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Actomyosin pulsation and flows in an active
elastomer with turnover and network remodeling
Deb Sankar Banerjee1, Akankshi Munjal2, Thomas Lecuit2 & Madan Rao3

Tissue remodeling requires cell shape changes associated with pulsation and flow of the

actomyosin cytoskeleton. Here we describe the hydrodynamics of actomyosin as a confined

active elastomer with turnover of its components. Our treatment is adapted to describe the

diversity of contractile dynamical regimes observed in vivo. When myosin-induced contractile

stresses are low, the deformations of the active elastomer are affine and exhibit spontaneous

oscillations, propagating waves, contractile collapse and spatiotemporal chaos. We study the

nucleation, growth and coalescence of actomyosin-dense regions that, beyond a threshold,

spontaneously move as a spatially localized traveling front. Large myosin-induced contractile

stresses lead to nonaffine deformations due to enhanced actin and crosslinker turnover. This

results in a transient actin network that is constantly remodeling and naturally accom-

modates intranetwork flows of the actomyosin-dense regions. We verify many predictions of

our study in Drosophila embryonic epithelial cells undergoing neighbor exchange during

germband extension.
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T issue remodeling in diverse developmental contexts such as
apical constriction in Drosophila1–4, or Caenorhabditis
elegans5, cell intercalation during Drosophila germband

extension6–9, and xenopus extension and convergence10 have
been observed to be associated with pulsation and flows of the
medial actomyosin cytoskeleton. For instance, tissue extension in
the Drosophila embryo proceeds by the intercalation of cells, a so-
called T1-process, initiated by the active shrinkage of a subset of
cell junctions called ‘vertical junctions’ (aligned with the dorsal-
ventral axis of the embryo, see Supplementary Fig. 1). The
junctional shrinkage events are associated with medial-apical
actomyosin pulsation and subsequent flow towards this vertical
junction6, 8, 11. In this paper, we develop a general theory for the
dynamics of such spontaneous actomyosin pulsation and sym-
metry breaking flows, which should be applicable not only in the
context of germband elongation, but also during other morpho-
genetic events. In addition, using germband cells in the Droso-
phila embryo as a model system, we provide experimental
justification for the assumptions underlying our theoretical fra-
mework and verify many of its key predictions.

The apically located cortical actomyosin cytoskeleton com-
prises Myosin-II minifilaments, which bind onto a crosslinked
actin filament network. The actin mesh is connected to E-
cadherin adhesion molecules at the cell junctions via molecular
linkers such as α-catenin an actin-binding protein5, 12–14 and β-
catenin, which binds α-catenin and E-cadherin. Here we model
the medial actomyosin mesh as an active elastomer embedded in
a solvent, subject to active contractile stresses arising from the
binding of myosin minifilaments (Fig. 1a)5, 7, 15, 16, and turnover
of all components. Viewing the spatially resolved time-lapse
images and movies (Supplementary Fig. 1 and Supplementary
Movie 1) showing the diversity of dynamical regimes, including
nucleation, growth, coalescence and flow of clusters of labeled
myosin toward the cell junction in a Drosophila germband cell,
should immediately convince one of the need for adopting a
hydrodynamic approach to describe the spatiotemporal evolution
of actomyosin densities.

The hydrodynamic equations for this active elastomer are
derived from very general arguments based on symmetry con-
siderations and conservation laws, and include minimal

phenomenological inputs. When the local contractile stress gen-
erated by bound myosin is not too large, the deformations are
affine. In this regime, we describe the hydrodynamic modes
without inertia and obtain phase diagrams by numerically solving
the hydrodynamic equations. Similar equations have been written
down in17, 18, where the primary focus has been on linear ana-
lysis, together with an analysis of the leading nonlinear effects.
We find that the active affine elastomer exhibits spontaneous
oscillations, contractile instabilities and coarsening of clusters
enriched in actomyosin. The coarsening often leads to stable
actomyosin-dense clusters that, beyond a threshold, acquire a
polarity. This results in spontaneous movement as a spatially
localized traveling front. Such localized traveling front solutions
appear in other excitable systems such as the FitzHugh-Nagumo
model19, to which our affine model bears a close resemblance. On
the other hand, large myosin-induced contractile stresses can lead
to nonaffine deformations due to actin turnover or network
rupture. This results in a transient actin network that exhibits
large intermittent strain fluctuations and intranetwork flow of the
actomyosin-dense regions as a consequence of filament unbind-
ing and rebinding. Interestingly, both the affine and nonaffine
theories predict that the driving force for spontaneous movement
comes from the actomyosin-dense region itself and not the cell
boundary—we provide robust experimental verification of this.
Our hydrodynamic analysis of the affine elastomer could be
viewed as being closely related to the spring model of20, though it
goes far beyond this in the nonlinear analysis of the traveling
front. Our analysis of the nonaffine elastomer, could be viewed as
an active generalization of physical gels21 driven by local con-
tractile force dipoles. Our general perspective reveals several
significantly new aspects and provides a fresh conceptual
understanding of this ubiquitous phenomenon.

