en-

forces that the associated joint probabilities are of the

hidden variable form. We discuss our results with the help of

illustrative physical examples of spatial and temporal correlations

arising within the quantum framework.

C. The uncertainty principle brings out intrinsic quantum bounds

on the precision of measuring non-commuting observables. Sta-

tistical outcomes in the measurement of incompatible observ-

ables reveal a trade-off on the sum of their corresponding en-

tropies. Maassen-Uffink entropic uncertainty relation [6] con-

strains the sum of entropies associated with the measurements

of two non-commuting observables. However, a deterministic pre-

diction is ensured when the system is entangled maximally with

another party. Berta et al., [7] brought out the subtle interplay

between uncertainty and entanglement by extending the entropic

uncertainty principle in the presence of quantum side information

(memory). Taking lead from our investigations on non-classical

correlations in a single quantum system, we discuss an analogue of

Berta et al. inequality by conditioning the measurements of a pair

of discrete non-commuting observables in terms of the outcomes

of a prior measurement. We bring out the interesting asso-

ciation between non-classical temporal correlations and

uncertainty. Our extended entropic uncertainty relation

reflects that the presence of side information in a single

quantum system too plays a significant role in beating

the uncertainty bound. These results offer a unified view

vii



SYNOPSIS

that prior quantum knowledge, achieved with the help

of suitable spatially/temporally separated observations,

reduces the intrinsic trade-off in the measurement out-

comes of non-commuting observables, thus empowering

their deterministic prediction.

The notion of incompatibility of measurements in quantum theory is in stark

contrast with the corresponding classical perspective, where all physical ob-

servables are jointly measurable (JM). It is of interest to examine if the results

of two or more measurements in the quantum scenario can be perceived from

a classical point of view. Clearly, commuting observables can be measured

jointly using projective valued measurements (PVM) and their statistical out-

comes be discerned classically. However, compatibility of measurements with

commutativity turns out to be limited in an extended framework, where the

notion of sharp PVMs of self adjoint observables gets broadened to include

unsharp measurements of generalized observables constituting Positive Oper-

ator Valued Measures (POVM). There is a surge of research activity recently

[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] towards gaining new physical insights

on the emergence of classical behavior via joint measurability of unsharp ob-

servables.

Here, we explore the entropic uncertainty relation for a pair of dis-

crete observables (of Alice’s system) when an entangled quantum

memory of Bob is restricted to record outcomes of jointly measur-

able POVMs only. Within the joint measurability regime, the sum of

entropies associated with Alice’s measurement outcomes conditioned

by the results registered at Bob’s end are constrained to obey an en-

tropic steering inequality. In this case, Bob’s non-steerability reflects

itself as his inability in predicting the outcomes of Alice’s pair of non-
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commuting observables with better precision, even when they share

an entangled state. The final chapter explains these observations in

detail.

Prof Andal Narayanan Karthik H S

Light and Matter Physics Group

Raman Research Institute,

Bangalore 560 080

India
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”Understand this: things are now in motion it cannot be undone”

Gandalf in the return of the king



Chapter 1

An Introduction to Quantum

Foundations

Quantum Theory has been the crowning jewel of twenty first century modern

physics. Ever since its conception, it has been both the conservatives nightmare

and turncoats delight! Its enigmatic features have captured the attention and

imagination of researchers. Topics ranging from the meaning and interpretation

of quantum theory to correspondence to our classical world have ever since

occupied the discussions at conferences and dinner tables alike.

The advent of quantum theory was less of a smooth transition in itself. New-

tonian (classical) mechanics was considered as the theory which explained all

the phenomena observed in nature. Ranging from the most modest happen-

ings around like the falling of an apple from the tree to the occurrences of the

eclipses and the comets to the workings of a steam engine to the deflection of

a magnetic needle when a flux of charges sprint across a rod of iron fell as the

pieces into the structured markings of a grand puzzle, which was the Universe.

Up until the end of the 18th century, the workings of the physical universe was

thought to be completely understood as the mathematical machinery of clas-
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sical mechanics provided the necessary apparatus to predict and perceive the

happenings around us. Only when the murky dealings of the microscopic world

(world of “smaller” dimension than the one which we, as human beings, are

used to) started to befall the edifice of the established theory, did the purists

give away to revisionists! As such the period from 1900s to 1930s saw one of

the most tumultuous period in the history of physics. A new theory sprang to

supersede the existing one. Quantum theory was born.

Figure 1.1: The fifth Solvay meeting of 1927 had all the stalwarts of modern physics partici-
pating. 17 of the 29 were/became Nobel laureates. Pic credit: Wikipedia

The chief architects of Quantum theory were Max Planck,Louis de Broglie

Albert Einstein, Neils Bohr, Erwin Schrödinger, Werner Heisenberg, P A M

Dirac. The fifth Solvay meeting of 1927 was an earmarked event on Electrons
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and Photons. The meeting was arranged to discuss the newly formulated quan-

tum theory. Einstein was discontented with the outcome of the meeting and

famously rebuked against the Heisenberg’s uncertainty principle that “God does

not play dice” to which Neils Bohr responded saying “Einstein,stop telling God

what to do”.

“Einstein was unable to accept as final the wholly unorthodox

mathematical formulation of Planck’s quantum theory,...,since it

did not correspond to his philosophical conceptions of the task of

the exact sciences. He felt it disturbing that natural laws should

have to relate not to objective processes but to the possibility or

probability of such processes.”

–Werner Heisenberg

in Planck’s Discovery and Atomic Theory

So, disenchanted was Einstein towards quantum theory that he would pro-

pose gedanken experiments (thought experiments) to bring out “flaws” in the

logic of the theory to which Neils Bohr would respond in his own erudite man-

ner. Bohr would first carefully study the problem and would try to convince

Einstein that the apparent flaw arises due to the classical way of thinking. He

would then try to resolve the “flaw” by using quantum mechanics. In one of

such resolutions, he had used Einstein’s own theory of relativity in explaining

the apparent flaw in the proposed thought experiment.

Notwithstanding, Einstein came back with his full prowess in the form of his

1935 paper, famously known as the EPR paper. This work highlighted the

incompleteness and the non local aspect of quantum theory.1 Neils Bohr re-
1It is said that Einstein was not completely satisfied with the exposition of the ideas in the EPR paper.

Apparently it was Nathan Rosen who drafted the final version. For more on what Einstein had in mind to say
see [20, 21, 22]
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sponded with a draft of his own but physicists found it to be too terse to com-

prehend the meaning of the content [20]. Erwin schrödinger followed suit with

his own inspired version of the puzzling features of quantum theory [23]. It was

he who caged the proverbial cat and gave it the famed status. Schrödinger’s cat

became the quintessential identity of the mysterious nature of quantum theory.

While all these developments seemed as if the quantum physicists were taking

the question at hand seriously, the real issue of the interpretation of quantum

mechanics took a back seat as the framework of quantum mechanics offered an

excellent arena to resolve problems which had been nagging for a long period of

time. Also, this offered a new perspective to physicists who were ready to accept

the theory at face value and march ahead in applying the theory to understand

the phenomena which sprang out as a result of the enigmatic operations of the

microscopic constituents. Though some people kept their curiosity at bay with

respect to the interpretations, John von Neumann [24, 25], David Bohm [26, 27]

and others pursued it with complete zeal even when the said notion of investing

time on foundational aspects were considered the work of a second rate mind.

Shut up and calculate was the dictum!! [28]

It was around the 1960’s that John Bell focused his attention in realizing

the lifelong pursuits of Albert Einstein. It was he who, contrary to the reason,

disproved the existence of a hidden variable description of quantum theory. He

was inspired by the work of David Bohm who propounded the Non-local hidden

variable distribution [29]. Once the results were established, experiments were

performed to check the robustness of these results, in particular and quantum

theory, in general. The verifications in terms of these observed results further

strengthened the notion that nature is inherently random. That is, the physi-

cal world is inherently quantum mechanical. This important realization had to
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wait another two decades for physicists to pick up interest again and to learn

the mind boggling implications of the theory. With this, Quantum Information

Science was born.

Quantum information science is the study of quantum theory as seen through

the eyes of an information theorist. Rolf Landauer, famously said that Infor-

mation is physical. As such, quantum theory when studied in the language

of information theory brought forth a whole new dimension in the way we see

the world around us. Many queer aspects such as the Uncertainty relation,

Superposition/Coherence, Entanglement were seen as resources through which

real time applications in the security of communication, simulation of micro-

scopic happenings etc could be envisioned. Foundational aspects looked in the

language of information theory ushered in the development as well as the ap-

plication of Quantum Information theory in a rapid manner. All of a sudden

foundational aspects of quantum theory gained much importance and Shut up

and contemplate became the new dictum!![30]

In the rest of this chapter, on the introductory and the necessary aspects needed

for the development of this thesis, we give a brief glimpse into the rudiments of

quantum mechanics, information theory, EPR argument, Local Realism and the

Bell’s Inequality, Uncertainty Principle, Macro Realism and the Leggett-Garg

inequality.

1.1 Principles of Quantum Mechanics

Any physical theory necessitates the integration of physical notions, a mathe-

matical framework and a set of conforming rules. Translation of the observed
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phenomena into the mathematical language requires the mapping of the physical

notions to mathematical objects. This mapping requires the set of conforming

rules mentioned earlier. Once a physical problem is translated in such a way to

mathematical language, it is solved completely in mathematical terms without

the botheration of what the physical interpretation might mean. This solution

is then reverted back into the vocabulary of the physical world and interpreted

accordingly. This is the whole essence of what is termed as the working of a

theory. Quantum Theory is formulated in more or less the same way.

1.1.1 Physical notions of Quantum Theory

The main physical notions of quantum theory are the concept of the state of

the system, attributes (observable properties) of the system, it’s evolution and

the measurement of the attributes. Akin to the idea of a classical phase space

description of the systems wherein the “state” refers to the prescription of the

coordinates and the conjugate momenta (which is the complete characterization

of the system), the notion of the “state” of a quantum mechanical system is an

identification of the probability distributions for the attributes of the system

under study. These attributes or in other words, the observable properties of

the system are recognized through the observables characterizing them.1 Evo-

lution of the system takes place due to the factors affecting the system such as

its surrounding or an external interaction. A scheme to represent this is known

as the “equation of motion” or the “evolution equation”. With the known initial

conditions, once this is solved, the state of the system at all times is known in

principle.

1For example, an object could be located through the observable “x”characterizing its position.
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The final notion is that of measurement and modeling the process of measuring

an observable is one of the quintessential problems of quantum theory. The

root cause of this is due to the intrinsic randomness inherent in the workings of

the microscopic world. This is tacitly expressed mathematically in the form of

the Uncertainty Principle which inhibits the measurement of any two conjugate

observables to arbitrary precision.

The state of any quantum mechanical system is denoted by ρ. As mentioned

earlier, by “state” we mean the collection of all possible knowledge pertaining

to the system, which is obtained by the identification of the probability distri-

bution for the outcomes of measurements on observables of the system. In this

sense, ρ denotes the complete specification of the state.

The conforming rules, which provide the mapping between the physical world

to the mathematical framework of quantum theory are the postulates of the

theory. These have been framed after a lot of rigmarole and physicists still

continue to ponder about the motivation behind the origination of these postu-

lates. For our purpose, it suffices to mention these postulates in the passing so

that the functioning of the theory is grasped in terms of the working of these

postulates.

Postulate 1: Every dynamical or physical system is described by a State Op-

erator or Density Operator ρ.

This is also called as a Density Matrix when ρ is expanded with a complete

orthonormal basis: ρ =
∑

i

ρi |φi〉 〈φi| (Orthonormality implies that 〈φi|φj〉 =

δij for any |φi〉 and completeness requires that
∑

i |φi〉〈φi| = I where I is the

identity operator.)

The Density matrix has the following properties:

7
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ρ† = ρ (Hermiticity)

Tr(ρ) = 1 (Normalization)

ρ ≥ 0 (Positive semi-definiteness)

(1.1)

The term “density matrix” refers to the collection of all the observable prop-

erties of the ensemble .

A PURE state has to satisfy one more property that ρ2 = ρ ⇒ Tr(ρ2) = 1. In

all those scenarios wherein the complete specification of the state is not possible,

the concept of a MIXED state is introduced. Here, the total state of the system

is represented as a weighted sum of the individual pure states constituting the

system.

As an example, in an ensemble of N systems, N1 of them could be in state

ρ1 , N2 of them in ρ2 and so on. Here, the total state is written as ρmix =
∑

i

pi ρ
pure
i =

∑

i

pi |ψi〉〈ψi| in contrast to a pure state where all the systems of

the ensemble are specified by a single state ρpure = |Ψ〉〈Ψ|.

For a pure state, the complete specification of the state can also be repre-

sented by the ket |Ψ〉 1. This is a vector in the Hilbert space which is a linear

vector space with an inner product 2.

1The symbol |·〉 is called ket and the corresponding 〈·| is known as bra. The existence of a bra corresponding
to a ket is established by the Reisz theorem [31].

2A Linear Vector Space (LVS) V is a collection of objects v, called vectors that is closed under addition
and multiplication by scalars. i.e, if |φ〉 and |ψ〉 are two vectors belonging to V then so is a|φ〉 + b|ψ〉. Here
a and b are arbitrary scalars. If they are complex(real), then we have a complex(real) linear vector space. An
inner product associates a scalar 〈φ|φ〉 with the ordered pair of vectors |φ〉 and |ψ〉. |Φn〉 is a Cauchy sequence
if lim ||ψn−ψm|| → 0 as n,m tends to ∞. When limn→0 |ψn〉 = |ψ〉 then |ψ〉 is called the Cauchy sequence limit
point. However there is no guarantee that all Cauchy sequence limit points are inside the vector space. If the
limit point of every Cauchy sequence in a LVS V is also in V, then V is a Complete LVS. A complete LVS with

8
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Any pure state |Ψ〉 can be expressed as a linear combination of the basis

vectors as

|Ψ〉 =
∑

i

Ci |φi〉

where Ci = 〈φi|Ψ〉, the interpretation of which is to learn how much of |Ψ〉
points along |φi〉. The summation index i runs through the dimension of the

system. If the basis set is denumerable, then the expansion is as shown above,

else we need continuous basis to express the state of the system. See any text

book on quantum mechanics for more details [32, 33, 34].

Attributes of the system are represented by the Operators in Hilbert space.

Postulate 2: Physical observables or dynamical variables are represented

by Hermitian operators.

An operator, say A, is said to be hermitian if A† = A. Here, A† is the her-

mitian conjugate of A. One might wonder as to how to associate values for an

operator. A natural way to do it is to look at the eigenvalues of the operator.

If A|Ψ〉 = λ|Ψ〉 then λ is an eigenvalue of A and |Ψ〉 it’s eigen vector .The

reason hermitian operators find their way in representing physical observables

is due to the fact that their eigenvalues are real.

Position and Momentum of a particle are, for example, physical observables

represented by hermitian operators r and −i~∇.

Let A be an observable with |φi〉 as it’s orthonormal eigenstates. Then

A =
∑

i

λi |φi〉〈φi| (Spectral decomposition)

an inner product is called Hilbert Space. For more on the math please refer [31].
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This is the operator analog of expressing the state as linear combination of it’s

basis vectors. Consider,

〈Ψ|A|Ψ〉 = 〈Ψ|(
∑

i

λi |φi〉〈φi)|Ψ〉

=
∑

i

λi |〈φi|Ψ〉|2

=
∑

i

λi p(λi) (1.2)

This is observed as the average value or expectation value of the observable

(operator) A in the state |Ψ〉. The λi’s occur with probability p(λi) = |〈φi|Ψ〉|2.

In terms of the density matrix, the expectation value of the observable A in

the state ρ = |Ψ〉〈Ψ| is given by

〈A〉 = Tr(ρA) = Tr(|Ψ〉〈Ψ|A) = 〈Ψ|A |Ψ〉 (1.3)

An example of a state

A two dimensional state in quantum mechanics is known as a Qubit. The

state of the qubit is usually represented as the linear superposition of the

basis states |0〉 and |1〉.

|Ψ〉 = α |0〉+ β |1〉 (1.4)

with the constraint that |α2| + |β2| = 1. The kets |0〉 and |1〉 are called as

Computational basis states. These are the eigenstates of one of the Pauli sigma

matrices σz and form an orthonormal basis set in the two dimensional Hilbert

space.

10
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The Pauli sigma matrices are

σx =

(

0 1

1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0

0 −1

)

The two states |0〉 and |1〉 are analogous to the classical bits 0 and 1 but

the difference between a bit and a qubit is that a qubit can take states other

than |0〉 and |1〉 as superposition is allowed in quantum theory. A bit can

be identified to be in a state 0 or 1 whereas a qubit cannot be identified as

to which state it is in, that is, to know the values of α and β in (1.4). The

coefficients α and β are the probability amplitudes whose modulus square gives

the probability of the qubit being in |0〉 and |1〉 respectively. The constraint

|α2|+ |β2| = 1 is known as the normalization condition and it implies that the

state of the qubit is a unit vector in the two dimensional Hilbert space.

In terms of the density matrix, the state of the qubit can be represented as

ρ =
1

2
[I+ σ · a]

where a is the vector which characterizes the qubit. That is, the specification

of the three parameters ax, ay, and az is required for determining the state of

the qubit.

Postulate 3: The evolution equation for the state |Ψ〉 is given by the time

dependent Schrödinger’s equation;

−i~ ∂
∂t

|Ψ〉 = H|Ψ〉 †−→ i~
∂

∂t
〈Ψ| = 〈Ψ|H (1.5)

The solution of the equation is

|Ψ(t)〉 = U(t)|Ψ(0)〉

11
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where U(t) = exp
−iHt

~ where H is the Hamiltonian of the system and U(t)

is the Unitary operator which transforms the system from time 0 to t. (An

operator U is called as Unitary if it satisfies the equation U† = U−1).

From this we can get the evolution equation for the density matrices which

is known as the von Neumann equation which is the quantum analogue of

the classical Liouville equation.

−i~ ∂
∂t
ρ = [H, ρ] (1.6)

The solution of the evolution equation is

ρ(t) = U(t)ρ(0)U†(t)

The last physical notion which we discuss in brief is that of measurement in

quantum theory.

Postulate 4: The result of the measurement of any physical observable is

always one of the eigenvalues of the corresponding hermitian operator.

Before moving ahead, let’s ask the question: what constitutes a measurement

in quantum theory and what is expected out it?

Looking at measurement as an operation, we expect the result at the end of

this operation to be the probability distribution for the various eigenvalues ac-

companied by the eigenstates the original state reduces to.

|Ψ〉〈Ψ|
Measurement

−−−−−−−−−−−−−−→
∑

i

pi |φi〉〈φi|

where pi = |〈φi|Ψ〉|2 is the probability that the state |Ψ〉is indeed |φi〉.

12
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As an operator equation wherein the measurement of a state is seen as a trans-

formation from one state to another, we introduce Projection Operator Πi.

This operator Πi = |φi〉〈φi| projects any state on which it acts to |φi〉 i.e, if we
express any state |Ψ〉 as

|Ψ〉 =
∑

i

Ci|φi〉,

then

Πj|Ψ〉 = |φj〉〈φj|Ψ〉

and the probability of getting the corresponding eigenvalue is

pi = |〈φi|Ψ〉|2 = 〈Ψ|Πi |Ψ〉
= Tr(Πi ρ) (1.7)

Note that this operation is not Unitary. The final state is not normalized.

Thus, measurement has a separate status in quantum theory as it cannot be

represented as a Unitary transformation.

The Projection operator satisfies the properties:

Πi ≥ 0

ΠiΠj = δijΠj
∑

i

Πi = I

(1.8)

Remark

Though the reduction of the original state to that of the projected one occurs

in a single projective measurement (Πj|Ψ〉 = |φj〉〈φj|Ψ〉), it is not considered

as a complete characterization of the measurement process. For a full charac-
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terization the following is the requirement:

|Ψ〉〈Ψ|
Measurement

−−−−−−−−−−−−−−→
∑

i

Πi|Ψ〉〈Ψ|Πi

and in terms of the density matrix ρ,

ρin
Measurement

−−−−−−−−−−−−−−→ ρaft =
∑

i

Πi ρinΠi

1.1.2 The Uncertainty Principle

In classical mechanics, two conjugate observables can be measured simulta-

neously without affecting the state of the particle (system) or its subsequent

evolution. However, in quantum theory, such a measurement is not possible un-

less the two operators representing the observables commute . Heisenberg’s

Uncertainty Principle is a testament to this fact. This principle is one of

the fundamental principles of quantum theory. It was enunciated by Werner

Heisenberg.

“Here I am in an environment that is diametrically opposed [to

our view], and I dont know whether I am just too stupid to under-

stand mathematics. Gottingen is splitting into two camps. Some

people, like Hilbert, talk of the great success achieved through the in-

troduction of matrix calculus into physics, and others, like [James]

Frank [the noted experimentalist], say that these matrices can never

be understood. I am always angry when I hear the theory called

nothing but matrix physics. ..’Matrix’ is certainly one of the most

stupid mathematical words in existence.”

–Werner Heisenberg

writing to Pauli
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To dispel the smugness of the mathematicians and the bafflement of the physi-

cists, Heisenberg had to discover a physical meaning for his matrices.The hard-

est facts to reconcile were the photographs taken of cloud chambers in which

water droplets revealed the passage of an electron.

The recollection of a discussion with Einstein gave him the nudge to frame

his Uncertainty relation. Einstein would have remarked “It is always the theory

which decides what can be observed” and as such, would have asserted that its

NOT advisable to ask “How can we represent the path of the electron in the

cloud chamber?”

Heisenberg, realizing the profound insight, turns the question around and

asks “Is it not perhaps true that, in nature, only such situations occur as can

be represented in quantum mechanics or wave mechanics?” Once he understood

the overwhelming nature of his insight he came to a conclusion that “There was

not a real path of the electron in the cloud chamber”.

His conclusions came in the form of his famous march 1927 paper [35]. The

colloquial statement of the Heisenberg’s Uncertainty Principle reads as follows:

“The more precisely the position is determined, the less precisely the momentum

is known in this instant, and vice versa.”

In that paper, Heisenberg presented the physical intuition underlying the uncer-

tainty principle (based on the discussion of his gamma ray microscope gedanken

experiment for measuring the position x and momentum p of an electron).

Measurement of position of the particle with an “error” ǫ(x) ≈ ∆λ (where λ

corresponds to the wavelength of the photon) causes disturbance η(p) of the
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momentum by an amount η(p) ≈ ~

∆λ .

The product of the “noise” in a position measurement ǫ(x) and the momentum

disturbance η(p) caused by that measurement turns out to be ǫ(x)η(p) ≈ ~.

While Heisenberg states that he would prove the error-disturbance relation on

a firmer mathematical ground in terms of the canonical commutation relations

[x, p] = i~, the paper does not discuss it. Moreover, there was no rigorous

mathematical definition of neither error nor disturbance in it. Heisenberg only

gives a rough discussion of variances in the position measurement and the re-

sulting momentum disturbance in the case of Gaussian wave packets.

The commutator of two operators A and B representing the observables A

and B respectively is defined as

[A,B] = AB−BA

Commutativity of operators representing the observables helps in their simul-

taneous/joint measurement. In classical physics, physical observables commute,

which means that they are jointly measurable. Commuting observables are also

called as compatible observables. In quantum physics, two operators repre-

senting physical observables don’t commute, in general. If they do, then they

share a common set of eigenstates and are thus compatible. They can be jointly

measured. It is in this sense that Projective Measurements (PM) are known

as sharp measurements as it assigns sharp values for the measurement of

compatible observables in contrast to the measurement of two non-commuting

observables. (See Appendix A)

The uncertainty relation captures the essence of Non-Commutativity inherent
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in quantum theory. Physically, the meaning of the uncertainty relation is that

if one performs the measurement of two non-commuting observables A and B

on an ensemble prepared in |Ψ〉, then the product of the uncertainties of the

observables is bounded by their commutator evaluated in |Ψ〉.
The example of Heisenberg’s gedanken experiment subsequently initiated a

mathematically formal version of “preparation uncertainty” relation proved by

Kennard [36] and Hermann Weyl [37]:

∆x∆p ≥ ~/2 (1.9)

This inequality is obeyed by the standard deviations 1 ∆x, ∆p evaluated

using the position and momentum probability distributions of the same prepa-

ration 2 but in two separate experiments.

A proof of the preparation uncertainty relation for any two non-commuting

observables A and B i.e.,

∆A∆B ≥ | 〈[A,B]〉 |/2 (1.10)

was given by Robertson (who was inspired by an argument given in Weyl’s

book) [38, 37].

