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A lattice version of the driven inelastic Maxwell gas is studied in one dimension with periodic boundary
conditions. Each site i of the lattice is assigned with a scalar “velocity,” v;. Nearest neighbors on the lattice
interact, with a rate ‘EC_I, according to an inelastic collision rule. External driving, occurring with a rate 7, L
sustains a steady state in the system. A set of closed coupled equations for the evolution of the variance and the
two-point correlation is found. Steady-state values of the variance, as well as spatial correlation functions, are
calculated. It is shown exactly that the correlation function decays exponentially with distance, and the correlation
length for a large system is determined. Furthermore, the spatiotemporal correlation C(x,t) = (v;(0)v;4,(¢)) can
also be obtained. We find that there is an interior region —x* < x < x*, where C(x,¢) has a time-dependent form,
whereas in the exterior region |x| > x*, the correlation function remains the same as the initial form. C(x,?)
exhibits second-order discontinuity at the transition points x = +x*, and these transition points move away from

the x = 0 with a constant speed.
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I. INTRODUCTION

It is well known that for a system of interacting particles
in thermal equilibrium, the velocities of different particles
are completely uncorrelated and the joint distribution of the
velocities is given by the product of independent single-particle
Maxwell distributions. On the other hand, when a system is
driven out of equilibrium, for example through application
of a temperature gradient, nonzero correlations can build up
between the velocities of particles [1]. An important class
of nonequilibrium systems is driven dissipative systems. An
example of a dissipative system is granular gas, which, in
the absence of an external supply of energy, loses energy
continuously due to inelastic collisions. In the presence of
external driving, for example in vibrated granular systems,
one can obtain nontrivial steady states [2-8]. A signature
of nonequilibrium in this system is that the single-particle
velocity distribution is no longer Maxwellian. It is thus
interesting to ask about the nature of correlations among
the velocities in this system. We investigate this question
in a simple lattice model of an inelastic gas in one dimen-
sion. We calculate the exact form of the spatial correlation
function of velocity for this model in its driven steady
state.

The presence of correlations in granular gases has been
observed in unforced [9-12] as well as forced granular gases
[13-20]. Different models studying unforced granular gasses
observed power-law behavior in the spatial correlation func-
tions [9—11]. In an early numerical study of a one-dimensional
granular gas, driven by uncorrelated white noise, Williams
and Mackintosh [13] observed for the density correlation
function a power-law behavior when the inelasticity is large.
An analytical study [15] of a similar system of inelastic gas
also found long-range correlations in density and velocity
in the large-N limit for finite inelasticities. Hydrodynamic
analysis of inelastic hard-sphere systems driven by white noise
[16] proposed correlations with logarithmic and power-law
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(1/x) form, respectively, for two and three dimensions, which
agreed with simulations in the near elastic regimes. In an
experimental study of a granular gas on an inclined plane and
driven by a vibrating wall at the bottom, Blair and Kudrolli [17]
also observed a power-law decay in the steady-state velocity
correlations with the exponent ranging from 1.2 to 2 with
decreasing system size.

In contrast, in an experiment on a two-dimensional granular
gas driven by a rough vibrating plane, Prevost et al. [18] found
an exponential decay in the spatial correlation of the velocities
of the particles. The authors argued that the difference between
their results and the previous ones was due to the different
driving schemes used. In particular, the driving in the analytical
studies was modeled as diffusive driving, with the rate of
change of velocity due to driving equated to uncorrelated
white noise. However, the authors in [18] argue that the
driving from the wall should also be treated as inelastic
momentum-nonconserving collisions, which suppresses long-
range correlations. To account for the different dissipation
mechanisms, Gradenigo et al. [19] considered driving with
a phenomenological viscous term, in addition to the white
noise. Assuming the separation of time scales between the
collisions and driving, they obtained an exponential form for
the velocity correlations that agreed with the experimental
observations. In the present work, considering a specific model
of a dissipative gas, we try to understand the correlations in the
case in which one does not have a time-scale separation. Also,
unlike the previous models in which the driving is done by an
Ornstein-Uhlenbeck noise (driving with the viscous term), we
consider driving by wall-like collisions that is motivated by
the experimental systems.