Results
Active elastomer with turnover and network remodeling. As
just stated, we model the medial actomyosin crosslinked mesh as
an active elastomer embedded in a solvent, subject to active
contractile stresses arising from the binding of myosin minifila-
ments (Fig. 1a)5, 7, 15, 16, and turnover of all components. We will

Unbound
myosin

Bound
myosin

E–cadherin Actin

kb

kb

ku0

ku
Stable

Sd

Sd

Sd

St

St

St

Monotonic decay

Damped traveling
wave

Oscillatory

Contractile
instability

O

O

O

CI

CI

CI

(I) (II)10

5

0
0 5 10

B
Γl

2  k
b

Γl
2  k

b

Γl2 kb

ζ 1
Δμ

� b
0

ζ1Δμ�b0

–

–

5

2.5

2.5 5
0

0

a b

Fig. 1 Schematic of apical cortex and linear stability results: a Schematic showing the medial actomyosin cytoskeletal meshwork within the apical region of
a cell belonging to the tissue. The actin filaments are attached to the cell junctions via E-cadherin (red dots). Myosin minifilaments bind (unbind) with rates
kb(ku) and when bound, apply contractile stresses on the actin filament meshwork—the red circle demarcates a region of higher mesh compression. Both
actin filaments and myosin minifilaments undergo turnover. b (I–II) Linear stability phase diagrams in (I) effective elastic stress density vs. contractile
stress density at k= 1 and (II) Effective contractile stress density vs. inverse lifetime of bound myosin at B= 4. The stresses are normalized by the frictional
stress density, Γkbl2. The phases are described in the legend. Rest of the dimensionless parameters are α= 0.1, c= 0.1, D= 0.1 (see “Methods” section)
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see that this allows us to span the diverse dynamical regimes
exhibited by this system. Below, we provide a justification for
treating this as an active elastomer with turnover, rather than
directly as an active fluid, as was done in the context of C. elegans
embryo22, 23.

We first note that, when the time scales of turnover of the actin
mesh or crosslinkers are much smaller than the time scales of
macroscopic processes of interest, then the stress relaxation is set
by the turnover time scale, and the system should be treated as a
fluid. Alternatively, when the actin mesh or crosslinker turnover
time scales are much larger than the time scales of macroscopic
processes, then the system should be treated as a dissipative
elastic medium. The interpretation in these two extreme regimes
is unambiguous. However, Fluorescence recovery after photo-
bleaching(FRAP) measurements in germband cells, reveal an
actin turnover time of around 10–20 s6, which is the same order
as the time scale of nucleation and growth, around 10–20 s, and
the period of medial actomyosin pulsation, around 50–100
s6, 8, 11. Indeed a more detailed look at the movies of myosin
(Supplementary Movie 2), show a distribution of time scales and
a range of dynamical regimes, starting from the appearance and
disappearance of small myosin-rich speckles over a time scale of
5–10 s. This suggests that the appropriate description should span
the short-time elastomeric and the longer time fluid-like regimes.
As mentioned in the Introduction, we do this by starting out with
an elastic description of a mesh, where the local deformations
induced by myosin binding and release are affine. Increased
myosin binding can lead to rapid turnover of actin and
crosslinkers, resulting in loss of network integrity and its
fluidization via intranetwork flows; we study this crossover to a
nonaffine regime. Indeed, this strategy of going from the short-
time elastic to long-time fluidization, as a function of increasing
turnover, opens up novel rheological possibilities, such as
correlated strain fluctuations and power-law response, which we
take up later.

There are several other empirical reasons for starting with an
elastomeric description and allowing for turnover of components:

1. Current high-resolution images of medial actin filaments,
both in the germband cells and in the amnioserosa, show two
distinct populations of actin filaments—a cell-spanning actin
filamentous network which appears connected to the cell
boundary and a possibly more rapidly turning over pool of
shorter actin filaments (T. Lecuit and B. Dehapiot, unpub-
lished observations). The relative levels of these two
architectures of actin filaments is likely to be context
dependent.

2. The medial actin mesh is connected to the cell junctions;
consistent with this, modulating the strength of the coupling
of medial actin to the junction via β-catenin affects the
pulsation8.

3. Finally, the pulsation of medial actomyosin in these systems
appears to be correlated with the oscillations in the area of
the apical surface1, 8, 9, 20.

With this in mind, we shall start our discussion by describing
the hydrodynamics of an affine elastomer subject to myosin
turnover. We will next explore the consequences of actin turnover
and network remodeling, the hydrodynamics of a nonaffine
elastomer, giving rise to intranetwork flows and consequent fluid-
like behavior.

Affine elastomer hydrodynamics. The hydrodynamic variables
of the confined active elastomer (Fig. 1a) are the actin mesh
displacement field u, the actin mesh density ρ, the density of the
bound myosin minifilaments ρb (we assume that the unbound

myosin constitutes a bath), the junctional E-cadherin density ρc
and the hydrodynamic velocity v. In this section we restrict
ourselves to deformations that are affine, i.e., homogeneous
deformations over a spatially coarse-grained scale. In the absence
of flow and activity, the system relaxes to equilibrium governed
by a free-energy functional F[u,ρ,ρb,ρc]= ∫drfB, where fB is the the
bulk elastic free-energy density of the elastomer written in terms
of the linearized strain tensor ϵ ¼ 1

2 ð∇uþ ð∇uÞTÞ (see “Meth-
ods” section). In principle, we need to include a boundary con-
tribution reflecting the soft anchoring arising from the actin-
cadherin linkage; for the present, we simply include ρc’s con-
tribution in the elastic moduli and hard boundary conditions on
the dynamical equations.