It is clear that Kennard, Weyl and Robertson formalized measurement error

in terms of standard deviation ∆A based on the identification that in general,

an observable does not have a definite value in a quantum state.3

1The standard deviation of an observable X is defined as ∆X =

√

〈X2〉 − 〈X〉2 where the averages are

calculated on any state |Ψ〉
2von Neumann projection hypothesis asserts that the complete measurement of an observable A with

eigenstates |ai〉 corresponds to the weighted sum of the eigenstates with the weights identified as the probabil-
ities of obtaining the eigenvalues ai corresponding to the eigenstates |ai〉. If a single projective measurement
pertaining to the eigenstate |ai〉 is made on an arbitrary state |Ψ〉 then the state |Ψ〉 collapses to |ai〉 and thus
a state is prepared. This is known as a state preparation procedure.

3Textbooks on quantum mechanics exclusively discuss the preparation uncertainty relation. But the error-
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1.1.3 Composite systems

The consideration of having a bipartite separation of a system or the interaction

amongst two distant systems forces us to look into the concept of composition

of states representing the total system. Let the states of system A and system

B be associated with the Hilbert spaces HA and HB respectively.

The possible composition of the systems is in terms of a Product, Separable

or an Entangled state.

Consider a bipartite pure state |ΨAB〉. If |ΨAB〉 = |φA〉 ⊗ |χB〉, then |ΨAB〉
is considered as a (tensor) Product state. Else it is called an Entangled state.

Superposition in the tensor product space or the composite space leads to the

concept of Entanglement. Product states do not carry any correlation between

them whereas entangled states do as we see in the following sections.

In the case of mixed bipartite states, ρAB = ρA ⊗ ρB is considered as a product

state. These states do not carry any correlation. However, there is a general

construction of a bipartite state which is classically correlated. These states are

called as Separable states.

ρAB =
∑

i

qi ρAi ⊗ ρBi (1.11)

disturbance arguments of Heisenberg were not translated into rigorous mathematical formulation. This facet of
the uncertainty principle has invoked recent debates on how Heisenberg’s original intuition should be interpreted
and generalized [39, 40, 41, 42].
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with the constraint that
∑

i

qi = 1 and the qi ≥ 0. This form of the separable

state is called as the convex sum of the product form of the constituent states.

The states ρA and ρB are called as reduced density matrices or reduced states.

They are obtained by taking the partial trace over the total state ρAB

ρA = TrB (ρAB)

ρB = TrA (ρAB)

Any state which is not separable is an entangled state.

But how different are these Entangled states from other kind of states?

Let us consider the states |β00〉 = 1√
2
(|00〉 + |11〉) and |β11〉 = 1√

2
(|01〉 − |10〉).

In these states, the spin values of each component are correlated as well as

anti-correlated. Each component system of this entangled state doesn’t have a

definite state. This is what it means to say that the superposition cannot be

written as a product of the constituent systems.

Furthermore, the meaning of the terms correlation and anti-correlation is that,

if we separate the constituents and send one component each to Alice and Bob
1(who are spatially separated)and ask them to measure the Z component of

the spin angular momentum S,2 they find that the probability of obtaining the

values ±1/2 is the same for each constituent state. Also, if Alice finds the

measured value to be +1/2 on the state |β00〉, then the state on her part would

have collapsed to |0〉 and that this is possible only if the total state would have

collapsed to |00〉. Thus, the state of Bob would have reduced to |0〉 even with-

out him making a measurement at his end. If he makes a measurement of the

1The eternal pair!!
2The spin angular momentum S is defined as a triplet (Sx,Sy,Sz) which satisfies the commutation relation

[Sx,Sy] = i~ǫxyzSz. The spin angular momentum eigenstates are denoted as |smz〉 where the eigenvalues of the
operator are s = 0, ±1/2 ,±3/2 ,±5/2 . . .. For the case of s = 1/2 , the spin angular momentum S is denoted
as S = ~

2
σ
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Z component of S, he finds the value +1/2. This is meant by correlation in

the measured values and this is a reflection of the inherent correlation in the

state |β00〉. The same analysis would imply that the measured values of the

spin angular momentum in the state |β11〉 are anti-correlated.

In contrast to this, the state |Ψ〉 = 1√
2
(|00〉 + |10〉) is not correlated as it

is evident that the state |Ψ〉 can be decomposed into a product form,|Ψ〉 =
1√
2
(|0〉+ |1〉)⊗ |0〉.

Classical correlations are ubiquitous in nature. However, what differentiates

the nature of correlations between the classical and quantum worlds is in the

understanding of the origin of these correlations. In classical physics, probabili-

ties arise primarily due to the lack of knowledge of the attributes of the systems

and hence when correlations are observed, they can be explained as emerging

from an underlying probability distribution characterizing the outcomes of mea-

surement of the observables of the system. However,in quantum physics, due to

the notion of non-commutativity of the observables, the complete description

of the outcomes of the measurement of observables in terms of specifying the

probability distribution is not possible as in the classical case. As such, the

correlations arising in the quantum scenario are found to be strikingly different

compared to their classical counterpart. It is this deviation from the classical

rules of probability logic that characterizes the distinctive nature of the proba-

bility distributions arising in the quantum scenario.
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1.1.4 Generalized Measurements and Evolution

Evolution

We have seen before that the evolution equation for a state ρ of a single system

is given by the Schrödinger equation (master equation). A natural question to

ask is the applicability of the said equation to the case of a composite system

where the constituent parts are interacting with each other. The interest in de-

veloping this sort of a mathematical framework for evolution of the composite

system is towards modeling the “system + environment” interaction and then

examining the structure of the evolved state of the system.

Consider the state ρAE to be initially in a product state ρAE(0) = ρA ⊗ ρE

and allow it to evolve under a unitary transformation U(t) in the combined

space HA and HE.

Let |ei〉 be an orthonormal basis in the state (Hilbert) space of E and let the

state of the environment E be initialized to |e0〉 〈e0|. The state ρAE at a later

time t is given by

ρAE(t) = U(t) ρA ⊗ ρE U
†(t)

and the state of the system after the interaction is obtained by tracing out the

state of the environment.

ρA(t) =
∑

i

〈ei|U(t) [ρA ⊗ |e0〉 〈e0|]U†(t) |ei〉 (1.12)

=
∑

i

KiρK
†
i (1.13)

where Ki ≡ 〈ei|U |e0〉 are called as Krauss operators. These operators act

on the state space of the system taking it from the initial state ρA(0) to the
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final state ρA(t) and the equation (1.13) is known as operator sum representa-

tion or Krauss representation for the state of the system after the interaction

(operation).

The set of Krauss operators satisfy the completeness relation arising from the

constraint that the state of the system be normalized after the interaction.

∑

i

K
†
iKi = I

Remark

Schrödinger equation is only for the combined system comprising the system and

the environment. As there is no direct Schrödinger equation for the evolution of

the reduced density matrix ρE, the master equation corresponding to one of the

forms of the solution given by the operator sum representation (1.13) is simply

dρ

dt
= Lρ

whose actual solution is ρ(t) = eLt ρ(0). The operator L is known as the Lind-

bladian for the system.

Note that the special case of the unitary evolution, ρ′ = UρU† is also an oper-

ator sum with only one element in the set of operators Ki which is equal to U

itself.

Example: Amplitude Damping channel

The amplitude damping channel is a schematic model representing the sponta-

neous emission of a photon due to the decay of an excited state of a two level
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atom. The Krauss operators characterizing the channel are

K0 =

(

1 0

0
√
1− γ

)

; K1 =

(

0
√
γ

0 0

)

The Krauss operator K1 aids in de-exciting the atom to it’s ground state

(|1〉 to |0〉) whereas the operator K0 describes the evolution when there is no

de-excitation. The state of the two level atom after the evolution is given by

ρ′ = K0ρK
†
0 +K1ρK

†
1

where ρ′ is the final state after the channel acts on the initial state ρ.

Measurement

The schematic model of a measurement is described as a transformation of

a state to another wherein the three properties given by (1.1) has to be satis-

fied by the state after the measurement. Note that the act of measurement is an

irreversible operation in contrast to the unitary evolution of the system. Con-

ventional von Neumann projection measurements expresses the observable

in it’s spectral form using the projection operators Π.

M =
∑

m

mΠm (1.14)

Here Πm = |m〉 〈m| and the eigenvalue equation for the observable M reads

as M |m〉 = m |m〉. The operators Πm are called as Projection Operators. The

state of the system after the measurement is given by

ρ
Measurement

−−−−−−−−−−−−−−→ ρ′ =
Πm ρΠm

p(m)

where p(m) = Tr(ρΠm) , the probability to find the state in |m〉. Also, these
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operators Πm obey the two properties given by (1.8).

Let us now consider a set of operators Em = M
†
mMm such that they form the

resolution of identity but are non-orthogonal. That is, consider operators which

are not projection operators but which form a non-orthogonal decomposition

of identity:

Em ≥ 0
∑

m

Em = I

(1.15)

In this case, the probability of the results of measurements of Em is given by

p(m) = Tr(ρEm). The set of operators Em are called as POVM elements

or operators. (The acronym POVM stands for Positive Operator Valued

Measure .)

POVM’s arise as measurements on a system A, as a result of orthogonal pro-

jective measurement done on a composite system ρAB in an extended space

HA ⊗ HA. Consider the initial composite system to be in a product state

ρAB = ρA ⊗ ρB. A complete projective measurement on this state is given by

ρ′AB =
∑

m

Πm ρAB Πm (1.16)

Taking the trace over the system B, the state of the system A is given by

ρ′A = TrB

(

∑

m

Πm ρA ⊗ ρB Πm

)

=
∑

m

(TrB (Πm ρA ⊗ ρB))
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=
∑

Γ

MΓ ρA M
†
Γ (1.17)

This is the content of the theorem due to Neumark [43].

Example

The projective measurement operators Πm which satisfy the properties given

by (1.8) are POVM elements themselves as Em ≡ Π†
mΠm = Πm.

In this section, we have briefly mentioned the rudiments of standard quan-

tum mechanics which form the physical edifice on which quantum information

theory is built. In the ensuing section, we provide an elementary introduction

to information theory as needed for developing the contents of this thesis.

1.2 Information and Ignorance

The meaning of information in common parlance is to gather facts or learn

about something or someone. The common day to day activities such as watch-

ing the news on a television channel and reading a book make us better informed

about the worldly affairs and the contents in the book respectively. However,

for a scientific understanding of what information means, we need to model

the system (physical process) responsible for the generation of the same in such

a way that we appreciate the learning of something “new” through the acts of

observation or measurement on the system.

It was through the remarkable work of Claude Shannon [44, 45] that In-

formation Theory as we understand it came into being. This was developed

to quantify the information content in a physical system or communication
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channel. For an efficient communication process, the schematic involved three

components. The Source , the Channel and the Destination . The Source

produces Events to which information is associated and these are encoded be-

fore transmitting through a channel (which could be noisy) to the destination

where the events are decoded back to it’s original form and the information

gathered. We now develop a measure for the information content of an event

in terms of the probability of the occurrence of that particular event.

The key idea of Shannon was to model the communication process as a stochas-

tic process wherein the source produces events modeled as a random variable

X = (x1, x2, x3, · · · , xn) with the source producing the events xk with the prob-

ability pk ≡ p(xk). These appear to be mere data from which information needs

to be extracted out.

In order to bring out a measure of information, some basic assumptions on the

part of the measure were carved out. These are as follows:

1. Information is a function of the probabilities of the events, I(p).

2. I(p) is a monotonically increasing continuous function of the probabilities

of the events.

3. I(p) is an additive function. The information content of two events occur-

ring with the probabilities p1 and p2 is the sum of the information contents

of each event occurring independently. i.e, I(p1p2) = I(p1) + I(p2).

4. The certainty of an event corresponds to information content being zero.

With these assumptions, Shannon says that there is an unique measure of

information up to an additive and multiple constant [46], the result of which is
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that I(pk) is defined to be

I(pk) = −log2(pk). (1.18)

The Average Information or Classical Shannon Information or Shan-

non Entropy is defined as the weighted sum of the probabilities of the events

comprising a message. This is given by

H(X) = −
∑

x

px log2(px). (1.19)

Note that H(X) ≥ 0.

Example

Consider X = 0, 1 to be a binary event. Let the event 0 occur with the proba-

bility p and 1 with 1− p with 0 ≤ p ≥ 1. The Shannon entropy for this binary

event is

H(X) = −p log2(p)− (1− p) log2 (1− p) .

The maximum information occurs for the value of p = 1/2. Also, one bit of

data can carry a maximum of 1 bit of information. When we have a source

producing a set of n = 2x symbols with a uniform distribution i.e, px = 1/n,

we obtain x bits of information:

H(X) = −
n
∑

x=1

px log2(px)

= −n
n
log2(1/n)

= −log2(1/n)

= x. (1.20)
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Thus, Shannon entropy quantifies the total information produced in a col-

lection of events in terms of the sum of the weighted probabilities of occurrence

of each event.

Equivalently, Shannon entropy H(X) can also be understood as quantifying

the amount of uncertainty about an event (modeled as X) before the occurrence

of that particular event. Suppose we have two observables A and B. Let us

label the values taken by them to be a and b. A joint probability distribution

p(a, b) can be assigned if one has knowledge about the values of both a and b.

In order to talk in terms of the probabilities, the values a and b are treated as

the values of the random variables A and B respectively.

Bayes’s theorem [47, 48] is an important theorem in the theory of probability

which relates the joint probability distribution to the conditional probability

distribution.

p(a, b) = p(a|b) p(b) = p(b|a) p(a) (1.21)

The information equivalent of Bayes’s theorem is

I(a, b) = I(a|b) + I(b) = I(b|a) + I(a)

. The joint Shannon entropy is defined as

H(A,B) =
∑

a,b

p(a, b) I(a, b) = −
∑

a,b

p(a, b) log2p(a, b) (1.22)

The conditional entropy H(A|B) is defined using Bayes’s theorem

H(A|B) = −
∑

a,b

p(a|b)p(b) log2p(a|b) (1.23)

= H(A,B)−H(B) (1.24)
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Note that H(A|B) ≥ 0 by definition. The entropic equivalent of Bayes’s theo-

rem is

H(A,B) = H(A|B) +H(B) = H(B|A) +H(A)

The Shannon entropies obey the inequality [49]:

H(A|B) ≤ H(A) ≤ H(A,B) (1.25)

left side of which implies that removing a condition never decreases the infor-

mation – while right side inequality means that two variables never carry less

information than that carried by one of them.

Quantum (von-Neumann) Entropy

The Shannon entropy quantifies the amount of uncertainty or ignorance as-

sociated with a classical probability distribution. Analogous to the classical

probability distributions are the density matrices representing the states of a

quantum system. These density matrices correspond to the quantum probabil-

ity distributions. A measure of the uncertainty associated with these quantum

probability distributions is the Quantum (von Neumann) Entropy S(ρ).

The von Neumann entropy is defined as 1

S(ρ) = −Tr(ρ log ρ) (1.26)

For a pure state ρ = |Ψ〉 〈Ψ|, the von Neumann entropy turns out to be zero.

Furthermore, for a mixed state ρ =
∑

i

pi |Ψi〉 〈Ψi|, the von Neumann entropy is

found to be

S(ρ) = −Tr(ρ log ρ)
1The base to the logarithm is 2.
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= −
∑

j

〈Ψj| ρ log ρ |Ψj〉

= −
∑

i

pj log pj

which resembles the structure of classical Shannon entropy. Note that the von

Neumann entropy S(ρ) ≥ 0 by definition.

Remark

Measurement always increases the entropy of the system as the classical Shan-

non entropy is found to be greater or equal to the von Neumann entropy after

the act is performed. That is, if we are measuring an observable A on a system

in a state represented by the density matrix ρ, then the probability distribution

p(a) = Tr(ρΠa)

where Πa is the projector corresponding to an eigenstate |a〉 of the observable

A. After the measurement, we find that

H(A) ≥ S(ρ)

the equality arising only when [A, ρ] commutes [50].

Given a bi-partite density matrix ρAB , the entropy for the whole system is

defined as S(AB)ρ = S(ρAB). To this end, the entropy of the sub system

density matrix is denoted as

S(A)ρ = S(ρA) = S(TrB(ρAB))

By analogy with the classical (Shannon) conditional entropy, one defines the
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conditional quantum entropy as

S(A|B)ρ = S(AB)ρ − S(B)ρ

The subscript ρ is only to remind that we are dealing with quantum states.

For a pure state, the von Neumann entropy S(ρ)pure = 0 as all pi’s are zero

except one whereas for a completely mixed state of n qubits, S(ρ)mix = n as all

the pi are equal to 1/2n.

Furthermore, the von Neumann entropy is utilized to characterize the entangle-

ment of a pure bi-partite state ρAB. It is done by computing the von Neumann

entropy of the subsystem density matrix. If S(ρA) = 0, then we know that ρA

is pure and hence ρAB is a product state. If not, ρAB is an entangled state.

The von Neumann entropy S(ρA) is used as a measure of entanglement of pure

bi-partite states.

Entropic Uncertainty Relation

From an information-theoretic perspective, it is natural to capture the “ig-

norance” associated with a probability distribution in terms of the Shannon en-

tropies rather than variances as was given by (1.10). As such, the Entropic Un-

certainty Relation (EUR) was originally formulated by David Deutsch [51] and

was subsequently improved [52, 53, 54]. The conjecture put forth by Kraus [54]

was proved by Maassen and Uffink [6]. The Entropic Uncertainty Relation has

broadened and strengthened the original notion of uncertainty principle first

conceived by Heisenberg.

Consider A =
∑

a
a |a〉 〈a| and B =

∑

b

b |b〉 〈b| to be the spectral decomposition

of the two observables A and B. Let p(a) and p(b) denote the probability dis-

tribution for the outcomes of the measurements made on a system prepared

initially in the state represented by the density matrix ρ. Let H(A) and H(B)
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represent the Shannon entropies associated with the probability distributions

p(a) and p(b) respectively. The Entropic Uncertainty Relation (EUR) is stated

as

Hρ(A) +Hρ(B) ≥ −2logC(A,B) (1.27)

where C(A,B) = maxa,b| 〈a|b〉 |. The lower bound limiting the sum of entropies

is independent of the state ρ. The term C(A,B) can assume a maximum value

1/
√
d resulting in the maximum entropic bound of log d, where d denotes the

dimension of the system.

Example

Consider a qubit prepared in a completely random mixture given by ρ = I/2 (I

denotes the 2 × 2 identity matrix). Measurements of the observables A = σx

and B = σz in this state leads to Shannon entropies of measurement Hρ(A) =

Hρ(B) = 1;C(A,B) = 1/
√
2 and the uncertainty bound is −2logC(A,B) = 1;

Thus, the Maassen-Uffink relation (1.27) is satisfied.

In contrast to the original version of the uncertainty relation given in (1.10)

whose right hand side is dependent on the state of the system on which the

measurements are made, the entropic uncertainty relation does not suffer from

any such drawback. The lower bound on the right hand side of (1.27) is state

independent. Another aspect of the entropic uncertainty relation which differs

from (1.27) is that, even if one of the observables has a vanishing entropy in

a particular state, the entropy of the other observable is still bounded by the

r.h.s of (1.27). This is unlike the case of the uncertainty relation expressed in

terms of the variance, wherein if one of the variance vanishes in a state, the

commutator too vanishes providing us a null relation.
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Till now, we have developed the rudiments of both the mathematical as well as

the quantum information theory aspects required for the basic understanding

of the contents of this thesis. In the last section of this introductory chapter,

we focus on outlining a basic awareness towards the foundational aspects of

quantum theory. The main topics include the description of the EPR paradox,

Bell’s inequality and finally the notion of macrorealism as brought out through

the Leggett-Garg inequality.

1.3 EPR, Local Realism, macrorealism, Joint Measura-

bility & all that.

The statistical nature of the predictions pertaining to the measurement of the

attributes of the quantum system arising from the mathematical framework of

quantum theory brought in much dissatisfaction to one of the early proponents

of the theory, Albert Einstein. Along with other founding fathers of the theory,

he was highly skeptical of the interpretation of the theory as set out by Heisen-

berg, Bohr and others during the emergence of the theory. He thought that

the theory was correct and successful in explaining the atomic transitions,

energy levels of the atom, the structure of the atomic nucleus etc. However,

Einstein felt that the theory was incomplete in the sense that it didn’t offer

a plausible explanation for the superposition of quantum mechanical states.

Einstein and his supporters believed that the predictions of quantum theory

pertaining to experimental scenarios could still be explained in terms of an

underlying classical theory whose presence could be non-viable to yield to ex-

periments yet. They believed that an electron is a particle (with a mass) with

a well defined position and momentum [55]. Einstein argued that the mere
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Figure 1.2: Albert
Einstein, Boris
Podolsky and
Nathan Rosen. Pic
credit: Timecomm’s
Blog

unknowing of the values of these two attributes of the electron would not im-

ply the non-existence of the definiteness of the values of these attributes. In

other words, objective definiteness of the attributes of the system was held by

the realists [33]. However, this was in stark contrast to the ideology of the

Copenhagen interpretation , which purported to the view that objective

definiteness should be abandoned and that the values of the attributes take an

objective existence only when a measurement is performed wherein the reduction

or collapse of the state takes place. This notion of the wave function collapse

initiated Erwin Schrödinger to come up with the famous Schrödinger’s cat para-

dox [23].

The essence of the famous paper by Einstein, Podolosky andRosen (EPR

in short)[56] was to enunciate in a lucid manner the incompleteness of quantum

theory and in order to do so, they came up with a thought experiment wherein

the objective definiteness of the attributes of the quantum system is established

through the upholding of the principle of local causality [57, 29, 58] or lo-

cality [59].

The argument of the EPR is as follows: For the success of a physical theory,

we must ask:
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1. Is the theory correct?

2. Is the theory complete?

It is the second question that EPR tries to consider as applied to Quantum

Mechanics.

In order to indicate the requirement for a complete theory, they identify only a

necessary condition that

“Every element of the physical reality must have a counterpart in the physical

theory”

As a criterion for recognizing the elements of physical reality, they proposed

only a sufficient condition:

If, without in any way disturbing a system, we can predict with certainty the

value of a physical quantity, then there exists an element of physical reality

corresponding to this physical quantity.

Note that this should not be taken as a definition of an element of physical

reality.

If |Ψ〉 is an eigenfunction of the observable A, that is, if

|Ψ〉′ ≡ A |Ψ〉 = a |Ψ〉

where a is a number, then A has with certainty the value a whenever the par-

ticle is in the state |Ψ〉.
This is in accordance with our criterion of reality for the particle in state |Ψ〉
where we can see that a is an element of reality corresponding to the physical

quantity represented by the observable A.

Suppose A |a〉 = a |a〉 and B |a〉 6= b |a〉 because A and B don’t commute:

i.e., both A and B do not represent realities for the system in state |a〉.
This leaves us with two possibilities:
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1. Quantum Theory is incomplete

2. Quantum Theory is fine but no simultaneous realities for two non-commuting

observables is allowed in the theory.

In order to elucidate the essence in a more appealing way, let us use Bohm’s

version of the paradox [60]. Consider a pair of spin 1/2 particles, A and B,

with spin vectors σA and σB, which are formed by decay in a spin singlet state,

so that their spins are perfectly anti-correlated. Let the spins be spatially sep-

arated.

Now, measure σz at A’s end and next measure σx at B’s end. These measure-

ments yield us the results at B’s end though nothing was done at B; that is,

after the initial state was formed, measurement on particle A cannot affect the

condition of the spatially separated particle B, since there is NO interaction

between them.

Thus, we have predicted the values of measurements at B’s end though

[σBz,σBx] 6= 0

The implication of this being that there are realities hidden at B’s end which

is not accounted by the wave function/state. Thus, Quantum Mechanics is an

incomplete description of reality that must be extended in some way to describe

all these objective properties.

The major importance of the EPR work apart from presenting the incomplete-

ness of quantum theory was that it first confronted quantum theory with the

principle of local causality or locality which Einstein remarked as

“The Real factual situation of particle B is independent of what is done at A,

which is spatially separated from B.”

EPR did not doubt that quantum theory is correct. They only questioned the

completeness of the theory. The conclusion of the EPR is that some other
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“hidden variable” is needed to completely specify the state of the system.

The hidden variable could be a single number or a whole collection of numbers.

It doesn’t matter [34].

The idea that the wave function or the state of the system is merely a tool

to acquire knowledge of the quantum system was a norm to be followed than

to seek about it’s meaning and interpretation. Every possibility to explain

the statistical predictions of quantum mechanics with an underlying classical

description was probed. One of the approaches was the Hidden Variable

Theory with a philosophical manifesto [61] called Local Realism . From the

point of view of EPR, local realism is the edifice on which every physical theory

is proposed.