The system in which we are interested is an inelastic gas
living on a one-dimensional lattice. In the model, a scalar
velocity is ascribed to each lattice point. The velocities at
each point change as they interact, according to the rules
of inelastic collisions. As in one-dimensional (1D) models
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of granular gas with nearest-neighbor collisions, here the
interactions are among the nearest-neighbor points on the
lattice. The model has been effective in describing the various
qualitative features of cooling 1D granular gases, such as
long-range correlations and the appearance of shocks in the
system [10]. The model has also been of recent interest in
developing a hydrodynamic description of granular fluids in
cooling [20,21] as well as boundary-driven steady states [22].
In the driven model presented here, in addition to the inelastic
collision between nearest neighbors, each site has independent
external driving.

Considering any nearest-neighbor interaction occurring
with equal rates, we derive an exact set of coupled equations for
the evolution of the variance of the single-particle distribution
and the correlation functions for the system. Such a closure
has been observed before for a system of Maxwell gas [23],
where spatial correlations were ignored. The set of equations
allows one to characterize the steady-state properties for a
driven system. For instance, the coupled relations can be used
to find out whether the system goes to a steady state or not
for various values of the parameters in the driven system. One
of our main results is the exact functional behavior of the
spatial correlation function of the velocity field, which shows
an exponential decay at large distances. We also obtain the
spatiotemporal correlation function, and we find that it shows
a second-order discontinuity.

Similar models have been studied before [24-27] in the
context of granular gases as well as in the broader context
of driven dissipative systems. In these studies, each site has
an energy instead of a momentum variable associated with it.
Inelastic collisions are represented in the model by changing
the energy of a randomly chosen particle to a fraction of the
sum of its energy and that of any of its nearest neighbors. In
addition, there is dissipation and drive from a reservoir at each
site or at the boundary. In the model considered here, one
has pairwise momentum-conserving and energy-dissipative
exchanges between neighboring particles, and it represents
a somewhat more natural extension of the Maxwell model to
incorporate spatial correlations [10,20-22].

The outline of the paper is as follows. First, in Sec. II we
introduce the model of Maxwell-like gas on a lattice with the
rules of interaction and driving. The time evolution of the
velocity distribution involves a hierarchy of equations as seen
in the kinetic theory of granular gases. Later in Sec. III, an exact
evolution of the variance and two-point correlation functions is
calculated for the system. This helps us to characterize the time
evolution of the system. In Sec. IV, we derive an exact formula
for the steady-state variance and the equal-time correlation
between the velocity variables at different sites. Using this,
one obtains an asymptotic functional form for the correlation
functions for a large system. We also show the extension of
the above model where a collision between a pair occurs only
when the left particle has a larger velocity than the right one,
which mimics the real systems. Since this is difficult to solve
analytically, we use direct simulation results to compare it
with the model without such a constraint. As for the equal-
time correlations, a set of equations for the spatiotemporal
correlations are calculated in Sec. V. We summarize our results
in Sec. VI. The details of some of the analysis are given in the
Appendix.
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II. THE MODEL

We consider a one-dimensional lattice of N sites (i =
1,2, ...,N) with periodic boundary conditions (N + i = i).
Each lattice site i is associated with a real scalar variable
v;, which one calls the “velocity.” It should be kept in mind
that this velocity does not correspond to any motion in
the system. The system evolves in time ¢ as follows: each
nearest-neighbor pair (i,i + 1) interacts with each other with
arate T ! according to the inelastic collision rule

v = evf + (1 — e,
+1 )

vier = (1 = &)v] +evfy,

where (v/',v}, ) and (v;,v;+1), respectively, are the precollision
and postcollision velocities of the two interacting particles.
Here ¢ = (1 — r)/2, with r being the coefficient of restitution.
For r = 1 the collisions are elastic while » < 1 corresponds to
inelastic collisions. While for physical systems, r € (0,1), one
may consider the entire range r € (—1,1) as a well-defined
mathematical model of a dissipative gas.

In addition to the binary interparticle interaction, each
particle is driven with a rate 7! according to

v = —ry U 41, )

where r,, is the coefficient of restitution of the wall particle
collision with n taken to be Gaussian noise with variance o
and zero mean, acting up on each particle independently and
uncorrelated in time. The above driving is motivated from the
collisions of the particle with a vibrating wall. The velocities
of the particle v} and the vibrating wall V. upon collision
change to new velocities v; and V,,, respectively, which satisfy
arelation (v; — V) = —r, (v} — V). Considering a massive
wall so that V,, &~ V¥, one can obtain Eq. (2) by substituting
(1 +r,)V, by a random noise 1. As explained before, for
a Maxwell gas it is useful to extend the driving Eq. (2) for
negative values of r,, such that r,, € [—1,1].