In the presence of active processes, the so-called Rouse
dynamics24 without inertia is described by (Supplementary
Note 1),

Γ _u ¼ ∇ � σe þ σa þ σd
� � ð1Þ

_ρb þ ∇ � ρb _uð Þ ¼ D∇2ρb þ Sm ð2Þ

_ρþ ∇ � ρ _uð Þ ¼ M∇2 δF
δρ

þ Sa ð3Þ

Equation (1) is a balance between frictional force experienced
by the mesh (with coefficient Γ) and the net force acting on the
mesh, written in terms of the total stress σ≡ σe + σa + σd, a sum of
the elastic stress, σe ¼ δF

δϵ, dissipative stress due to the viscosity (η)
of the elastomer network, σd ¼ η∇ _u, and the active stress σa. The
active stress should depend on the density of myosin and actin - it
should increase with increasing myosin density and then saturate
- it is thus reasonable to propose that

σa ¼ �ζ ρ; ρbð ÞΔμ I ¼ � ζ1ρb
1þ ζ2ρb

χ ρð ÞΔμ I; ð4Þ

where Δμ is the difference in chemical potential during ATP
hydrolysis, χ(ρ) is some smooth, positive valued function of the
mesh density, I the identity matrix and the overall negative sign,
with parameters ζ1< 025 and ζ2> 0, ensure that the active stress
is contractile (this results in a local “negative pressure”, which
draws in the surrounding material). Equation (2) describes the
dynamics of bound myosin filament density from advection by
the filament velocity _u and turnover Sm= −ku(ϵ)ρb + kbρ by (un)
binding. We allow for a possible strain-induced unbinding with a
Hill-form, ku(ϵ)= ku0eα⋅ϵ26, 27. The sign of α can be taken to be
either positive or negative (Supplementary Fig. 3a): α> 0 implies
a local extension (compression) of the mesh will increase
(decrease) the myosin unbinding, while α< 0 implies a local
compression (extension) of the mesh will increase (decrease) the
myosin unbinding. The choice α= 0 implies that the myosin
unbinding rate is a constant, independent of mesh deformation.
We thus cover all possibilities (for details, see Supplementary
Note 3). Similarly, Eq. (3) describes the dynamics of the actin
mesh density including advection, permeation (with mobility M)
and actin turnover, Sa.

In our analysis, we have ignored the long-range hydrodynamic
interactions of the fluid; this is suggested by experiments that
show the movement of the actin mesh relative to the fluid does
not advect particles suspended in the fluid unless they are bound
to the actomyosin mesh6, 8. For completeness, however, we
display the full hydrodynamic equations in Supplementary
Note 1.

From Eqs. (1–3), we note that there is a separation of time
scales, which correspond to the advection time scale, myosin
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turnover time and actin turnover time. The affine description is
valid when the actin turnover time is longer than the other times
scales. We will consider the case when the actin mesh density is
“fast” compared to the time scale associated with the Pec′let
number Pe≡ LvV/M (Lv is the characteristic scale on which the
mesh velocity, of typical magnitude V, varies); in this limit, the
mesh density is slaved to the local compressive strain, thus with ρ
= ρ0 + δρ, we arrive at δρ∝ −ϵii, i.e., a local compression of the
mesh leads to an increase in actin density (see “Methods”
section).

The conceptual features of the affine dynamics are captured by
a simple scalar version with one-elastic constant, σe= Bϵ. It helps
to make the equations dimensionless by choosing length and time
in units of the screening length l ¼ ffiffiffiffiffiffiffiffi

η=Γ
p

and inverse binding
rate k�1

b , respectively; in these units, u/l→ u, ρb/ρb0→ ρb,
B/Γkbl2→ B, ζ1Δμρb0/kbΓl2→ ζ1Δμ, D/kbl2→D and ku0/kb→ k
are dimensionless. See “Methods” for parameter values.

Linear analysis. For low levels of bound myosin, the mesh
deformation is small. It is thus appropriate to analyze the linear
stability about the unstrained, homogeneous steady state (u= 0,
ρb= ρb0). To this order, the active stress reduces to
σa= −ζ1Δμ(1 + ζ′ρ)ρb, with ζ1< 0 for contractility and ζ′> 0.

Keeping in mind that −ζ1Δμ, B, and D are the dimensionless
active stress, elastic modulus and myosin diffusion, respectively,
our linear stability analysis demonstrates that: (i) when the
active stress is smaller than the elastic stiffness,
�ζ1Δμ<ðBþ Dð1þ ffiffiffiffiffiffiffiffiffi

k=D
p Þ2Þ=2, the elastic mesh is stable with

dispersion ω � q2, (ii) as the contractile strength exceeds
ðBþ Dð1þ ffiffiffiffiffiffiffiffiffi

k=D
p Þ2Þ=2, the elastomer undergoes unstable oscil-

lations with an amplitude that increases exponentially with time,
(iii) at a threshold boundary, the elastomer supports a traveling
wave solution with a speed v�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkDB2=4Þ4
p

, (iv) beyond an
active stress �ζ1Δμ � B, the elastomer contracts indefinitely.The
phase diagrams shown in Fig. 1b reflect these four phases. Since
this kind of linear analysis appears in17, 18, we simply state our
results here and refer to Supplementary Note 2 and Supplemen-
tary Fig. 2 for details of calculations and dispersion relations.

In addition, we find that the qualitative features of these
transitions remain unaltered when the strain-dependent unbind-
ing parameter α is varied, as long as α≤ αmax(B,ζ1Δμ). This is
discussed in detail in Supplementary Note 3 and Supplementary
Fig. 3.

In spite of the simplifying nature of the linear analysis, it
captures some gross features and offers some useful hints: (a)
although unstable, the oscillatory behavior or pulsation (which
will be stabilized by nonlinearities) requires advection and myosin
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turnover8, 28, (b) the contractile instability is promoted by
lowering elastic stiffness (by reducing levels of β-catenin/
cadherin)5, 7, 15 or reducing myosin unbinding rates8, 28, 29. The
linear analysis, however, fails to capture finite-amplitude
sustained oscillations and the phenomenology of moving
configurations of actomyosin.

