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Classical Orbital Paramagnetism in Non-equilibrium Steady State
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Abstract. We report the results of our numerical simulation of classical-dissipative dynamics of a charged
particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital
magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic
moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown
specifically for the case of classical dynamics driven by a Kubo–Anderson type non-Markovian noise. Natural
spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard
potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be
crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen.
Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed.
We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements,
rather than contradicts the Bohr–van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism
in thermodynamic equilibrium.
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paramagnetism—superparamagnetism.

1. Introduction

The Bohr–van Leeuwen (BvL) theorem on the absence
of classical orbital diamagnetism in thermodynamic
equilibrium has been a surprise of theoretical physics
(Bohr 1911; van Leeuwen 1921; van Vleck 1932;
Peierls 1979; Ma 1985). This BvL null result is
statistical-mechanically exact. It is, however, counter-
intuitive inasmuch as a charged particle orbiting classi-
cally under the Lorentz force exerted by an externally
applied magnetic field, is equivalent to an amperean
current loop in the interior of the sample, and hence
to a non-zero orbital magnetic moment. Moreover, the
orbital moment is expected to be diamagnetic following
the Lenz’s law. A physically appealing resolution was
advanced by Bohr (1911) suggesting an exact cancella-
tion, on the average, of the diamagnetic orbital magnetic
moment in the interior of the sample by the paramag-
netic moment subtended by the particle skipping the
boundary in the opposite (paramagnetic) sense − the
edge current (Ma 1985; van Vleck 1932).

The BvL theorem on the absence of classical orbital
(dia-)magnetism was re-examined by Kumar and Kumar

(2009), where they considered dynamics of the charged
particle in a finite but unbounded space, namely the
surface of a sphere (recall that, strictly speaking, a
boundary has no boundary). They had found, through
numerical simulations, that an equilibrium non-zero
orbital diamagnetism could possibly exist for the case
of a charged-particle motion on the surface of a sphere,
but not a plane.

Soon thereafter, in Pradhan and Seifert (2010), the
role of the boundary was treated explicitly through a
solution of the Fokker–Planck equation associated with
the classical Langevin dynamics of the charged particle
on the surface of a sphere. Again, the orbital magnetic
moment turned out to be zero.

More recently, however, Deshpande et al. (2012)
negated the result of Kumar and Kumar (2009) through
similar numerical simulation, but now with finer time
steps, for the motion of the charged particle on the sur-
face of a sphere – in fact, in the long-time limit (i.e. in
thermal equilibrium) the orbital moment indeed again
turned out to vanish with decreasing time step, just as
per the BvL theorem! This trend revealed the possi-
ble role of finite temporal correlation scale of random
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forcing in inducing non-zero steady-state orbital mag-
netic moment.

Our analyses strongly suggest that the vanishing of
the classical orbital diamagnetism is a direct conse-
quence of detailed-balance (the microscopic reversibil-
ity), namely that there are no cycles in thermodynamic
equilibrium. Now, the detailed balance is, of course,
conditioned mathematically by the second fluctuation-
dissipation (II-FD) theorem of Kubo (Kubo 1954, 1966;
Anderson 1954). In terms of the classical Langevin
equation governing the stochastic dissipative dynam-
ics, that underlies equilibrium statistical mechanics, the
F-D relation requires the driving noise to be Marko-
vian. Indeed, it has been shown (Kumar 2012) that a
Markovian steady state can always be transformed to
an equivalent thermodynamic state in equilibrium. It is
our conjecture, therefore, that a stochastic dissipative
system driven by a non-Markovian noise may have,
in general, a non-equilibrium steady state with finite
orbital magnetic moment − without conflicting with
the BvL theorem for thermodynamic equilibrium. In
what follows, we have addressed this issue through a
detailed numerical simulation of the relevant stochas-
tic dissipative dynamics involved. The results of our
simulation support our conjecture, namely that the
orbital magnetic moment is indeed finite for the non-
Markovian case. There is, however, a new surprise now,
namely that the sign of the magnetic moment turns
out to be paramagnetic! Moreover, for a classical gas
of such charged particles with paramagnetic orbital
moment, the inherently positive feedback may lead to
an enhanced magnetic susceptibility − possibly even to
a spontaneous ordering of the classical orbital magnetic
moments.

