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A parity invariant theory, consisting of two massive Dirac fields, defined in three dimensional space–time, 
with the confinement of a certain current is studied. It is found that the electromagnetic field, when 
coupled minimally to these Dirac fields, becomes massive owing to the current confinement. It is seen 
that the origin of photon mass is not due to any kind of spontaneous symmetry breaking, but only due 
to current confinement.
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1. Introduction

Field theories in three dimensional space time have been a sub-
ject of intense study since a couple of decades now. There are sev-
eral reasons which make such field theories interesting. Firstly of-
ten the theories in lower dimensions are simpler than their higher 
dimensional counterparts. Secondly, it offers new structures like 
possibility of gauge invariant mass term for gauge field in the form 
of Chern–Simons term in the action. Interestingly, it was recently 
found that planar QED with a tree level Chern–Simons term ad-
mits a photon which is composite [1]. Theories with Chern–Simons 
term are found to play an important role in physics of quantum 
Hall effect and anyonic superconductors [2–6]. Models which ex-
hibit dynamical mass generation and spontaneous chiral symmetry 
breaking have been constructed and extensively studied [7–11]. In 
recent years, with the discovery of graphene [12] and topological 
insulators [13] there has been a renewed interest in the study of 
lower dimensional field theories.

Colour confinement is one of the still not well understood as-
pect of QCD. One of the main hindrance is the fact that the low 
energy dynamics in such theory becomes non-perturbative, which 
makes dealing with them difficult. To circumvent this difficulty, 
there have been attempts to assume colour confinement from the 
beginning and work subsequently to see if one can get some idea 
about the dynamics of non-Abelian gauge fields [14–16]. In a re-
markable paper by Srinivasan and Rajasekaran, it was shown that 
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by assuming quark confinement it was possible to get QCD out of 
it [16]. Confinement has also been studied in theories defined in 
three dimensional space–time. It was shown by Polyakov that com-
pact planar QED exhibits charge confinement [17]. While the case 
of non-compact QED was studied by Grignani et al. [18].

In this paper, it is shown that an assumption of confinement of 
a certain current gives rise to the photon mass. The theory con-
sider here consists of two species of free Dirac fermions living on 
the plane, defined such that the theory is even under parity. These 
fermions are minimally coupled to the photon field. It is found that 
although the photons in the theory are massive, there is no spon-
taneous symmetry breaking. It is also shown that when such a 
theory is defined over a manifold with finite boundary, then there 
exist massless particles living on the boundary.

In the following section the model is introduced and its various 
features are discussed. Section 3 deals with the effective action 
of photon and its mass. Section 4 deals with the case when the 
theory lives on a manifold with a finite boundary, followed by a 
brief summary.

2. The model

The Lagrangian describing two species of massive Dirac fermi-
ons living in 2 + 1 dimensional space–time reads:

LD = ψ̄+(iγ μ
+ ∂μ − m)ψ+ + ψ̄−(iγ μ

− ∂μ − m)ψ−. (1)

Here, gamma matrices are defined for ψ+ field as γ 0+ = σ3, γ 1+ =
iσ1 and γ 2+ = iσ2. Gamma matrices for ψ− field are also same 
as ψ+ except for γ 2, which is defined as γ 2+ = −γ 2− . This de-
liberate difference in choice of gamma matrices ensures that the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Lagrangian is even under parity. It is known that, unlike four 
dimensional space–time, in the three dimensional world parity 
transformation is defined by reflecting one of the space axis, say 
Y axis, (x, y) → (x, −y). Instead of working with two spinor fields 
ψ± , one can work in a reducible representation by defining � =
(ψ+, ψ−)T , with β = γ 0 = 1 ⊗ σ3, α1 = 1 ⊗ σ1 and α2 = σ3 ⊗ σ2, 
so that the above Lagrangian now reads:

LD = �̄(iγ μ∂μ − m)�,

where γ1,2 = βα1,2. Under parity operation, � transforms as 
P�(x, y, t)P−1 = (σ1 ⊗ 1)�(x, −y, t). It can be checked that un-
der this peculiar parity transformation, above Lagrangian remains 
even despite of having a mass term [19].