Leading order nonlinearities. It is possible that the oscillatory
instability obtained in the linear analysis is tempered by the
nonlinear terms in the dynamics, arising from strain-dependent
unbinding ku(ϵ), advection and active stress. Indeed, we find that
by taking into account the nonlinear contributions to leading
order, we can recast the equations as an excitatory-inhibitory
dynamical system that exhibit sustained spontaneous oscillations.
To see this, we work in 1-dim, and after fourier transforming Eqs.
(1),(2) in a finite domain [0, L] with Neumann boundary con-
ditions, retain only the smallest wavenumber, a 1-mode Galerkin
truncation, which accomodates the strain-dependent unbinding
nonlinearity. The resulting coupled ODEs upon re-scaling
describe a generalized van der Pol oscillator30 with linear
damping and cubic nonlinearities. This admits a limit cycle
through a supercritical-Hopf bifurcation for �ζ1Δμ � B

2 þ 1
π2—a

signature of the appearance of sustained spontaneous oscillations.
At the onset of bifurcation, we use a fluctuation analysis to obtain
the time period of oscillation T= 2π(η/ku0(B + ζ1Δμρb0))1/2. To
see the effects of the advective nonlinearity, we need to extended
the above mode-truncation analysis to 2-modes. The resulting 3-
dimensional dynamical system exhibits, in addition to limit
cycles, temporal chaos as seen by the algebraic decay of the
power-spectrum, positive Lyapunov exponent and denseness of
the Poincare section (D.B., manuscript in preparation). However,
our attempt to include nonlinear effects using low order mode-
truncation, fails to capture the phenomenology of moving con-
figurations of actomyosin.

Note that wave-like dispersion relations obtained from this
truncated model are not a response to an external perturbation,
but are self-generated. This cell-autonomous behavior is con-
sistent with observations of pulsatile dynamics in medial
actomyosin6, 11.

Full nonlinear analysis shows traveling front solutions. We
now study the full nonlinear theory, which includes the effect of
the nonlinearity arising from the active stress. This gives rise to a
new set of solutions, namely the spatially localized traveling front
solutions. To see this, we perform a numerical analysis of the full
nonlinear equations in 1-dim. We first Taylor expand χ(ρ) in Eq.
(4) about ρ0, the mesh density in the unstrained configuration,
and recast the active stress as (see “Methods” section)

σa ¼ �ζ1Δμρb
1þ ζ2ρb

χ ρ0ð Þ � cχ′ ρ0ð Þϵþ c2χ′′ ρ0ð Þϵ2 þ ¼
� �

; ð5Þ

where c is a positive constant (see “Methods” section). Separating
out the terms dependent on ϵ and only on ρb, and combining the
former with the elastic stress σe= Bϵ in Eq. 1, leads to an effective
“elastic free-energy”,

Φ ϵð Þ ¼ 1
2
K2 ρb; ρ0ð Þϵ2 þ 1

3
K3 ρb; ρ0ð Þϵ3 þ 1

4
K4 ρb; ρ0ð Þϵ4; ð6Þ

where Ki (i= 1, 2, 3) are density dependent coefficients (see
“Methods” section), and the quartic term with K4> 0 ensures that
the local compressive strain does not grow without bound, as a
consequence of steric hinderance, filament rigidity or crosslinking
myosin. The Φ(ϵ) that emerges as a consequence of activity, has 3
new features: (i) for weak active contractile stress, the minima at
ϵ= 0 gets shallower, indicating that the elastic stiffness B

decreases, (ii) as we increase the active stress, there appears
another minimum at ϵ= ϵ0 (iii) for large active stresses, the ϵ=
0 state can be unstable, with the effective B< 0 (Supplementary
Fig. 4). The final 1-dim equations of motion are given by,

Γ _u ¼ ∂xΦ′ ϵð Þ þ ∂xσa ρbð Þ ð7Þ

_ρb ¼ �∂x ρb _uð Þ þ D∂2xρb þ Sm ϵ; ρbð Þ; ð8Þ

where Φ′ � δΦ
δε , σaðρbÞ ¼ �ζ1Δμρb

1þζ2ρb
χðρ0Þ and myosin turnover

Sm(ϵ,ρb)= −ku0eαϵρb + kb(1 − cϵ).
These equations are numerically solved with either periodic or

Neumann boundary conditions using a finite difference scheme
(see “Methods” section). Initial conditions are small amplitude
random fluctuations about the homogeneous unstrained state.
The numerical phase diagram, displayed in Fig. 2 shows several
new features compared to the linear phase diagram, which we
discuss below.

Steady-state phase diagram. The two features that are expected
to arise from nonlinear effects, namely, the tempering of the
linear instabilities to obtain both finite-amplitude oscillatory and
finite-amplitude contractile collapse phases at intermediate and
high contractile stresses, respectively, show up in the steady-state
phase diagram, Fig. 2a, b. The corresponding kymographs in the
bound myosin density (Fig. 2d, h) show the appearance of these
steady state at late times. The time development of configurations
in these phases can be summarized as follows—starting from a
generic state with small random fluctuations about the homo-
geneous unstrained state, the configuration quickly results in a
spatially heterogenous (un)binding of myosin filaments onto the
actin mesh, transiently generating localized compression. This
will increase the local concentration of actin, which in turn will
facilitate more myosin recruitment and hence more compression.
This local compression will be resisted by an elastic restoring
force, and the resulting strain can lead to an enhanced myosin
unbinding. If it does, this will lead to a relaxation of the com-
pressed region, to be followed by another round of binding-
compression-unbinding, leading to the observed oscillations. In
this spontaneous oscillating phase, the frequency gets smaller
with increasing the active stress or decreasing unbinding rate8.
On the other hand, if myosin unbinding does not occur fast
enough, the elastomer will undergo a contractile instability, to be
eventually stabilized by nonlinear effects such as steric hinderance
and filament rigidity.

