
MNRAS 476, 4104–4122 (2018) doi:10.1093/mnras/sty403
Advance Access publication 2018 February 19

Secular instabilities of Keplerian stellar discs

Karamveer Kaur,1‹ Mher V. Kazandjian,2 S. Sridhar1 and Jihad R. Touma3

1Raman Research Institute, Sadashivanagar, Bangalore 560 080, India
2Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands
3Department of Physics, American University of Beirut, PO Box 11-0236, Riad El-Solh, Beirut 11097 2020, Lebanon

Accepted 2018 February 12. Received 2018 February 12; in original form 2017 October 28

ABSTRACT
We present idealized models of a razor-thin, axisymmetric, Keplerian stellar disc around a
massive black hole, and study non-axisymmetric secular instabilities in the absence of either
counter-rotation or loss cones. These discs are prograde mono-energetic waterbags, whose
phase-space distribution functions are constant for orbits within a range of eccentricities (e)
and zero outside this range. The linear normal modes of waterbags are composed of sinusoidal
disturbances of the edges of distribution function in phase space. Waterbags that include
circular orbits (polarcaps) have one stable linear normal mode for each azimuthal wavenumber
m. The m = 1 mode always has positive pattern speed and, for polarcaps consisting of orbits
with e < 0.9428, only the m = 1 mode has positive pattern speed. Waterbags excluding circular
orbits (bands) have two linear normal modes for each m, which can be stable or unstable. We
derive analytical expressions for the instability condition, pattern speeds, growth rates, and
normal mode structure. Narrow bands are unstable to modes with a wide range in m. Numerical
simulations confirm linear theory and follow the non-linear evolution of instabilities. Long-
time integration suggests that instabilities of different m grow, interact non-linearly, and relax
collisionlessly to a coarse-grained equilibrium with a wide range of eccentricities.
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1 IN T RO D U C T I O N

Dense clusters of stars orbit massive black holes (MBHs) in galac-
tic nuclei. The best studied cases are the nuclear star clusters of the
Milky Way and M31, each of which possesses a low-mass (or Kep-
lerian) stellar disc around the MBH. Since the black hole’s gravity
dominates the force on stars, Toomre Q � 1, so an axisymmetric
Keplerian disc is expected to be linearly stable to axisymmetric
perturbations on Keplerian orbital time-scales. Even when a disc
is stable to all modes on these short time-scales, it may be unsta-
ble to modes that grow over the much longer secular time-scale
of apse precession. Secular instabilities must necessarily be non-
axisymmetric with the azimuthal wavenumber m �= 0 (Sridhar &
Touma 2016, hereafter ST1). A good example is the m = 1 in-
stability of counter-rotating discs, which may be applicable to the
nuclear disc of M31 (Touma 2002; Kazandjian & Touma 2013).
Stellar discs with distribution functions (DFs) even in the angular
momentum and empty loss cones (i.e. DF is zero at zero angular
momentum) may be unstable to m = 1 modes (Tremaine 2005).
Mono-energetic discs dominated by nearly radial orbits, could be
prone to loss cone instabilities of all m, if there is some amount
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of counter-rotating stars (Polyachenko, Polyachenko & Shukhman
2007).

A natural question is the following: can prograde, axisymmetric
discs support secular instabilities, even when counter-rotation and
loss cone are absent? The answers available in the literature pertain
to the stability of razor-thin discs. Tremaine (2001) and Jalali &
Tremaine (2012) proved that a Schwarzschild DF is stable to modes
of all m in the tight-winding limit. This was generalized by ST1
who proved that a DF, which is a strictly monotonic function of the
angular momentum at fixed semimajor axis (i.e. at fixed Keplerian
energy), is stable to modes of all m. However, these results are
insufficient to address the general question, which could be relevant
to the history of the clockwise disc of young stars at the centre of
the Milky Way. If these stars formed in a fragmenting, circular gas
disc around the MBH (Levin & Beloborodov 2003), then the initial
stellar orbits should have small eccentricities and the same sense
of rotation (i.e. no counter-rotation) about the MBH. But Yelda
et al. (2014) found that the mean eccentricity of the stellar orbits is
ē � 0.27. Is this largish value the result of secular instabilities? The
goal of this paper is to present the simplest models of stellar discs
orbiting MBHs, whose instabilities can be studied explicitly. This
is done by combining analytical methods from ST1 with numerical
simulations derived from Touma, Tremaine & Kazandjian (2009).