As it stands, apart from above mentioned parity transformation, 
the Lagrangian of this theory is invariant under two independent 
continuous rigid transformations:

ψ+(r) → e−iθψ+(r), ψ−(r) → e−iθψ−(r); (2)

ψ+(r) → e−iλψ+(r), ψ−(r) → eiλψ−(r). (3)

Here θ and λ are continuous real parameters. These being contin-
uous symmetry operations, give rise to conserved currents as per 
the Noether theorem:

∂μ( jμ+ + jμ−) = 0 and ∂μ( jμ+ − jμ−) = 0,

where jμ(r) = ψ̄(r)γ μψ(r). It turns out that under parity, current 
Jμ = jμ+ + jμ− = �̄γ μ� transforms as a vector1:
P Jμ(x, y, t)P−1 = �

μ
ν Jν(x, −y, t), whereas J̃μ = jμ+ − jμ− =

−i�̄γ μ(σ3 ⊗ σ3)� , transforms as a pseudovector:
P J̃μ(x, y, t)P−1 = J̃μ(x, −y, t). Since the physical photon field 
transforms as a vector under parity operation: P Aμ(x, y, t)P−1 =
�

μ
ν Aν(x, −y, t), its coupling with the current jμ+ + jμ− preserves 

parity while making the symmetry transformation (2) local.
In this paper, we are interested in looking at the physical conse-

quences if the current jμ+ − jμ− is confined. As pointed out by Kugo 
and Ojima in the context of QCD, and further discussed at length 
in Ref. [20], that the statement of colour charge confinement can 
be accurately stated as the absence of charge bearing states in the 
physical sector of the Hilbert space: Q colour |phys〉 = 0. In what 
follows, we shall work with a stronger condition than the Kugo–
Ojima condition, and demand that the physical space of the theory 
described by Lagrangian (1) should not have any states which carry 
( jμ+ − jμ−) current, that is: ( jμ+ − jμ−)|phys〉 = 0.2 This shall be re-
ferred to as current confinement condition henceforth. Since we are 
demanding a priori that this current confinement condition should 
hold, it ought to be understood as a constraint. There exists a 
well known powerful technique to implement such a constraint 
using what is called the Lagrange multiplier (auxiliary) field [21]. 
One postulates the existence of a Lagrange multiplier field which 
is such that its only appearance in the action is via its coupling 
to the constraint condition. Thus the equation of motion corre-
sponding to this field, obtained by demanding that the functional 
variation of the action with respect to this field be zero, is sim-
ply the constraint condition. It is worth pointing out that such 
Lagrange multiplier fields have no dynamics of their own, in the 
sense that there are no terms in the action comprising of spatial 
or temporal derivatives of these fields to begin with, and their sole 
purpose of existence is to ensure implementation of the constraint. 

1 � is diagonal matrix � = diag(1, 1, −1).
2 The physical space here stands for the set of states in the vector space of the 

theory, which do not have negative norm [21]. In case when the negative normed 
states are altogether absent, then the condition ( jμ+ − jμ−)|phys〉 = 0 holds for the 
whole of Hilbert space and hence becomes an operator condition ( jμ+ − jμ−) = 0.
Thus by enlarging the degree of freedom in the theory by an ad-
ditional field, one ensures that the constraint condition gets neatly 
embedded into the action, and hence into the dynamics of the the-
ory. In our case the Lagrange multiplier Bose field is aμ , which is 
meant to implement the constraint ( jμ+ − jμ−), will only couple to 
it so that the Lagrangian (1) gets an additional term:

L = ψ̄+(iγ μ
+ ∂μ − m)ψ+ + ψ̄−(iγ μ

− ∂μ − m)ψ− + aμ

(
jμ+ − jμ−

)
.

(4)

Note that the equation of motion for aμ field: δS
δaμ

= 0, gives the 
constraint jμ+ − jμ− = 0. In order to preserve parity, aμ field has to 
be a pseudovector owing to its coupling with pseudovector current. 
Thus aμ can in general be written as curl of some vector field χ : 
aμ = εμνλ∂

νχλ , and can not have a contribution that can be writ-
ten as a gradient of some scalar field. This asserts that aμ can not 
be a gauge field, since a gauge field under a gauge transformation 
transforms as a vector ∂μ�, which is not consistent with the pseu-
dovector nature of aμ . Further note that since aμ is curl of χμ , it 
immediately follows that its divergence vanishes: ∂μaμ = 0.

In functional integral formulation of quantum field theory, gen-
erating functional is an object of central importance, which for this 
theory reads3:

Z [η±, η̄±] = N

∫
D[ψ̄±,ψ±,aμ] eiS ,

where S =
∫

d3x
(
L + η̄±ψ± + ψ̄±η±

)
.

Here η and η̄ are external sources which are coupled to Fermi 
fields ψ̄ and ψ respectively.

Before we proceed with the details of the quantum theory, it 
is worth pointing out that if one functionally integrates aμ in the 
above generating functional, one immediately obtains the current 
confinement condition δ( jμ+ − jμ−), since aμ appears linearly in the 
action. This clearly shows that in the quantum theory as well, the 
Lagrange multiplier field aμ is properly implementing the current 
confinement constraint.