Additionally, there is a wholly unexpected feature that emerges
from a numerical solution of the full nonlinear equations. In the
parameter regime between the oscillatory and the contractile
collapse phases, there appears a moving phase (Fig. 2), where
spatially localized actomyosin-dense regions (which we later
identify as traveling fronts) spontaneously move to either the left
or right boundary. In the regimes between the pure moving phase
and the oscillatory and collapse phases lie the coexistence phases
where the moving phase coexists with oscillations and collapse,
respectively. The corresponding kymographs in the bound
myosin density (Fig. 2e–g) show the appearance of these steady
state at late times. We may understand the occurrence of these
phase transitions using a simple argument based on the relative
time scales of these dynamical events, as displayed in Supple-
mentary Fig. 5.

Several qualitative assertions follow immediately from the
affine theory, such as: (i) the existence of bounded (finite-
amplitude) oscillations requires both strain-dependent unbinding
and turnover of myosin, (ii) the coexisting oscillation-moving and
collapse-moving phases cannot be obtained in the absence of
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followed by coalescence (5< t< 10 s) and d eventual movement of the formed actomyosin-rich region (t> 10 s)
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strain-dependent unbinding, (iii) advection is a necessary
condition for front movement. We now look more closely at
the dynamics of actomyosin-dense regions and compare the
results of the affine theory with early time dynamics of myosin
dense regions in vivo.

Nucleation, growth and coalescence. In the moving regime, the
effective ‘elastic free-energy’ functional Φ(ϵ) develops a second
minima at ϵ= ϵ0 corresponding to a local compression due to
contractility (Supplementary Fig. 4). Initiation of movement
starts with the nucleation of actomyosin-dense regions, which
grow and coalesce to form larger actomyosin-dense regions. This
is best seen using a space–time analysis of Eqs. 7–8 with initial
conditions stated above. Kymographs of the spatial profile of
bound myosin density, calculated from the theory show nuclea-
tion and growth (0< t< 0.15), followed by coalescence (0.15< t
< 0.7) and eventual movement (t> 0.7) (Fig. 3a, b). This
space–time behavior accurately recapitulates the early time
dynamics of medial myosin in vivo as seen from the experimental
kymographs, Fig. 3c, d.

Asymmetric actomyosin profile of traveling front. Here we
investigate the origins of the spontaneous movement of the
actomyosin-dense region. We study the configuration of the

localized actomyosin-dense region just prior to movement, and
find that it assumes a symmetric localized profile (Fig. 4a) within
which the strain ϵ= ϵ0 (the second minimum) where Φ′(ϵ)= 0.
The active stress within this region is higher than outside, the
resulting gradient in stress should induce inflowing myosin cur-
rents from either side of it. We verify this by monitoring the
fluxes JL and JR, coming from the left and right of this symmetric
profile. Over time, owing to stochasticity either in the initial
conditions or the dynamics, there is a net flux, JL + JR, from either
the left or the right (Fig. 4b), leading an asymmetric profile
(Fig. 4c), and hence a gradient of ρb across the profile. This marks
the onset of the traveling front. This feature also appears to be
present in the early time dynamics of the moving myosin profiles
observed in vivo, as seen in Fig. 4d–f.

The affine theory predicts that the myosin density profile is
asymmetric and moves as a traveling front, with a constant
velocity while maintaining its shape (as long as there are no
further coalescence events). We confirm this using a variety of
initial conditions of the bound myosin density ρb, including
starting with a single symmetric gaussian profile. We analyze the
asymmetric profile of the traveling front by transforming to the
co-moving frame x± vt (Fig. 5).

We find that within the traveling front, the strain takes a value
slightly more compressed relative to ϵ0, the value of the strain at
the second minima, where Φ′= 0. The traveling front is stably
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compressed in a force-free state (Fig. 5a, b). The asymmetric
myosin profile gives rise to a gradient in the active stress (Fig. 5c),
which provides the propulsion force for the traveling front to
move to the right in Fig. 5c.

Dynamics of traveling front. The dynamics of the traveling front
that emerges from the affine theory is local, its propulsion is
therefore independent of the boundary or the distance from the
boundary. We calculate the velocity of the traveling front by
integrating Eqs. (7 and 8) across the scale Ω of the traveling front
in the co-moving frame. This leads to the formula,
v= Γ−1∫Ω∂xσa≡ Γ−1fact, which states that the velocity depends
only on the shape asymmetry of the front; if the shape is main-
tained over time, then the velocity is a constant. In Fig. 5d, we
plot the fact vs. the velocity and show that they are proportional to
each other over a large range of active and elastic stresses. We will
later make connection with experiments, where it is convenient to
use the shape asymmetry or skewness of the myosin profile,

S �
R

Ω
ðx�xCMÞ3ρbðxÞ

ð
R

Ω
ðx�xCMÞ2ρbðxÞÞ

3=2, as a proxy for the driving force. We find

that the traveling front velocity increases with increasing skew-
ness before saturating at larger velocities (inset of Fig. 5d).

Affine theory predicts moving deformation. It is important to
note that the movement of the actomyosin-dense region arising
from affine deformations of the active elastomer is a moving
deformation of the actomyosin mesh, and once established, is not
contingent on myosin turnover, as shown in Fig. 6a. One could
also sustain a traveling front or moving deformation of the
actomyosin mesh by ensuring a differential myosin binding and
unbinding rates at the leading and trailing edges of the front, in a
kind of treadmilling movement, Fig. 6b. None of these however is
associated with mass flow of actin and myosin. Indeed, the
dynamical equations describing the active affine elastomer,
Eqs. 7–8, bear a close resemblance to the generalized FitzHugh-
Nagumo model, an excitable system which is known to exhibit
traveling front solutions19.