The 1935 paper by Einstein, Podolosky and Rosen motivated physicists to con-

struct hidden variable theories [62]. In order to understand the motivation

behind the construction of a hidden variable theory, let us look at an example:

Measurement of the spin of a particle: The spin of a particle is to be measured

in a particular direction. Let us suppose that the direction is along the “y”

axis. If the spin is measured along the “y” axis, and the value “+1” (“up” in

the y direction) is observed, then a hidden variable theory contends that the

measured value was unwrapped by the act of measurement. This is in stark

contrast to the standard notion held in quantum theory that the value of the

spin was created by the act of measurement [43, 63].

All these programmes of constructing hidden variable theories for explaining

the outcomes of experiments will not hold ground unless experimentally testable

propositions are offered. Thus, in order to arbitrate between the hidden variable

theory and quantum theory, both the theories need to be transformed into a

platform where they can be subjected to experimentally testable propositions.
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One such lucid proposition was the formulation of Bell’s Inequality in the

year 1964 by John Bell.

1.3.1 Bell’s Inequality–Test of Local Realism

In 1964, J S Bell brought out a clear mathematical description of what is known

as local realism and put forth a test to check whether quantum theory adheres

to it. The basis behind such a rigmarole was the inkling that the quantum

mechanical state or wave function was just an object used to acquire knowl-

edge about the physical world than be a real entity. What Bell considered, as

EPR wanted to, was an ontological framework for explaining the predictions

of quantum theory. By an ontological framework, they meant the existence of

“ontic” variables in addition to the parameters already considered such as the

settings of the measurements, preparation procedures etc. These variables are

also termed as “hidden” variables as they are not part of the set of controllable

parameters. Usually the symbol λ is used to denote the “hidden” variables.

The expectation of a hidden variable model for quantum theory is the explana-

tion of the emergence of probabilities of the outcomes of measurements (done

on a quantum system) in terms of a distribution over the “hidden” variables

designated as ρ(λ), i.e,

P (A,B|a, b) =
∫

dλρ(λ)P (A,B|a, b, λ)

where P (A,B|a, b) is the probability for the occurrence of the measurement

outcomes A,B due to the settings a,b respectively. ρ(λ) is the hidden variable

probability distribution. The Hidden variable Probability distribution adheres

to
∫

ρ(λ)dλ = 1 along with ρ(λ) ≥ 0.
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The conception of local realism stands on the framing of two tenets, Local-

ity and Realism as the name itself suggests.

Realism is a conception “according to which external reality is assumed to exist

and have definite properties, whether or not they are observed by someone.”[64]

and

Locality demands that “if two measurements are made at places remote from

one another the (setting of one measurement device) does not influence the re-

sult obtained with the other.”[57]

The joint assumption of Local Realism (LR) or “local causality” is mathe-

matically put in the form

P (A,B|a, b) =
∫

dλρ(λ)P (A|a, λ)P (B|b, λ) (1.28)

Let us now consider a concrete example and see how the conditions of locality

and realism when manifested mathematically lead us to correlation inequalities

which can be tested experimentally. To this end, in full glory, quantum me-

chanics violates the inequalities and is found to be not adhering to local realism.

Let us consider observables denoted as A(a, λ) and B(b, λ) which take values

±1 respectively. The locality constraint is expressed as

P (A|a,b, λ) = P (A|a, λ) (1.29)

and realism as the existence of definite values for A(a, λ) and B(b, λ) which

is ±1. Here a and b are unit vectors in the three dimensional space. The

correlation observables are denoted as C(a,b) which is defined by

C(a,b) =

∫

dλρ(λ)A(a, λ)B(b, λ) (1.30)
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The correlation amongst the values of the observables A(a, λ) and B(b, λ) is

assumed to stem from the form of the probability distribution given by (1.28).

Consider four directions a, a′, b, b′ to obtain the two inequalities

|C(a,b)− C(a,b′)| = |
∫

dλρ(λ)A(a, λ)(B(b, λ)− B(b′, λ))|

≤
∫

dλρ(λ)|B(b, λ)− B(b′, λ)|;

|C(a′,b) + C(a′,b′)| = |
∫

dλρ(λ)A(a′, λ)(B(b, λ) +B(b′, λ))|

≤
∫

dλρ(λ)|B(b, λ) +B(b′, λ)|. (1.31)

adding which we get the famous BELL INEQUALITY:

Elhv = |C(a,b)− C(a,b′)|+ |C(a′,b) + C(a′,b′)|

≤
∫

dλρ(λ)× (|B(b, λ)− B(b′, λ)|+ |B(b, λ) +B(b′, λ)|) = 2. (1.32)

Thus, local realism, manifested mathematically leads to the condition:

Elhv = |C(a,b)− C(a,b′)|+ |C(a′,b) + C(a′,b′)| ≤ 2 (1.33)

This form of Bell’s Inequality is known as the Closer-Horne-Shimony-Holt (CHSH)

inequality [65]. Notice that both the presumptions of local realism leads to the

constraint on the correlations as given above. In order to test whether quantum

mechanics is consistent with the inequality, we need to calculate the correlations

amongst the results of measurements of observables done on spatially separated

quantum systems.

As an example, consider the spin singlet state, which is an entangled state
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Figure 1.3: John Stewart
Bell. Pic credit: Learn-
math.info

given by

|ΨAB〉 =
|0A〉 |1B〉 − |1A〉 |0B〉√

2

The finding of the quantum correlation entails the calculation of the expectation

value of the quantum observables σA · a and σ
B · b on the singlet state. That

is, 〈ΨAB|σA · a⊗σ
B · b |ΨAB〉. To this end, the calculation of this expectation

value yields the result

〈ΨAB|σA · a⊗ σ
B · b |ΨAB〉 = − cos(θab) (1.34)

where θab is the angle between directions a and b. Choosing the four direc-

tions a, a′, b, b′ to be co-planar with relative directions ab = π/4; a′b = π/4;

b′a′ = π/4, the left hand side of the inequality (1.33) leads us to EQM = 2
√
2

which is in violation of the CHSH(Bell) inequality. Thus, quantum mechanics

violates the presumptions of local realism.

The genius of John Bell was that he was able to frame an experimental

proposition to test the idea about the existence of an underlying theory (Hid-

den Variable Theory) explaining the emergence of statistical distributions of
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quantum mechanics, akin to the explanation of the theory of Thermodynam-

ics from the postulates of Equilibrium Statistical Mechanics. Thus the answer

to the question “Can the Spooky, Action-at-a-distance Predictions (Entangle-

ment) of Quantum Mechanics be Replaced by Some Sort of Local, Statistical,

Classical (Hidden Variable) Theory?” was given by Bell in the following way

that “The physical predictions of quantum theory disagree with those of any

local (classical) hidden-variable theory!” Several experiments, with increasing

robustness and precision have been performed over the years to check whether

quantum theory adheres to local realism. These have led to the conclusion that

quantum theory departs from the lines of thought characteristic to the intuition

behind classical mechanics and that in general, nature does not respect lo-

cal realism . The first experiments were done by Freedman and Clauser in

1972 [66] and more comprehensive experiments were later carried out by Alain

Aspect et. al, [67, 68, 69]. Other and recent experiments include (but not

limited to) [70, 71, 72]. Thus, violation of Bell inequalities implies that both

locality as well as realism is untenable in the quantum domain [73, 74]. Also,

see [75] for a review on the historical introduction to the hidden variable theory

and the experimental progress towards the elucidation of conclusive Bell tests

(experiments).

The outcome of all these experiments was a reinforcement of the worldview that

Quantum Theory is a non-local theory and that Entanglement is a correlation

which is remarkably different in nature to that of it’s classical counterpart. This

identification has helped us in using entanglement as a unique resource for se-

cure communication protocols [quantum cryptography] and other information

theory purposes.
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1.3.2 Leggett-Garg Inequality–Test of macrorealism

The construction of Bell’s inequality and the proposition and verification of

experiments pertaining to the validation of quantum theory being non-local in

nature has all the more certified that non-classicality is a feature of the micro-

scopic (quantum) world. Till now, we have focused on the problem of EPR,

and the emergence of the non-classical correlation named entanglement in com-

posite quantum systems. However, an interesting question would be to seek the

characterization of the non-classicality of single quantum systems themselves.

To this end, it becomes even more interesting if this is posed in the macroscopic

regime where one mostly observes classical behavior. This is interesting in the

sense of identifying the boundary between the microscopic and the macroscopic,

if any. Furthermore, one may seek to know about the persistence of quantum

features like superposition in the macroscopic regime. Quantum mechanics an-

swers in the affirmative to this question if one manages to defy decoherence

[76]. In other words, we ask: When and how do physical systems stop behaving

quantum mechanically and begin to behave classically?

All these questions get addressed in the worldview known as macrorealism due

to Leggett and Garg [4].

The notion of macrorealism rests on the classical world view that

(i) macrorealism per se: Physical properties of a macroscopic object exist

independent of the act of observation and

(ii) Non-Invasive Measurability (NIM): The measurements are non-invasive

i.e., the measurement of an observable at any instant of time does not

influence its subsequent evolution.
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Quantum predictions differ at a foundational level from these two contentions.

In 1985, Leggett and Garg (LG) [4] designed an inequality (which places bounds

on certain linear combinations of temporal correlations of a dynamical observ-

able) to test whether a single macroscopic object exhibits macrorealism or not.

The Leggett-Garg correlation inequality is satisfied by all macro realistic theo-

ries and is violated if quantum law governs. Debates on the emergence of macro-

scopic classical realm from the corresponding quantum domain continue and it

is a topic of current experimental and theoretical research [77, 78, 79, 80, 81].

Derivation of the Leggett-Garg Inequality (LGI)

Consider a single system S and a macroscopic observable Q measured at differ-

ent instants of time t. Let the macroscopic observable Q take values ±1 at any

instant of time it is measured.

The joint assumption of macrorealism is mathematically put in the form

P (mi,mj|ti, tj) =
∑

λ

ρ(λ)P (mi|ti, λ)P (mj|tj, λ) (1.35)

where mi, mj are the values of the measurements made at time instants ti and

tj respectively.

The conditions of macrorealism per se and NIM manifested mathematically

provides us the correlation inequality which can be tested experimentally. How-

ever, in full glory, quantum mechanics violates the inequality and is found to

be not adhering to the tenets of macrorealism.

Let us consider a dichotomic observable Q(ti) = Qi which take values ±1 at

any instant of time ti. For any set of experimental measurements on given ini-

tial state, the NIM constraint is prescribed as the equality of the value of the
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observable Qi irrespective of the combination QiQj along which it occurs. The

tenet macrorealism per se is expressed as the existence of definite values for

Qiwhich is ±1.

The correlation observables are denoted as Ctitj which is defined by

Ctitj ≡ 〈QiQj〉 (1.36)

The correlation amongst the values of the observables Qi and Qj is assumed to

stem from the form of the probability distribution given by (1.35).

The derivation of the LGI follows on the footsteps laid out in deriving the Bell’s

inequality in that the instants denoted as “ti” plays the role of the measurement

settings a and b in the spatial case. Following the procedure, we arrive at the

celebrated Leggett Garg Inequality for the case of four measurements done

sequentially:

K4 = Ct1t2 + Ct2t3 + Ct3t4 − Ct1t4

= 〈Q1Q2〉+ 〈Q2Q3〉+ 〈Q3Q4〉 − 〈Q1Q4〉 ≤ 2 (1.37)

The above inequality is known as a LG string with 4 measurements. On the

other hand, LG string with 3 measurements is given by

K3 = Ct1t2 + Ct2t3 − Ct1t3

= 〈Q1Q2〉+ 〈Q2Q3〉 − 〈Q1Q3〉 ≤ 1 (1.38)

Note that the lower bound and the upper bound of LG string with 3 measure-

ments are -3 and 1 respectively,i.e, −3 ≤ K3 ≤ 1 whereas for the 4 measure-

ments it is −2 ≤ K4 ≤ 2.

As an example, let us consider a spin-1/2 particle (of course! it’s not a macro-

scopic system which the framework of macrorealism wants to address but this
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simple system suffices for our illustrative purpose) precessing about z-axis –

characterized by the Hamiltonian H = ~ω
2 σz. Choosing initial state to be

ρ(0) = 1
2 [I + σx] and the dichotomic observables

Qi ≡ σx((i− 1)∆ t) = eiH (i−1)∆ t/~
σx e

−iH (i−1)∆ t/~

= σx cos{(i− 1)ω∆ t} − σy sin{(i− 1)ω∆ t} (1.39)

(these observables are dichotomic as their eigenvalues are ±1). We obtain,

〈Q1Q2〉 = 〈Q2Q3〉 = cos(ω∆ t) and 〈Q1Q3〉 = cos(2ω∆ t). Thus,

K3 = 2 cos(ω∆ t)− cos(2ω∆ t). (1.40)

Maximum value of K3 with this choice is 1.5, which violates the LGI. Fig 1.4

shows the violation of LG K3 string.
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Figure 1.4: The left figure shows the theoretical result, i.e, Quantum violation of LG K3 string.
The right figure shows the experimental violation of the LG K3 string. For more details on the
experimental aspects see [82]

Off late, experimentalists have been giving increasing attention towards per-
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forming tests checking the validation of quantum systems adhering to the tenets

of macrorealism. These experiments, however have concentrated at length

scales which are characteristic of what is called as the microscopic regime

[83, 84, 85, 82, 86] (also, see [87] for a more recent review concerning Leggett-

Garg inequalities). It is the author’s view that experimental propositions ver-

ifying the validity of macrorealism need to be performed at the length scale

which is grey enough to be called neither micro nor the macro regime. This

helps mainly in the better characterization of the transition from micro to the

macro or vice versa. To this end, the content of Chapter 3 proposes a different

yet stringent theoretical scheme to witness such a transition, the experimental

realization of which could be performed at the mentioned length scale.

The last non-classical feature which we are going to introduce is the concept

of steering or non-local steering. Recently, there have been a surge of research

activity wherein the concept of non-local steering has been shown to be in-

terlinked with that of the notion of Joint Measurability. A small digression

regarding these developments is given here in brief.

1.3.3 Quantum Steering and Joint Measurability

Quantum Steering

The paradox of the EPR paper brought in the attention of Erwin Schrödinger.

In fact, it was he who called it as a “paradox” as he was neither able to find a flaw

in the EPR argument nor was he accepting quantum theory to be an incomplete

description of nature. Furthermore, it was he who coined the word “Entangle-

ment” for the non-factorizability or non-separability of composite pure states.
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Figure 1.5: Erwin Schrödinger Pic
credit: Timeline of the atom

Thus he remarked,

“Quantum entanglement is the characteristic trait of quantum me-

chanics, the one that enforces its entire departure from classical lines

of thought.”

Moreover, he understood that this entanglement is broken (disentanglement)

when a measurement of an observable is made on either of the parties sharing

the composite state. As such, he puts the argument of EPR in the way that

[88, 23]

“Attention has recently [EPR] been called to the obvious but very

disconcerting fact that even though we restrict the disentangling

measurements to one system, the representative obtained for the

other system is by no means independent of the particular choice

of observations which we select for that purpose and which by the

way are entirely arbitrary.”

Consider non-separable pure states of a bi-partite system. Let the composite
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state be shared by the archetypal pair of Alice and Bob.

|Ψ〉 =
∑

n

cn |ψn〉 |un〉 =
∑

n

dn |φn〉 |vn〉

When Bob makes measurements at his end, he can steer Alice’s state into either

|ψn〉’s or |φn〉’s depending upon his choice of measurement which is random. As

such, Schrödinger introduced the term “steering” when he discerned that,

“It is rather discomforting that the theory should allow a system to

be steered ...... into one or the other type of state at the experimenters

mercy in spite of having no access to it.”

Thus, it is found that steering is yet another facet of the mystical world of

Quantum Mechanics.

A formal modern approach to steering was initiated by M. D. Reid [89], who

proposed the first experimentally testable criteria of nonlocal steering. Reid’s

criteria brought out that steering and the Einstein-Podolsky-Rosen paradox are

equivalent notions of nonlocality. Further, H. M. Wiseman et al. [90] showed

that steering constitutes a different class of nonlocality, which lies between

entanglement and Bell nonlocality. Manifestation of steering in the form of dif-

ferent types of steering inequalities is presented by E. G. Cavalcanti et al. [88].

Joint Measurability

Bell and Leggett-Garg inequalities involve statistical outcomes of spatial and

temporal correlations, the violation of which implies neither Local Realism nor

macrorealism. Mainly, the violation of these inequalities points towards the

non-existence of a grand joint probability distribution for the results of mea-

surement made on quantum systems. [73, 91]. The characterization of this

non-existence of a grander joint probability distribution forms the content of
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Chapters 4 and 5.

Commutativity of projective measurements, representing two or more Hermi-

tian observables, imply that they are jointly measurable (compatible) and via

this way the existence of a grand joint probability distribution of measurement

outcomes is ensured. However, compatibility of measurements with commuta-

tivity turns out to be limited in an extended framework where Positive Operator

Valued Measures (POVM) have been analyzed to generalize the aspect of com-

patibility through the notion of Joint Measurability.

A joint measurement of commuting observables imply that by performing one

measurement, we can produce the results for each of the two observables. But

quantum mechanics places restrictions on how sharply two non-commuting ob-

servables can be measured jointly. Naturally one is lead to ask, “Are joint

un-sharp measurements possible?” The orthodox notion of sharp projective

valued (PV) measurements of hermitian observables gets broadened to include

unsharp measurements of POV observables (observables “corresponding” to

POVMs). This allows us to seek whether classical features emerge when one

merely confines to measurements of compatible unsharp observables. Also, is it

possible to classify physical theories based on the fuzziness required for joint

measurability? The answers to some of these questions are provided in the

Chapter 7.

Joint Measurability of POVMs

Mathematically, POVM is a set E = {E(x)} comprising of positive self-adjoint

operators 0 ≤ E(x) ≤ 1, called effects, satisfying
∑

xE(x) = I; x denotes the

outcomes of measurement and I is the identity operator. The notion of a POVM
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E to be a generalized observable provides a physical representation for any pos-

sible events (effects E(x)) to occur as outcomes x in a measurement process.

When a quantum system is prepared in the state ρ, measurement of the observ-

able E gives rise to generalized Lüder’s transformation of the state i.e.,

ρ 7−→
∑

x

√

E(x) ρ
√

E(x) (1.41)

and an outcome x occurs with probability p(x) = Tr[ρE(x)]. The expectation

value of the observable is given by

〈E〉 =
∑

x

xTr[ρE(x)] =
∑

x

x p(x). (1.42)

The usual scenario of PV measurements is recovered as a special case, when

{E(x)} forms a set of complete, orthogonal projectors.

A finite collection of POVMs E1,E2, . . . ,En is said to be jointly measurable

(or compatible), if there exists a grand POVM G = {G(λ); 0 ≤ G(λ) ≤
I,
∑

λ G(λ) = I} from which the observables Ei can be obtained by post-

processing as follows. Suppose a measurement of the global POVM G is carried

out in a state ρ and the probability of obtaining the outcome λ is denoted by

p(λ) = Tr[ρG(λ)]. If the effects Ei(xi) constituting the POVM Ei can be ob-

tained as marginals of the grand POVM G = {G(λ), λ ≡ {x1, x2, . . .}, (where λ
corresponds to a collective index {x1, x2, . . .}) i.e., if there exists a grand POVM

G such that [12]

E1(x1) =
∑

x2,x3,...

G(x1, x2, . . . , xn)

E2(x2) =
∑

x1,x3,...

G(x1, x2, . . . , xn)
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...

En(xn) =
∑

x1,x3,...

G(x1, x2, . . . , xn), (1.43)

the POVMs E1,E2, . . . ,En are said to be jointly measurable. Thus, a collection

of compatible POVMs E1,E2, . . . ,En is obtained from a global POVM G via

post processing of the form (1.43). We emphasize once again that compatibility

of POVMs does not require their commutativity, but it demands the existence

of a global POVM.

As an example, consider Pauli spin observables σx, σz of a qubit. Sharp

measurements of the observables σx =
∑

x=±1

xΠσx
(x) and σz =

∑

z=±1

zΠσz
(z)

is performed using the two outcome projection operators

Πσx
(x) =

1

2
(I+ xσx) ,

Πσz
(z) =

1

2
(I+ z σz) . (1.44)

The observables σx and σz are non-commuting and hence can not be measured

jointly using PV measurements. However, it is possible to consider joint fuzzy

measurements of σx, σz in terms of their POVM counterparts, which are con-

structed by adding uniform white noise to the PV operators of (1.44). One then

obtains binary POVMs Eσx
= {Eσx

(x); x = ±1}, Eσz
= {Eσz

(z); z = ±1},
where

Eσx
(x) = η Πσx

(x) + (1− η)
I

2

=
1

2
(I+ η xσx)

Eσz
(z) = η Πσz

(z) + (1− η)
I

2

=
1

2
(I+ η z σz) (1.45)
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where 0 ≤ η ≤ 1 denotes the unsharpness parameter. It may be noted that

when η = 1, the fuzzy POVMs Eσx
= {Eσx

(x)},Eσz
= {Eσz

(z)} reduce to their

corresponding sharp PV versions {Πσx
(x)}, {Πσz

(z)}.
The binary POVMs Eσx

, Eσz
are compatible if there exists a four element

grand POVM G = {G(x, z); x, z = ±1} satisfying

∑

z=±1

G(x, z) = G(x, 1) +G(x,−1) = Eσx
(x)

∑

x=±1

G(x, z) = G(1, z) +G(−1, z) = Eσz
(z)

∑

x,z=±1

G(x, z) = I, G(x, z) ≥ 0. (1.46)

It has been shown [8, 12] that the POVMs Eσx
, Eσz

are compatible in the range

0 ≤ η ≤ 1/
√
2 of the unsharpness parameter (see Appendix B), as it is possible

to construct a global POVM G comprising of the effects

G(x, z) =
1

4
(I+ η xσx + η z σz) , 0 ≤ η ≤ 1/

√
2 (1.47)

satisfying the required conditions (1.46).

Measurement of a single generalized observable (POVM) G enables one to

produce the results of measurement of both the POVMs Eσx
and Eσz

, when

they are compatible. And, as a consequence, joint measurability of POVMs

Eσx
, Eσy

ensures the existence of a joint probability distribution p(x, z) =

Tr[ρG(x, z)] obeying p(x) =
∑

z

p(x, z) = Tr[ρ
∑

z

G(x, z)] = Tr[ρEσx
(x)],

p(z) =
∑

x

p(x, z) = Tr[ρ
∑

x

G(x, z)] = Tr[ρEσz
(z)], over the measurement

outcomes x, z of the unsharp POVMs Eσx
, Eσz

in any arbitrary quantum state

ρ.
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Triple-wise joint measurements of all the three Pauli observables σx, σy and

σz can be envisaged by considering the fuzzy binary outcome POVMs Eσx
=

{

Eσx
(x) = 1

2 (I+ η xσx) ; x = ±1
}

, Eσy
=
{

Eσy
(y) = 1

2 (I+ η yσy) ; y = ±1
}

,

Eσz
=
{

Eσz
(z) = 1

2 (I+ η z σz) ; z = ±1
}

in the range 0 ≤ η ≤ 1/
√
3 of the

unsharpness parameter [12, 17]. Further, it has also been shown [17] that the

noisy versions E~σ·n̂k =
{

E~σ·n̂k(xk = ±1) = 1
2 (I+ η xk ~σ · n̂k)

}

of the qubit spin,

oriented along the unit vectors n̂k, k = 1, 2, 3, which are equally separated in

a plane (i.e., separated by an angle 120◦), are pairwise jointly measurable if

the unsharpness parameter, η ≤
√
3− 1, but are triple-wise jointly measurable

when η ≤ 2/3 (see Appendix B).

The interconnection between the concepts of non-local steering, joint measura-

bility and entropic uncertainty forms the content of Chapter 7.
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Chapter 2

The uncertainty product of position

and momentum in classical dynamics

It is generally believed that the classical regime emerges as a limiting case of quantum

theory. Exploring such quantum-classical correspondences provides a deeper understand-

ing of foundational aspects and has attracted a great deal of attention since the early days

of quantum theory. It has been proposed that since a quantum mechanical wave function

describes an intrinsic statistical behavior, its classical limit must correspond to a classical

ensemble—not to an individual particle. This idea leads us to ask how the uncertainty

product of canonical observables in the quantum realm compares with the corresponding

dispersions in the classical realm. In this Chapter, we explore parallels between the un-

certainty product of position and momentum in stationary states of quantum systems and

the corresponding fluctuations of these observables in the associated classical ensemble.

We confine ourselves to one-dimensional conservative systems and show, with the help of

suitably defined dimensionless physical quantities, that first and second moments of the

canonical observables match with each other in the classical and quantum descriptions—

resulting in identical structures for the uncertainty relations in both realms.