Since the Lagrangian (4) of the theory is invariant under trans-
formation (3), requirement that the generating functional of the 
theory should also be invariant under (3), that is δZ = 0, is not 
unreasonable. Interestingly, it will be seen that this will give rise 
to Ward–Takahashi identities amongst various n-point functions in 
this theory and lead to non-trivial consequences. Demanding that 
Z be invariant under infinitesimal version of transformation (3)
means δZ = 0, which can be written as:∫

D[ψ̄±,ψ±,aμ] (δS) eiS = 0.

This can further be simplified to read:∫
D[ψ̄±,ψ±,aμ] (∓η̄±(x)ψ±(x) ± ψ̄±(x)η±(x)

)
eiS = 0. (5)

In terms of the generating functional of connected diagrams 
W [η̄±, η±] = −i ln Z [η̄±, η±], equation (5) becomes:

η̄+(x)
δW

δη̄+(x)
− η̄−(x)

δW

δη̄−(x)
(6)

− η+(x)
δW

δη+(x)
+ η−(x)

δW

δη−(x)
= 0.

3 Since the current in this theory couples directly to aμ , it is treated as a dynam-
ical variable instead of χμ . Such a treatment is advocated by Hagen in Ref. [22].
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It is often convenient to work with the effective action �[ψ̄±, ψ±]
which is defined to be Legendre transform of W [η̄±, η±]:
W [η̄±, η±] = �[ψ̄±, ψ±] + ∫

d3x (η̄±ψ± + ψ̄±η±), so that equation 
(6) reads:

δ�

δψ+(x)
ψ+(x) − δ�

δψ−(x)
ψ−(x) (7)

− δ�

δψ̄+(x)
ψ̄+(x) + δ�

δψ̄−(x)
ψ̄−(x) = 0.

This is the master equation from which one can get Ward–
Takahashi identities connecting various vertex functions, by taking 
appropriate derivatives. The two-point function for + species of 
fermions i S F (x − y) = 〈T

(
ψ+(x)ψ̄+(y)

)〉, in terms of � is given 
by:

S−1
F (y − x) = δ2�

δψ(x)δψ̄(y)

∣∣∣∣
ψ=ψ̄=0.

Taking functional derivative of the master equation (7), once by 
ψ̄+(y) followed by once with ψ+(z), one obtains following Ward–
Takahashi identity for fermion Greens function:

δ(x − z)S−1
F (y − x) = δ(x − y)S−1

F (x − z). (8)

This implies that S−1
F (y −x) = δ(x − y) 

∫
d3z S−1

F (x − z), whose only 
solution is S−1

F (y − x) ∝ δ(y − x). Above identity is very power-
ful, since it has allowed for an exact determination of propagator 
in this interacting theory. Exactly similar identity would also hold 
for propagator of − species of fermions. It is worth mentioning, 
that this model is one of the rare cases where full propagator 
of this theory is known without any approximation. Presence of 
a physically observable particle in a theory, manifests as poles of 
propagator in momentum space. In our case, as is clearly evident, 
the propagator is regular everywhere in momentum space, which 
means that the Dirac fermion in our theory is not a propagating 
mode. This is particularly surprising since we started with a free 
Dirac theory with a constraint condition on currents, and it ap-
pears that condition is severe enough to not allow free fermion 
propagation.

In the absence of Dirac fermions, it is a natural to inquire 
about the particle excitations in this theory. In order to answer 
this question, it is instructive to study the four-point function 
in this theory. Apart from a trivial non-propagating solution dis-
cussed above, assuming validity of translational invariance, it can 
be shown that the Ward–Takahashi identity for four point function 
admits a solution of the kind: 〈T

(
ψ+(x1)ψ+(x2)ψ̄+(y1)ψ̄+(y2)

)〉 ∝
δ(x1 − y1) δ(x2 − y2) f (x1 − x2), where f is some function of 
(x1 − x2). This means that this Ward–Takahashi identity allows for 
propagation of composite operator ψ(x)ψ̄(y)|x=y , which describes 
charge neutral excitations consisting of fermion–antifermion bound 
states. It is worth mentioning, that the absence of fermions as 
elementary excitations and occurrence of bound states in a con-
strained theory like above, also appeared in a model of colour 
confinement proposed by Rajasekaran and Srinivasan [16]. Inter-
estingly, they showed that quarks and gluons (which appeared 
as bound states) did not propagate and were confined, whereas 
mesons (colour neutral bound states of quarks) were propagating 
excitation in their model.