Nonaffine elastomer with network remodeling and intranet-
work flow. As time progresses and the myosin-dense clusters
grow, the local contractile stresses can become large. Such large
contractile stresses may dramatically enhance actin turnover and
crosslinker unbinding. In Fig. 7a, we give a schematic plot of the

actin turnover time as a function of contractile stress, and com-
pare it with the time scales of oscillation, front propagation and
contractile collapse obtained from the affine theory. Indeed there
is experimental evidence that actin turnover times at first increase
with increasing contractility31–33 - this is likely due to the fact
that bound myosin might occupy the binding sites of actin
remodeling proteins such as cofilin. There is also evidence that for
large levels of contractility, the actin turnover rates are large,
possibly because of destabilization of actin or unbinding of
crosslinkers at large contractile stress. We make the plausible
assumption that the qualitative change in turnover rates is sudden
at a stress scale σ? (Fig. 7a), beyond which the deformation of the
mesh can no longer be considered affine.

We use this insight to arrive at a nonaffine description of the
active elastomer. Consider a disordered mesh comprising actin
filaments linked to each other by crosslinkers such as
α-actinin and myosin (we will assume that this is an unentangled
network). The bound myosin locally compresses the mesh here
and there, recruiting more myosin in the process. When the local
bound-myosin concentration goes beyond a threshold (so that the
configuration now samples the second minimum of the effective
free energy, Φ(ϵ)), the local compression is high and the mesh
surrounding this myosin-dense region gets significantly stretched.
This could lead to a tearing or ripping of the mesh, either via the
unbinding of crosslinkers, destabilization of actin or by the sliding
and slipping of filaments past each other. This mesh breakage
subsequently heals by the rebinding of crosslinkers or actin itself.

With this picture in mind, we refer to several seminal studies
on thermally activated reversibly crosslinked networks in the
context of the dynamic properties of physical gels21, 34, 35. The
most dramatic feature of such reversible networks is its internal
fluidity, where each chain can diffuse through the entire network
due to the finiteness of the crosslinker life time, in spite of being
partially connected to the macroscopic network structure in the
course of movement. These systems thus flow under an external
stress on time scales longer than the crosslinker dissociation time.

In the context of actomyosin networks, the disrupting influence
of filament turnover and the ultimate fluidization has been the
subject of some study36. In a very recent submission, the healing
effect of turnover has also been investigated, and long-range
network flows have been demonstrated in simulations of a model
actomyosin cortex37.

In the present context, when the local bound myosin
concentration rises beyond a threshold and attains an asymmetric
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density profile, it induces mesh breakage in its surrounding
regions. This actomyosin-dense region can move through the
entire network due to the finiteness of the crosslinker life time, in
spite of being partially connected to the macroscopic network
structure in the course of movement. These systems should thus
exhibit flow under an internal active contractile stresses on time
scales longer than the crosslinker dissociation time. This is
depicted in Fig. 7b.

To describe this mathematically, it is convenient to define
physical quantities coarse-grained over the scale of the
actomyosin-dense region Ω, such as ρb ¼ Ω�1

R
Ωρb and

p=Ω−1∫Ω∇ ⋅ σa, the net force-dipole associated with the
anisotropy of the myosin profile. We may decompose myosin
density configuration ρb into a sum of actomyosin-dense clumps
(contributing to nonaffine deformations) with volume fraction ϕ
and a background (contributing to affine deformations). The
equation for the ρb may now be written as,

ρb ¼ �∇ � ρbvð Þ þ D 1� ϕð Þ∇2ρb þ Sm ρbð Þ; ð9Þ

where, v= ϕβ(p + γp⋅ϵ) + (1 − ϕ) _u, and β is the mesh breakage
probability and γ is a strain-alignment parameter.

Flow described here is a consequence of internal active
deformations in a transient actomyosin network. We believe this
is a new physical phenomenon; unlike the flow observed in

physical gels under external load, this active flow is generated by
internally generated stresses even in the absence of an external
load.

In general, the interplay between actively generated contractile
stresses and stress-dependent turnover of components that shows
up in many cellular contexts, promises a rich phenomenology
with novel rheological consequences. The constant remodeling
and turnover of the actin mesh could drive the system from an
elastic regime to a fluid-like behavior via a critical elastic state,
which is characterized by correlated strain fluctuations, which
might be intermittent. A more complete hydrodynamic theory of
nonaffine deformations of a actomyosin network with turnover is
a task for the future.

Comparison with experiments. In making comparisons of the
theory presented here with experiments in germband cells in vivo,
it is important to demarcate the affine and nonaffine regimes of
the elastomer. The difficulty in doing this, is that, we do not know
the detailed physical mechanism that would allow us to compute
the form of the actin turnover time as a function of contractile
stress (Fig. 7a). Nevertheless, it is clear that starting from an
unstrained elastomer, the early time dynamics should be descri-
bed by the linear and leading nonlinear analysis of the affine
theory, as described earlier. The dynamical behaviors described
by this analysis include oscillations and contractile collapse, from
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which we make the following qualitative assertions: (i) the exis-
tence of bounded (finite-amplitude) oscillations requires advec-
tion, strain-dependent unbinding and turnover of myosin, (ii) the
coexisting oscillation-moving and collapse-moving phases cannot
be obtained in the absence of strain-dependent unbinding. As the
kymographs in Fig. 2 show, these dynamical behaviors start
emerging at t≈ 2 − which translates to a real time of ≈6 s (see
“Methods” section), which is smaller than the actin turnover time
of around 10–20 s6.

