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Velocity distribution of a driven inelastic one-component Maxwell gas
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The nature of the velocity distribution of a driven granular gas, though well studied, is unknown as to whether
it is universal or not, and, if universal, what it is. We determine the tails of the steady state velocity distribution
of a driven inelastic Maxwell gas, which is a simple model of a granular gas where the rate of collision between
particles is independent of the separation as well as the relative velocity. We show that the steady state velocity
distribution is nonuniversal and depends strongly on the nature of driving. The asymptotic behavior of the velocity
distribution is shown to be identical to that of a noninteracting model where the collisions between particles are
ignored. For diffusive driving, where collisions with the wall are modeled by an additive noise, the tails of the
velocity distribution is universal only if the noise distribution decays faster than exponential.
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I. INTRODUCTION

Granular matter, constituted of particles that interact
through inelastic collisions, exhibit diverse phenomena such
as cluster formation, jamming, phase separation, pattern
formation, static piles with intricate stress networks, etc. [1–5].
Its ubiquity in nature and in industrial applications makes it
important to understand how the macroscopically observed
behavior of granular systems arises from the microscopic
dynamics. A well-studied macroscopic property is the velocity
distribution of a dilute granular gas. While several studies
(see below) have shown that the inherent nonequilibrium
nature of the system, induced by inelasticity, could result in
a non-Maxwellian velocity distribution, they fail to pinpoint
whether the velocity distribution is universal, and if yes, what
its form is. In this paper, we focus on the role of driving in
determining the velocity distribution within a simplified model
for a granular gas, namely, the inelastic Maxwell model.

Dilute granular gases are of two kinds: freely cooling in
which there is no input of energy [6–16], or driven, in which
energy is injected at a constant rate. In the freely cooling
granular gas, the velocity distribution at different times t

has the form P (v,t) � v−1
rmsf (v/vrms), where v is any of the

velocity components, vrms(t) is the time-dependent root-mean-
square velocity, and f is a scaling function. vrms(t) decreases in
time as a power law vrms(t) ∼ t−θ . To determine the behavior
of f for large argument, it was argued that the contributions
to the tails of the velocity distributions are from particles that
do not undergo any collisions, implying an exponential decay
of P (v,t) with time t [12]. Thus, f (x) ∼ exp(−ax1/θ ), or
P (v,t) ∼ e−av1/θ t for large v. It is known that at initial times,
the granular particles remain homogeneously distributed with
θ = 1 [6], leading to P (v,t) having an exponential decay in
all dimensions. At late times they tend to cluster, resulting
in density inhomogeneities with current evidence suggesting
θ = d/(d + 2) [9,12,15], where d is the spatial dimension.

In dilute driven granular gases, the focus of this paper, the
system reaches a steady state where the energy lost in collisions
is balanced by external driving. Several experiments, simu-
lations, and theoretical studies have focused on determining

the steady state velocity distribution P (v). In experiments,
driving is done either mechanically [17–24] through collision
of the particles with vibrating wall of the container or by
applying electric [25] or magnetic fields [26] on the granular
beads. Almost all experiments find the tails of P (v) to be
non-Maxwellian and described by a stretched exponential form
P (v) ∼ exp(−avβ) for large v. Some of these experiments
find P (v) to be universal with β = 3/2 for a wide range of
parameters [21,24]. In contrast, other experiments [20,23] find
P (v) to be nonuniversal with the exponent β varying with the
system parameters, sometimes even approaching a Gaussian
distribution (β = 2) [20].

In numerical simulations, driving is done either from the
boundaries [8,27], which leads to clustering, or homoge-
neously [28–31] within the bulk. In simulations of a granular
gas in three dimensions, driven homogeneously by addition of
white noise to the velocity (diffusive driving), it was observed
that β = 3/2 for large enough inelasticity [29]. However,
similar simulations of bounded two-dimensional granular
gases with diffusive driving found a range of distributions in
the steady state, with β ranging from 0.7 to 2 as the parameters
in the system are varied [30,31].