2. Stochastic dissipative dynamics in a magnetic
field

Consider the stochastic-dissipative classical dynamics
of a charged particle (charge = −e, e > 0) and mass m
in the xy-plane in the presence of a uniform magnetic
field of magnitude B directed along the positive z-axis.
Let the particle be confined harmonically in the xy-
plane. (In this simple model, the motion along the z-axis
factors out.) Harder confinement (reflecting wall) will
be introduced later. The equation of motion can now be
written down straightforwardly in the polar co-ordinate
system as

mr̈ = mr θ̇2 − kr − �ṙ − eB

c
r θ̇ + Fr (t, �t), (1a)

Figure 1. Shows schematically one possible realization of
such a non-Markovian noise comprising equi-spaced rect-
angular pulses of random Gaussian height modeled on a
Kubo–Anderson process.

mr θ̈ = −2mṙ θ̇ − �r θ̇ + eB

c
ṙ + Fθ (t, �t), (1b)

where Fr (t, �t) and Fθ (t, �t) are the Kubo–Anderson-
type noise terms. The K–A noise, as depicted schemat-
ically in Fig. 1, is best described as a sequence of
random rectangular pulses of equal pulse-width �t . The
pulse heights are, however, identically independently
distributed Gaussian random variates, of mean zero and
finite variance.

It is to be emphasized that �t here is not necessarily
a small quantity in any sense − it is to be regarded as a
physical input parameter that makes the noise tunably
non-Markovian. The numerical simulation, however,
must cover these not necessarily small time intervals �t
with much finer sub-divisions δt << �t so as to ensure
high numerical accuracy in treating the systematic parts
of the driving forces present in equations (1a) and (1b).
More specifically, in our numerical simulation the num-
ber of finer time-step subdivisions has been taken to be
>500 (Figures 1–3). Moreover, the time of integration
has been kept long ( 5 × 108 sub-steps) in all these
cases.

It is convenient to define here the parameters �0 ≡
confining harmonic frequency =

√
k/m, �c = the

cyclotron frequency eB/mc, and γ = �/m, the
Stokes friction. Also, we write that Fr (t, �t) =
mγ 2σ fr (t, �t), and similarly for Fθ (t, �t). Note that
σ has the dimension of length. Further, we introduce
the dimensionless quantities ω0 = �0/γ , ωc = �c/γ ,
τ = γ t and R = r/σ the dimensionless radial coordi-
nate. With these re-definitions, equations (1a) and (1b)
can now be re-written in the fully dimensionless form
as

R̈ = Rθ̇2 − ω0
2R − Ṙ − ωcRθ̇ + fr (τ, �τ), (2a)
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Figure 2. Plot of dimensionless steady-state orbital mag-
netic moment μ against the pulse-width �τ for some chosen
values of the magnetic field (measured in terms of ωc). This
is for the case of harmonic (soft) confinement. For details,
see the text.

Rθ̈ = −2Ṙθ̇ − Rθ̇ + ωc Ṙ + fθ (τ, �τ), (2b)

where Fr (t, �t) ≡ fr (τ, �τ) and Fθ (t, �t) ≡
fθ (τ, �τ). Here the overhead dot denotes deriva-
tive with respect to the dimensionless time τ . Also,
fr (τ, �τ) and fθ (τ, �τ) are uncorrelated Gaussian
variates with mean zero and variance unity.

The steady-state orbital magnetic moment M can
now be written as

M = 〈〈− e

2c
(r × ṙ)〉〉 = −

(
eγ σ 2

2c

)
〈〈R2θ̇〉〉 (3)

giving the dimensionless orbital magnetic moment

μ = M(
eγ σ 2

2c

) = −〈〈R2θ̇〉〉. (4)

Here the double angle bracket denotes averaging over an
ensemble of realizations of the random noise as well as
over time in the long-time limit. We identify μ with the
steady-state value of the dimensionless orbital magnetic
moment.

In Fig. 2, we have plotted the dimensionless magnetic
magnetic moment μ against the pulse-width �τ , for
some chosen values of the magnetic field, measured in
terms of the dimensionless cyclotron frequency ωc. The
parameters ω0 and σ have been set equal to unity.

In Fig. 3, we have repeated, for the sake of compar-
ison, the plot in Fig. 2, but now for the case of a hard
confinement. The latter is realized by modifying the
soft, harmonic restoring force term −kr in the radial
equation (1a) to −kr(r/a)n , and choosing a large inte-
ger exponent n. The length parameter a here denotes
the radial position of the effectively reflecting wall.