The stable, oscillatory and the collapse phases of the affine
theory compare favorably with in vivo experiments in germband
cell8. First, our phase diagram showing the stable, oscillatory and
contractile collapse phase is grossly consistent with the experi-
mental phase diagram that appears in ref. 8. Pulsatory solutions
are obtained over a wide range of parameters, which include the
pure oscillatory and the coexistence phases (Fig. 2d–g). In
addition, we compare the finer aspects of the oscillatory phase
with the pulsation seen in experiments (Supplementary Fig. 10).
Consistent with ref. 8, we see that advection is crucial to obtain
oscillations of bound myosin, both locally (Supplementary Fig. 10a,
b) and cell-averaged (Supplementary Fig. 10(c)). We find a strong
correlation between convergent (divergent) advection velocities
and increased (decreased) myosin density (Supplementary
Fig. 10a–c). Moreover, the amplitude of the oscillation decreases
when we reduce actin density ρ0 (Supplementary Fig. 10d), which
is consistent with the actin perturbation experiments in ref. 8.

Now the nucleation, growth, and coalescence events of the
myosin-dense clusters, precursors to the eventual moving phase of
the affine theory, also take place over these time scales and compare
well with the in vivo kymographs (Fig. 3). The establishment of the
asymmetric profile of the myosin-dense cluster at the onset of
movement also appears to be present in the early time dynamics of
the moving myosin profiles observed in vivo, Fig. 4d–f.

The moving (traveling front) solution is the one significant
prediction of the full nonlinear affine theory, and appears at later
times. By this stage, the local contractile stresses are high, opening
up the possibility of a crossover to the nonaffine regime. Both the
affine and nonaffine theories predict movement—the affine
theory predicts a moving deformation or a traveling front, while
the movement in the nonaffine theory is associated with mass
flow as a consequence of the steady turnover of actin filaments.

To test which of these pictures is true in vivo, we appeal to
FRAP experiments performed on a small region within the
actomyosin-dense cluster6. These preliminary experiments show
loss of recovery upon FRAP, suggesting the possibility of actual
mass flow, consistent with the predictions of the nonaffine theory
(see Supplementary Information in ref. 6).

The fact that the actomyosin-dense region commences to move
with a constant velocity when it has attained an asymmetric
profile, is common to both the affine and nonaffine theory. It
moves with a constant velocity in the direction where the leading
edge has the smoother slope and maintains its asymmetric shape
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as it moves. This appears to be consistent with the situation
in vivo, Fig. 8a–c.

The driving force for this movement is established within the
medial actomyosin-dense cluster and not the cell boundary. Its
propulsion is therefore independent of the boundary or the
distance from the boundary. We ask whether this is true of the
moving actomyosin-dense regions in vivo. Figure 9a shows that
irrespective of its initial position at the commencement of the
flow, the moving actomyosin-dense region travels to the left or
right cell boundary with equal probability. Further, Fig. 9b shows
that the moving actomyosin-dense region travels with a constant
velocity as it moves towards a given cell boundary, its speed does
not depend on the distance from the cell boundary.

From the myosin intensity, we compute the shape asymmetry

via the skewness, S �
R

Ω
ðx�xCMÞ3ρbðxÞ

ð
R

Ω
ðx�xCMÞ2ρbðxÞÞ

3=2, of the myosin profile, and

find that it is proportional to the speed of the moving myosin-
dense cluster (Fig. 9c).

To our mind, this establishes unambiguously that the flow
toward the junctions is spontaneous with the driving force coming
from the gradient in myosin established within the front. The
boundary does not affect the flow speed, at best, weak asymmetries
that may arise at the boundary (for instance due to an asymmetry
in functional cadherin) may bias the direction of the flow7.

One consequence of this is that a cluster moving to the right,
might reverse its direction following a coalescence with another
moving cluster; such reversals are observed in in vivo experiments
(Supplementary Fig. 7 and Supplementary Fig. 9).

Discussion
Although simplified, in that it has completely ignored the cou-
pling of actomyosin dynamics to local chemical signaling such as
Rho8, we believe this active elastomer model with strain-
dependent turnover of components, admitting both affine and
nonaffine deformations, captures the essential physics of acto-
myosin pulsation and flows observed in a wide variety of tissue
remodeling contexts such as Drosophila germband extension and
dorsal closure in the amnioserosa. The minimal ingredients for
actomyosin pulsation and flow are mesh-elasticity, actomyosin
contractility, advection and turnover of both myosin and actin.

In this study, we have modeled the medial actin mesh during
apical constriction and germband extension in the Drosophila
embryo as an active elastomer embedded in a solvent5, 7, 15, 16,
which undergoes turnover of all its components. Our description
goes from the hydrodynamics of an affine elastomer to a
nonaffine elastomer, the latter incorporating network rupture and
remodeling, resulting in intranetwork flows. It thus goes from an
elastomer to a fluid-like description. Together, the affine and
nonaffine active elastomer model captures the range of dynamical
regimes exhibited in this system.

To make a detailed comparison of the spatiotemporal acto-
myosin patterns with experiments generated using quantitative
imaging, we will need to extend this numerical study to
2-dimensions, using appropriate (anisotropic) boundary condi-
tions and allowing for shear. The nucleation and growth of the
actomyosin-rich domains are similar to that seen in 1-dim, with
the difference being that domains can move around each other in
2-dim and can exhibit anisotropic movement.

In future, we would like to extend this framework to understand
the dynamical coupling of the medial actomyosin with degrees of
freedom (concentration of E-cadherin) attached to a deformable cell
junction. Though the emergence of actomyosin flows does not
depend on specific boundary conditions, cell boundaries may
directionally bias the intrinsic ability of actomyosin networks to
generate flow, as proposed before7.