2.1 Introduction

It is imperative to retrieve classical dynamics as a limiting case—in its domain of

validity—from quantum theory. The generally prevailing notion is that classical
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mechanics emerges in the limit ~ → 0. The applicability of this limit is reviewed

critically in Refs. [34] and [92].

Another quantum-classical correspondence discussed widely is through the

Ehrenfest’s theorem [93]. This states that the equations of motion for the ex-

pectation values of the position and momentum are the same as those obeyed by

a classical particle under certain conditions. More specifically, for a system with

Hamiltonian H = p2/2m + V (x), the equations of motion for the expectation

values of the position and momentum operators are

d〈x〉
dt

=
〈p〉
m
, (2.1)

d〈p〉
dt

= −
〈

dV (x)

dx

〉

= 〈F(x)〉, (2.2)

where F(x) = −dV (x)/dx is the force operator. Under the approximation

〈F(x)〉 ≈ F(〈x〉) (which is exact for linear and quadratic potentials), the equa-

tion of motion for 〈p〉 reduces to

d〈p〉
dt

= F(〈x〉). (2.3)

In other words, the quantum averages 〈x〉 and 〈p〉 satisfy the classical equations

of motion (2.1) and (2.3). However, in order for these equations to lead to

classical trajectories, the quantum wave function must be narrow compared

to the typical length scale over which the force varies. Furthermore, for the

stationary states of a Hamiltonian that is symmetric under x ↔ −x, both 〈x〉
and 〈p〉 are always zero and therefore Ehrenfest’s theorem does not yield any

useful information.

The discussions in many textbooks on quantum mechanics are essentially

confined to the limit ~ → 0 and the Ehrenfest theorem in discussing the emer-

gence of the classical regime. While both these quantum-classical correspon-

dences operate in their own domains of applicability, it has been identified that
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they are not universally satisfactory [94, 95, 96, 97, 98, 99, 100]. In the absence

of a commonly accepted notion of the classical limit, it is important to recognize

the quantum features that are expected to leave their imprints in the classical

regime.

It has been pointed out that the classical limit of a quantum state ought to

correspond to an ensemble than a single particle [34, 96, 101]. Hence, it would

be interesting to compute the averages, variances, and the higher-order moments

of the quantum and classical probability distributions in the limiting case. In-

terestingly, considerable attention has been evinced recently in exploring the

borderline between classical and quantum worlds via the uncertainty principle

[1]. Conceptual advances in symplectic geometry and topology—followed by

Gromov’s discovery of symplectic non-squeezing phenomena [3]—shed light on

the fact that there is an underlying uncertainty principle governing the classical

Hamiltonian phase flows too [2].

In order to compare the statistical form of classical dynamics with the corre-

sponding one in quantum dynamics, the phase space probability distribution of

the classical ensemble (a counterpart of the corresponding quantum state) needs

to be identified. The classical phase space probability distribution satisfies the

Liouville equation and the phase space averages of the classical observables are

shown to exhibit dynamical behaviour analogous to that of the correspond-

ing quantum case—even when Ehrenfest’s theorem breaks down [96]. More

recently [102], it has been shown that starting from the Ehrenfest theorem,

either the Liouville equation (if the momentum and coordinate commute), or

the Schrödinger equation (if the momentum and coordinate obey the canonical

commutation relation) would ensue.

It is pertinent to mention here another approach towards the classical limit,

where one considers only stationary state solutions of the quantum Hamiltonian

and graphically compare the probability density function P
(n)
QM(x) = |ψn(x)|2
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with the corresponding classical probability distribution PCL(x) of an ensem-

ble; it is then recognized that the envelope of the quantum probability density

approaches the classical one in the large-n limit [103].

In this Chapter, we show that the first and second moments of suitably

defined dimensionless canonical variables evaluated for the stationary states

of one-dimensional conservative quantum systems match with those associated

with the corresponding classical ensemble. This, in turn, leads to identical

structure for uncertainty relations of the dimensionless position and momen-

tum variables in both classical and quantum domains—bringing out the under-

lying unity of the two formalisms—irrespective of their structurally different

mathematical and conceptual nature.

2.2 Classical probability distributions corresponding to

quantum mechanical stationary states

We begin by reviewing the classical probability distributions [103] for an en-

semble of particles bound in a one-dimensional potential V (x). The probability

density function for the position x of a single particle, whose initial position

and velocity are specified, is given by

P single
CL (x, t) = δ[x− x(t)], (2.4)

where x(t) denotes the deterministic trajectory of the particle at any instant

of time t. However, the quantum mechanical probability density P
(n)
QM(x) =

|ψn(x)|2 associated with the stationary-state solution ψn(x) is not expected

to approach—in the classical limit— the single-particle probability density of

Eq. (2.4). Rather, the locally averaged quantum probability density does ap-

proximate a probability distribution PCL(x) of a classical ensemble of particles

(of fixed energy E) in the large n limit [103].

Classical particles of fixed energy E in a statistical ensemble (microcanonical
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ensemble) are confined to move on a surface of constant energy E in the phase

space and the associated phase space probability distribution PCL(x, p) obeys

the stationary state Liouville equation

dPCL(x, p)

dt
= {PCL(x, p), H} = 0, (2.5)

where {PCL(x, p), H} is the Poisson bracket of PCL(x, p) with the Hamiltonian

H = (p2/2m)+V (x). In other words, the phase space distribution PCL(x, p) is a

function of the Hamiltonian H itself. The principle of equal a priori probability

then corresponds to

PCL(x, p) ∝ δ

[

p2

2m
+ V (x)− E

]

. (2.6)

The position probability function is then obtained by integrating over the mo-

mentum variable p:

PCL(x) =

∫

dpPCL(x, p)

= Constant ·
∫

dp δ

[

p2

2m
+ V (x)− E

]

. (2.7)

Using the properties δ(ax) = δ(x)/|a| and δ(x2−a2) = [δ(x+ a) + δ(x− a)] /2|a|
of the Dirac delta function, the classical probability distribution reduces to

PCL(x) = Constant ·
∫

dp 2mδ
(

p2 + 2m[V (x)− E]
)

= Constant ·
√

2m

[E − V (x)]

∫

dp
[

δ
(

p+
√

2m[E − V (x)]
)

+δ
(

p−
√

2m[E − V (x)]
)]

=
N

√

E − V (x)
, (2.8)
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where N denotes the normalization factor, such that
∫ x2
x1
dxPCL(x) = 1 (the in-

tegration is taken between the classical turning points (x1, x2) as the probability

distribution PCL(x) vanishes outside the domain x1 ≤ x ≤ x2).

It may be readily seen that, by substituting E = mω2A2/2 and V (x) =

mω2 x2/2 in the familiar example of the harmonic oscillator, the classical posi-

tion probability distribution (2.8) reduces to the well-known expression PCL(x) =

1/π
√
A2 − x2.

The phase space averages of any arbitrary function F (x, p) of position and

momentum variables get reduced to those evaluated with the position proba-

bility distribution function PCL(x) as follows:

〈F (x, p)〉CL =

∫

dx

∫

dpPCL(x, p)F (x, p)

= Constant ·
∫

dx

∫

dp δ

(

p2

2m
+ V (x)− E

)

F (x, p)

= Constant ·
∫

dx

√

2m

E − V (x)

∫

dp
[

δ
(

p+
√

2m[E − V (x)]
)

+δ
(

p−
√

2m[E − V (x)]
)]

F (x, p)

= Constant ·
∫

dx

√

2m

E − V (x)

[

F (x,−
√

2m[E − V (x)])

+F (x,
√

2m[E − V (x)])
]

=
1

2

∫

dxPCL(x)
[

F
(

x,−
√

2m[E − V (x)]
)

+ F
(

x,
√

2m[E − V (x)]
)]

.

(2.9)

We define dimensionless (scaled) position and momentum variables,

X =
x

A
, P =

p√
2mE

, (2.10)

such that |X|, |P | ≤ 1 in a bounded system.
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In the next section, we compute the first and second moments 〈X〉CL, 〈X2〉CL,
〈P 〉CL, and 〈P 2〉CL of the classical probability distribution in three specific ex-

amples of one-dimensional bound systems. We then compare these classical

averages with the quantum expectation values 〈X〉QM, 〈X2〉QM, 〈P〉QM, and

〈P2〉QM, evaluated for the stationary states ψn(x), and show that they agree

remarkably with each other in the classical limit.

2.3 Comparison of first and second moments of the clas-

sical distribution with the stationary state quantum

moments

We focus now on three specific examples of one-dimensional bound systems: the

harmonic oscillator, the infinite well, and the bouncing ball. We evaluate the

first and second moments of the dimensionless position and momentum variables

(Eq. (2.10)) and show that the quantum moments—evaluated for stationary

eigenstates of the Hamiltonian—match their classical counterparts.

2.3.1 One-dimensional harmonic oscillator

As shown in the previous section, the classical probability density for finding

a system of harmonic oscillators—all with the same amplitude A—between

position x and x+ dx is given by

PCL(x) =







1

π

1√
A2 − x2

for |x| ≤ A,

0 for |x| > A.
(2.11)

We use scaled canonical variables X = x/A and P = p/
√
2mE = p/(mωA),

and evaluate the averages of X, X2, P , and P 2, making use of Eqs. (2.9)
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and (2.11):

〈X〉CL =
1

A

∫

dxPCL(x) x =
1

Aπ

∫ A

−A
dx

x√
A2 − x2

= 0; (2.12)

〈X2〉CL =
1

A2

∫

dxPCL(x) x
2 =

1

A2π

∫ A

−A
dx

x2√
A2 − x2

=
1

2
; (2.13)

〈P 〉CL =
1

2mωA

∫ A

−A
dxPCL(x)

(

−
√

2m [E − 1
2mω

2 x2 ] +
√

2m [E − 1
2mω

2 x2 ]
)

= 0;

(2.14)

〈P 2〉CL =
1

m2ω2A2

∫ A

−A
dxPCL(x) 2m [E − 1

2mω
2x2 ]

=
1

A2π

∫ A

−A
dx
√

A2 − x2 =
1

2
. (2.15)

The variances of X and P are given by

(∆X)2CL = 〈X2〉CL − 〈X〉2CL =
1

2
,

(∆P )2CL = 〈P 2〉CL − 〈P 〉2CL =
1

2
, (2.16)

and hence the product of variances is

(∆X)2CL (∆P )
2
CL ≡ 1

4
(2.17)

in a classical ensemble (characterized by the probability distribution (2.11)) of

harmonic oscillators.

The stationary-state solutions of the quantum Hamiltonian H = [p2 +

m2 ω2 x2]/2m are given by

ψn(x) =

(

√

mω/π~

2n n!

)1/2

Hn(
√

mω/~ x) e−mωx
2/~, (2.18)

where Hn are the Hermite polynomials of degree n. These states correspond

62



The uncertainty product of position and momentum in classical dynamics

to the energy eigenvalues En = (n+ 1/2) ~ω. The classical turning points

associated with energy En are readily identified to be An =
√

2En/mω2 =
√

(2n+ 1) ~/mω.

We use scaled position and momentum operators,X = x/An = x
√

mω/(2n+ 1) ~,

P = p/
√
2mEn = p/

√

(2n+ 1) ~mω (corresponding to their classical coun-

terparts above), and evaluate the expectation values of X, X2, P, and P2 for

the stationary states ψn(x):

〈X〉QM =

√

mω

(2n+ 1)~

∫ ∞

−∞
dx |ψn(x)|2 x = 0; (2.19)

〈X2〉QM =
mω

(2n+ 1)~

∫ ∞

−∞
dx |ψn(x)|2 x2 =

1

2
; (2.20)

〈P〉QM = −i
√

~

(2n+ 1)mω

∫ ∞

−∞
dxψ∗

n(x)
dψn(x)

dx
= 0; (2.21)

〈P2〉QM =
−~

(2n+ 1)mω

∫ ∞

−∞
dxψ∗

n(x)
d2ψn(x)

dx2
=

1

2
. (2.22)

Clearly, these quantum expectation values match the classical ones given in Eqs.

(2.12) through (2.15) and we obtain the uncertainty product, for all stationary-

state solutions of the quantum oscillator,

(∆X)2QM (∆P)2QM ≡ 1

4
. (2.23)

It is pertinent to point out here that the commutation relation

[X,P] =

[

√

mω

(2n+ 1)~
x,

p
√

~mω(2n+ 1)

]

=
1

(2n+ 1)~
[x,p] =

i

2n+ 1
(2.24)
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leads to the uncertainty relation

(∆X)2QM (∆P)2QM ≥ 1

4(2n+ 1)2
. (2.25)

In the large-n limit the right-hand side goes to zero, which would be expected

in the classical regime. However Eq. (2.23) for the uncertainty product holds

for all the stationary-state solutions; and strikingly, this result matches that of

a classical ensemble of oscillators with fixed energy E (see Eq. (2.17)).

2.3.2 One dimensional infinite potential box

We consider a symmetric infinite potential well defined by

V (x) =

{

0 for − L/2 ≤ x ≤ L/2;

∞ for |x| > L/2.
(2.26)

The particles move with a constant velocity within the box and get reflected

back and forth. The position probability distribution for an ensemble of classical

particles confined to move within the box is a constant (as can be readily seen

by substituting Eq. (2.26) in Eq. (2.8)) and is given by [103]

PCL(x) =

{

1/L for |x| ≤ L/2;

0 for |x| > L/2.
(2.27)

This distribution obeys
∫ L/2

−L/2 PCL(x) dx = 1.

In this example, the dimensionless position and momentum variables are

X =
x

L/2
, P =

p√
2mE

=
p

|p| , (2.28)

and the classical averages 〈X〉CL, 〈X2〉CL, 〈P 〉CL, and 〈P 2〉CL are readily evalu-
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ated using the probability distribution (2.27):

〈X〉CL =

∫

dxPCL(x)
x

L/2
=

2

L2

∫ L/2

−L/2
x dx = 0; (2.29)

〈X2〉CL =

∫

dxPCL(x)
x2

L2/4
=

4

L3

∫ L/2

−L/2
dx x2 =

1

3
; (2.30)

〈P 〉CL = 0; (2.31)

〈P 2〉CL = 1. (2.32)

So, the variances of X and P are (∆X)2CL = 1/3 and (∆P )2CL = 1 for the

classical ensemble of particles of fixed energy E, confined within the infinite

well. The product of the variances is

(∆X)2CL (∆P )
2
CL ≡ 1

3
. (2.33)

The quantum mechanical stationary-state solutions (even and odd parity)

for a particle confined in the one-dimensional infinite potential well are

ψ(+)
n (x) =

√

2

L
cos(nπx/L), n = 1, 3, 5, . . . ,

ψ(−)
n (x) =

√

2

L
sin(nπx/L), n = 2, 4, 6, . . . , (2.34)

and the corresponding energy eigenvalues are

En =
n2π2~2

2mL2
. (2.35)

The scaled dimensionless position and momentum operators are

X =
x

L/2
, P =

p√
2mEn

=
p

nπ~/L
. (2.36)

The expectation values of X, X2,P, and P2 are evaluated in the stationary
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states (both even and odd) to obtain

〈X〉QM =
1

L/2

∫ L/2

−L/2
dx |ψ(+/−)

n (x)|2 x = 0; (2.37)

〈X2〉QM =
1

L2/4

∫ L/2

−L/2
dx |ψ(+/−)

n (x)|2 x2 = 1

3
− 2

n2π2
; (2.38)

〈P〉QM = −i L
nπ

∫ L/2

−L/2
dxψ(+/−)

n (x)
dψ

(+/−)
n (x)

dx
= 0; (2.39)

〈P2〉QM = − L2

n2π2

∫ L/2

−L/2
dxψ(+/−)

n (x)
d2ψ

(+/−)
n (x)

dx2
= 1. (2.40)

It may be seen that 〈X2〉QM approaches the classical result, 〈X2〉CL = 1/3,

in the large-n limit. In this limit the uncertainty product becomes

lim
n→∞

(∆X)QM (∆P)QM =
1

3
. (2.41)

Meanwhile, from the commutator relation,

[X,P] =

[

2

L
x,

L

nπ~
p

]

=
2 i

nπ
, (2.42)

it is clear that the uncertainty product obeys

(∆X)2QM (∆P)2QM ≥ 1

n2π2
, (2.43)

and in the large-n limit one recovers the expected result (∆X)2QM (∆P)2QM ≥ 0.

However, the stationary-state uncertainty product, Eq. (2.41), does not vanish

in the limit n→ ∞. Instead it approaches the value 1/3, which coincides exactly

with that associated with the classical ensemble (see Eq. (2.33)).
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2.3.3 Bouncing ball

We now consider the example of a particle bouncing vertically up and down in

a uniform gravitational field, which is described by the confining potential

V (z) =

{

∞ for z < 0,

mgz for z ≥ 0.
(2.44)

A classical particle of total energy E, subject to this potential, bounces back

and forth between z = 0 and a maximum height z = A, where A = E/mg.

An ensemble of bouncing balls of energy E is characterized by the classical

position probability distribution [103]

PCL(z) =











1

2A

1
√

1− (z/A)
for 0 ≤ z ≤ A,

0 otherwise.

(2.45)

This expression follows from substituting Eq. (2.44) in Eq. (2.8).

Employing dimensionless position and momentum variables

Z =
z

A
, P =

p√
2mE

=
p

√

2m2gA
(2.46)

(so that 0 ≤ Z ≤ 1 and −1 ≤ P ≤ 1 for the bouncing particles), we obtain the

classical moments:

〈Z〉CL =
1

A

∫

dz PCL(z) z =
1

2A2

∫ A

0

dz
z

√

1− (z/A)
=

2

3
; (2.47)

〈Z2〉CL =
1

A2

∫

dz PCL(z) z
2 =

1

2A3

∫ A

0

dz
z2

√

1− (z/A)
=

8

15
; (2.48)

〈P 〉CL =
1

2
√

2m2gA

∫ A

0

dzPCL(z) (−
√

2m(E −mgz)

+
√

2m(E −mgz) ) = 0; (2.49)
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〈P 2〉CL =
1

2m2gA

∫ A

0

dz PCL(z) 2m(E −mgz)

=
1

2A

∫ A

0

dz
√

1− (z/A) =
1

3
. (2.50)

Thus, the variances of Z and P are (∆Z)2CL = 4/45 and (∆P )2CL = 1/3, leading

to

(∆Z)2CL (∆P )
2
CL ≡ 4/135. (2.51)

Stationary-state solutions of a quantum bouncing particle [104] are obtained

by solving the time-independent Schrödinger equation,

− ~
2

2m

d2ψn(z)

dz2
+mgz ψn(z) = En ψn(z), (2.52)

with the boundary condition

ψn(0) = 0. (2.53)

In terms of the characteristic gravitational length [104]

lg =

(

~
2

2m2g

)1/3

, (2.54)

it is convenient to define dimensionless quantities

E ′
n =

En

mglg
, z′ =

z

lg
− E ′

n, (2.55)

so that the Schrödinger equation (2.52) takes the standard form

d2ψn(z
′)

dz′2
= z′ ψn(z

′), (2.56)

which is the Airy differential equation. The solutions of Eq. (2.56) are two

linearly independent sets of Airy functions, Ai(z′) and Bi(z′). However, the

function Bi(z′) diverges as its argument increases, and so it is not a physically
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admissible solution. The stationary state solutions of a quantum bouncer are

thus given by

ψn(z
′) = NnAi(z

′), z′ ≥ −E ′
n, n = 1, 2, 3, . . . , (2.57)

where Nn is a normalization constant. From the boundary condition (2.53),

one obtains Ai(−E ′
n) = 0, indicating that the (scaled) energy eigenvalue E ′

n is

minus the nth zero of the Airy function. (The zeros of the Airy function are all

negative.) The first few energy eigenvalues E ′
n of the quantum bouncing ball

are given in Table 2.1.

n E ′
n

1 2.3381
2 4.0879
3 5.5205
4 6.7867
5 7.9441

Table 2.1: The first few scaled energy eigenvalues E ′
n of the quantum bouncing ball.

Identifying the classical turning point An associated with the energy eigen-

values En of the quantum bouncer to be

An =
En

mg
= lgE

′
n, (2.58)

we define appropriately scaled position and momentum operators (which are

quantum counterparts of Z and P defined in Eq. (2.46)) as

Z =
z

An
=

z

lgE ′
n

, P =
p√

2mEn

=
lgp

~
√

E ′
n

. (2.59)

Further, substituting Eqs. (2.54) and (2.55) in Eq. (2.59), we may express the
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configuration representation of the operators Z and P in terms of z′ and E ′
n as

Z → 1

E ′
n

(z′ + E ′
n), P → −i

√

E ′
n

d

dz′
. (2.60)

The expectation values 〈Z〉QM , 〈Z2〉QM may be evaluated analytically [105] in

the eigenstates Eq. (2.57) of the quantum bouncing ball:

〈Z〉QM =
1

E ′
n

∫ ∞

−E′

n

dz′ (z′ + E ′
n) |ψn(z′)|2

=
N 2
n

E ′
n

∫ ∞

−E′

n

dz′ (z′ + E ′
n) Ai

2(z′) =
2

3
; (2.61)

〈Z2〉QM =
1

E ′2
n

∫ ∞

−E′

n

dz′ (z′ + E ′
n)

2 |ψn(z′)|2

=
N 2
n

E ′2
n

∫ ∞

−E′

n

dz′ (z′ + E ′
n)

2Ai2(z′) =
8

15
, (2.62)

which agree exactly with the corresponding moments in a classical ensemble of

bouncing balls (see Eq. (2.47) and Eq. (2.48)).

The expectation value 〈P〉QM is given by,

〈P〉QM =
−i
√

E ′
n

∫ ∞

−E′

n

dz′ ψ∗
n(z

′)
dψn(z

′)

dz′

=
−iN 2

n
√

E ′
n

∫ ∞

−E′

n

dz′Ai(z′)
dAi(z′)

dz′
= 0 (2.63)

which can be readily identified with the help of integration by parts.

Further, we evaluate the expectation value 〈P2〉QM as follows:

〈P2〉QM = − 1

E ′
n

∫ ∞

−E′

n

dz′ ψ∗
n(z

′)
d2ψn(z

′)

dz′2

= − 1

E ′
n

∫ ∞

−E′

n

dz′ ψ∗
n(z

′)ψn(z
′)
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= −N
2
n

E ′
n

∫ ∞

−E′

n

dz′ z′Ai2(z′)

= 1− 〈Z〉QM =
1

3
, (2.64)

where we have used Eq. (2.56) in the second line and Eq. (2.61) in the fourth

line of Eq. (2.64).

The expectation values 〈P〉QM , 〈P2〉QM match identically with the corre-

sponding moments Eq. (2.49) and Eq. (2.50) of scaled momentum variables in

an ensemble of classical bouncing balls. This is indeed a novel identification,

bringing forth the deep-rooted unifying features of the classical and quantum

realms.

From Eqs. (2.61) through (2.64), we obtain the variances of Z and P for

the stationary states to be (∆Z)2QM = 4/45 and (∆P)2QM = 1/3. Hence, the

uncertainty product is

(∆Z)2QM (∆P)2QM ≡ 4

135
, (2.65)

which exactly matches that of the classical ensemble of bouncing balls (see

Eq. (2.51)).

It may be noted that the commutation relation

[Z,P] =

[

z

lgE ′
n

,
lg p

~
√

E ′
n

]

=
i

(E ′
n)

3/2
(2.66)

would lead to the uncertainty relation (∆Z)2QM (∆P)2QM ≥ 1/4(E ′
n)

3. In the

large-n limit 1/E ′
n → 0 (as the energy eigenvalues obey the scaling relation [103]

E ′
n ∝ n2/3 for large n), thus resulting in the classical limit on the variance

product (∆Z)2QM (∆P)2QM ≥ 0. Equation (2.65), on the other hand, is exact for

the energy eigenstates.
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2.4 Conclusions

Emergence of classical behaviour from the corresponding quantum world has

remained an enigmatic topic ever since the inception of quantum theory. It is

shown here that in three specific examples of one-dimensional bound systems—

harmonic oscillator, infinite square well and bouncing ball—the uncertainty

products of position and momentum evaluated for stationary quantum states

agree with those of the corresponding constant-energy classical ensembles. This

identification points towards a deep underlying connectivity between the two

formalisms, despite their mathematical and conceptual differences.

The uncertainty principle is one of the intrinsic trademarks of quantum the-

ory and is not a feature of the classical deterministic motion of single particle.