3. Electromagnetic response

In this section we focus our attention on the electromagnetic 
response of the theory. Lagrangian (4) with the minimal coupling 
of fermion fields to the photon field is given by:
L = ψ̄+(i/∂+ − m + /a + /A)ψ+ + ψ̄−(i/∂− − m − /a + /A)ψ−

− 1

4
Fμν F μν. (9)

In order to find the response of the theory under the influence of 
photon field, it is imperative that the photon field be treated as 
an external field. Terms involving ghosts and gauge fixing, which 
are absent in the above Lagrangian, have been incorporated by ap-
propriate modification of measure D[Aμ]. In order to take into 
account effects due to quantum corrections, which arise from vir-
tual fermion loop excitation, one needs to find out the effective 
action by integrating out fermion field. The effective action up to
quadratic terms in fields, obtained using derivative expansion of 
fermion determinant [23,24] reads:

Lef f = − 1

12π |m| fμν f μν − m

2π |m|ε
μνρ

(
Aμ fνρ + aμFνρ

)

− 1

4
Fμν F μν. (10)

It can be shown that, in the limit of large m this approximation is 
valid and higher order terms can be neglected. As is evident, aμ

did not have a kinetic term to start with, but fermion loops have 
made it dynamical. Further, Aμ and aμ fields are coupled by a 
mixed Chern–Simons term, which has a topological nature [25–29]. 
In other words, this implies that aμ field has now become elec-
tromagnetically charged due to presence of virtual fermion cloud 
around it, with current being given by Jμ = εμνρ∂νaρ , which is 
conserved off shell by construction. It is interesting to note that in 
this effective Lagrangian, the pseudovector field aμ is coupled to 
dual of Fμν so that the effective action is even under parity.

We started with a theory consisting of two species of massive 
Dirac fermions, with the assumption of current confinement. The 
current confinement being an independent condition, in the sense 
that it is not a consequence of the equations of motion of the the-
ory, was understood as a constraint. We employed a judicious way 
of implementing this constraint using the Lagrange multiplier field 
aμ , which essentially does book keeping of the constraint. Even 
though constraint condition is stated in terms of fermion fields, it 
can not be viewed in isolation since the Dirac fields are coupled to 
the photon field. Thus even after integrating out the fermion fields, 
the effects of current confinement condition survive and manifest 
as coupling between aμ and Aμ in (10). Since the role of aμ is 
only to ensure implementation of the constraint, it is imperative 
to integrate it out to see the effect of current confinement on the 
dynamics of the photon field. On integrating out aμ field from La-
grangian (10), one arrives at an effective action for electromagnetic 
field:

Lef f = −1

4
Fμν F μν + 3|m|

π
Fμν

1

∂2
F μν. (11)

As is evident, interaction with aμ field has induced gauge invari-

ant mass M = 12|m|
π for the physical electromagnetic field [30]. 

One may wonder that the differential operator 1
∂2 in the La-

grangian may compromise locality and causality. However it has 
been shown in Ref. [30] that both of these features are intact. The 
action of 1

∂2 on a function becomes transparent by going over to 
Fourier space,4 that is:

4 Alternatively, one may also consider the action of this differential operator in 
terms of convolution by a suitable Greens function G(x), subject to the appropriate 
boundary conditions of the problem. The Greens function G(x) is defined to solve: 
∂2G(x) = δ(x). With the knowledge of boundary conditions, formally this can be 
inverted: G(x) = 1

2 δ(x), so that 1
2 f (x) = ∫

dy 1
2 δ(x − y) f (y) = ∫

dyG(x − y) f (y).

∂x ∂x ∂x
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∂2
f (x) =

∫
d3 p

(2π)3

−1

p2
e−ipx f̃ (p), (12)

where f̃ (p) is Fourier transform of f (x). Occurrence of such terms 
in action have been long known, for example it is known to appear 
in the effective action of Schwinger model when one integrates out 
fermions, as also in the action of two dimensional gravity theory 
studied by Polyakov [30].

It is known that in the planar world there exists Chern–Simons 
Lagrangian:

L = −1

4
Fμν F μν + M

2
εμνλ Aμ∂ν Aλ (13)

which is also gauge invariant and describes massive photon field 
[26]. However unlike Lagrangian (11) the mass term in this theory 
has a topological origin, and the theory evidently violates parity.