Note that r,, = —1 [together with the limit of V,, - oo
while keeping n = (1 +r,)V,, finite] corresponds to the
addition of Gaussian white noise [2,13], which breaks the
conservation of momentum of the system, unlike the inelastic
interparticle collisions. However, this causes an overall dif-
fusion of the center of mass of the system and results in the
energy of the system increasing linearly with time [23]. This
was noted in [28], where the authors add additional terms in
their driving mechanism to ensure conservation of momentum.

For —1 < ry, < 1, the system reaches a nontrivial steady
state [23]. Note that 0 < r, < 1 mimics collisions of the
particle with a vibrating wall. The driving scheme given by
Eq. (2) at a certain limit becomes an Ornstein-Uhlenbeck
process [23].

III. EQUAL-TIME CORRELATIONS

Let us define the equal-time correlations %; ;(f) =
(vi(H)v;(¢)). To get the equation for the time evolution of
%; (1), we follow standard procedures [29] to use Egs. (1)
and (2) and average over all possible events occurring between
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times ¢ and ¢t 4 dt. In the limit dt — 0, we get

dxi, [“A Zb]E for |i — j| > 1
=|=A, — ;. for i —j| > 1,
dt 272 o T
d%i i1 a as
T —[(1 +¢&)a +2b1Z; ;41 + E[Ei—l,iﬂ + Xl + j[zi,i + Zipiv1ls 3
dy;; a(l —¢)

7”’ = [—a(l+&) = b(l = r)ITi; + =

where Cy = 02/1,,

[Zic1ic1 + Ziqriv] +ealZi i1 + X 1] + Co,

a=2(1—¢)/t,and b = (1 +ry)/Ty, 4)

with b,a > 0 for the allowed value parameters. In the limit of vanishing drive (b — 0), these equations reduce to Egs. (11)—(14)
in [20] [after taking the continuous-time limit, making the identifications r — «, L~ > T 1 and Yi+ki = Ci, and making the
correction (1 — o) — (1 — @?)/2 in Eq. (12) in that paper]. Here A, is the discrete two-dimensional Laplacian operator defined
by AvY j =i+ 21 + X 41+ X j—1 —4%; ;. We note that 3; ; = X; ;. We now consider translationally invariant
initial conditions such that X; ;(t) = X(|i — j|,#). We then get

d
2 =—-AZO+C, o)

where Z(¢) = [Z2(0,1),2(1,1), ..., 2(n,0)]", n = N/2 or (N + 1)/2, respectively, for N even and odd, and the matrix A is an

(n+ 1) x (n + 1) tridiagonal matrix of the form

[2ea + b(1 — ry)] —2¢ea
—ga [(1 + ¢&)a + 2b]
—a
A=
0

and the column vector C has (n + 1) dimensions with the only
nonzero element Cy = o2 /Tw. The set of equations (3) can
be derived alternatively from the BBGKY hierarchy for the
distributions, as explained in Appendix A.

The evolution of Z(¢) can be exactly calculated from Eq. (5),
which is shown in Fig. 1 along with the numerical simulation.
One can also consider a Maxwell gas with the rate that depends
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FIG. 1. The evolution of X (x,f) forx = 0,1,2,3 for a 10-particle
system with r =1/2, r, =1/2, 0 =1, and 7. =1, = 1. The
triangles depict the same system with the constraint that only those
pairs with positive relative velocity will collide.
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on the average kinetic energy of the system. However, the
steady-state properties in both cases follow the same statistics.
Further, one can extend the lattice model in the following
way. Instead of allowing the interaction [Eq. (1)] to occur
with a global rate, one can consider it to occur between the
chosen nearest-neighboring pair only if their relative velocity
(v; — v;41) is positive. The condition, which is referred to as
kinematic constraint [10,30], prevents collision if the velocities
correspond to a “receding” pair. We have not been able to
obtain a closed set of equations for this system. One can obtain
the evolution of the correlations from direct simulation, and
this is plotted in Fig. 1. One finds that the behavior of the
system with the kinematic constraint is different from that
without the constraint.