However, recent investigations [1]—motivated by Gromov’s non-squeezing the-

orem [3]—have shown that, indeed, there are intrinsic uncertainties governed

by the symplectic geometry of Hamiltonian phase space flows associated with

classical ensembles. Our work establishes a remarkable agreement between the

uncertainty product for quantum stationary states and the classical microcanon-

ical ensemble of constant energy, for the three specific examples considered here.

This agreement could be a reflection of subtle aspects of symplectic toplogy. It

would be interesting to investigate the nature of quantum-classical uncertainties

from a unifying point of view based on phase space topology [1].

According to the Eherenfest theorem, the dynamical equations of motion

for the average values of the position and momentum coincide with the clas-

sical equations for linear and quadratic potentials. The three specific exam-

ples analyzed here focused on stationary-state solutions associated with linear

and quadratic potentials, and this raises the question of whether the agree-

ment between classical and quantum uncertainty products happens to be an

indirect reflection of Ehrenfest theorem itself [106]. Yet another reason why
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the classical and quantum uncertainty relationships coincide might be because

the quasi-classical (WKB) approximation is exact for the potentials considered

[107]. It is therefore important to extend our results to the case of non-quadratic

potentials, which will be taken up in future.
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Chapter 3

Macrorealism from entropic

Leggett-Garg inequalities

We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical

outcomes of temporal correlations of observables. The information theoretic inequalities

are satisfied if macrorealism holds. We show that the quantum statistics underlying cor-

relations between time-separated spin component of a quantum rotor mimics that of spin

correlations in two spatially separated spin-s particles sharing a state of zero total spin.

This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quan-

tum spin-s system in a similar manner as does the entropic Bell inequality ([49]) by a

pair of spin-s particles forming a composite spin singlet state.

3.1 Introduction

Conflicting foundational features like non-locality [57] and contextuality [108]

mark how quantum universe differs from classical one. Non-locality rules out

that spatially separated systems have their own objective properties prior to

measurements and that they do not get influenced by any local operations by

the other parties. Violation of Clauser-Horne-Shimony-Holt (CHSH) - Bell cor-

relation inequality [65] by entangled states reveals that local realism is untenable

in the quantum scenario. On the other hand, quantum contextuality states that

the measurement outcome of an observable depends on the set of compatible

observables that are measured alongside it. In this sense, non-locality turns out
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to be a reflection of contextuality in spatially separated systems.

Yet another foundational concept of classical world that is at variance with

the quantum description is macrorealism [4]. As the notion of macrorealism is

already discussed in Chapter 1, let us directly go ahead with the construction

of the Leggett-Garg (LG) inequality using Shannon entropy.

Probabilities associated with measurement outcomes in the quantum frame-

work are fundamentally different from those arising in the classical statistical

scenario - and this is pivotal in initiating multitude of debates on various con-

trasting implications in the two worlds [73, 74, 109]. A deeper understanding of

these foundational conflicts requires investigations from as many independent

ways as possible. The CHSH-Bell (LG) inequalities were originally formulated

for dichotomic observables and they constrain certain linear combinations of

correlation functions of measurements done on spatially (temporally) separated

states. However, there have been extensions of correlation Bell inequalities to

arbitrary measurement outcomes [110]. Information entropy too offers as a

natural candidate to capture the puzzling features of quantum probabilities. It

also offers operational tests demarcating the two domains in an elegant and an

illustrative fashion [49, 111, 112]. The information entropic formulation is appli-

cable to observables with any number of outcomes of measurements. Moreover,

while the correlation inequalities define a convex polytope [109], the entropic

inequalities form a convex cone [113], bringing out their geometrically distinct

features. Entropic tests thus generalize and strengthen the platform to under-

stand the basic differences between the quantum and classical world views.

It was noticed quite early by Braunstein and Caves (BC) that interpreting
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correlations between two spatially separated EPR entangled pair of particles

based on Shannon information entropy results in contradiction with local real-

ism [49]. They developed information theoretic Bell inequality applicable to any

pair of spatially separated systems and showed that the inequality is violated

by two spatially separated spin-s particles sharing a state of zero total angu-

lar momentum. More recently, Kurzyński et al. [112] constructed an entropic

inequality to investigate the failure of non-contextuality in a single three level

quantum system and they identified optimal measurements revealing violation

of the inequality. Chaves and Fritz [114] framed a more general entropic frame-

work [111] to analyze local realism and contextuality in quantum as well as

post-quantum scenarios. Entropic inequalities provide, in general, a necessary

but not sufficient criterion for local realism and non-contextuality [114, 112].

It is shown that for the n-cycle scenario with dichotomic outcomes, entropic

inequalities also satisfy the sufficiency criterion. That is, the violations of en-

tropic inequalities completely characterize non-local and contextual probabili-

ties for the n-cycle scenario [115, 116]. Application of entropic inequality to

test contextuality in four level quantum system has been proposed in Ref. [117].

It is highly relevant to address the question “Does the macrorealistic tenet en-

crypted in the form of classical entropic inequality get defeated in the quantum

realm?” This issue gains increasing importance as questions on the role of

quantum theory in biological molecular processes are being addressed in rig-

orous manner and LG type tests offer an operational approach in recognizing

quantum effects in evolutionary biological processes [5]. Entropic formulation

of macrorealism generalizes the scope and applicability of such bench-mark in-

vestigations.

Here, we formulate entropic LG inequalities to investigate the notion of macro-
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realism of a single system. We show that the entropic inequality is violated by

a spin-s quantum rotor (prepared in a completely random state) in a manner

similar to the information theoretic BC inequality for a counter propagating

entangled pair of spin-s particles in a spin-singlet state. To our knowledge, this

is the first time that entropic considerations are applied to investigate macrore-

alism.

3.2 Entropic Inequalities to test Macrorealism

Consider a macrorealistic system in which Q(ti) is a dynamical observable at

time ti. Let the outcomes of measurements of the observable Q(ti) be denoted

by qi and the corresponding probabilities P (qi). In a macrorealistic theory, the

outcomes qi of the observables Q(ti)at all instants of time pre-exist irrespec-

tive of their measurement; this feature is mathematically validated in terms of

a joint probability distribution P (q1, q2, . . .) characterizing the statistics of the

outcomes; the joint probabilities yield the marginals P (qi) of individual obser-

vations at time ti. Further, measurement invasiveness implies that the act of

observation of Q(ti) at an earlier time ti has no influence on its subsequent value

at a later time tj > ti.

This demands that the joint probabilities be expressed as a convex combination

of product of probabilities P (qi|λ), averaged over a hidden variable probability

distribution ρ(λ) [73, 79]:

P (q1, q2, . . . , qn) =
∑

λ

ρ(λ)P (q1|λ)P (q2|λ) . . . P (qn|λ), (3.1)

0 ≤ ρ(λ) ≤ 1,
∑

λ

ρ(λ) = 1; 0 ≤ P (qi|λ) ≤ 1,
∑

qi

P (qi|λ) = 1.
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Joint Shannon information entropy associated with the measurement statis-

tics of the observable at two different times tk, tk+l is defined as, H(Qk, Qk+l) =

−∑qk,qk+l
P (qk, qk+l) log2 P (qk, qk+l). The conditional Shannon entropy car-

ried by the observable Qk+l at time tk+l, given that it had assumed the values

Qk = qk at an earlier time is given by, H(Qk+l|Qk = qk) = −
∑

qk+l
P (qk+l|qk)

log2 P (qk+l|qk), where P (qk+l|qk) = P (qk, qk+l)/P (qk) denotes the conditional

probability. The conditional Shannon entropy is given by

H(Qk+l|Qk) =
∑

qk

P (qk)H(Qk+l|Qk = qk)

= H(Qk, Qk+l)−H(Qk). (3.2)

The classical Shannon entropies obey the inequality [49]:

H(Qk+l|Qk) ≤ H(Qk+l) ≤ H(Qk, Qk+l), (3.3)

Extending (3.3) to three variables, and using the relation H(Qk, Qk+l) =

H(Qk+l|Qk) +H(Qk), we obtain,

H(Qk, Qk+m) ≤ H(Qk, Qk+l, Qk+m) = H(Qk+m|Qk+l, Qk) +H(Qk+l|Qk) +H(Qk)

=⇒ H(Qk+m|Qk) ≤ H(Qk+m|Qk+l) +H(Qk+l|Qk). (3.4)

Here, the first line follows from the chain rule for entropies and the derivation

is analogous to that given by BC [49].

The entropic inequality (3.4) is a reflection of the fact that knowing the value

of the observable at three different times tk < tk+l < tk+m – via its information

content – can never be smaller than the information about it at two time in-

stants. Moreover, existence of a grand joint probability distribution P (q1, q2, q3)
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of the variables Q1, Q2, Q3, consistent with a given set of marginal probability

distributions P (q1, q2), P (q2, q3), P (q1, q3) of pairs of observables, imposes non-

trivial conditions on the associated Shannon information entropies. Violation

of the inequality points towards the lack of a legitimate grand joint probability

distribution for all the measured observables, such that the family of probabil-

ity distributions associated with measurement outcomes of pairs of observables

belong to it as marginals [111].

(

Remark: Consider quantum sequential measurement of the observables Q1,

Q2 and Q3 resulting in the measurement outcomes q1, q2, q3 in a quantum sys-

tem prepared in the state ρ. With measurements of only Q1,Q2, the prob-

abilities P (q1, q2) = P (q1)P (q2|q1) with P (q2|q1) = Tr[Πq2 ρq1], where ρq1 =

[Πq1ρΠq1]/P (q1); P (q1) = Tr[ρΠq1]. A consequent measurement of Q3 yields

the probabilities P (q1, q2, q3) = P (q1, q2)P (q3|q1, q2);P (q3|q1, q2) = Tr[Πq3 ρq1 q2]

and ρq1 q2 = Πq2 ρq1 Πq2/P (q1, q2). After simplification, the three variable joint

probabilities reduce to the form, P (q1, q2, q3) = P (q1, q2)P (q2, q3)/P (q2). It is

easy to see that the three variable probabilities P (q1, q2, q3) associated with the

sequential measurement of the observables Q1, Q2, and Q3 are not consistent

with the pairwise probabilities P (q1, q3). Absence of a legitimate grand joint

probability distribution, consistent with all pairwise probabilities reflects itself

in the violation of entropic inequality [111].
)

The same reasoning, which lead to a three term entropic inequality (3.4),

could be extended to construct an entropic inequality for n consecutive mea-

surements Q1, Q2, . . . , Qn at time instants t1 < t2 < . . . < tn:

H(Qn|Q1) ≤ H(Qn|Qn−1) +H(Qn−1|Qn−2) + . . .+H(Q2|Q1). (3.5)
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The macrorealistic information underlying the statistical outcomes of the ob-

servable at n different times must be consistent with the information associated

with pairwise non-invasive measurements as given in (3.5).

Note that for even values of n, there is a one-to-one correspondence between

the entropic inequality (3.5) of a single system and the information theoretic

BC inequality [49] for two spatially separated parties (Alice and Bob). More

specifically, let us consider n = 4 in (3.5) and associate temporal observable

Qi with Alice’s (Bob’s) observables A′, A (B′, B) as Q1 ↔ B, Q2 ↔ A′,

Q3 ↔ B′, Q4 ↔ A to obtain the BC inequality [49] for a set of four correla-

tions: H(A|B) ≤ H(A|B′)+H(B′|A′)+H(A′|B), which is satisfied by any local

realistic model of spatially separated pairs. It may be identified that Eq. (3.1)

is essentially analogous to the local hidden variable model (Bell scenario for

spatially separated systems) as well as to the non-contextual model, while the

interpretation here is towards macrorealism. Moreover, we emphasize that the

logical reasoning in formulating the entropic LG inequalities (3.5) is synony-

mous to that of BC [49], which indeed offers a unified approach to address

non-locality, contextuality and non-macrorealism.

3.3 Violation of Entropic Leggett-Garg Inequality by a

quantum rotor

We now proceed to show that entropic LG inequality is violated by a quantum

spin-s system. Consider a quantum rotor prepared initially in a maximally

mixed state

ρ =
1

2s+ 1

s
∑

m=−s
|s,m〉〈s,m| = I

2s+ 1
(3.6)
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where |s,m〉 are the simultaneous eigenstates of the squared spin operator S2 =

S2
x+S2

y+S2
z and the z-component of spin Sz (with respective eigenvalues s(s+

1) ~2 and m~); I denotes the (2s + 1) × (2s + 1) identity matrix. We consider

the Hamiltonian

H = ω Sy, (3.7)

resulting in the unitary evolution U(t) = e−iωtSy/~ of the system (which cor-

responds to a rotation about the y-axis by an angle ω t). We choose the z-

component of spin Q(t) = Sz(t) = U†(t)SzU(t) as the dynamical observ-

able for our investigation of macrorealism. Let us suppose that the observable

Qk = Sz(tk) takes the value mk at time tk. Correspondingly, at a later instant

of time tk+l if the spin component Sz(tk+l) assumes the valuemk+l, the quantum

mechanical joint probability is given by [79]

P (mk,mk+l) = Pmk
(tk)P (mk+l, tk+l|mk, tk). (3.8)

Here, Pmk
(tk) = Tr[ρΠmk

(tk)] is the probability of obtaining the outcome mk

at time tk, P (mk+l, tk+l|mk, tk) = Tr[Πmk
(tk)ρΠmk

(tk)Πmk+l
(tk+l)]/Pmk

(tk) de-

notes the conditional probability of obtaining the outcome mk+l for the spin

component Sz at time tk+l, given that it had taken the value mk at an earlier

time tk; Πm(t) = U†(t) |s,m〉〈s,m|U(t) is the projection operator measuring

the outcome m for the spin component at time t. For the maximally mixed

initial state (3.6), we obtain the quantum mechanical joint probabilities as,

P (mk,mk+l) =
1

2s+ 1
Tr[Πmk

(tk)Πmk+l
(tk+l)]

=
1

2s+ 1
|〈 s,mk+l|e−iω(tk+l−tk)Sy/~ |s,mk〉|2

=
1

2s+ 1
| dsmk+l,mk

(θkl)|2 (3.9)
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where dsm′,m(θkl) = 〈s,m′|e−iθkl Sy/~|s,m〉 are the matrix elements of the 2s +

1 dimensional irreducible representation of rotation [118] about y-axis by an

angle θkl = ω(tk+l − tk). The marginal probability of the outcome mk for the

observable Qk is readily obtained by making use of the unitarity property of d

matrices: P (mk) =
∑

mk+l
P (mk,mk+l) =

1
2s+1

∑

mk+l
| dsmk+l,mk

(θkl)|2 = 1
2s+1 .

Clearly, the temporal correlation probability (3.9) of quantum rotor is similar

to the quantum mechanical pair probability [49]

P (ma,mb) = [a〈s,ma| ⊗b 〈s,mb|] |ΨAB〉
=

1

2s+ 1
|dsma,−mb

(θab)|2 (3.10)

that Alice’s measurement of spin component ~S · a yields the value ma and

Bob’s measurement of ~S · b results in the outcome mb in a spin singlet state

|ΨAB〉 = 1√
2s+1

∑s
m=−s (−1)s−m |s,m〉⊗ |s,−m〉 of a spatially separated pair of

spin-s particles. (Here θab is the angle between the unit vectors a and b). In

other words, quantum statistics of temporal correlations in a single spin-s rotor

mimics that of spatial correlations in an entangled counter propagating pair of

spin-s particles.

Let us consider measurements at equidistant time intervals ∆t = tk+1− tk, k =

1, 2, . . . n and denote θ = (n − 1)ω∆t. The quantum mechanical information

entropy depends only on the time separation, specified by the angle θ and is

given by,

H(Qk|Qk+1) ≡ H[θ/(n− 1)]

= − 1

2s+ 1

∑

mk,mk+1

|dsmk+1,mk
[θ/(n− 1)]|2

× log2 |dsmk+1,mk
[θ/(n− 1)]|2. (3.11)
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The n-term entropic inequality (3.5) for observations at equidistant time steps

assumes the form,

(n− 1)H[θ/(n− 1)]−H(θ) = − 1

2s+ 1

∑

mk,mk+1

([(n− 1) |dsmk+1,mk
[θ/(n− 1)]|2

× log2 |dsmk+1,mk
[θ/(n− 1)]|2]

− [|dsmk+1,mk
(θ)|2 log2 |dsmk+1,mk

(θ)|2])
≥ 0. (3.12)

We introduce information deficit, measured in units of log2(2s+ 1) bits, as

Dn(θ) =
(n− 1)H[θ/(n− 1)]−H(θ)

log2(2s+ 1)
(3.13)

so that the violation of the LG entropic inequality (3.12) is implied by negative

values of Dn(θ). The units log2(2s + 1) for the quantity Dn(θ) imply that the

base of the logarithm for evaluating the entropies of a spin s system is chosen

appropriately to be (2s+ 1). For a spin-1/2 rotor, it is in bits.

In Fig. 3.1, we have plotted information deficit Dn(θ) for n = 3 (Fig. 3.1a) and

n = 6 (Fig. 3.1b) as a function of θ = (n−1)ω∆t for spin values s = 1/2, 1, 3/2

and 2. The results illustrate that the information deficit assumes negative val-

ues, though the range of violation (i.e., the value of the angle θ for which the

violation occurs) and also the strength (maximum negative value of Dn(θ)) of

the entropic violation reduces [119] with the increase of spin s. This implies

the emergence of macrorealism for the dynamical evolution of a quantum ro-

tor in the limit of large spin s. It may be noted that Kofler and Brukner [80]

had shown violation of the correlation LG inequality – corresponding to the

measurement outcomes of a dichotomic parity observable in the example of a
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Macrorealism from entropic Leggett-Garg inequalities

quantum rotor – persists even for large values of spin if the eigenvalues of spin

can be experimentally resolved by sharp quantum measurements. However,

under the restriction of coarse-grained measurements classical realm emerges

in the large spin limit. An experiment corroborating these theoretical findings

have been performed on NMR systems [120].
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Figure 3.1: LG Information deficitDn(θ) of (3.13)) – in units of log2(2s+1) bits – corresponding
to the measurement of the spin component Sz(t) of a quantum rotor, at equidistant time steps
∆t = θ

(n−1)ω
, number of observations being (a) n = 3 and (b) n = 6 during the total time interval

specified by the angle θ = (n− 1)ω∆t. Conflict with macrorealism is recorded by the negative
value of Dn(θ). Maximum negative value and also the range i.e., the value of θ over which
the information deficit is negative, grows with the increase in the number n of observations.
However, for a given n, both the strength and the range of violation reduce with the increase
of spin value (spin-1/2: dotted; spin-1: dashed; spin-3/2: dot-dashed; spin-2: solid curve). The
strength of violation may be related to how much inconsistent Shannon information entropies
could be – when the associated probabilities of outcomes of pairs of dynamical observables
have their origin in noisy quantum measurements – compared to those arising within a classical
macrorealistic premise. All quantities are dimensionless.

macrorealism requires that a consistently larger information contentH[θ/(n−
1)] has to be carried by the system, when number of observations n is increased

and small steps of time interval are employed; however, quantum situation does

not comply with this constraint. More specifically, in the classical premise,

knowing the observable at almost all time instants provides more information

content, whereas, quantum realm results in less information with large number
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of observations. To see this explicitly, consider the limit of n → ∞ and in-

finitesimal time steps ω∆t→ 0. Quantum statistics leads to vanishingly small

information i.e., H( θ
n−1) → 0 – a signature of quantum Zeno effect. In this

limit, the information deficit (see (3.13)) Dn(θ) → −H(θ)
log2(2s+1) is negative – thus

violating the entropic LG inequality. The entropic test clearly brings forth the

severity of macrorealistic demands towards knowing the observable in a non-

invasive manner under such miniscule time scale observations.

3.4 Conclusion

We have formulated entropic LG inequality, which places bounds on the amount

of information associated with non-invasive measurement of a macroscopic ob-

servable. The entropic formulation can be applied to any observables – not

necessarily dichotomic ones – and it puts to test macrorealism i.e., a combined

demand for the pre-existence of definite values of the measurement outcomes of

a given dynamical observable at different instants of time – together with the

assumption that act of observation at an earlier instant does not influence the

subsequent evolution. The information entropic perspective provides a unified

approach to test local realism, non-contextuality and macrorealism.

The classical notion of macrorealism demands that statistical outcomes of

measurement of an observable at consecutive time intervals originate from a

valid grand joint probability, presumably of the form (3.1). Non-existence of

a legitimate joint probability, such that the family of probability distributions

associated with the measurement outcomes of every pair of observables belong

to it as marginals, reflects through the violation of the entropic inequality. The

violation also brings forth the fact that more information is associated with

the knowledge of the observable at more instants of time in the classical macro
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realistic realm – however, more number of observations correspond to less in-

formation in the quantum case.

In order to demonstrate the violation of the entropic inequality, we consid-

ered the dynamical evolution of a quantum spin system prepared initially in a

maximally mixed state. We have demonstrated that the entropic violation in a

quantum rotor system is similar to that of a spatially separated pair of spin-s

particles sharing a state of total spin zero [49]. Furthermore, we have illustrated

that the information content of a rotor grows with the increase of spin s such

that it is consistent with the requirements of macrorealism.
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Chapter 4

Moment Inversion and joint

probabilities in quantum sequential

measurements

A sequence of moments obtained from statistical trials encodes a classical probability dis-

tribution. However, it is well-known that an incompatible set of moments arise in the

quantum scenario, when correlation outcomes associated with measurements on spatially

separated entangled states are considered. This feature viz., the incompatibility of mo-

ments with a joint probability distribution is reflected in the violation of Bell inequalities.

Here, we focus on sequential measurements on a single quantum system and investigate if

moments and joint probabilities are compatible with each other. By considering sequential

measurement of a dichotomic dynamical observable at three different time intervals, we

explicitly demonstrate that the moments and the probabilities are inconsistent with each

other.

4.1 Introduction

The issue of determining a probability distribution uniquely in terms of its mo-

ment sequence – known as classical moment problem – has been developed for

more than 100 years [121, 122]. In the case of discrete distributions with the

associated random variables taking finite values, moments faithfully capture the
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essence of the probabilities i.e., the probability distribution is moment determi-

nate [123].

In the special case of classical random variables Xi assuming dichotomic

values xi = ±1, it is easy to see that the sequence of moments [124]

µn1 n2 ...nk = 〈Xn1
1 X

n2
2 . . . Xnk

k 〉 =
∑

x1,x2,... xk=±1

xn11 xn22 . . . xnkk P (x1, x2, . . . , xk)

where n1, n2, . . . , nk = 0, 1, can be readily inverted to obtain the joint probabili-

ties P (x1, x2, . . . , xk) uniquely. More explicitly, the joint probabilities P (x1, x2, . . . , xk)

are given in terms of the 2k moments µn1 n2 ...nk , n1, n2, . . . nk = 0, 1 as,

P (x1, x2, . . . , xk) =
1

2k

∑

n1,...nk=0,1

xn11 x
n2
2 . . . xnkk µn1 ...nk

=
1

2k

∑

n1,...,nk=0,1

xn11 x
n2
2 . . . xnkk 〈Xn1

1 X
n2
2 . . . Xnk

k 〉. (4.1)

Does this feature prevail in the quantum scenario? The answer is in the

negative as it is well known that the moments associated with the outcomes of

measurements done on spatially separated parties are not compatible with the

corresponding joint probability distribution. This feature reflects itself in the

violation of Bell inequalities.

Here, we investigate whether moment-indeterminacy persists when we focus

on sequential measurements on a single quantum system. We show that the

discrete joint probabilities originating in the sequential measurement of a sin-

gle qubit dichotomic observable X(ti) = Xi at different time intervals are not

consistent with the ones reconstructed from the moments. More explicitly, con-

sidering sequential measurements of X1, X2, X3, we reconstruct the trivariate
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joint probabilities Pµ(x1, x2, x3) based on the set of eight moments

{1, 〈X1〉, 〈X2〉, 〈X3〉, 〈X1X2〉, 〈X2X3〉, 〈X1X3〉, 〈X1X2X3〉}

and prove that they do not agree with the three-time joint probabilities

(TTJP) Pd(x1, x2, x3) evaluated directly based on the correlation outcomes in

the sequential measurement of all the three observables. Interestingly, the mo-

ments and TTJP can be independently extracted experimentally in NMR sys-

tems – demonstrating the difference between moment inverted three time prob-

abilities with the ones directly drawn from experiment, in agreement with the

theory. For obtaining TTJP directly one can use the procedure of Ref.[120]

and for extracting the moments, extension of the Moussa protocol [125] to a

set of non-commutating observables can be done. More details regarding the

experimental scheme can be found in [126].