It may be tempting to believe that the photon mass term in 
the theory occurs because of some kind of spontaneous symme-
try breaking and associated Anderson–Higgs mechanism. However, 
note that the theory is invariant under two kinds of continu-
ous rigid transformations, which are generated by two conserved 
charges Q 1,2 = ∫

d2x : j0+ ± j0−:. Vacuum expectation value of con-
served current 〈vac| jμ±(x)|vac〉 can be written as [31]:

〈 jμ±〉 = lim
x→y

〈ψ̄a,±(y)γ
μ

ab,±ψb,±(x)〉
= −i lim

x→y
tr γ

μ
± S F ,±(x − y), (14)

where tr stands for trace over Dirac induces. Since S F ,±(x − y) =
const. × δ(x − y) in this theory, one finds that 〈vac| jμ±|vac〉 = 0. 
This straightforwardly implies that, the charges Q 1,2 annihilate the 
vacuum Q 1,2|vac〉 = 0 in this theory. This emphatically shows that 
there is no spontaneous symmetry breaking whatsoever, and that 
the current confinement is responsible for the photon mass.

4. Boundary theory

In above discussions we have assumed that the theory lives 
on two dimensional manifold whose boundary lies at the infin-
ity, and further all the fields in discussion were assumed to decay 
sufficiently quickly so that surface terms in the action contribute 
negligibly. In this section we shall consider the case when the 
boundary is finite, in which case it may not be possible to ignore 
contribution due to the surface terms.

As noted above, low energy effective action describing the dy-
namics of low energy electronic excitation, subject to the current 
constraint, coupled to electromagnetic field is given by (10):

L = −1

4
Fμν F μν − 1

12π |m| fμν f μν

− m

2π |m|ε
μνρ

(
Aμ fνρ + aμFνρ

)
.

Note that the last mixed Chern–Simons term is not invariant under 
local gauge transformation: Aμ → Aμ + ∂μ�, where � is some 
regular function of x. As a result, the change in action is given by:

δSC S =
(

sgn(m)

2π

)∫
d3x εμνρ∂μ

(
� fνρ

)
.

Above volume integral can be converted to a surface integral, de-
fined on closed boundary of the manifold, to give an action:

δSC S =
(

sgn(m)

2π

)∫
d2x εμν� fμν.
B

This term, as it stands, is not gauge invariant, and is defined on 
the boundary, which encloses the bulk. Gauge invariance of any 
given theory, is a statement that, the theory is constrained, and 
possesses redundant variables. We observe that, our theory to start 
with was gauge invariant at classical level. One loop corrections 
arising out of fermion loops, generate Chern–Simons term, which 
exhibits gauge noninvariance. Because, our theory to start with was 
gauge invariant, and hence constrained, consistency demands that 
quantum(corrected) theory should also respect the imposed con-
straints, and hence should be gauge invariant. The occurrence of 
above gauge noninvariance, simply implies that one is only looking 
at one particular sector of the theory, and there exists other dy-
namical sector, whose dynamics is such that it compensates with 
the one above to render the total theory gauge invariance. Follow-
ing Ref. [5], we demand that there must exist a corresponding 
gauge theory living on the boundary, defined such that it con-
tributes a gauge noninvariant term of exactly opposite character 
and hence cancels the one written above. The simplest term, living 
on boundary, that obeys above condition is:

S B = −sgn(m)

2π

∫
B

d2x θεμν fμν,

where θ(x, t) is a Bose field, which transforms as θ → θ + � un-
der a gauge transformation. In general, this scalar field would be 
dynamical, and with a gauge invariant kinetic term, the boundary 
action reads:

S B =
∫
B

d2x

[
c

(
∂μθ − Aμ

)2 − sgn(m)

2π
θεμν fμν

]
.

Owing to its peculiar transformation gauge transformation prop-
erty, a quadratic mass term for θ is not gauge invariant. Hence, in 
a gauge theory framework like this, θ field remains massless. Since 
the coupling of θ field with a field is anomalous, it turns out that 
the chiral current in this quantum theory is no longer conserved.

5. Conclusion

In this paper, we have shown that, in a parity invariant the-
ory of two free Dirac fields living on a plane, confinement of 
current jμ+ − jμ− gives rise to the photon mass. To the best of 
our knowledge this is the only model in which current confine-
ment paves the way to the gauge boson mass. A unique feature 
of this mechanism of photon mass generation is that there is no 
kind of spontaneous symmetry breaking involved. It is found that 
in case when the theory is defined on a manifold with a bound-
ary, consistency implies the existence of massless particles on the 
boundary. It would be interesting to investigate whether it is pos-
sible to have a composite photon from confinement, as was seen 
in planar QED with a tree level Chern–Simons term [1]. Further, it 
is believed that the connection between gauge boson mass, com-
positeness and current confinement, as seen in this theory, could 
have some implications in the theory of strong interactions – QCD. 
Work along these lines is in progress and shall be published in due 
course.
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