IV. STEADY-STATE PROPERTIES

It suffices to know the eigenvalues of A to see whether the
system goes to a steady state or not. Consider the special case
of r, = —1, where the matrix has a simpler form with » = 0.
It can be shown that for r,, = —1 the determinant of the matrix
A vanishes, and so no steady state exists (see Appendix B 1).
On the other hand, for r, # —1 the eigenvalues are positive
(see Appendixes B 2 and B 3), which indicates that the system
goes to a steady state in this limit.

The steady-state values can be obtained by solving Eq. (5)
with the left-hand side equated to zero. The elements of Zg,
the steady-state correlation vector, X (x) = X(x,t — 00), are
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obtained from
Zo =A"IC. (7)

Here x = |i — j| denotes the separation between lattice points,
which takes integer values. Only the first column of the matrix
A~! suffices to calculate all the elements as

T(x) = Ao /1. (8)

Calculation of A;Ol is easy due to the tridiagonal nature of A=,
The explicit formula for x = 0 follows as

- a n— —(n—
A = oy l2e = (1= olE" 457070

_ [s[nfz] 4 s*[n*ZJ]} 9)
forx =1,2,...,n:
-1 ea" _ —(n—
0= Al s (10)

where
c=(1+b/a) and s=(c++c2-1). (11)

As b and a take positive values, ¢ and s will always be greater
than or equal to 1 (equal to 1 when r,, = —1). The determinant
of the matrix A, denoted as det A, has the form

detA = a" ™K [s"" 457V = Ko[s" 72 45772,
(12)
where K|, K, are functions of (g,c,r,,) given by
Ky =2e+(c— Dlde + (1 —ry)(A+6)]+2(c — 1> (1 = ry),
Ky =2+ 1 —ry)c—1). (13)

For a large system, one can calculate the asymptotic form of
the correlation function X (x). To do this, let us rearrange
Eq. (10) to obtain

_, &a's"

A — —X —(2n—x) . 14
W = o [T s (14)
As s > 1, in the large-n limit Eq. (14) becomes
_, ea"s" .
= ) 15
x0 det A [S ] ( )

Similarly, from Eq. (12), for large n, det A can be shown to
have the form

detA = a" V" [Kies™! — Kps72). (16)

Thus in the large-n limit, Xs(x) has the following form:

25 = Bexp(—xIns), (17a)

ES
B = . 17b
20— (=) Ky — K) (17

This shows that the system has a finite correlation length
& = 1/Ins. In Fig. 3, we plot the asymptotic form [Eq. (17)]
along with the numerical [Eq. (8)] and simulation results. By
expanding Ins near s = 1, one can see that the correlation

length & diverges as 1/+4/(1 + r,) when r,, approaches —1
from above.
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FIG. 2. The velocity distribution of a 50-particle system with
r=1/2,r,=1/2,0 =1,7. = 1, and t,, = 1. The solid line shows
the Gaussian with variance calculated for the system. One can see the
deviation from Gaussian.

The probability distribution function (PDF) of the velocity
at the sites can be obtained from direct simulations. In Fig. 2,
the velocity PDF is plotted as red circles. The non-Maxwellian
nature of the PDF is shown by comparing it with a Gaussian
(black solid line) function, which has the same variance as that
of the PDF.

As indicated before, the above analysis cannot be done
for a system with the kinematic constraint. The steady-state
correlation Xg(x) for a system with the constraint is obtained
from simulation and is plotted in Fig. 3. The correlation in
this case is not the same as that of the model without the
constraint. As it is difficult to obtain X (x) for higher x values
from simulations, the characteristics of the function are not
clear.
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+ exact N=50
simulations N=10
~a x exact N=10
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e
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0 10 20
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FIG. 3. Steady-state values of X(x) for the simulation of 10-
and 50-particle systems with withr = 1/2,r, =1/2,0 = 1,7, =1,
and t,, = 1. The rate of collision is independent of the variance. The
exact analytical results, given by Eq. (8), are shown by the + symbol
for N =50 and x for N = 10. The asymptotic expression (17) is
represented by the solid green line. The triangles show simulation
results for the case in which particles collide only when their relative
velocity is positive.
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V. TWO-TIME CORRELATIONS