Methods
Free-energy functional. The bulk elastic free-energy density of the elastomer in
terms of the linearized strain tensor ϵij is given by
fB ¼ μ

2 ϵijϵij þ λ
2 ϵiiϵjj þ ¼ þ Cδρϵii þ A

2 δρ
2 þ ¼ , where the … represent higher-

order terms to stabilize a possible activity induced contracted state and to prevent a
runway density increase (δρ is the deviation of the local mesh density from its
equilibrium value, δρ= −(C/A)ϵii). It is this C/A≡ c> 0 that makes its appearance
in all the figure captions and in Eq. 5.

The coefficients that appear in the effective elastic free-energy functional Φ(ϵ)
(Eq. 6) conceived from renormalization of elastic stress by the active stress −ζ(ρ,ρb)
ΔμI are given by, K2 ¼ Bþ ζ1Δμρb

1þζ2ρb
cχ0ðρ0Þ, K3 ¼ � ζ1Δμρb

1þζ2ρb
c2 χ00 ðρ0Þ

2 and
K4 ¼ ζ1Δμρb

1þζ2ρb
c3 χ000 ðρ0Þ

6 . Here ζ1< 0 and χ′(ρ0) > 0, so K2 goes from being positive to
negative as contractility increases. The signs of the other constants are as follows:
ζ2> 0, χ′′(ρ0)> 0 and χ′′′(ρ0)< 0, so that K3 and K4 are always positive.

Parameter values. Here we relate the values of the dimensionless parameters to
real units extracted from a variety of experimental measurements. For the unit of
length, l ¼ ffiffiffiffiffiffiffiffi

η=Γ
p

or the actin mesh size, we take 0.5μm (consistent with the rough
estimates in ref. 6) The unit of time, k�1

b , can be estimated from the myosin FRAP
data8, we find ku= 0.2± 0.08 s−1, and taking the ratio k= ku/kb to be 1.0, we obtain
a binding rate, kb= 0.2 s−1. The viscosity of the mesh is taken to be 50 Pa s36.

We can now convert all the dimensionless values into real values, and check for
consistency with other experimental estimates. Thus, a dimensionless value of the
bulk modulus B= 5 translates to B= 42 Pa (consistent with what can be estimated
from ref. 38). Similarly, a dimensionless value of the magnitude of the active stress, |
ζ1Δμ| = 5 translates to |ζ1Δμρb0| = 42 Pa (roughly the order of magnitude estimated
from ref. 38). Finally, the dimensionless diffusion coefficient D= 0.25 implies a real
value of D= 0.01 μm2/s.

This implies that a dimensionless front velocity v= 1 (Fig. 9c) translates to a
real velocity of v= 0.08 μm/s (consistent with the flow velocity of actomyosin
reported in ref. 6, also see Supplementary Fig.8). Likewise, the time period of
oscillation obtained in the section on “Leading order nonlinearities”,
T = 2π(η/ku0(B + ζ1Δμρb0))1/2 translates to be ~20 s and the active propulsion force
fact is estimated at 30–60 pN (consistent with ref. 38).

Numerical methods. Since the dynamical equations have nonlinear advection and
diffusion, care must be taken in evaluating the flux due to dissipative and dispersive
errors arising from spatial discretization. We use the finite volume method for
spatial discretization39, which has been found to be useful for nonlinear advection
equations40.

We calculate the numerical flux using the Van-Leer’s flux limiter, which uses a
different formula to calculate the spatial derivative depending on how sharply the
ρb profile changes in space. When the profile changes very fast, the scheme
implements the upwind method41, which reduces the dispersion error through
numerical diffusion. When the profile changes smoothly the scheme implements a
second order accurate method called Lax-Wendroff method42. In our numerical
scheme, the density (ρb or ρ) flux on the interface between ith and (i − 1)th node is
computed as,

f
nþ1

2

i�1
2
¼ 1

2 vi�1
2
ð1þ θi�1

2
Þρni�1 þ 1� θi�1

2

� �
ρni

h i

þ 1
2

��vi�1
2

�� 1�
����� vi�1

2
Δt

Δx

�����
 !

ϕn
i�1

2
rni�1

2

� �
ρni � ρni�1
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2
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θi�1
2
¼ þ1; ifvi�1

2
>0

�1; ifvi�1
2
� 0

0
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rni�1
2
¼

ρni�1�ρni�2
ρni �ρni�1

; ifvi�1
2
>0

ρniþ1�ρni
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2
� 0

0
BBBB@ : ð12Þ

The function ϕ(r) is the Van-Leer flux limiter

ϕ rð Þ ¼ r þ jrj
1þ jrj : ð13Þ

The time integration is done with a total variation diminishing (TVD) 3rd order
Runge–Kutta method43. All other derivative terms were discretized using a simple
finite difference. The initial conditions were chosen from a uniform random

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01130-1 ARTICLE

NATURE COMMUNICATIONS |8:  1121 |DOI: 10.1038/s41467-017-01130-1 |www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


distribution of fixed width about a uniform, unstrained configuration. We used
periodic boundary conditions throughout and a time-space discretization,
Δt= 10−4 and Δx= 5 × 10−2.

Experimental methods and data analysis. For fluorescence time-lapse imaging,
embryos at stage 7 were dechorionated with 100% bleach and mounted on No. 1
coverslip with halocarbon oil44. A 100×, 1.4 N.A oil immersion objective with
Nikon spinning disc Eclipse Ti inverted microscope was used44. The system
acquires images using the MetaMorph software. Starting from the most apical
plane, 4–7 z-sections 0.5 μm apart were acquired every 1.5–4 s (depending on the
experiment) using a single camera. Sum-intensity z-projection of slices was used
for all quantifications, followed by a background subtraction using the available
plugin in Fiji.

All the data analysis are done using customized code written in MATLAB. For
realization of pulse shape, velocity and skewness pulses were projected on the line
of their movement (for details see Supplementary Fig. 6).

Data availability. All the relevant data are available from the authors upon
request.
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