Theoretical approaches have been of two kinds: kinetic
theory or by studying simple models which capture essential
physics but are analytically tractable. In kinetic theory [32],
the Boltzmann equation describing the evolution of the
distribution function is obtained by truncating the BBGKY
hierarchy by assuming product measure for joint distribution
functions. While it is difficult to solve this nonlinear equa-
tion exactly, the deviation of the velocity distribution from
Gaussian can be expressed as a perturbation expansion using
Sonine polynomials [11,32–34]. This approach describes the
velocity distribution near the typical velocities. The tails of
the distribution can be obtained by linearizing the Boltzmann
equation [11,35,36]. Notably, for granular gases with diffusive
driving, this leads to the prediction P (v) � C exp(−b|v|β) with
β = 3/2 for large velocities, independent of the coefficient of
restitution, strongly suggesting that the velocity distribution is
universal [11].
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The alternate theoretical approach is to study a simpler
model like the inelastic Maxwell gas, in which spatial coor-
dinates of the particles are ignored and each pair of particles
collide at a constant rate [10]. For the freely cooling Maxwell
gas in one dimension, the velocity distribution has a power law
tail with exponent 4 [37]. In higher dimensions, the velocity
distribution decays as a power law but with an exponent that
depends on dimension and coefficient of restitution [38–40].
In contrast, for a diffusively driven Maxwell gas, in which
collisions with the wall are modeled by velocities being
modified by an additive noise, it was shown that P (v) has
a universal exponential tail (β = 1) for all coefficients of
restitution [41–43]. However, it has been recently shown
[44,45] that when the driving is diffusive, the velocity of
the center of mass does a Brownian motion, and the total
energy increases linearly with time at large times. Thus, the
system fails to reach a time-independent steady state, making
the results for diffusive driving valid only for intermediate
times when a pseudo-steady state might be assumed. This
drawback may be overcome by modeling driving through
collisions with a wall, where the new velocity v′ of a particle
colliding with a wall is given by v′ = −rwv + η, where rw is
the coefficient of restitution for particle-wall collisions, and η

is uncorrelated noise representing the momentum transfer due
to the wall [44] (diffusive driving corresponds to rw = −1). For
this dissipative driving (|rw| < 1), the system reaches a steady
state, and the velocity distribution was shown to be Gaussian
when η is taken from a normalized Gaussian distribution
[44]. If η is described by a Cauchy distribution, the steady
state P (v) is also a Cauchy distribution, but with a different
parameter [44].

Thus, while the velocity distribution for the freely cooling
granular gas is universal and reasonably well understood, it has
remained unclear whether the velocity distribution of a driven
granular gas is universal. Also, if the velocity distribution
is non-Maxwellian, a clear physical picture for its origin
is missing. Intuitively, it would appear that the tails of the
velocity distribution would be dominated by particles that
have been recently driven and not undergone any collision
henceforth. This would mean the P (v) cannot decay faster
than the distribution of the noise associated with the driving.
If this reasoning is right, the noise statistics should play a
crucial role in determining the velocity distribution, making
it nonuniversal. How sensitive is P (v) to the details of the
driving? In particular, how does P (v) behave for large v for
different noise distributions �(η)? We answer this question
within the Maxwell model, both for dissipative driving (0 �
rw < 1) as well as the pseudo-steady state for diffusive driving
(rw = −1). In particular, we show that the tail statistics are
determined by the noise distribution for dissipative driving. For
the pseudo-steady state in diffusive driving, we find that the
velocity distribution is universal if the noise distribution decays
faster than exponential and determined by noise statistics if the
noise distribution decays slower than exponential.

The rest of the paper is organized as follows. In Sec. II we
define the Maxwell model and its dynamics more precisely. In
Sec. III the steady state velocity distribution of the system are
determined by studying its characteristic function as well as
the asymptotic behavior of ratios of successive moments. In
particular, we obtain the velocity distribution for a family of

stretched exponential distributions for the noise. The results
for dissipative driving may be found in Sec. III A and those for
diffusive driving in Sec. III B. In Sec. IV the exact solution of
the noninteracting problem is presented. Section V contains a
summary and discussion of results.

II. DRIVEN MAXWELL GAS

Consider N particles of unit mass. Each particle i has
a one-component velocity vi , i = 1,2, . . . ,N . The particles
undergo two-body collisions that conserve momentum but
dissipate energy, such that when particles i and j collide,
the postcollision velocities v′

i and v′
j are given in terms of the

precollision velocities vi and vj as

v′
i = (1 − r)

2
vi + (1 + r)

2
vj ,

v′
j = (1 + r)

2
vi + (1 − r)

2
vj , (1)

where r ∈ [0,1] is the coefficient of restitution. For energy-
conserving elastic collisions, r = 1. In the Maxwell gas,
the rate of collision of a pair of particles is assumed to
be independent of their relative velocity. This simplifying
assumption makes the model more tractable as the spatial
coordinates of the particles may now be ignored.