By proceeding as in the equal-time case in Sec. III, it is
easy to obtain the equations of motion for the time-dependent
correlation functions defined by C; ;(¢) = (v;(#)v;(0)), where
the average is over the dynamics. The translation invariance
of the system means that C;;(t) = C(i — j,t). We get the
following equation for C(x,t):

dC(x,t) [a
=[5a1-blcwn, 18
7 A (x,1) (18)
where AC(x,t) =Cx + 1,t) = 2C(x,t) + C(x — 1,2).
Taking the limit N — oo and defining the Fourier
transform

Clg.t)y=) e C(x.1).

we get the following solution:
C(q.1) = exp{=[b +a(l — cos It}Clg,t = 0),  (19)
where

Clg.t=0)=) e Clx,t =0). (20)

From Eq. (17) we have C(x,t = 0) = Bexp(—|x|/&), which
gives
s2—1

Cgt=0=B———.
(q ) s24+1—2scosq

21

Therefore, the two-time correlation function can be obtained
as

1 (7 ~ ,
C(x,t) = ﬂ/ C(g.t)e " dg = Be " Ci(x,1), (22)

where C;(x,t) is given by
Ci(x = Lat,t)

(s =1) [T exp{—[(1 —cosq) + igt]at} J
2 ), s2+1—2scosq 4

(23)

It immediately follows from the above integral that
Ci(—x,t) = Ci(x,t). Therefore, in the following, we consider
the case x > 0. For large ¢, the above integral can be evaluated
by the saddle-point method, which suggests the form

Ci(x = Lat,t) ~ e~ 41O, (24)
|

(s> —1)
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The saddle point is given by

g*=—iln[t + 1+ £2], (25)

which lies on the negative imaginary g axis. However, before
proceeding with the saddle-point calculation, we note that the
integrand has a simple pole on the negative imaginary ¢ axis
at go = —i Ins (there is also another one at +i In s that does
not interfere with the saddle-point calculation). Now, for £ <
s2-1 /(2s) the saddle point lies between the origin and gj.
Therefore, the contour of integration can be taken through the
saddle point without crossing the pole. On the other hand, for
> (s2— 1)/(2s), the pole lies between the origin and the
saddle point. Therefore, in this case the dominant contribution
to the integral comes from the pole. Thus the function /() is
given by

(26)

Ii(¢) for £ < £*,
1(¢) =
L) for £ > £*,

where £* = (s — 1)/(2s), and
I1(0) = (1 —cosq™) +iqg*t 27

— (1 =1+ +eme+V1+2] (28

and
L) = (1 —cosqp) +iqol 29)
= —(b/a)+ Llns, 30)

where we have used the simplification (s — 1)?/(2s) = (b/a).
It is easy to check that 7(£) has a second-order discontinuity
at{ = £*, thatis, I;(£*) = L(£*) and I{(£*) = I;(£*), whereas
IV (€*) # L) (€*). It is interesting to note that similar disconti-
nuities of the rate function have been found recently in various
other contexts [31-34]. It follows from Egs. (22), (24), and
(30) that for |x| > £*t, we have

C(x,t) ~ Be W5 = C(x,r = 0). (31)

Therefore, while for |x| < £*¢ the correlation function depends
on time, for |x| > £*¢ it still retains the initial form. Such a
dynamical transition has been found recently in a different
context [34]. The physical reason is that in both of these
systems, disturbances take a finite time to propagate from one
point to another.

Finally, following the method used in Ref. [32], we can also
write down a more complete asymptotic form of C;(x,?) for
large t as

Ci(x = Lat,t) ~

—atl(£)
V2rat [(1 + VA (s2 4+ 1 — 254/1 + £2)

sgn(f — £*) i|
V2[L(0) — L(0)]

+ e~ RO [e(e — ") — %sgn(ﬂ — 0% erfey/at[1;(€) — 12(15)]}, (32)

where [;(£) and I;(£) are given by Eqs. (28) and (30), respectively.
Figure 4 compares the above result with the exact C;(x,#) obtained by numerically integrating Eq. (23) and finds perfect

agreement between the two.
As a special case, we find for large ¢ the form

C(0,¢) ~ B(S+—1)e_bt 33)
’ (s — 1)\/271at'
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107}
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107}

Cix="tat,1)

FIG. 4. The points are obtained by numerically integrating
Eq. (23), whereas the solid line represents the analytical form given
by Eq. (32). The parameters used are 7. =1, =1, r =r, = 1/2,
and t = 10. These correspond to @ = b = 3/2 and s = 2+ +/3. The
vertical dashed lines plot the location of 4£*, where £* = /3.