Figure 3. Plot of dimensionless steady-state orbital mag-
netic moment μ against the pulse-width �τ for some chosen
values of the magnetic field (measured in terms of ωc =
eB/mcγ ). This is for the case of hard confinement of nearly
reflecting boundary as described in the text.

Figure 4. Plot of dimensionless steady-state orbital mag-
netic moment μ against the pulse-width �τ for the same
chosen values of parameters as in Figures 2 and 3, except
now for ω0 = 0 (no confinement).

With this, the term −ω0
2R in equation (2a) becomes

−ω0
2R(R/A)n , with A = a/σ . In Fig. 3, we have cho-

sen n = 20 and A = 1. (Note that the limit n = 0
corresponds to the soft (harmonic) confining potential.)

Finally, for completeness, in Fig. 4 we have repeated
the plot (of μ against �τ ) for the case of no confining
potential, i.e., for ω0 = 0, with the other parameters
remaining the same.

3. Discussion

Through our numerical simulation of a classical model
for the stochastic-dissipative dynamics of a charged
particle, moving in a magnetic field and driven by a non-
Markovian noise, we have demonstrated the appearance
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of an induced orbital magnetic moment in the steady
state. Most significantly, the orbital moment turns out
to be paramagnetic! The appearance of a non-zero clas-
sical orbital magnetic moment in the non-equilibrium
steady state implies deviation of the dynamical sys-
tem from the second fluctuation-dissipation (II-FD)
relation. The latter would have otherwise enforced a
detailed-balance (meaning no cycles), and hence no
induced orbital magnetic moment. The moment, of
course, vanishes in the limit of delta-correlated white
noise (i.e., �τ → 0, σ 2 → ∞, with the product
�τσ 2 finite) that renders the system II-FD theorem
compliant. The essential point to be emphasized here
is the non-Markovian nature of the driving noise used
in the stochastic model. This point is consistent with the
proven result of Prost et al. (2009) that for a Markovian
dynamics, the non-equilibrium steady state can always
be transformed into an effectively equilibrium state. It
may be noted that our results hold for a soft (harmonic)
potential confinement as well as for a hard (reflecting
wall type) potential confinement. Also, the magnitude
of the orbital paramagnetic moment is non-monotonic
in the externally applied magnetic-field strength − ini-
tially increasing with increasing magnetic field strength
and then decreasing in the high-field regime. Further, the
magnetic moment scales as the variance of the random
pulse-height for a given pulse width in the case of har-
monic confinement (see equation (3)). In the case of the
hard confinement, however, there is no simple scaling,
but the qualitative behaviour remains the same.

For the sake of completeness, we also carried out
a similar simulation for the case of no potential-
confinement, i.e., with ω0 = 0. Interestingly, but not
surprisingly though, we obtained as in Fig. 4 a steady-
state orbital magnetic moment which has the opposite
sign − it is diamagnetic! This is, however, consis-
tent with the physical picture of Bohr (Bohr 1911;
van Leeuwen 1921; van Vleck 1932; Peierls 1979;
Ma 1985): without the confinement, there are naturally
no orbits skipping the boundary, i.e., no edge current,
which would have sub-tended a paramagnetic moment
leading to the cancellation. We are thus left only with
the Maxwell cycles well within the interior that consti-
tute the amperean current loops giving the diamagnetic
moment (the Lenz’s law). This avoided cancellation was
seen also in the analytical solution for the simple case
of a Markovian (delta-correlated) noise (Jayannavar and
Kumar 1981). This now turns out to be true even for the
non-Markovian case as shown in our simulation. The
overall picture is one in which the particle, initially at
the origin, say, diffuses outwards on the average, but
the orbital diamagnetic moment reaches its steady-state

value on a relatively short time scale which is deter-
mined by the parameters appearing in equations (1a)
and (1b). The outward diffusion simply spreads out the
total orbital magnetic moment (∝ r × ṙ) over the ever
increasing area covered, but without changing its time-
averaged value − the steady-state diamagnetic moment.

4. Concluding remarks

The paramagnetic sign of the induced orbital magnetic
moment can have interesting consequences of consid-
erable physical significance. After all, the paramagnetic
sign of the moment inherently signifies a positive feed-
back effect when we consider not just one but a system
of many charged particles. Here, the mean self-field can,
in principle, lead to a spontaneous macroscopic orbital
magnetic moment.