The system is driven by input of energy, modeled by
particles colliding with a vibrating wall [44]. If particle i

with velocity vi collides with the wall having velocity Vw,
the new velocities v′

i , V ′
w respectively satisfy the relation

v′
i − V ′

w = −rw(vi − Vw), where the parameter rw is the
coefficient of restitution for particle-wall collisions. Since the
wall is much heavier than the particles, V ′

w ≈ Vw, and hence
v′

i = −rwvi + (1 + rw)Vw. Since the motion of the wall is
independent of the particles and the particle-wall collision
times are random, it is reasonable to replace (1 + rw)Vw by a
random noise η, and the new velocity v′

i is now given by [44]

v′
i = −rwvi + ηi. (2)

In this paper, we consider a class of normalized stretched
exponential distributions for the noise η,

�(η) = a
1
γ

2�
(
1 + 1

γ

) exp(−a|η|γ ), a,γ > 0, (3)

characterized by the exponent γ . Note that there is no a priori
reason to assume that the noise is Gaussian as the noise is not
averaged over many random kicks.

The system is evolved in discrete time steps. At each step, a
pair of particles are chosen at random and with probability p,
they collide according to Eq. (1), and with probability (1 − p),
they collide with the wall according to Eq. (2). We note that
evolving the system in continuous time does not change the
results obtained for the steady state.

We also note that though the physical range of rw is [0,1],
it is useful to mathematically extend its range to [−1,1]. This
makes it convenient to treat special limiting cases in one
general framework. For instance, when rw = −1, the driving
reduces to a random noise being added to the velocities,
corresponding to diffusive driving. In this case, the system
reaches a pseudo-steady state before energy starts increasing
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linearly with time for large times [44,45]. When rw �= −1,
the system reaches a steady state that is independent of
the initial conditions. In the limit rw → −1, and rate of
collisions with the wall going to infinity, the problem reduces
to an Ornstein-Uhlenbeck process [45]. The case rw = 1 is
also interesting. When rw = 1, the structure of the equations
obeyed by the steady state velocity distribution is identical to
those obeyed by the distribution in the pseudo-steady state of
the Maxwell gas with diffusive driving (rw = −1) [44].

III. STEADY STATE VELOCITY DISTRIBUTION

We use two diagnostic tools to obtain the tail of the
steady state velocity distribution: (1) by directly studying
the characteristic function of the velocity distribution and (2)
by determining the ratios of large moments of the velocity
distribution.

In the steady state, due to collisions being random, there
are no correlations between velocities of two different particles
in the thermodynamic limit. We note that for finite systems,
there are correlations that are proportional to N−1 [44]. The
two-point joint probability distributions can thus be written
as a product of one-point probability distributions. It is then
straightforward to write

P (v,t + 1) = p

∫∫
dv1 dv2P (v1,t)P (v2,t)

× δ

[
1 − r

2
v1 + 1 + r

2
v2 − v

]
+ (1 − p)

×
∫∫

dη dv1�(η)P (v1,t)δ[η − rwv1 − v],

(4)

where the first term on the right-hand side describes the
evolution due to collisions between particles and the second
term describes the evolution due to collision between particles
and wall. In the steady state, the velocity distributions become
time independent, and we use the notation lim t→∞ P (v,t) =
P (v). Equation (4) is best analyzed in the Fourier space. Let the
characteristic function of the velocity distribution be defined
as

Z(λ) = 〈exp(−iλv)〉. (5)

It can be shown from Eq. (4) that Z(λ) satisfies the relation
[44]

Z(λ)=pZ

(
[1 − r]λ

2

)
Z

(
[1 + r]λ

2

)
+ (1 − p)Z(rwλ)f (λ),

(6)

where f (λ) ≡ 〈exp(−iλη)〉η. Equation (6) is nonlinear and
nonlocal (in the argument of Z) and is not solvable in
general. But it is possible to numerically obtain the probability
distribution for certain choices of the parameters.

When r = 0 and rw = 1/2, Eq. (6) takes the form

Z(λ) = p

[
Z

(
λ

2

)]2

+ (1 − p)Z

(
λ

2

)
f (λ),

r = 0, rw = 1

2
. (7)

Thus, Z(λ) is determined if Z(λ/2) is known. By iterating
to smaller λ, and considering the initial value Z(λ) = 1 −
λ2〈v2〉/2 for small λ, one can use this recursion relation to
calculate characteristic function for any value of λ. Here 〈v2〉
may be calculated exactly [see Eq. (9)]. The velocity distri-
bution may be obtained from the inverse Fourier transform of
Z(λ).