Disagreement between moment inverted joint probabilities with the ones

based on measurement outcomes in turn reflects the inherent inconsistency that

the family of all marginal probabilities do not arise from the grand joint proba-

bilities. The non-existence of a legitimate grand joint probability distribution,

consistent with the set of all pairwise marginals is attributed to be the com-

mon origin of a wide range of no-go theorems on non-contextuality, locality and

macrorealism in the foundations of quantum theory [73, 58, 108, 127, 128, 4,

129, 91]. The absence of a valid grand joint probability distribution in the se-

quential measurement on a single quantum system is brought out here in terms

of its mismatch with moment sequence.
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4.2 Reconstruction of joint probability of classical di-

chotomic random variables from moments

Let X denote a dichotomic random variable with outcomes x = ±1. The

moments associated with statistical outcomes involving the variableX are given

by

µn = 〈Xn〉 =
∑

x=±1

xn P (x), n = 0, 1, 2, 3, . . .

where

0 ≤ P (x = ±1) ≤ 1;
∑

x=±1

P (x) = 1

are the corresponding probabilities. Given the moments µ0 and µ1 from a

statistical trial, one can readily obtain the probability mass function:

P (1) =
1

2
(µ0 + µ1) =

1

2
(1 + µ1)

P (−1) =
1

2
(µ0 − µ1) =

1

2
(1− µ1),

i.e., moments determine the probabilities uniquely.

In the case of two dichotomic random variables X1, X2, the moments

µn1,n2 = 〈Xn1
1 Xn2

2 〉 =
∑

x1=±1,x2=±1

xn11 xn22 P (x1, x2), n1, n2 = 0, 1 . . .

encode the bivariate probabilities P (x1, x2). Explicitly,

µ00 =
∑

x1,x2=±1

P (x1, x2) = P (1, 1) + P (1,−1) + P (−1, 1) + P (−1,−1) = 1,

µ10 =
∑

x1,x2=±1

x1 P (x1, x2) =
∑

x1=±1

x1 P (x1),
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= P (1, 1) + P (1,−1)− P (−1, 1)− P (−1,−1)

µ01 =
∑

x1,x2=±1

x2 P (x1, x2) =
∑

x2

x2 P (x2)

= P (1, 1)− P (1,−1) + P (−1, 1)− P (−1,−1)

µ11 =
∑

x1,x2=±1

x1 x2 P (x1, x2)

= P (1, 1)− P (1,−1)− P (−1, 1) + P (−1,−1). (4.2)

Note that the moments µ10, µ01 involve the marginal probabilities P (x1) =
∑

x2=±1 P (x1, x2), P (x2) =
∑

x1=±1 P (x1, x2) respectively and they could be

evaluated based on statistical trials drawn independently from the two random

variables X1 and X2.

Given the moments µ00, µ10, µ01, µ11 the reconstruction of the probabilities

P (x1, x2) is straightforward:

P (x1, x2) =
1

4

∑

n1,n2=0,1

xn11 x
n2
2 µn1 n2

=
1

4

∑

n1,n2=0,1

xn11 x
n2
2 〈Xn1

1 Xn2
2 〉. (4.3)

Further, a reconstruction of trivariate joint probabilities P (x1, x2, x3) requires

the following set of eight moments: {µ000 = 1, µ100 = 〈X1〉, µ010 = 〈X2〉, µ010 =
〈X3〉, µ110 = 〈X1X2〉, µ011 = 〈X2X3〉, µ101 = 〈X1X3〉, µ111 = 〈X1X2X3〉}. The
probabilities are retrieved faithfully in terms of the eight moments as,

P (x1, x2, x3) =
1

8

∑

n1,n2,n3=0,1

xn11 x
n2
2 x

n3
3 µn1 n2 n3

=
1

8

∑

n1,n2,n3=0,1

xn11 x
n2
2 x

n3
3 〈Xn1

1 Xn2
2 Xn3

3 〉.

(4.4)
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It is implicit that the moments µ100, µ010, µ001 are determined through inde-

pendent statistical trials involving the random variables X1, X2, X3 separately;

µ110, µ011, µ101 are obtained based on the correlation outcomes of (X1, X2),

(X2, X3) and (X1, X3) respectively. More specifically, in the classical probability

setting there is a tacit underlying assumption that the set of all marginal prob-

abilities P (x1), P (x2), P (x3), P (x1, x2), P (x2, x3), P (x1, x3) are consistent with

the trivariate joint probabilities P (x1, x2, x3). This underpinning does not

get imprinted automatically in the quantum scenario. Suppose the observ-

ables X1,X2,X3 are non-commuting and we consider their sequential measure-

ment. The moments µ100 = 〈X1〉, µ010 = 〈X2〉, µ001 = 〈X3〉 may be evaluated

from the measurement outcomes of dichotomic observables X1,X2,X3 indepen-

dently; the correlated statistical outcomes in the sequential measurements of

(X1,X2), (X2,X3) and (X1,X3) allow one to extract the set of moments µ110 =

〈X1X2〉, µ011 = 〈X2X3〉, µ101 = 〈X1X3〉; further the moment µ111 = 〈X1X2X3〉
is evaluated based on the correlation outcomes when all the three observables

are measured sequentially. The joint probabilities Pµ(x1, x2, x3) retrieved from

the moments as given in (4.4) differ from the ones evaluated directly in terms

of the correlation outcomes in the sequential measurement of all the three ob-

servables. We illustrate this inconsistency appearing in the quantum setting in

the next section.

4.3 Quantum three-time joint probabilities and moment

inversion

Let us consider a spin-1/2 system, the dynamical evolution of which is governed

by the Hamiltonian

H =
1

2
~ωσx. (4.5)
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We choose the z-component of spin as our dynamical observable:

Xi = X(ti) = σz(ti)

= U†(ti)σzU(ti)

= σz cosω ti + σy sinω ti, (4.6)

where U(ti) = e−iσx ω ti/2 = Ui, and consider sequential measurements of the

observable Xi at three different times t1 = 0, t2 = ∆t, t3 = 2∆t:

X1 = σz

X2 = σz(∆t) = σz cos(ω∆t) + σy sin(ω∆t)

X3 = σz(2∆t) = σz cos(2ω∆t) + σy sin(2ω∆t). (4.7)

Note that these three operators are not commuting in general.

The moments 〈X1〉, 〈X2〉, 〈X3〉 are readily evaluated to be

µ100 = 〈X1〉 = Tr[ρinσz] = 0,

µ010 = 〈X2〉 = Tr[ρinσz(∆t)] = 0, (4.8)

µ001 = 〈X3〉 = Tr[ρinσz(2∆t)] = 0

when the system density matrix is prepared initially in a maximally mixed state

ρin =
I

2 . The probabilities of outcomes xi = ±1 in the completely random initial

state are given by P (xi = ±1) = Tr[ρinΠxi] =
1
2 , where Πxi = |xi〉〈xi| is the

projection operator corresponding to measurement of the observable Xi.

The two-time joint probabilities arising in the sequential measurements of

the observables Xi,Xj, j > i are evaluated as follows. The measurement of the

observable Xi yielding the outcome xi = ±1 projects the density operator to

ρxi =
Πxi

ρin Πxi

Tr[ρin Πxi
] . Further, a sequential measurement of Xj leads to the two-time
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joint probabilities as,

P (xi, xj) = P (xi)P (xj|xi)
= Tr[ρinΠxi] Tr[ρxi Πxj ]

= Tr[Πxi ρinΠxiΠxj ]

= 〈xi| ρin |xi〉 |〈xi|xj〉|2 (4.9)

We evaluate the two-time joint probabilities associated with the sequential

measurements of (X1,X2), (X2,X3), and (X1,X3) explicitly:

P (x1, x2) =
1

4
[1 + x1 x2 cos(ω∆t)] (4.10)

P (x2, x3) =
1

4
[1 + x2 x3 cos(ω∆t)] (4.11)

P (x1, x3) =
1

4
[1 + x1 x3 cos(2ω∆t)]. (4.12)

We then obtain two-time correlation moments as,

µ110 = 〈X1X2〉 =
∑

x1,x2=±1

x1 x2 P (x1, x2)

= cos(ω∆t)

µ011 = 〈X2X3〉 =
∑

x2,x3=±1

x2 x3 P (x2, x3)

= cos(ω∆t) (4.13)

µ101 = 〈X1X3〉 =
∑

x1,x3=±1

x1 x3 P (x1, x3)

= cos(2ω∆t).

Further, the three-time joint probabilities P (x1, x2, x3) arising in the sequen-
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tial measurements of X1,X2, followed by X3 are given by

P (x1, x2, x3) = P (x1)P (x2|x1)P (x3|x1, x2)
= Tr[ρinΠx1] Tr[ρx1 Πx2] Tr[ρx2 Πx3]

(4.14)

where ρx2 =
Πx2

ρx1 Πx2

Tr[ρx1 Πx2
] . We obtain,

P (x1, x2, x3) = Tr[Πx2 Πx1 ρinΠx1 Πx2 Πx3]

= 〈x1| ρin |x1〉 |〈x1|x2〉|2 |〈x2|x3〉|2

=
P (x1, x2)P (x2, x3)

〈x2| ρin |x2〉

=
P (x1, x2)P (x2, x3)

P (x2)
(4.15)

where in the third line of (4.15) we have used (4.9).

The three-time correlation moment is evaluated to be,

µ111 = 〈X1X2X3〉 =
∑

x1,x2,x3=±1

x1 x2 x3 P (x1, x2, x3)

= 0. (4.16)

From the set of eight moments (4.8), (4.13), (4.16) together with µ000 = 1,

we construct the TTJP (see (4.4)) as,

Pµ(1, 1, 1) = Pµ(−1,−1,−1) =
1

8
[1 + 2 cos(ω∆t) + cos(2ω∆t)],

Pµ(−1, 1, 1) = Pµ(−1,−1, 1) = Pµ(1, 1,−1) = Pµ(1,−1,−1)

=
1

8
[1− cos(2ω∆t)]

Pµ(1,−1, 1) = Pµ(−1, 1,−1) =
1

8
[1− 2 cos(ω∆t) + cos(2ω∆t)]. (4.17)

On the other hand, the three dichotomic variable quantum probabilities P (x1, x2, x3)

95



Moment Inversion and joint probabilities in quantum sequential measurements

evaluated directly are given by,

Pd(1, 1, 1) = Pd(−1,−1,−1) =
1

8
[1 + cos(ω∆t)]2,

Pd(−1, 1, 1) = Pd(−1,−1, 1) = Pd(1, 1,−1) = Pd(1,−1,−1)

=
1

8
[1− cos2(ω∆t)]

Pd(1,−1, 1) = Pd(−1, 1,−1) =
1

8
[1− cos(ω∆t)]2. (4.18)

Clearly, there is no agreement between the moment inverted TTJP (4.17)

and the ones of (4.18) directly evaluated. In other words, the TTJP realized in

a sequential measurement are not invertible in terms of the moments – which

in turn reflects the incompatibility of the set of all marginal probabilities with

the grand joint probabilities Pd(x1, x2, x3). In fact, it may be explicitly verified

that P (x1, x3) 6=
∑

x2=±1 Pd(x1, x2, x3). Moment-indeterminacy points towards

the absence of a valid grand probability distribution consistent with all the

marginals.
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Figure 4.1: The left figure shows the moment extraction in the experiment, which are used to
construct the probabilities. The right figure shows the incompatibility between the moment
inverted probabilities Pµ and that of the experimental ones Pd. This is a signature of the non-
classical nature of the probabilities arising in the quantum scenario. For more details on the
experimental aspects see [126].

The TTJP and moments can be independently extracted experimentally
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using NMR methods on an ensemble of spin-1/2 nuclei. The experimental

approach and results are reported in [126]. The experimental verification using

a nuclear magnetic resonance (NMR) system corroborating these theoretical

observations viz., the incompatibility of the three-time joint probabilities with

those extracted from the moment sequence when sequential measurements on

a single qubit system is shown in fig 4.1.

4.4 Conclusion

In classical probability setting, statistical moments associated with dichotomic

random variables determine the probabilities uniquely. When the same issue is

explored in the quantum context – with random variables replaced by Hermitian

observables (which are in general non-commuting) and the statistical outcomes

of observables in sequential measurements are considered – it is shown that the

joint probabilities do not agree with the ones inverted from the moments. This

is explicitly illustrated by considering sequential measurements of a dynamical

variable at three different times in the specific example of a spin-1/2 system.

An experimental investigation based on NMR methods, where moments and

the joint probabilities are extracted independently, demonstrates the moment

indeterminacy of probabilities, concordant with theoretical observations.

The failure to revert joint probability distribution from its moments points

towards its inherent incompatibility with the family of all marginals. In turn,

the moment indeterminacy reveals the absence of a legitimate joint probability

distribution compatible with the set of all marginal distributions – a common

underpinning of various no-go theorems in the foundational aspects of quantum

theory.
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Chapter 5

Characterizing non-classicality via the

positivity of Moment Matrix

We investigate if a given set of moments, arising from correlation measurements of three

dichotomic observables in the quantum scenario, is compatible with a legitimate grand

joint probability distribution. A valid sequence of correlations (moments) requires that

the corresponding moment matrix is positive. We find an interesting link between mo-

ment matrix and the structure of admissible joint probability distribution: positivity of

the moment matrix necessarily enforces that the associated joint probabilities are of the

hidden variable form (convex sum of the product form).Examples of spatial and temporal

correlations arising within the quantum framework demonstrate that the moment matrix

constructed out of these correlations (moments) is negative. This in turn strengthens our

realization of the link between moment matrix and the structure of the underlying joint

probability distribution.

5.1 Introduction

Probabilities of measurement outcomes within the quantum framework are fun-

damentally different from those arising in the classical statistical scenario. This

has invoked a wide range of debates on the foundational conflicts about the

quantum-classical worldviews of nature [109, 73, 74]. Pioneering investigations

by Bell [57], Kochen-Specker [108], Leggett-Garg [4] tied the puzzling non-

classical (quantum) features with various no-go theorems. The common theme

underlying the proofs of these no-go theorems points towards the non-existence
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Characterizing non-classicality via the positivity of Moment Matrix

of a joint probability distribution for the outcomes of all possible measurements

performed on a quantum system [73, 57, 108, 4, 129, 91].

On an entirely different perspective, classical moment problem [121, 122] ad-

dresses the issue of determining a probability distribution given a sequence of

statistical moments. Essentially, classical moment problem brings forth that a

given sequence of real numbers qualify to be the moment sequence of a legit-

imate probability distribution if and only if the associated moment matrix is

positive. In other words, existence of a valid joint probability distribution con-

sistent with a given sequence of moments gets linked with the moment matrix

positivity.

Here, we investigate the positivity of a 8 × 8 moment matrix to verify the

existence of a valid joint probability distribution for the outcomes of the mea-

surement of three dichotomic observables in the quantum scenario. This results

in an interesting identification: positivity of the moment matrix implies that the

associated joint probabilities assume the convex sum of the product form. In

other words, hidden variable structure for the joint probabilities emerges natu-

rally – bringing forth a necessary and sufficient condition for non-classicality of

correlations via moment matrix positivity criterion.

Examples of

(a). Temporal correlations of a single qubit dichotomic observable measured at

three different times, when the quantum system is evolving under a coher-

ent unitary dynamics corresponding to the Leggett-Garg macrorealism.

(b). Correlation measurements of dichotomic observables performed on spatially

separated systems corresponding to the Bell local realism.
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(c). Correlation measurements of three dichotomic observables on a qubit form-

ing a contextual scenario

are considered.

5.2 Positivity of a Moment Matrix

Consider a set {a1, a2, a3, b1, b2, b3, c} where all the seven elements lie between

±1. Our task is to verify if they correspond to a sequence of moments

{〈X1〉, 〈X2〉, 〈X3〉, 〈X1X2〉, 〈X2X3〉, 〈X1X3〉, 〈X1X2X3〉} of a probability distri-

bution P (x1, x2, x3). Here, x1, x2, x3 = ±1 are three classical dichotomic random

variables. The validation is done by arranging the given sequence in the form

of a 8× 8 moment matrix and verifying its positivity. (Moment matrix is posi-

tive iff there exists a probability distribution of which the sequence of numbers

{a1, a2, a3, b1, b2, b3, c} do correspond to the moments {〈X1〉, 〈X2〉, 〈X3〉, 〈X1X2〉,
〈X2X3〉, 〈X1X3〉, 〈X1X2X3〉}) .

Moment matrix of a valid sequence of moments is constructed as follows:

Consider a column vector,

ξ =



































1

X1

X2

X3

X1X2

X2X3

X1X3

X1X2X3



































. (5.1)

The associated real positive moment matrix is defined as M = 〈ξ ξT 〉, which,
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by construction, is a real, positive matrix.

M = 〈ξ ξT 〉 =































1 〈X1〉 〈X2〉 〈X3〉 〈X1X2〉 〈X2X3〉 〈X1X3〉 〈X1X2X3〉

〈X1〉 1 〈X1X2〉 〈X1X3〉 〈X2〉 〈X1X2X3〉 〈X3〉 〈X2X3〉

〈X2〉 〈X1X2〉 1 〈X2X3〉 〈X1〉 〈X3〉 〈X1X2X3〉 〈X1X3〉

〈X3〉 〈X1X3〉 〈X2X3〉 1 〈X1X2X3〉 〈X2〉 〈X1〉 〈X1X2〉

〈X1X2〉 〈X2〉 〈X1〉 〈X1X2X3〉 1 〈X1X3〉 〈X2X3〉 〈X3〉

〈X2X3〉 〈X1X2X3〉 〈X3〉 〈X2〉 〈X1X3〉 1 〈X1X2〉 〈X1〉

〈X1X3〉 〈X3〉 〈X1X2X3〉 〈X1〉 〈X2X3〉 〈X1X2〉 1 〈X2〉

〈X1X2X3〉 〈X2X3〉 〈X1X3〉 〈X1X2〉 〈X3〉 〈X1〉 〈X2〉 1































.

(5.2)

(Here, we have used the condition that square of the dichotomic variable X2
i

assumes the value 1 i.e., X2
i ≡ 1.)

Let us consider a special case where single variable averages 〈X1〉, 〈X2〉 and
〈X3〉 as well as the three variable correlation 〈X1X2X3〉 are zero. Let us denote
the two variable correlations 〈X1X2〉 = a, 〈X2X3〉 = b and 〈X1X3〉 = c. The

moment matrix reduces to the form,

M =



































1 0 0 0 a b c 0

0 1 a c 0 0 0 b

0 a 1 b 0 0 0 c

0 c b 1 0 0 0 a

a 0 0 0 1 c b 0

b 0 0 0 c 1 a 0

c 0 0 0 b a 1 0

0 b c a 0 0 0 1



































. (5.3)

The eigenvalues of the moment matrix are given by,

1 + a− b− c (twice)

1− a+ b− c (twice)

1− a− b+ c (twice)

1 + a+ b+ c (twice)
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Positivity of the moment matrix imply the following conditions:

1 + a− b− c ≥ 0 (5.4)

1− a+ b− c ≥ 0 (5.5)

1− a− b+ c ≥ 0 (5.6)

1 + a+ b+ c ≥ 0. (5.7)

5.3 Mapping of moment matrix positivity with the pos-

itivity of a partially transposed two qubit density

matrix

Let us consider a two qubit density matrix:

ρAB =
1

4
[I⊗ I+ ~σ · ~r × I+ I⊗ ~σ · ~s+

∑

i,j=x,y,z

σi ⊗ σj tij] (5.8)

where ri = Tr[ρABσi ⊗ I], si = Tr[ρAB I ⊗ σi] and tij = Tr[ρABσi ⊗ σj] denote

15 parameters characterizing the two qubit density matrix. When ri = si = 0

and tij = tiδi,j, we find that the eigenvalues of the density matrix are given by,

1− t1 + t2 + t3 (5.9)

1 + t1 − t2 + t3 (5.10)

1 + t1 + t2 − t3 (5.11)

1− t1 − t2 − t3. (5.12)

Note that the parameters lie in the range −1 ≤ ti ≤ 1. However, under the

partial transpose of the density matrix, we have ti → −ti.

As such, the eigenvalues of the partially transposed density matrix are given
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by,

1 + t1 − t2 − t3 (5.13)

1− t1 + t2 − t3 (5.14)

1− t1 − t2 + t3 (5.15)

1 + t1 + t2 + t3. (5.16)

Note that the eigenvalues of the moment matrix and that of the partially

transposed density matrix match identically if we map a → t1, b → t2 and

c → t3. In other words, positivity of the moment matrix is equivalent to the

positivity of the partially transposed density matrix. Furthermore, positivity

of the partially transposed density matrix implies that the two qubit density

matrix is separable i.e.,

ρAB =
∑

λ

pλ ρAλ ⊗ ρBλ

Hence, positivity of the moment matrix thus implies that the two variable

correlations can be expressed as

a =
∑

λ

pλTr[ρ
T
Aλσx] Tr[ρBλσx]

=
∑

λ

pλTr[ρ
T
Aλ{

∑

m1=±1

m1Π
(x)
m1
}] Tr[ρBλ{

∑

m2=±1

m2Π
(x)
m2
}]

=
∑

m1,m2=±1

P (x)(m1,m2)m1m2

where Π
(x)
m1

= 1
2 [I+m1σx], Π

(x)
m2

= 1
2 [I+m2σx] and

P (x)(m1,m2) =
∑

λ

pλ P
(x)
λ (m1)Q

(x)
λ (m2) (5.17)
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with P
(x)
λ (m1) = Tr[ρTAλσx], Q

(x)
λ (m2) = Tr[ρBλσx]. Similarly, one can express

b =
∑

m2,m3=±1

P (y)(m2,m3)m2m3

and

c =
∑

m1,m3=±1

P (z)(m1,m3)m1m3

where,

P (y)(m2,m3) =
∑

λ

pλ P
(y)
λ (m2)Q

(y)
λ (m3)

P (z)(m1,m3) =
∑

λ

pλ P
(z)
λ (m1)Q

(z)
λ (m3).

Thus, the separable (convex sum of the product) form for the probabilities

turns out to be both the necessary as well as sufficient condition for the

positivity of the moment matrix. Furthermore, this condition is in tune

with the requirement of the hidden variable theories underlying local realism,

non-contextuality and macrorealism requiring the joint (classical) probabilities

to be in the separable (convex sum of the product) form.

5.4 Moment matrix associated with temporal correla-

tions

Consider a qubit, the dynamical evolution of which is governed by the Hamil-

tonian H = 1
2~ωσx. We consider measurement of three observables Xi =

σz(ti), t1 = 0, t2 = ∆t, t3 = 2∆t (the dynamical observable σz at different

times is given explicitly by, σz(ti) = eiHtiσze
−iHti = σz cos(ωti) + σy sin(ωti)).

When the qubit is initially prepared in a maximally mixed state ρin = I/2,
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sequential measurements of X1,X2,X3 lead to

〈X1〉 = 〈σz〉 = 0

〈X2〉 = 〈σz(∆t)〉 = 0

〈X3〉 = 〈σz(2∆t)〉 = 0

〈X1X2〉 = 〈{σz,σz(∆t)}〉 = cos(ω∆t)

〈X2X3〉 = 〈{σz(∆t),σz(2∆t)}〉 = cos(ω∆t)

〈X1X3〉 = 〈{σz,σz(2∆t)}〉 = cos(2ω∆t)

〈X1X2X3〉 = 0.

In other words, the parameters a = cos(ω∆t), b = cos(ω∆t) and c = cos(2ω∆t).

Positivity of the eigenvalues of the moment matrix (and that of the correspond-

ing partially transposed density matrix) results in the conditions:

1− cos(2ω∆t) ≥ 0

1− 2 cos(ω∆t) + cos(ω∆t) ≥ 0

1 + 2 cos(ω∆t) + cos(ω∆t) ≥ 0.

The moment matrix is thus identified to be negative for any choice of ∆t.

5.5 Moment matrix associated with spatial correlations

Consider a spatially separated two qubit system in a Bell state |ΨAB〉 =
1√
2
[|0A, 1B〉 − |1A, 0B〉]. We consider measurements of three observables X1 =

~σ · a⊗ I, X2 = I⊗ ~σ · b and X3 = ~σ · a′ ⊗ I. We obtain,

〈X1〉 = 0

〈X2〉 = 0
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〈X3〉 = 0

〈X1X2〉 = −a · b = − cos θab

〈X2X3〉 = −a′ · b = − cos θa′b

〈X1X3〉 = a · a′ = cos θaa′

〈X1X2X3〉 = 0.

Choosing coplanar geometry for a,b, a′ such that θab = π− φ, θa′b = π− φ and

θaa′ = 2π − 2φ, we obtain,

a = cosφ, b = cosφ, c = cos 2φ, (5.18)

which results in an analogous conclusion as in the case of temporal correlations

(i.e., moment matrix is negative for any arbitrary values of φ).