In Section 2 the problem is stated within the framework of ST1.
Using their stability result as a guide we motivate the search for
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Figure 1. Phase space of a mono-energetic disc. Each star in the disc is
represented by point on the unit sphere (shown in red), with canonical
coordinates (�, g). The latitudes are lines of constant �, and longitudes are
lines of constant g. The projection of (�, g) on to the equatorial plane gives
the eccentricity vector e = (ex, ey ).

DFs that are either non-monotonic or not strictly monotonic in the
angular momentum. This leads in Section 3 to mono-energetic discs,
which are composed of stars with equal semimajor axes. The phase
space of a mono-energetic disc is a sphere (see Fig. 1), and secular
gravitational interactions between stars have an explicit logarithmic
form. Drawing on earlier work in plasma physics we introduce
the simplest of prograde, axisymmetric DFs, which correspond to
‘waterbags’. The phase-space distribution function of a waterbag is
constant for orbits whose eccentricities (e) lie within a certain range,
and zero outside this range. These are of two types of waterbags:
polarcaps, which include circular orbits, and bands, which exclude
circular orbits – see Fig. 2. The linear stability analysis of these
systems leads to normal modes that are composed of sinusoidal
disturbances of the edges of distribution function in the phase space.
For each m �= 0, a polarcap has one stable normal mode, whereas

a band has two normal modes that may be stable or unstable. In
Section 4 we present numerical simulations of an unstable and a
stable band; these give an immediate graphical picture, both in
real space and phase space, of linear and non-linear evolution. The
linear stability problem for a band is formulated and solved in
Section 5. Section 6 explores instabilities further, drawing detailed
comparisons between linear theory and numerical simulations, as
well as following the long-time evolution of an unstable band. We
conclude in Section 7.

2 SE C U L A R DY NA M I C S O F K E P L E R I A N
STELLAR D I SCS

Our model system is a razor-thin flat stellar disc of total mass M,
composed of many stars, orbiting an MBH of mass M• � M. Since
the mass ratio ε = M/M• � 1, the dominant gravitational force
on the stars is the inverse-square Newtonian force of the MBH.
The limiting case of negligible stellar self-gravity, ε → 0, reduces
to the problem of each star orbiting the MBH independently on a
fixed Keplerian ellipse with period Tkep = 2π(a3/GM•)1/2, where
a = semimajor axis. When 0 < ε � 1, self-gravity is small but
its effects build up over the long secular times, Tsec = ε−1Tkep �
Tkep. ST1 describes the average behaviour of dynamical quantities
over times Tsec, by systematically averaging over the fast Keplerian
orbital phase – a method that goes back to Gauss. The secular orbit
of each star in the disc is represented by a Gaussian ring, which is a
Keplerian ellipse with the MBH at one focus, of fixed semima-
jor axis, whose eccentricity and apsidal longitude can evolve over
times Tsec. Hence the natural measure of time in secular theory is
τ = ε × time, the ‘slow’ time variable. The state of a Gaussian ring at
any time τ can be specified by giving its three-dimensional Delau-
nay coordinates, R = {I , L, g}, where I = √

GM•a = constant
that is a measure of the Keplerian energy, L is the specific angular
momentum that is restricted to the range −I ≤ L ≤ I, and 0 ≤ g < 2π

is the longitude of the periapse. Ring space (or R-space) is topolog-
ically equivalent to R

3, with I the ‘radial coordinate’, arccos (L/I )
the ‘colatitude’, and g the ‘azimuthal angle’. A disc composed of
N � 1 stars, each of mass m� = M/N, is a collection of N points in
R-space. The simplest description of a stellar disc uses the single-
ring probability DF, F (R, τ ) = F (I , L, g, τ ), which is normalized

Figure 2. Two types of prograde waterbags.

MNRAS 476, 4104–4122 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/476/3/4104/4875943
by Raman Research Institute user
on 08 May 2018



4106 K. Kaur et al.

as∫
dR F (R, τ ) =

∫
dI dL dg F (I , L, g, τ ) = 1. (1)

Over times much shorter than the resonant relaxation times,
Tres = NTsec, the graininess of the ring–ring interactions has negligi-
ble effects and the stellar system can be thought of as collisionless.
Formally, the collisionless limit corresponds to assuming that the
system is composed of an infinite number of stars, each of infinitesi-
mal mass, the whole having a mass M equal to the total stellar mass:
N → ∞, m� → 0 with M = Nm� held constant. Then each star is like
a test ring, whose motion is governed by the secular Hamiltonian,
�(I, L, g, τ ), which is equal to the (scaled) self-gravitational disc
potential:1