When rw = 1, Eq. (6) allows the tail statistics of P (v) to
be determined exactly. In this case, the characteristic function
satisfies the relation

Z(λ) = pZ([1 − r]λ/2)Z([1 + r]λ/2)

[1 − (1 − p)f (λ)]
, rw = 1. (8)

Equation (8) may be iteratively solved to obtain an infinite
product involving simple poles. The behavior of the velocity
distribution for asymptotically large velocities is determined
by the pole closest to the origin and has the form P (v) ∼
exp(−λ∗|v|), where λ∗ is determined from 1 − (1 − p)f (λ) =
0 [44]. When r = 0, the iterative numerical scheme discussed
above for dissipative driving may be followed for determining
the characteristic function for the diffusive case.

The dynamics [Eqs. (1) and (2)] also allows the calculation
of the moments of the steady state distribution. For the
Maxwell model, it was shown that the equations for the
two-point correlation functions close [44,45]. The closure
can be also extended to one-dimensional pseudo Maxwell
models where particles collide only with nearest neighbor
particles with equal rates [46]. Using this simplifying property,
the variance of the steady state velocity distribution in the
thermodynamic limit was determined to be

〈v2〉 = 2κσ 2

1 − r2 + 2κ
(
1 − r2

w

) , (9)

where κ = (1 − p)/p and σ 2 is the variance of the noise distri-
bution. On the other hand, the two-point velocity correlations
in the steady state vanishes in the thermodynamic limit.

Among the higher moments, the odd moments vanish as
the velocity distributions is even. Define 2n-th moment of the
distribution to be 〈v2n〉 = M2n. The evolution equation for M2n

may be obtained by multiplying Eq. (4) by v2n, and integrating
over the velocities. It is then straightforward to show that they
satisfy a recurrence relation[

1 − ε2n − (1 − ε)2n + κ
(
1 − r2n

w

)]
M2n

=
n−1∑
m=1

(
2n

2m

)
ε2m(1 − ε)2n−2mM2mM2n−2m

+ κ

n−1∑
m=0

(
2n

2m

)
r2m
w M2mN2n−2m, (10)

where ε = (1 − r)/2 and Ni is the i-th moment of the noise
distribution. Equation (10) expresses M2n in terms of lower
order moments. Since P (v) is a normalizable distribution,
M0 = 1. Also M2 is given by Eq. (9). Knowing these two
moments, all higher order moments may be derived recursively
using Eq. (10).

The ratios of moments may be used for determining the tail
of the velocity distribution. Suppose the velocity distribution
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FIG. 1. The numerically calculated velocity distribution P (v),
obtained from the inverse Fourier transform of the characteristic
function Z(λ), for different noise distributions as described in Eq. (3)
with (a) γ = 1/2, (b) γ = 1, (c) γ = 2, and (d) γ = 3 for a = 3. P (v)
is computed for rw = 1/2 (dissipative driving) and rw = 1 (diffusive
driving) and compared with the noise distribution.

is a stretched exponential,

P (v) = b1/β

2�(1 + β−1)
exp(−b|v|β), b,β > 0, (11)

where � is the Gamma function. For this distribution the 2n-th
moment is

M2n = b−2n/β
�

(
2n+1

β

)
β�

(
1 + 1

β

) (12)

such that that the ratios for large n is

M2n

M2n−2
≈

(
2n

bβ

)2/β

, n � 1. (13)

Though Eq. (13) has been derived for the specific distribution
given in Eq. (11), the moment ratios will asymptotically obey
Eq. (13) even if only the tail of the distribution is a stretched
exponential. This is because large moments are determined
only by the tail of the distribution. Thus, the exponent β can
be obtained unambiguously from the asymptotic behavior of
the moment ratios.