Thus there is an exponential decay as a function of time with
a 1/4/t prefactor.

VI. CONCLUSION

In this work, we studied a simple model for driven inelastic
gas in one dimension for which we find the equal-time spatial
velocity correlation functions as well as two-time correlation
functions in the steady state. The equal-time correlations decay
exponentially in space. An interesting finding is that there
exists a velocity [*a such that the decay of correlations does

J

Jat

+1,! |:f dv; Py(v;,){8(vi — [=ryv] +miD)y — Pl(v“t)}’

ot
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not propagate beyond a distance |x| = [*at, which leads to a
second-order dynamical transition in the spatiotemporal corre-
lation function. Such transitions have never been discussed in
the context of granular physics, and therefore this study opens
up a new direction of research in granular physics. Hopefully,
in future experiments, such transitions could be observed in
real granular systems.

We also obtain the condition for the existence of a steady
state for the model. Experimental studies on granular gases
driven by wall collisions have found an exponential decay
for the spatial correlation functions of velocity [18,19].
Simple but exact models such as the one introduced here may
facilitate a better understanding of the observed features. It
will be interesting to study the nature of correlations in other
models of granular systems with different interactions and
driving mechanisms.
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APPENDIX A: BBGKY hierarchy

Here we show that the equations for the correlations Eq. (3)
can also be derived by starting from the BBGKY hierarchy
for the distribution functions. Let P;(v;,t) be the one-point
probability distribution function for the site i to have the
velocity variable v; at time ¢. Similarly, let P,(v;,v;1,t) be the
two-site probability distribution function for the sites i,i + x
to have velocities v;,v;, at time ¢. Similarly defined is the
three-site probability distribution function P3(v;—p,V;,Vityx)
({m,x} are integers less than N). For the dynamics in Eqgs. (1)
and (2), one can immediately write a set of evolution equation
for the distributions as

0 _ _
—Pi(vi,t) =7 [/ dvi 1 T (i, vi11) P2 (v, v 41,1) + T(Uilsvi)Pz(Uilvvi»t):|

(Ala)

3 (= _
— PV, vigx,t) = T 1{T(vi,vi+x)P2(vi,vi+x,t)5x,1 +/dvi—lT(vi—l,vi)P.%(Ui—l,Ui,vi+x,l‘)

+ |:/ dvi1 T (V;,0i11) P3(Vi, Vi1, Vi s 1) + / dvi-&-x—lT(Ui-#—x—l,Ui+x)P3(vi,Ui+x—l,Ui+xat)](1 —8x1)

+ /dvi+x+lT(vi+xavi+x+l)P3(Uivvi+sti+x+l’t)} + Twl|:/ dv; Py (v] v, (8 (v; — [—rwv] + 1))y

+/dvl-*+x Po(vi, 0] (8 (Vir — [—rwf + Nia])) s — 2Pz(vi,v,~+x,t)],

and so on. Here, T(U,‘,Uj) is defined as T(U,‘,U_I‘)S(Ui,vj) =
r’IS(v;“,vj) — S(vi,vj), and it acts only on the two variables
designated by the arguments of the 7" operator. Also, §; ; is

(Alb)

(

the Kronecker delta function. The evolution of the distribution
functions thus involves a hierarchy of equations. The solution
would require a closure of this hierarchy. As for the Maxwell
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particles [23], one may ask whether there exists such a closure
in terms of the variance and two-point correlation functions
for the one-dimensional lattice gas also.

We calculate the evolution of the function X(x,t) by
multiplying v;v;4, and integrating over v; and v;y,. This
results in the closed set of equations for ¥ given in Eq. (3).