Note that [X1,X2] = 0 = [X2,X3] whereas [X1,X3] 6= 0. As X2 commutes

with both X1 and X3, it provides the context in the measurement of the other

two observables, which do not commute. As such, the above example reveals

the contextuality amongst the three observables X1, X2 and X3.

5.6 Conclusion

Discerning the strikingly different nature of statistical features of the classical

and quantum worlds has been a long studied problem. Various no-go theorems

from the foundational works of Bell [57], Kochen-Specker [108], Leggett-Garg [4]

and others signify the non-classical features of quantum theory. Furthermore,

the advancement in technology has motivated results which have an operational

expression in addition to the theoretical results characterizing the contrasting

nature of the two worldviews. To this end, one such proposition is through

the verification of the positivity of the moment matrix. In classical probability

theory, the moment problem [121, 122] validates a sequence of real numbers
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to be the “statistical moments” of a (discrete) probability distribution through

the positivity of the moment matrix. This addresses the issue of the existence

of a probability distribution given a “sequence of statistical moments”. That

is, the existence of a valid joint probability distribution consistent with a given

sequence of moments gets linked with moment matrix positivity. Here, we inves-

tigated the positivity of a 8×8 moment matrix to verify the existence of a valid

joint probability distribution of three di-chotomic observables in the quantum

scenario. An important identification that the positivity of the moment matrix

implies the separable (convex sum of the product) form for the associated joint

probabilities is noted. This establishes as a necessary as well a sufficient crite-

rion for checking the separability of the joint probability distribution concerned.

This is in tune with the requirement of the hidden variable theories underlying

local realism, non-contextuality and macrorealism.
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Chapter 6

Entropic Uncertainty assisted by

temporal memory

The uncertainty principle brings out intrinsic quantum bounds on the precision of measur-

ing non-commuting observables. Statistical outcomes in the measurement of incompatible

observables reveal a trade-off on the sum of corresponding entropies. Maassen-Uffink en-

tropic uncertainty relation [6] constrains the sum of entropies associated with incompatible

measurements. The entropic uncertainty principle in the presence of quantum memory [7]

brought about a fascinating twist by showing that quantum side information, enabled due

to entanglement, helps in beating the uncertainty of non-commuting observables. Here we

explore the interplay between temporal correlations and uncertainty. We show that with

the assistance of a prior quantum temporal information achieved by sequential observa-

tions on the same quantum system at different times, the uncertainty bound on entropies

gets reduced.

6.1 Introduction

The uncertainty principle marks an astounding departure from classical deter-

minism by setting fundamental limits on the precision achievable in knowing

non-commuting observables of a particle. Robertson [38] quantified this limit

in knowing the values of non-commuting observables X, Z as

(∆X)ρ (∆Z)ρ ≥
1

2
|〈[X,Z]〉ρ|. (6.1)
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It has been identified subsequently that Shannon entropies of the probabil-

ities of measurement outcomes of the observables X, Z given by, Hρ(X) =

−∑x P (x) log2 P (x), Hρ(Z) = −∑z P (z) log2 P (z) offer a more general frame-

work to quantify the intrinsic ignorance associated with incompatible measure-

ments. Here, x (z) are the measurement outcomes of the observable X (Z)

and P (x) = 〈x|ρ|x〉 (P (z) = 〈z|ρ|z〉) denote the probability of outcomes x (z);

{|x〉} ({|z〉}) is the set of eigenvectors of X (Z). For any arbitrary quantum

state ρ (both pure and mixed), the Entropic Uncertainty Relation (EUR) given

by Maassen and Uffink [6] is:

Hρ(X) +Hρ(Z) ≥ −2 log2C(X,Z), (6.2)

where C(X,Z) = maxx,y|〈x|z〉|. The lower bound limiting the sum of entropies

(6.2) is independent of the state ρ. The term C(X,Z) can assume a maximum

value 1√
d
resulting in the maximum entropic bound of log2 d, where d denotes

the dimension of the system.

A recent uplifting happened with the extension of the EUR assisted by

the presence of a quantum memory [7], which refined the lower bound of

(6.2). Here, an observer Bob, whose task is to minimize the uncertainty of

Alice’s measurement of the observables X, Z, is allowed to share an entangled

quantum state ρAB with the qubit in Alice’s possession. The uncertainty

principle, when Bob possesses a quantum memory, is given by [7]

S(X|B) + S(Z|B) ≥ −2 log2C(X,Z) + S(A|B), (6.3)

where

S(X|B) = S(ρ
(X)
AB )− S(ρB), S(Z|B) = S(ρ

(Z)
AB)− S(ρB)
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are the conditional von Neumann entropies of the post measured states

ρ
(X)
AB =

∑

x

(Πx ⊗ IB)ρAB(Πx ⊗ IB), ρ
(Z)
AB =

∑

z

(Πz ⊗ IB)ρAB(Πz ⊗ IB)

obtained after the measurements of X, Z performed by Alice on the system A;

Πx = |x〉〈x|, Πz = |z〉〈z|; and S(A|B) = S(ρAB) − S(ρB) is the conditional

von Neumann entropy. When Alice’s system is in a maximally entangled state

with Bob’s quantum memory, the second term on the right hand side of (6.3)

takes negative value: S(A|B) = − log2 d and as −2 log2C(X,Z) ≤ log2 d, one

can achieve a trivial lower bound of zero. Thus, with the help of a quantum

memory maximally entangled with Alice’s state, Bob can beat the uncertainty

bound and can predict the outcomes of incompatible observables X, Z precisely.

Statistics of quantum correlations between the outcomes of spatially sep-

arated systems get mimicked in an interesting fashion by that of tem-

porally separated observables measured sequentially in a single quantum

system [4, 130, 131, 129, 87]. Non-classicality of temporal correlations

between outcomes of sequentially measured observables is reflected by the

violation of Leggett-Garg inequality [4] (also termed as temporal Bell in-

equality [132]), experimental verification of which has gained momentum

recently [133, 82, 86, 134, 85, 120]. Sequential measurements on the same

quantum system result in the transmission of temporal information. Temporal

correlations resulting from consecutive observations on a single quantum

system (in contrast to measurements on spatially separated systems) draw

a surge of interest in foundational investigations on quantum vs classical

world view [135, 136]. Further, information gained from correlations between

the outcomes of subsequent measurements on the same quantum system is

shown to be advantageous in quantum communication tasks involving state
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discrimination [137] and in quantum cryptography [138, 139].

Here, we raise the question, ‘analogous to spatial correlations, do tem-

poral correlations arising in sequential measurement of observables, play

a distinct role in reducing the uncertainty of incompatible observables?’

This boils down to explore if the sum of conditional Shannon entropies

Hρ(X|X0) + Hρ(Z|Z0) is always smaller than the Maassen-Uffink bound

of −2 log2C(X,Z). In other words, would measurements of incompatible

observables X, Z, conditioned by outcomes of prior time measurements of X0,

Z0 respectively lead to better precision?

We show that the uncertainty does get reduced in the presence of a quantum

temporal memory due to correlations between the outcomes of X0 (Z0) and X

(Z) – whereas it is impossible to beat the uncertainty bound if the temporal

correlations are classical.

6.2 An example of a Conditioned EUR

Let us consider a qubit prepared in a completely random mixture given by

ρ = I/2 (I denotes 2 × 2 identity matrix). Measurements of the observables

X = σx and Z = σz in this state leads to Shannon entropies of measurement

Hρ(X) = Hρ(Z) = 1; C(X,Z) = 1√
2
and the uncertainty bound (6.2) is

−2 log2C(X,Z) = 1; the Maassen-Uffink relation is satisfied.

Let us envisage the following scenario: A dichotomic observable X0 =

cos θ σz + sin θσx is measured in the quantum state followed by which X = σx

is sequentially measured; the probabilities of realizing the outcomes x0 = ±1
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for X0 and x = ±1 for X in the sequential measurement is given by

P (x0, x) = Tr[Πx0ρΠx0Πx] =
1

4
[1 + x0x cos θ]

where the projectors associated with dichotomic observablesX0 andX are given

by

Πx0 =
1

2
[I+ x0X0],Πx =

1

2
[I+ xX]

Further, measurement of Z = σz preceded by that of another dichotomic

observable Z0 = cosφ σz + sinφ σx results in the probabilities

P (z0, z) = Tr[Πz0ρΠz0Πz] =
1

4
[1 + z0z cosφ]

The conditional Shannon entropy associated with the sequential measure-

ment of X0 and X is given by

Hρ(X|X0) = −
∑

x0,x=±1

P (x0, x) log2[P (x|x0)] = H[cos2(θ/2)]

(where the conditional probability P (x|x0) = P (x0, x)/P (x0); H(p) =

−p log2 p − (1 − p) log2(1 − p); 0 ≤ p ≤ 1 denotes the binary entropy, which

is bounded by 0 ≤ H(p) ≤ 1). Similarly, one gets the conditional Shannon

entropy

Hρ(Z|Z0) = H[cos2(φ/2)]

associated with the sequential measurement of Z0, Z. Clearly, the sum of

conditional Shannon entropies

Hρ(X|X0) +Hρ(Z|Z0) = H[cos2(θ/2)] +H[cos2(φ/2)]

beats the uncertainty bound −2 log2C(X,Z) = 1.

More specifically, the uncertainty relation (6.2) no longer holds for entropies of

X and Z conditioned by the information in the temporal memory obtained by
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prior measurements X0, Z0. While conditioning in general reduces the infor-

mation entropy i.e.,

Hρ(X|X0) ≤ Hρ(X), Hρ(Z|Z0) ≤ Hρ(Z)

we prove here that the temporal correlations between the sequential measure-

ment outcomes of X, X0 and Z, Z0 must necessarily be non-classical in order

to beat the uncertainty bound of (6.2), which operates in the absence of any

temporal side information.

6.3 Conditioned EUR

We proceed to prove the EUR assisted by temporal correlations. Consider a

single quantum system prepared in the state ρ. In the absense of any other

assisting information, the uncertainty in the observables X and Z is bounded

by (6.2). A temporal memory is created by first noting down the outcome x0 (z0)

of an observable X0 (Z0) at an earlier time before recording the measurement

outcomes x (z) of X (Z). Then, the ignorance about the measurement outcome

of X conditioned on the information about X0 stored in temporal memory is

quantified in terms of the conditional Shannon entropy Hρ(X|X0):

Hρ(X|X0) = Hρ(X0,X)−Hρ(X0)

= Hρ(X)−Hρ(X0 : X) (6.4)

which is expressed in terms of the mutual information entropies Hρ(X0 : X) =

Hρ(X)+Hρ(X0)−Hρ(X,X0) and the unconditioned entropiesHρ(X). Similarly,

entropy of Z, conditioned by the outcomes of Z0 is given by,

Hρ(Z|Z0) = Hρ(Z)−Hρ(Z : Z0). (6.5)
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The entropic uncertainty relation in the presence of temporal memory is then

obtained by identifying the lower bound on the sum of conditional entropies

Hρ(X|X0) +Hρ(Z|Z0). Combining (6.4), (6.5), using the minimum value

[Hρ(X) +Hρ(Z)]min = −2 log2C(X,Z)

(as given by (6.2)) and the maximum values

[Hρ(X0 : X)]max , [Hρ(Z0 : Z)]max

of the mutual information entropies, we obtain,

Hρ(X|X0) +Hρ(Z|Z0) ≥ max
[

0,−2 log2C(X,Z)− {Hρ(X0 : X)}max − {Hρ(Z0 : Z)}max

]

≥ max
[

0,−2 log2C(X,Z)−H(min)
ρ (X)−H(min)

ρ (Z)
]

(6.6)

The second line of the inequality (6.6) follows by noting that the mutual

information entropy of two variables X, X′ can at the most be equal to the

minimum of marginal entropies of X or X′ [140] i.e.,

H(X : X′) ≤ min[H(X), H(X′)]

denoting

min[Hρ(X), Hρ(X0)] = H(min)
ρ (X), min[Hρ(Z), Hρ(Z0)] = H(min)

ρ (Z)

we thus express

[Hρ(X0 : X)]max = H(min)
ρ (X) and [Hρ(Z0 : Z)]max = H(min)

ρ (Z)

Further, since −2 log2C(X,Z) cannot exceed log2 d and the largest values

of the marginal entropies H
(min)
ρ (X), H

(min)
ρ (Z) being log2 d [140], the right
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hand side of the conditioned entropic uncertainty (6.6) is expressed as the

maximum of the trivial value zero and −2 log2C(X,Z)−H(min)
ρ (X)−H(min)

ρ (Z).

6.4 Conditioning with classical temporal correlations

Temporal correlation between the sequential outcomes x0 and x of the observ-

ables X0, X is classical [141] iff the joint probabilities P (x0, x) can be expressed

as a convex combination of the product of probabilities,

P (x0, x) =
∑

λ

pλ Pλ(x0)Qλ(x), (6.7)

∑

x0

Pλ(x0) = 1,
∑

x

Qλ(x) = 1 (6.8)

∑

λ

pλ = 1, 0 ≤ pλ ≤ 1.

Quantum temporal memory requires that the correlation outcomes of the

observables at different time instants are not governed by the joint probabilities

of the form (6.7).

We now prove the following theorem.

Theorem: If temporal correlations of the outcomes of X0, X and those of

Z0, Z obtained from sequential measurement runs on the quantum state are clas-

sical (the correlation probabilities are of the form (6.7)), the sum of conditional

Shannon entropies obey an entropic temporal steering inequality [142]

Hρ(X|X0) +Hρ(Z|Z0) ≥ −2 log2C(X,Z). (6.9)

Proof : Let us consider the conditional information for the measurement

outcomes of the observable X, given that a prior measurement X0 has taken
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the value x0:

Hρ(X|X0 = x0) = −
∑

x

P (x|x0) log2 P (x|x0) (6.10)

The conditional probability P (x|x0) = P (x0, x)/P (x0) corresponding to classi-

cal temporal correlations (see (6.7)) is given by,

P (x|x0) =

∑

λ pλ Pλ(x0)Qλ(x)
∑

λ′ pλ′ Pλ′(x0)

=
∑

λ

pλ,x0 Qλ(x) (6.11)

where we have denoted pλ,x0 = pλ Pλ(x0)
∑

λ′ pλ′ Pλ′(x0)
. Note that

∑

λ pλ,x0 = 1, and

0 ≤ pλ,x0 ≤ 1.

Consider the relative entropy D(Px0||Qx0) of the probabilitiy distributions

Px0(λ, x) = pλ,x0 Qλ(x) and Qx0(λ, x) = pλ,x0 P (x|x0). Positivity of the relative

entropy leads to the following identification [143]:

D(Px0||Qx0) =
∑

λ

∑

x

pλ,x0 Qλ(x) log2

[

Qλ(x)

P (x|x0)

]

≥ 0

⇒ Hρ(X|x0) ≥
∑

λ

pλ,x0 H
(λ)
ρ (X) (6.12)

where H
(λ)
ρ (X) = −∑xQλ(x) log2Qλ(x). Thus, the average conditional in-

formation Hρ(X|X0) = −∑x0
P (x0) Hρ(X|x0), P (x0) =

∑

x P (x, x0) =
∑

λ pλ Pλ(x0) should obey the constraint

Hρ(X|X0) ≥
∑

x0

P (x0)
∑

λ

pλ,x0 H
(λ)
ρ (X)

≥
∑

λ

pλ H
(λ)
ρ (X), (6.13)
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Similarly, we obtain

Hρ(Z|Z0) ≥
∑

λ

pλH
(λ)
ρ (Z). (6.14)

Thus, the sum of conditional entropies are constrained by

Hρ(X|X0) +Hρ(Z|Z0) ≥
∑

λ

pλ[H
(λ)
ρ (X) +H(λ)

ρ (Z)]

= −2 log2 C(X,Z). (6.15)

In the second line of (6.15) we have employed the Maassen-Uffink relation

H
(λ)
ρ (X) +H

(λ)
ρ (Z) ≥ −2 log2 C(X,Z).

This identification reveals the crucial significance of quantum temporal

memory to achieve sharpened predictions of incompatible observables.

6.5 An example illustrating the reduction of uncertainty

due to temporal memory

We illustrate how temporal correlations assist in reducing the entropic spread

of non-commuting observables by considering an example of a spin-s quantum

rotor prepared initially in a state

ρ =
1

2s+ 1

s
∑

mz=−s
|s,mz〉〈s,mz| =

I2s+1

2s+ 1
.

Here |s,mz〉 are the simultaneous eigenstates of the squared spin operator

S2 = S2
x+S2

y +S2
z and the z-component of spin Sz (with respective eigenvalues

s(s+ 1) and mz); I2s+1 is the (2s+ 1)× (2s+ 1) identity matrix.

Measurement of non-commuting observables X = Sx and Z = Sz results in
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the probabilities of outcomes −s ≤ mx,mz ≤ s as,

P (mx) = Tr[ρΠmx
] =

1

2s+ 1
;P (mz) = Tr[ρΠmz

] =
1

2s+ 1

whereΠm denotes the projection operator of the corresponding observable. The

spread in the completely random measurement outcomes is revealed in terms

of the corresponding Shannon entropies of measurement Hρ(X) = log2(2s+ 1)

and Hρ(Z) = log2(2s+ 1), which obey the trade-off relation (6.2) – the largest

value of the uncertainty bound on the right hand side being log2(2s+ 1).

In order to identify how the EUR for Sx and Sz, assisted by prior condition-

ing, can reveal enhanced precision of the observables, we consider dynamical

evolution of the system governed by the Hamiltonian H = ω Sy. Under the

Hamiltonian dynamics, the evolution of z component of spin is given by

Sz(t) = eiSyωt Sz e
−iSyωt = Sz cos(ω t) + Sx sin(ω t)

We consider sequential measurement of Sz(t) at different times as follows:

In the first run, the observable Sz(t) is measured at time t = tx0 and conse-

quently at tx = π/2ω. This corresponds to sequential measurement of observ-

ables

X0 = Sz cos(ω tx0) + Sx sin(ωtx0) and X = Sx

with a dimensionless time separation θ = ωtx0 − π/2.

The sequential measurements enable the observer to record the temporal cor-

relation probabilities P (mx0,mx; θ) of the outcomes −s ≤ mx0,mx ≤ s of the

observables X0 = Sz(tx0) and X = Sx.

Then, in one more round of observations, Sz is measured sequentially at two
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different time instants tz0 and tz = π/ω.That is, a measurement of

Z0 = Sz cos(ω tz0) + Sx sin(ωtz0) and Z = Sz

separated by a dimensionless time parameter φ = ω tz0 − π is performed

and the correlation probabilities P (mz0,mz;φ) of the (2s + 1)2 outcomes

−s ≤ mz0,mz ≤ s are noted down.

The probabilities of sequential measurement outcomes of Sz(t) at two differ-

ent times tx0 and tx = π/2ω are given by [129],

P (mx0,mx; θ) = P (mx0; tx0)P (mx; tx|mx0; tx0)

= Tr[ρΠmx0
(tx0)]

Tr[Πmx0
(tx0)ρΠmx0

(tx0)Πmx
(tx)]

P (mx0; tx0)

=
1

2s+ 1
Tr[Πmx0

(tx0)Πmx
(tx)]

=
1

2s+ 1
|〈 s,mx0|e−iω(tx0−tx)Sy |s,mx〉|2

=
1

2s+ 1
| dsmx,mx0

(θ)|2 (6.16)

where Πm(t) = eiωtSy |s,m〉〈s,m| e−iωtSy is the projection opera-

tor measuring the outcome m of the spin component Sz(t); and

dsmx,mx0
(θ) = 〈s,mx|e−iθ Sy |s,mx0〉 are the matrix elements of the 2s + 1

dimensional irreducible representation of rotation [118] about y-axis by an

angle θ = ω(tx0 − tx).

The marginal probability associated with measuring Sz(tx0) is readily ob-

tained as

P (mx0; tx0) = Tr[ρΠmx0
(tx0)] =

1

2s+ 1

Similarly, the correlation probabilities in the second run of sequential mea-
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surements are obtained as, P (mz0,mz;φ) =
1

2s+1 | dsmz,mz0
(φ)|2 and the marginal

probabilities P (mz0; tz0) = 1/(2s+ 1).

The conditional entropies of measurement (which depend only on the time sep-

arations θ, φ) Hρ(X|X0) = H(θ) and Hρ(Z|Z0) = H(φ) are given by,

H(θ) = − 1

2s+ 1

∑

mx0
,mx

|dsmx0
,mx

(θ)|2 log2 |dsmx0
,mx

(θ)|2

H(φ) = − 1

2s+ 1

∑

mz0
,mz

|dsmz0
,mz

(φ)|2 log2 |dsmz0
,mz

(φ)|2.

(6.17)

We define a quantity Ms(θ, φ) as the difference between the sum of conditional

entropies and the Maassen-Uffink uncertainty bound −2 log2C(X,Z)

Ms(θ, φ) = Hρ(X|X0) +Hρ(Z|Z0) + 2 log2C(X,Z)

= H(θ) +H(φ) + 2 log2C(X,Z) (6.18)

in order to demonstrate improved precision in the measurement of the spin

components X = Sx and Z = Sz.

While a classical temporal side information results in Ms(θ, φ) being

necessarily positive, presence of a quantum temporal memory, created by

appropriate sequential measurements, can reveal itself in non-positive values of

Ms(θ, φ).

In Fig. 6.1, we have plotted the quantity Ms(θ, φ) as a function of θ and φ

for spin values s = 1/2, 1, 3/2 and 2. The results clearly demonstrate reduction

in the uncertainties of the non-commuting spin components Sx, Sz (in the

region where Ms is negative) – in the presence of a quantum temporal memory.

We note that the range of time-separation θ and φ, over which Ms assumes
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negative values, reduces with the increase of spin s – thus indicating a quantum

to classical transition of the temporal memory in the limit of large spin s.
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Figure 6.1: A contour plot of the quantity Ms(θ, φ) (defined by (6.18)) constructed based on
two runs of sequential measurements of the spin component Sz(t) of a quantum rotor, with
dimensionless time separations θ and φ for spin values s = 1/2, s = 1, s = 3/2, s = 2. Negative
values of Ms imply that the uncertainties about the outcomes of the spin components Sx, Sz

(conditioned on the information of outcomes of Sz(tx0), Sz(tz0) of prior measurements) get
reduced in the presence of quantum temporal memory. It may be seen that the range of values
of the dimensionless time-separation parameters θ and φ, over which Ms is negative, reduces
with the increase of spin s indicating a quantum to classical transition of temporal correlations.
All quantities are dimensionless.

6.6 Conclusions

Uncertainty principle reflects the inevitability inbuilt within the quantum

framework in realizing deterministic outcomes for non-commuting observables

of a particle. Entropic uncertainty relation [6] captures the trade-off in the

spread of the outcomes of incompatible observables. However, a deterministic

prediction is ensured when the particle is entangled maximally with another

party. Berta et al., [7] brought out the subtle interplay between uncertainty

and entanglement by extending the entropic uncertainty principle in the pres-

ence of quantum side information. In this work, we have explored the interesting

association between temporal correlations and uncertainty. Our entropic uncer-

tainty relation reveals that the presence of quantum temporal side information
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too plays a significant role in beating the uncertainty bound. More specifically,

our results offer a unified view that a prior quantum knowledge, achieved with

the help of suitable spatially/temporally separated observations, empower a

deterministic prediction of non-commuting observables.
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Chapter 7

Joint measurability, steering and

entropic uncertainty

There has been a surge of research activity recently on the role of joint measurability of

unsharp observables on non-local features viz., violation of Bell inequality and EPR steer-

ing. Here, we investigate the entropic uncertainty relation for a pair of non-commuting

observables (of Alice’s system), when an entangled quantum memory of Bob is restricted to

record outcomes of jointly measurable POVMs. We show that with this imposed constraint

of joint measurability at Bob’s end, the entropic uncertainties associated with Alice’s mea-

surement outcomes – conditioned by the results registered at Bob’s end – obey an entropic

steering inequality. Thus, Bob’s non-steerability is intrinsically linked with his inability in

predicting the outcomes of Alice’s pair of non-commuting observables with better precision,

even when they share an entangled state.

7.1 Introduction

In the classical domain, physical observables commute with each other and they

can all be jointly measured. In contrast, measurements of observables, which do

not commute are usually declared to be incompatible in the quantum scenario.