A. Dissipative driving (rw < 1)

We first evaluate the velocity distribution numerically by
inverting the characteristic function Z(λ). For this calculation,
f (λ), the Fourier transform of the noise distribution in Eq. (3),
is determined numerically using Eq. (7). Figure 1 shows the
velocity distributions obtained for γ = 1/2, 1, 2, 3 for fixed
a = 3 [see Eq. (3) for definition of a]. For the case rw = 1/2,
corresponding to dissipative driving, the velocity distribution
P (v) approaches the noise distribution for large velocities for
all values of γ . This suggests that the tail of the distribution
is determined by the characteristics of the noise. However,
using this method, it is not possible to extend the range of v to
larger values so that the large v behavior may be determined
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(d) γ =3

n4 n2

n2/3(c) γ =2
n

FIG. 2. The moment ratios [see Eq. (13)] for different noise
distributions as described in Eq. (3) with (a) γ = 1/2, (b) γ = 1,
(c) γ = 2, and (d) γ = 3 for a = 3. In each panel the ratios are
plotted for r = 1/4,1/2, as well as rw = 1/4,1/2, corresponding to
dissipative driving. These are compared with the moment ratios of
the noninteracting system in which collisions are ignored, as well as
the noise distribution (dashed green line).

unambiguously. The range of v is limited by the precision to
which f (λ) can be determined numerically.

The ratios of moments [see Eq. (13)] is a more robust
method for determining the tail of the velocity distribution. The
moments are calculated from the recurrence relation Eq. (10),
where the moments of the noise distribution described in
Eq. (3) is given by

N2n = a−2n/γ
�

(
2n+1

γ

)
γ�

(
1 + 1

γ

) . (14)

The numerically obtained moment ratios of the steady state
velocity distribution for dissipative driving is shown in
Fig. 2, for different noise distributions characterized by γ .
The moment ratios increase with n as a power law with
an exponent 2/γ , independent of the value of rw and the
coefficient of restitution r . Comparing with Eq. (13), we
obtain β = γ , and the tail of the velocity distribution is
determined by the noise distribution. We also compare the
results with those for driven noninteracting particles. Here
collisions between particles are completely ignored so that
the time evolution of particles are independent of each other,
and each particle is driven independently. For the range of
parameters, considered, the moment ratios of the interacting
system is asymptotically indistinguishable from that of the
noninteracting system, showing that for dissipative driving
collisions between particles do not affect the tails of the
velocity distribution. The moment ratios are also compared
with those of the noise distribution. Here we observe that
while the ratios have the same power law exponent, prefactor
may be different.

We now determine the constant b in the exponential in
Eq. (11). It may be determined from Eq. (13) once β is
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FIG. 3. The coefficient b(n) obtained from Eq. (15) for (a) γ =
1/2 and (b) γ = 2 varies linearly with n−1 for dissipative driving
rw < 1. The choice of r and rw is the same in both plots and labeled
in (b). The corresponding b(n) obtained for the noninteracting system
are also shown. The variation of b = b(∞) with rw is shown for
(c) γ = 1/2, (d) γ = 1, (e) γ = 2, and (f) γ = 3.

determined. Rearranging Eq. (13), we obtain

b(n) ≈ 2n

β

(
M2n

M2n−2

)−β/2

, n � 1. (15)

Figures 3(a) and 3(b) show the variation of b(n) with n for
different γ . We find that for large n, b(n) is independent of
coefficient of restitution r , but may depend on rw. Also, we
find that b − b(n) ∼ n−1 for all values of γ , where b = b(∞).
Figures 3(c)–3(f) show the variation of b with rw for different
γ . For γ = 1/2 and 1, b is independent of rw, while for γ = 2
and 3, it depends on rw. We have checked that b is independent
of rw for γ up to 1. For γ � 1, we find that the value of
b approaches the value a = 3 that characterizes the noise
distribution �(η). When γ = 2, the data for b is described
by a(1 − r2

w), corresponding to the tails of the velocity
distribution being described by a Gaussian distribution with
variance [2a(1 − r2

w)]−1, as was shown earlier in Ref. [44].
In Figs. 3(c)–3(f), the values of b are also compared with
that obtained for a noninteracting system in which collisions
between particles are ignored. We find that the values of b for
both the interacting and noninteracting system coincide.