APPENDIX B: EXISTENCE OF STEADY STATES FOR
VARIOUS VALUES OF r,, FOR THE INELASTIC GAS
ON A 1D LATTICE

1. Absence of a steady state when r,, = —1

Here, we show that the correlation vector Z(¢), which
evolves according to Eq. (5), does not have a steady state
when r,, = —1. To show this, we observe the properties of
the eigenvalues of the matrix A [Eq. (6)]. We note that when
ry = —1, the parameter b is equal to zero and the tridiagonal
matrix A has a simpler form [Eq. (B1)]. We denote this matrix
by A(}" w = 1)’

A(rw = _1)

2¢e —2¢
— (1+¢) -1 0
-1 2 -1

0 -1 2 -1
-2 2
(BI)

The determinant of the above (n + 1)th-order matrix denoted
as det A(r, = —1) can be shown to satisfy the relation when
n>2:

detA(r, = —1) = 2ea™'[det A’

n—1

—detA! ,], (B2)

where detA; is the determinant of A}, which is a matrix of
order k € N, and it has the form given below,

2 -1

A= o . ®3)

0 -1 2 -1
-2 2

One can find det A}, as follows. Let us denote detA; = D;. It
can be shown to satisfy the relation

Dy —2D;_;+ Dj_, =0. (B4)

Using the boundary conditions D] = 2, D} = 2, the solution
of Eq. (B4) can be easily obtained as D; = det A} = 2. Substi-
tuting this in Eq. (B2), we obtain the result det A(r, = —1) =
0. This shows that at least one of the eigenvalues is zero, which
implies the lack of a steady state for the system.

2. The presence of a steady state when |r,| < 1

Consider the matrix A [Eq. (6)] when r,, # —1. We can
use Gershgorin’s circle theorem [35] to predict the range of
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the eigenvalues of the matrix A. The theorem states that any
eigenvalue A of the matrix A should satisfy the condition

A —Aul <D 1Ayl i=012...n.  (BS)
J#i
From the first row of A, we find that
A —[2ea + b(1 — ry)]| < 2ea, (B6)

which says A —b(l —r,) > 0. Similarly for i > 1, using
Eq. (BS) we obtain the result A —2b > 0. Thus all the
eigenvalues are strictly greater than zero as b > 0. This proves
that when |r,,| < 1, the system goes to a steady state.

3. The presence of a steady state when r,, = 1

When r, = 1, Gershgorin’s circle theorem provides the
inequalities A > 0 from the first row of A(r, = 1) and
A — 2b > 0from the other rows of A(r,, = 1), to be satisfied by
the eigenvalues A of A(r,, = 1). The above observations show
that the eigenvalues of A(r, = 1) will satisfy the condition
A > 0. But if the system goes to a steady state, the eigenvalues
should be strictly positive. This is true if the determinant
det A(r, = 1) # 0. We show this in the following.

As we are interested in the large system case, we consider
a system with n > 2. For the system, one can show as before
that det A(r,, = 1) satisfies the equation

detA(r, = 1) = 2ea""'[(2c — 1)detA]_, — detA!_,],
(B7)
where A} is a k x k matrix given by
2¢ -1
-1 2¢ -1 0
-1 2¢ -1
Ay = . . . . (BY)
0 -1 2¢ -1
-2 2

We define the determinant det A] = D,’. From Eq. (BS8), one
can show that D, satisfies the equation

D} —2¢D] ,+ D} ,=0, k=34,...  (B9)

with ¢ =1 4 b/a. The exact form of D] can be found by
solving the difference equation using the initial conditions
D} = 2c, DY = 4c* — 2. The general solution for Eq. (B9)
has the form

D} = As* + Bs™, (B10)

with s = ¢ + +/c? — 1. Using the initial conditions, the exact
form of Dy is found as

D} =s*+57~ (B11)
Substituting det A} = (s* + s7%) in Eq. (B7), one gets
det A(ry = 1) = 2ea" V(1 +2b/a)[s" "V +57"7V]
_ [s(n—Z) + s—(n—Z)])' (B12)
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One can rewrite Eq. (B12) as
detA(r, = 1)

= 28a("+1){[5("1) _ S(nfz) + Si(nil) _ S*(ﬂ*Z)]

2b
+ ="+ s_("_l)]}. (B13)
a

Note that s > 1. The material within the first set of square
brackets on the right-hand side of Eq. (B13) can be rewritten

PHYSICAL REVIEW E 95, 022115 (2017)

as

1 1

-1 _ (-2 _ — (23 _ S
|:S § +S(n71) S(nZ):| (s 1)Sn7

-1
1

>0
(B14)

for s > 1 and n > 2. As the term in the second set of square
brackets in Eq. (B13) is a positive-definite quantity, the right-
hand side of Eq. (B13) will be nonzero. So the determinant of
A(r, = 1) is nonzero.
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