However, the notion of compatibility of measurements is captured entirely by

commutativity of the observables if one restricts only to sharp projective valued

(PV) measurements. In an extended framework, which include measurements
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of unsharp generalized observables, comprised of positive operator valued

measures (POVM), the concept of joint measurability gets delinked from that

of commutativity [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Though non-commuting

observables do not admit simultaneous sharp values through their corre-

sponding PV measurements, it is possible to assign unsharp values jointly to

compatible positive operator valued (POV) observables. Active research efforts

are dedicated [8, 10, 11, 12, 14, 144, 145, 18, 19] to explore clear, operationally

significant criteria for the joint measurability of two or more POVMs and also

to identify that incompatible measurements, which cannot be implemented

jointly, are necessary to bring out non-classical features. In this context, it

has already been recognized [8, 10, 11, 12, 14, 144, 18, 19] that if one merely

confines to local compatible POVMs on parts of an entangled quantum system,

it is not possible to witness non-local quantum features like steering (see

Chapter 1) and violation of Bell inequality. More specifically, incompatible

measurements are instrumental in bringing to surface the violations of various

no-go theorems in the quantum world.

Here, we investigate the entropic uncertainty relation associated with Al-

ice’s measurements of a pair of non-commuting discrete observables with d

outcomes, in the presence of Bob’s quantum memory [7] – by restricting to

compatible (jointly measurable) POVMs at Bob’s end. We first establish that

the sum of entropies of Alice’s measurement results, when conditioned by the

outcomes of compatible unsharp POVMs recorded in Bob’s quantum memory,

is constrained to obey an entropic steering inequality derived in [146, 147].

This essentially brings out the intrinsic equivalence between the violation of

an entropic steering inequality and the possibility of reducing the entropic

uncertainty bound of a pair of non-commuting observables with the help of an

entangled quantum memory. And as violation of a steering inequality requires
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[18, 19] that (i) the parties share a steerable entangled state and also that (ii)

the measurements by one of the parties (Bob) [148] is incompatible, it becomes

evident that information stored in Bob’s entangled quantum memory is of no

use in reducing the uncertainty of Alice’s pair of non-commuting observables,

when Bob can measure only compatible POVMs.

To this end, following the notion of joint measurability of POVMs al-

ready introduced in the introductory chapter and the Entropic uncertainty

relation for Alice’s pair of discrete observables in the presence of Bob’s quan-

tum memory discussed in Chapter 6, we show that when Bob is restricted to

employ only jointly measurable POVMs, it is not possible to achieve enhanced

precision for predicting Alice’s measurement outcomes, even if entangled state

is shared between them.

7.2 Joint Measurability

We begin by recollecting the brief outline of joint measurability of observables

in terms of POVMs. Mathematically, POVM is a set E = {E(x)} comprising

of positive self-adjoint operators 0 ≤ E(x) ≤ 1, called effects, satisfying
∑

xE(x) = I; x denotes the outcomes of measurement and I is the identity

operator. When a quantum system is prepared in the state ρ, measurement of

E gives an outcome x with probability p(x) = Tr[ρE(x)]. If {E(x)} is a set of

complete, orthogonal projectors, then the measurement reduces to the special

case of PV measurement.

A finite collection of POVMs E1,E2, . . . ,En is said to be jointly measur-

able (or compatible), if there exists a grand POVM G = {G(λ); 0 ≤ G(λ) ≤
1,
∑

λ G(λ) = I} from which the observables Ei can be obtained by post-
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processing as follows. Suppose a measurement of the global POVM G is carried

out in a state ρ and the probability of obtaining the outcome λ is denoted

by p(λ) = Tr[ρG(λ)]. If the effects Ei(xi) constituting the POVM Ei can

be obtained as marginals of the grand POVM G = {G(λ), λ ≡ {x1, x2, . . .},
(where λ corresponds to a collective index {x1, x2, . . .}) i.e., if there exists a

grand POVM G such that [12, 19, 149]

E1(x1) =
∑

x2,x3,...

G(x1, x2, . . . , xn)

E2(x2) =
∑

x1,x3,...

G(x1, x2, . . . , xn)

...

En(xn) =
∑

x1,x3,...

G(x1, x2, . . . , xn), (7.1)

the POVMs E1,E2, . . . ,En are said to be jointly measurable [8]. Thus, a

collection of compatible POVMs E1,E2, . . . ,En is obtained from a global

POVM G via post processing of the form (7.1). We emphasize once again that

compatibility of POVMs does not require their commutativity, but it demands

the existence of a global POVM.

More specifically, measurements of compatible POVMs Ei can be inter-

preted in terms of a single grand POVM G (i.e., given the positive numbers

p(xi|i, λ), one can construct the probabilities of measuring compatible POVMs

Ei solely based on the results of measurement of G, i.e,

p(xi|i) = Tr[ρEi(xi)] = Tr[ρ
∑

λ

p(xi|i, λ)G(λ)] =
∑

λ

p(λ) p(xi|i, λ).

Here, xi is the outcome of measuring the POV observable Ei(xi).)
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Reconciling to joint measurability within quantum theory results in sub-

sequent manifestation of classical features [19]. In particular, as measurement

of a single grand POVM can be used to construct results of measurements of all

compatible POVMs, joint measurability entails a joint probability distribution

for all compatible observables (though for unsharp values of the observables) in

every quantum state. Existence of joint probabilities in turn implies that the

set of all Bell inequalities are satisfied [73], when only compatible measurements

are employed. Wolf et al. [14] have shown that incompatible measurements of

a pair of POVMs with dichotomic outcomes are necessary and sufficient for

the violation of Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. Further,

Quintino et al. [18] and Uola et al. [19] have established a more general

result that a set of POVMs (with arbitrarily many outcomes) are not jointly

measurable if and only if they are useful for non-local quantum steering. It

is of interest to explore the limitations imposed by joint measurability on

quantum information tasks. In the following, we study the implications of

joint measurability on entropic uncertainty relation in the presence of quantum

memory.

7.3 Entropic uncertainty relation in the presence of

quantum memory

The Shannon entropies H(X) = −
∑

x p(x) log2 p(x), H(Z) =

−
∑

z p(z) log2 p(z), associated with the probabilities p(x) = Tr [ρEX(x)],

p(z) = Tr [ρEZ(z)] of measurement outcomes x, z of a pair of POV observables

X ≡ {EX(x)| 0 ≤ EX ≤ 1;
∑

x EX = I}, Z ≡ {EZ(z)| 0 ≤ EZ ≤ 1;
∑

z EZ =

I}, quantify the uncertainties of predicting the measurement outcomes in a

quantum state ρ. Trade-off between the entropies of observables X and Z in a

finite level quantum system is quantified by the Entropic Uncertainty Relation
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[6, 150]:

H(X) +H(Z) ≥ −2 log2 C(X,Z), (7.2)

where C(X,Z) = maxx,z ||
√

EX(x)
√

EZ(z)||. (Here, ||A|| = Tr[
√
A†A]).
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Figure 7.1: Alice and Bob decide on a pair of non-commuting observablesX, Z. Bob prepares an
entangled state ρAB and sends the subsystem A to Alice. Alice measures X or Z randomly and
conveys her choice to Bob. At his end, Bob measuresX′ or Z′ and predicts Alice’s outcomes. (a)
Alice and Bob both perform sharp measurements. In this case, Bob can predict Alice’s outcomes
with an enhanced precision, as the entropic uncertainty bound (see (7.4)) can be smaller than
−2 log2C(X,Z), when the conditional von Neumann entropy S(A|B) of the entangled state
ρAB is negative. (b) Alice performs sharp measurements of the chosen observables X or Z,
while Bob correspondingly records outcomes of compatible unsharp measurements of X′ or
Z′. In the joint measurability range of X′, Z′, Bob’s quantum memory fails to predict Alices
outcomes more precisely because the sum of entropies H(X|X′), H(Z|Z′) is constrained to obey
an entropic steering inequality: H(X|X′) +H(Z|Z′) ≥ −2 log2C(X,Z).

Consider the following uncertainty game [7]: two players Alice and Bob agree

to measure a pair of observables X and Z. Bob prepares a quantum state of his

choice and sends it to Alice. Alice measuresX or Z randomly and communicates
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her choice of measurements to Bob. To win the game, Bob’s initial preparation

of the quantum state should be such that he is able to predict Alice’s measure-

ment outcomes of the chosen pair of observables X or Z with as much precision

as possible, when Alice announces which of the pair of observables is measured.

In other words, Bob’s task is to minimize the uncertainties in the measurements

of a pair of observables X, Z that were agreed upon initially, with the help of

an optimal quantum state. The uncertainties of X, Z are bounded as in (7.2),

when Bob has only classical information about the state. On the other hand,

with the help of a quantum memory (where Bob prepares an entangled state

and sends one part of the state to Alice) Bob can beat the uncertainty bound

of (7.2).

The entropic uncertainty relation, when Bob possesses a quantum memory,

was put forth by Berta et al., [7]:

S(X|B) + S(Z|B) ≥ −2 log2C(X,Z) + S(A|B), (7.3)

where S(X|B) = S
(

ρ
(X)
AB

)

− S(ρB), S(Z|B) = S
(

ρ
(Z)
AB

)

− S(ρB) are the condi-

tional von Neumann entropies of the post measured states ρ
(X)
AB =

∑

x |x〉〈x| ⊗
ρ
(x)
B with ρ

(x)
B = TrA[ρAB(EX(x) ⊗ IB)] and ρ

(Z)
AB =

∑

z |z〉〈z| ⊗ ρ
(z)
B with

ρ
(z)
B = TrA[ρAB(EZ(z) ⊗ IB)], obtained after Alice’s measurements of X, Z on

her system. (Here, the measurement outcomes of the effects EX(x) (EZ(z))

are encoded in an orthonormal basis {|x〉} ({|z〉}) and the probability of

measurement outcome x (z) is given by p(x) = Tr[ρ
(x)
B ] (p(z) = Tr[ρ

(z)
B ]);

S(A|B) = S(ρAB) − S(ρB) is the conditional von Neumann entropy of the

state ρAB).

When Alice’s system is in a maximally entangled state with Bob’s quan-

tum memory, the second term on the right hand side of (7.3) takes the value

S(A|B) = − log2 d and as −2 log2C(X,Z) ≤ log2 d (which can be realized when

Alice employs pairs of unbiased projective measurements [151]), a trivial lower
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bound of zero is obtained in the entropic uncertainty relation. In other words,

by sharing an entangled state with Alice, Bob can beat the uncertainty bound

given by (7.2) and can predict the outcomes of a pair of observables X, Z with

improved precision by performing suitable measurements on his part of the

state.

Let us denote X′ or Z′ as the POVMs which Bob choses to measure, when

Alice announces her choice of measurements of the observables X or Z. The

uncertainty relation (7.3) can be recast in terms of the conditional entropies

[152] H(X|X′), H(Z|Z′) of Alice’s measurement outcomes of the observables

X, Z, conditioned by Bob’s measurements of X′, Z′. As measurements always

increase entropy i.e., H(X|X′) ≥ S(X|B), H(Z|Z′) ≥ S(Z|B), the entropic

uncertainty relation in the presence of quantum memory can be expressed in

the form [7]

H(X|X′) +H(Z|Z′) ≥ −2 log2C(X,Z) + S(A|B). (7.4)

On the other hand, the conditional entropies H(X|X′), H(Z|Z′) are con-

strained to obey the entropic steering inequality [146, 147],

H(X|X′) +H(Z|Z′) ≥ −2 log2C(X,Z) (7.5)

if Bob is unable to remotely steer Alice’s state by his local measurements. And,

as has been proved recently [18, 19], measurements at Bob’s end can result

in the violation of any steering inequality if and only if they are incompatible

(in addition that the state shared between Alice and Bob is entangled so as

to be steerable). In other words, the entropic inequality (7.5) can never be

violated if Bob’s measurements X′, Z′ are compatible. Violation of the steering

inequality (7.5) would in turn correspond to a reduced bound in the entropic

uncertainty relation (7.4) in the presence of quantum memory (reduction in the
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bound is realized when Alice and Bob share an entangled state with S(A|B) <

0). If Bob is constrained to perform compatible measurements on his system,

he cannot beat the uncertainty bound of (7.2) and win the uncertainty game

by predicting the outcomes as precisely as possible, even when he shares a

maximally entangled state with Alice (See Fig. 7.1).

7.3.1 An example

We illustrate the entropic uncertainty relation (7.3) for a pair of qubit observ-

ables X = |0〉〈1| + |1〉〈0| and Z = |0〉〈0| − |1〉〈1|, when Alice and Bob share a

maximally entangled two-qubit state |ψ〉AB = 1√
2
(|0A, 1B〉 − |1A, 0B〉). Alice

performs one of the sharp PV measurements

ΠX(x) =
1

2
(I+ xX) , x = ±1,

ΠZ(z) =
1

2
(I+ z Z) , z = ±1, (7.6)

of the observables X or Z randomly on her qubit and announces her choice

of measurement, while Bob tries to predict Alice’s outcomes by performing

unsharp compatible measurements of the POVMs {EX′(x′), x′ = ±1} or

{EZ′(z′), z′ = ±1} on his qubit. The effects EX′(x′),EZ′(z′) (corresponding

to binary unsharp measurements of the observables X′, Z′) are given by,

EX′(x′) =
1

2
(I+ η x′X′) ,

EZ′(z′) =
1

2
(I+ η z′Z′) , (7.7)

where x′, z′ are the measurement outcomes and 0 ≤ η ≤ 1 denotes the unsharp-

ness of the fuzzy measurements. Clearly, when η = 1, the POVM elements

EX′(x′), EZ′(z′) reduce to their corresponding sharp PV versions (see (7.6))

ΠX′(x′),ΠZ′(z′).

The joint probabilities p(x, x′) (or p(z, z′)) of Alice’s sharp outcome x (or z)
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and Bob’s unsharp outcome x′ (or z′), when they both choose to measure the

same observable X (or Z) at their ends, is obtained to be,

p(x, x′) = 〈ψAB|ΠX(x)⊗ EX(x
′)|ψAB〉

=
1

4
(1− η x x′))

p(z, z′) = 〈ψAB|ΠZ(z)⊗ EZ(z
′)|ψAB〉

=
1

4
(1− η z z′)) (7.8)

While the right-hand side of the entropic uncertainty relation (7.4) reduces to

zero in this case, the left-hand side can be simplified (see [152]) to obtain,

H(X|X′) +H(Z|Z′) = −
∑

x,x′=±1

p(x, x′) log2 p(x|x′)−
∑

z,z′=±1

p(z, z′) log2 p(z|z′)

= 2H[(1 + η)/2] (7.9)

where H(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy. As the

binary entropy function H[(1 + η)/2] vanishes only when η = 1, the trivial

lower bound of the uncertainty relation (7.4) can be reached if Bob too performs

sharp PV measurements of the observables X and Z at his end. In other words,

Bob can predict the outcomes of Alice’s measurements of X and Z precisely

when he employs sharp PV measurements of the same observables. But sharp

measurements of X and Z are not compatible. The joint measurability of the

unsharp POVMs {EX(x
′)} and {EZ(z

′)} sets the limitation [8, 12] η ≤ 1/
√
2

on the unsharpness parameter (see Appendix B).

If Bob confines only to the joint measurability range 0 ≤ η ≤ 1/
√
2, the

entropic steering inequality (7.5)

H(X|X′) +H(Z|Z′) ≥ 1 (7.10)

is always satisfied [153]. In turn, it implies that Bob cannot beat the entropic
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uncertainty bound of (7.2) – even with the help of an entangled state he shares

with Alice – if he is constrained to employ jointly measurable POVMs.

The result demonstrated here in the specific example of d = 2 (qubits)

holds in principle for any d dimensional POVMs. An illustration in the d

dimensional example, however, requires that the compatibility/incompatibility

range of the unsharpness parameter η is known. However, optimal values of

the unsharpness parameter (η) of a set of POVMs is known only for qubits

(See Appendix B).

7.4 Conclusion

Measurement outcomes of a pair of non-commuting observables reveal a trade-

off, which is quantified by uncertainty relations. Entropic uncertainty relation

[6] constrains the sum of entropies associated with the probabilities of outcomes

of a pair of observables. An extended entropic uncertainty relation [7] brought

out that it is possible to beat the lower bound on uncertainties when the system

is entangled with a quantum memory. In this Chapter, we have explored the

entropic uncertainty relation when the entangled quantum memory is restricted

to record the outcomes of jointly measurable POVMs only. With this constraint

on the measurements, the entropies satisfy an entropic steering inequality [146].

Thus, we identify that an entangled quantum memory, which is limited to record

results of compatible POVMs, cannot assist in beating the entropic uncertainty

bound.
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Chapter 8

Conclusions and future directions

Finally, I form the overall conclusions and possible future directions based on

the work carried out as a part of this thesis. I have tried to explore founda-

tional notions like locality, macro-realism, non-contextuality, uncertainty, in

terms of the underlying structure of probabilities, based on the theoretical

perspective of quantum information. Starting from the observation of the

reflection of the uncertainties in the classical realm, in the classical limit, when

the (intrinsically statistical) quantum mechanical wave function is paralleled

to the corresponding classical ensemble but not to an individual particle, I

have formulated the entropic version of the Leggett-Garg inequality. This is

the first time that entropic considerations have been applied to study macro

realism. Furthermore, I have worked on the framing of the necessary and

sufficiency criterion for the non-classicality of the probability distributions

arising in the various (quantum) temporal and spatial scenarios in terms of the

moment matrix and moment inversion tests. The precision guaranteed in the

measurement of two non-commuting observables when they are sequentially

measured on a single quantum system due to the presence of temporal

correlations is captured in the Chapter 6. Lastly, the interplay amongst the

concepts of uncertainty, quantum steering and joint measurability is also
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explored wherein we have shown that the presence of the tradeoff term in the

entropic uncertainty relation (calculated on an entangled state) is attributed to

the projective measurements (measurement incompatibility) and would vanish

if jointly measurable set of POVMs are employed.

Further, as part of the future work, we would like to explore Quasi Probability

Distributions(QPD) of discrete non-commuting observables using the moments

of their compatible POVMs. Quantum mechanical QPDs have been developed

for non-commuting observables based on different operator correspondence

rules. As they can assume negative values, one cannot treat them as true

probabilities from the point of view of classical probability theory. Neverthe-

less, these functions offer a classical-like perspective of quantum scenario. We

would like to investigate how bona fide joint probability distributions result

when the POVMs turn out to be compatible.

Furthermore, we wish to investigate quantum thermodynamic work dis-

tribution function and the associated Crooks-Jarzynski fluctuation relation

(and hence the second law of thermodynamics) when the initial and final

energy measurements are compatible. This study sheds light on the emergence

of classicality from a quantum scenario, when joint measurability is invoked.

We also plan to investigate contextuality, nonlocality, uncertainty relations

and information theoretic quantum thermodynamics aspects based on the joint

probability distributions, within the purview of joint measurability.
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Appendix A

Joint Probability Distribution for

observables

A.1 Joint probability distribution for a pair of commut-

ing observables

Consider two commuting observables A and B, whose eigenvalues are denoted

respectively by a, b. Quantum mechanics predicts the joint probability of ob-

taining the outcomes a, b (in an arbitrary quantum state ρ) as,

p(a, b) = p(a) q(b|a)
where p(a) = Tr[ρΠa], q(b|a) = Tr[Πa ρΠaΠb]/p(a), (A.1)

and Πa = |a〉〈a|,Πb = |b〉〈b| are complete, orthogonal eigen projectors of A

and B; further, for commuting observables A and B, we have simultaneous

eigenstates, and so, we have, ΠaΠb = Πa δa,b.
(

A small digression about joint (sequential) projective measurement is pre-

sented here: A projective measurementΠa on a state ρ reduces it to ρa = |a〉 〈a|.

ρ
Πa

−−−−−−−−−−−−−−→ Πa ρΠa

Tr(ρΠa)
.
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Here, Tr(ρΠa) is the normalization factor which is the probability of obtaining

the corresponding eigenvalue a, i.e, p(a) = Tr(ρΠa). A second consecutive

measurement Πb takes the state to ρb = |b〉 〈b|.

ρ
Πa

−−−−−−−→ Πa ρΠa

Tr(ρΠa)

Πb

−−−−−−−→ ΠbΠa ρΠaΠb

Tr(ρΠa)
Tr(Πa ρΠa Πb)

Tr(ρΠa)

The joint probability distribution of obtaining the values a and b is given by

p(a, b) = Tr(ρΠa)
Tr(Πa ρΠaΠb)

Tr(ρΠa)

= p(a)q(b|a)

as is given by (A.1)
)

Substituting in Eq.(A.1), we obtain,

p(a, b) = p(a) δa,b (A.2)

It may be noted that the joint probabilities satisfy the required properties:

∑

b

p(a, b) =
∑

b

p(a) δa,b = p(a),

∑

a,b

p(a, b) =
∑

a,b

p(a) δa,b =
∑

a

p(a) = 1,

∑

a

p(a, b) =
∑

a

p(a)δa,b = p(b)

p(a, b) = p(a) q(b|a) = p(b) q(a|b).

Clearly, p(a, b) 6= p(a) p(b) and so, the outcomes a, b are correlated.

We may express the joint probabilities (A.1) as a convex sum of the product
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form,

p(a, b) =
∑

a′

p(a′) δa′,a δa′,b (A.3)

where p(a′) takes the role of hidden variable probability and δa′,a ( δa′,b) are

the individual probabilities for the outcomes a (b) in the statistical ensemble

with p(a′) as the weight factor. (Note that p(a′) = Tr[ρΠa′] = 〈a′|ρ|a′〉. If the

density matrix is in a common eigenstate |a′〉 of A, B, then p(a′) = 1 and the

joint probability is then in a simple form p(a, b) =
∑

a′ δa′,a δa′,b = δab.)

A.2 Joint probability distribution for a pair of non-

commuting observables

Let us consider non-commuting operatorsA andB. The joint probability p(a, b)

for measuring A first and then B is given by,

p(a, b) = p(a) q(b|a)
where p(a) = Tr[ρΠa], q(b|a) = Tr[Πa ρΠaΠb]/p(a) = |〈a|b〉|2.

Thus p(a, b) = p(a) |〈a|b〉|2. (A.4)

On the other hand if we measure B first and then A, we obtain,

p(b, a) = p(b) q(a|b)
where p(b) = Tr[ρΠb], q(a|b) = Tr[Πb ρΠbΠa]/p(b) = |〈a|b〉|2.

Thus p(b, a) = p(b) |〈a|b〉|2. (A.5)

Unlike classical probabilities, here, p(a, b) 6= p(b, a) in general. Only in the case

p(a) = p(b), we have both p(a, b) = p(b, a).

According to Bayes rule, q(a|b) = p(a, b)/p(b) and q(b|a) = p(a, b)/p(a).
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And notice from (A.4) and (A.5) that the conditional probabilities are equal:

q(b|a) = q(a|b). For Bayes rule to hold, we must have, p(a) = p(b). In other

words p(a, b) = p(b, a). This is not true in general in quantum scenario!
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Appendix B

Derivation of the pairwise and

triplewise measurability bounds

Consider a set of N POVMs {Ek(xk) =
1
2(I+ η xk σ · nk); k = 1, 2, . . . N ; xk =

±1} (where 0 ≤ η ≤ 1 denotes unsharpness parameter; 0 ≤ Ek(xk) ≤ I and
∑

xk
Ek(xk) = I for all k.

The Necessary condition for joint measurability of these POVMs is given in

more detail in [145]. We only provide a statement of the theorem whose proof

can be seen in [145].

Theorem: The qubit POVMs {Ek(xk) =
1
2(I+η xk σ·nk)); k = 1, 2, . . . N ; xk =

±1} are compatible when

η ≤ 1

N
max

x1,x2,...,xN |mx1,x2,...,xN | (B.1)

where

mx1,x2,...,xN =
N
∑

k=1

nk xk (B.2)

and |mx1,x2,...,xN | denotes the magnitude of the vector; in (B.1) ’maximum’ is

picked from the magnitudes of all 2N vectors mx1,x2,...,xN .
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In the example of two orthogonal orientations n1, n2 such that n1 · n2 = 0 we

find that

η ≤ 1

2
max

x1,x2=±1 |(n1 x1 + n2 x2)|

=
1

2
max

x1,x2=±1

√
2 + 2 x1 x2 n1 · n2

i.e., η ≤ 1√
2
.

In the example of three orthogonal orientations n1, n2,n3; n1·n2 = 0 = n2·n3 =

n1 · n3, we find that

η ≤ 1

3
max

x1,x2,x3=±1 |(n1 x1 + n2 x2 + n3 x3)|

=
1

3
×

√
3

i.e., η ≤ 1√
3
.

For trine axes n1, n2,n3, n1 ·n2 = n2 ·n3 = −n1 ·n3 = cos(π/3), we obtain the

compatiblity condition

η ≤ 1

3
max

x1,x2,x3=±1 |(n1 x1 + n2 x2 + n3 x3)|

=
1

3
max

x1,x2,x3=±1

√

3 + 2 cos(π/3) (x1 x2 + x2 x3 − x1 x3)

i.e., η ≤ 2

3
.
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