B. Velocity distributions for diffusive driving

The Maxwell gas with diffusive driving (rw = −1) does not
have a steady state in the long time limit, when the total energy
diverges. However, it has a pseudo-steady state solution that
is valid at intermediate times. On the other hand when rw = 1
the system reaches a steady state at large time. It has been
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FIG. 4. The moment ratios [see Eq. (13)] for different noise
distributions as described in Eq. (3) with (a) γ = 1/2, (b) γ = 1,
(c) γ = 2, and (d) γ = 3 for a = 3. The data are for rw = 1 (diffusive
driving), and the ratios are plotted for r = 1/4 and 1/2. These are
compared with the noise distribution (dashed green line). In panels
(b), (c), and (d), we also plot moment ratios for the exponential
distribution with analytically obtained value of λ∗ [see Eqs. (16) and
(17)].

shown that the velocity distribution in the pseudo-steady state
for the case rw = −1 is the same as the velocity distribution
in the steady state of the system with rw = 1 [44]. For
rw = 1 and η taken from a Gaussian distribution, the velocity
distribution was shown to have an exponential distribution
[44]. In this section, we determine this steady state for other
noise distributions.

In Fig. 1 the numerically obtained P (v) is shown for
different values of γ . We find that for γ = 1/2,1 the velocity
distribution approaches the noise distribution. Interestingly,
when γ = 2,3 the velocity distribution deviates significantly
from the noise distribution. While the data for ln P (v) appear
to vary linearly with v, the range is limited and it is not
possible to unambiguously conclude that P (v) is exponential,
independent of the noise distribution.

As for the dissipative case, the better tool to probe the tail
of the distributions is the moment ratios [Eq. (13)]. Figure 4
shows that moment ratios increase with n as a power law. The
power law exponent is 2/γ for γ < 1 [see Fig. 4(a)] and equal
to 2 for γ � 1 [see Figs. 4(b)–4(d)]. Thus, we conclude that
β = min[γ,1]. Thus, P (v) is universal and has an exponential
tail for γ � 1.

The exact form of the universal exponential tail can be
analytically obtained as follows. If the velocity distribution
has the form P (v) = (λ∗/2) exp(−λ∗|v|), the moment ratio in
the large n limit behaves as M2n/M2n−2 ≈ (4n2 − 2n)/(λ∗)2.
But we have seen in Sec. III that, for diffusive driving,
Eq. (8) satisfies a solution such that the velocity distribution
is determined by the pole nearest to the origin ±iλ∗ obtained
from relation 1 = (1 − p)f (λ). When γ = 1,2 the pole has
the form given by

λ∗ = ±a
√

p, γ = 1, (16)
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FIG. 5. The variation of the coefficient b(n) with n obtained from
Eq. (15) for diffusive driving rw = 1 and for different values of r ,
for different noise distributions characterized by (a) γ = 1/2, (b)
γ = 1, (c) γ = 2, and (d) γ = 3. The dashed line corresponds to the
analytically obtained asymptotic value λ∗ [see Eqs. (16) and (17)].

λ∗ = ±
√−2 ln(1 − p)

σ
, γ = 2. (17)

When γ = 3, we obtain a complicated hypergeometric func-
tion for f (λ) from which λ∗ may be determined numerically.
The moment ratios thus obtained are plotted in Figs. 4(b)–4(d),
which match the numerically calculated moment ratio. It can
be seen that when γ < 1, there is no λ∗ which satisfies the
relation 1 = (1 − p)f (λ).

From Eq. (15), we obtain the coefficient b for the diffusively
driven system, which is shown in Fig. 5. It is seen that
when γ < 1, the coefficient b(n) approaches that of the noise
distribution a = 3. For γ � 1, b is calculated by substituting
β = 1 in Eq. (15). One finds in this case that b approaches λ∗,
which is obtained analytically.

IV. NONINTERACTING SYSTEM

We showed in Sec. III A that, for dissipative driving, the
tail of the velocity distribution P (v) is identical to that of a
noninteracting system in which collisions between particles
may be ignored. In this section, we determine the velocity
distribution of the noninteracting system in terms of the noise
distribution. In the noninteracting system, the particle is driven
at each time step. If vn is the velocity after the n-th collision,
then

vn = −rwvn−1 + ηn−1. (18)

For a particle that is initially at rest (v0 = 0),

vn =
n−1∑
m=0

rm
w ηn−m−1 =

n−1∑
m=0

rm
w ηm, (19)

where the second equality is in the statistical sense and follows
from the fact that noise is uncorrelated and therefore the order
is irrelevant.