As for a possible experimental realization of such
a confined system, we begin by noting that what
is really essential for obtaining the classical orbital
paramagnetism in a non-equilibrium steady state is
the non-Markovian nature of the stochastic forcing.
Thus, a micron-sized sample of a semi-metal (such
as bismuth) trapped in an optical tweezer, and irra-
diated with random laser pulses in the presence of
an external magnetic field would constitute a possi-
ble candidate system. The laser impulses should impart
high enough kinetic energy (high nominal tempera-
ture) so as to create a non-degenerate (classical) gas
of charged particles (electrons and holes). Then, the
high temperature washes away the quantum signature,
i.e., the discrete quantum level-spacings in the micron-
sized sample, leaving behind a classical charged particle
system.

Recall that the orbital magnetic moment does not
depend on the sign of the charge on the particle, e.g., be
it an electron or a hole. It is then reasonable to expect
the total induced orbital magnetic moment to scale up
with the number of charged particles in the confined
system.

We would like to summarize now the main findings
of our work as reported above. In the process, we hope
to clarify some of the key points made therein. The clas-
sical (and indeed the classic) Bohr–van Leeuwen (BvL)
theorem implies a complete absence of the equilib-
rium orbital magnetic moment inasmuch as the partition
function then turns out to be independent of the mag-
netic vector potential. This global result has received
an exact microscopic treatment based on the classical
Langevin equation for the stochastic thermal motion of
a charged (spinless) particle, the electron, in a static
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magnetic field, in the presence of friction (dissipa-
tion) and the random forcing (fluctuation) that satisfies
the celebrated fluctuation-dissipation (F-D) theorem in
thermal equilibrium. It turned out, however, that a devi-
ation from the equilibrium F-D theorem did induce
a non-zero orbital magnetic moment in the system
(Kumar 2012). Moreover, it could be shown that the
sign of the orbital magnetic moment (paramagnetic or
diamagnetic) depends on the relative strengths of fluc-
tuation and the dissipation effects that could be readily
parametrized rather simply. Finally, these stochastic
treatments based on the underlying Markovian noise is
replaced here by the non-Markovian Kubo–Anderson
process, providing finite correlation time-scale �τ for
noise driving without any memory from earlier states,
and solved for now numerically.

The present results, owing to the details of system and
conditions considered here being different, do not ren-
der ready comparison with the earlier findings across the
different parameters probed in Kumar (2012). A limited
comparison, however, is possible in the dependence of
the steady-state orbital magnetic moment on the mag-
nitude of the magnetic field strength. More specifically,
as can be viewed from the set of curves in Figures 2 and
3, the orbital magnetic moment at any given �τ first
increases with magnetic field, and then reduces with
further increase in the magnetic field. This behaviour
is qualitatively consistent with the trend apparent in
Fig. 1 of Kumar (2012) for the paramagnetic signa-
ture (i.e., when η = 0.5). The Kubo–Anderson process
(where the transition rates are independent of original
state the transition came from) is admittedly more real-
istic (physical) than the usual Gaussian processes.

It is our conjecture that this non-zero classical orbital
paramagnetism of the non-equilibrium steady-state,
driven by the Kubo–Anderson stochastic noise, should
hold true in general across a wider range of situations. If
indeed it turns out to be the case, it would be a surprise
of theoretical physics akin to the Bohr–van Leeuwen
(BvL) theorem for the equilibrium quantum mechan-
ics! This mechanism may even generate spontaneously

a macroscopic magnetic mean field − such as the seed
field of interest in the astrophysical context.

One of the issues central to the compact stars (related
astrophysics) is the origin of magnetic effects (magnetic
fields) associated with the stellar objects1, in particu-
lar, their electron-gas effects due to the motion of the
charged particles (electrons). This orbital (not the spin)
effect is precisely what has been addressed in our work!
The idea underlying our work is that a deviation from the
F-D (fluctuation-dissipation (theorem)) naturally leads
to a magnetic effect (susceptibility) that can indeed be
paramagnetic in a confined system of charged particles
(electrons), without involving their spin. It ultimately
depends on which of the two – the fluctuations or the
disspation – dominates! In our model, this is controlled
by the stochastic parameters, such as the finite corre-
lation time scale of the random forcing (in comparison
with the cyclotron period).
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