Now, consider the moment-generating function of the
noise distribution, 〈exp(−λη)〉 ≡ exp[μ(λ)], where μ(λ) is the

cumulant-generating function,

μ(λ) ≡
∞∑
i=1

λ2n

2n!
C2n, (20)

where C2n is the 2n-th cumulant of the noise distribution. It
has been assumed that the noise distribution is symmetric such
that only even cumulants are nonzero. The moment-generating
function of the velocity after infinite time steps is

〈exp(−λv∞)〉η =
〈

exp

[
−λ

∞∑
m=0

rm
w ηm

]〉
η

,

= exp

[
−

∞∑
m=0

μ(rm
w λ)

]
. (21)

From the definition of μ(λ) [see Eq. (20)], we obtain

μ(rm
w λ) =

∞∑
n=1

(rm
w λ)2n

2n!
C2n. (22)

Summing over m,

∞∑
m=0

μ(r2m
w λ) =

∞∑
m=0

∞∑
n=1

(rm
w λ)2n

2n!
C2n,

=
∞∑

n=1

λ2n

2n!

(
1

1 − r2n
w

)
C2n. (23)

But 〈exp(−λv∞)〉 = exp [ξ (λ)] where ξ (λ) is the cumulant-
generating function of the velocity distribution at large times,

ξ (λ) =
∞∑

n=1

λ2n

2n!
D2n, (24)

where D2n is the 2n-th cumulant of the velocity distribution.
Comparing with Eq. (23), we obtain

D2n = C2n

1 − r2n
w

. (25)

For large n, behavior of the cumulants of the velocity
distribution approaches that of the noise distribution. Thus,
by knowing all cumulants, the velocity distribution of the
noninteracting system is completely determined.

V. DISCUSSION AND CONCLUSION

In summary, we considered an inelastic one component
Maxwell gas in which particles are driven through collisions
with a wall. We determined precisely the tail of the velocity
distribution P (v) by analyzing the asymptotic behavior of
the ratio of consecutive moments. Our main results are the
following: (1) For dissipative driving, the tail of P (v) is
identical to that of the corresponding noninteracting system
where collisions are ignored. By solving the noninteracting
problem, the cumulants of the velocity distribution may be
expressed in terms of the noise distribution. Thus, P (v)
is highly nonuniversal. (2) For diffusive driving, P (v) is
universal and decays exponentially when the noise distribution
decays faster than exponential. If �(η) decays slower than
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γ

P (v) ∼ e−a|v|γ

P (v) ∼ e−b(rw)|v|γ

P (v) ∼ e
−|v|

v∗

3

−1 1

1

rwNo steady state

0

FIG. 6. Schematic diagram summarizing the results obtained in
paper. The parameters rw ∈ [−1,1] is the coefficient of restitution
of wall-particle collisions and γ characterizes the noise distribution
[see Eq. (3)]. When rw = −1, the system does not reach a time-
independent steady state. When rw = 1, P (v) is universal when γ � 1
and has the same asymptotic behavior as the noise distribution when
γ < 1. When the driving is dissipative (|rw| < 1), P (v) has the same
asymptotic behavior as the noise distribution for γ � 1. When γ > 1,
the coefficient in the exponential gets modified.

exponential, then P (v) is nonuniversal and the tails are similar
to the tail of �(η). These results are summarized in Fig. 6.

The results are consistent with the intuitive understanding
that the tails of velocity distribution are bounded from below
by the noise distribution. This is because inelastic collisions
dissipate energy and reduce the speeds of the colliding
particles. Thus, it is improbable that large speeds can be created
through collisions. Rather, the tails are populated by particles

that have been driven, possibly through multiple collisions
with the wall, and then do not undergo any collision with
other particles. This rationalizes our finding that the tails of
the distribution are independent of the coefficient of restitution
r and are identical to that of a single particle colliding with a
wall. We, therefore, also expect that more complicated kernels
of collision will not change the above results. In particular,
the kernel for the realistic hard sphere model is proportional
to the relative velocity. Thus, faster particles tend to collide
more often than the slower ones. This would result in a
increased depletion of the tails due to collisions, making it
less likely for particles that undergo collisions to contribute to
the tail of the distribution. The results in this paper also explain
why many of the experimental results [23] see nonuniversal
behavior. However, there are experiments that see universal
behavior [21,24]. In these experiments the P (v) is measured
in directions perpendicular to the driving direction. It may
be that the details of the driving are lost when energy is
transferred to other directions. Transferring energy in other
directions ensures that collisions cannot be ignored, unlike the
case of one-component Maxwell gas studied in this paper. The
two-component Maxwell model is a good starting point to
answer this question. Methods developed in the paper will be
useful to analyze the same. This is a promising area for future
study.
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