�(I , L, g, τ ) =
∫

dI ′ dL′ dg′ �(I , L, g, I ′, L′, g′)

× F (I ′, L′, g′, τ ), (2)

where

�(I , L, g, I ′, L′, g′) = −GM•

∮ ∮
dw

2π

dw′

2π

1

|r − r ′| (3)

is the (scaled) interaction potential between two rings.2 Ring orbits
are determined by the Hamiltonian equations of motion:

I =
√

GM•a = constant,
dL

dτ
= − ∂�

∂g
,

dg

dτ
= ∂�

∂L
. (4)

This is a Hamiltonian flow in R-space that is restricted to the
I = constant two-sphere. The flow carries with it the DF, whose
evolution is governed by the secular collisionless Boltzmann equa-
tion (CBE):

∂F

∂τ
+ [F, �]L,g = 0, where [F, �]L,g = ∂F

∂g

∂�

∂L
− ∂F

∂L

∂�

∂g

(5)

is the two-dimensional Poisson bracket in (L, g)-space. � itself de-
pends on F through the R′-space integral of equation (2). Therefore
equation (5), together with the secular Hamiltonian of equation (2),
defines the self-consistent initial value problem of the secular time
evolution of the DF, given an arbitrarily specified initial DF F(I, L, g,
0). A general property of this time evolution is the following: since
the I of any ring is constant in time, the probability for a ring to be
in (I, I + dI) is a conserved quantity. In other words the probability
distribution function in one-dimensional I-space, defined by

P (I ) =
∫

dL dg F (I , L, g, τ ), (6)

is independent of τ , as can be verified directly using the CBE of
equation (5).

2.1 Axisymmetric equilibria and linear stability

Secular equilibria are DFs that are time-independent and self-
consistent solutions of the CBE. They can be constructed using the

1 ST1 include relativistic effects of the MBH and tidal forces due to external
gravitational fields, but these are not considered in this paper.
2 Here r = (x, y) and r ′ = (x′, y′) are the position vectors of the two stars
with respect to the MBH – see section 4.1 of ST1 for details of the transfor-
mation from r and r ′ to the corresponding Delaunay variables. Here w and
w′ are the mean anomalies of the stars representing the Keplerian orbital
phase on their respective Gaussian rings.

secular Jeans theorem of ST1, which states that F must be function
of the isolating integrals of motion of the secular Hamiltonian. An
axisymmetric equilibrium DF is independent of g and can be written
as F = (2π)−1F0(I , L), because I and L are two isolating integrals
of motion of the axisymmetric Hamiltonian, �0(I, L). Equation (2)
gives �0 self-consistently in terms of F0:3

�0(I , L) =
∫

dI ′ dL′ F0(I ′, L′)
∮

dg′

2π
�(I , L, g, I ′, L′, g′). (7)

The equations of motion (4) for a ring become very simple in an
axisymmetric disc:

I = constant, L = constant,
dg

dτ
≡ �0(I , L) = ∂�0

∂L
. (8)

The semimajor axis and eccentricity of a ring are constant, with
the apsidal longitude precessing at the constant angular frequency
�0(I, L).

The time evolution of perturbations to an axisymmetric equi-
librium DF can be studied by considering the total DF to be
F = (2π)−1F0(I , L) + F1(I , L, g, τ ), where the perturbation F1

contains no net mass:∫
dI dL dg F1(I , L, g, τ ) = 0. (9)

If �1(I, L, g, τ ) is the self-gravitational potential due to F1, then the
total Hamiltonian is � = �0(I, L) + �1(I, L, g, τ ). By substituting
for F and � in the CBE (equation 5), and using [F0, �0]L, g = 0,
we can derive the equation governing the time evolution of F1. For
small perturbations |F1| � F0 this is the linearized collisionless
Boltzmann equation (LCBE):

∂F1

∂τ
+ �0

∂F1

∂g
= 1

2π

∂F0

∂L

∂�1

∂g
, (10a)

�1(I , L, g, τ ) =
∫

dI ′ dL′ dg′ �(I , L, g, I ′, L′, g′)

× F1(I ′, L′, g′, τ ). (10b)

The LCBE is a linear (partial) integro-differential equation for F1,
and determines the linear stability of the axisymmetric DF, F0(I, L).

An axisymmetric perturbation F1(I, L, τ ) gives rise to a �1(I,
L, τ ) that is also independent of g. Then the LCBE (equation 10a)
implies ∂F1/∂τ = 0, whose physical solution is F1 = 0, because
an axisymmetric perturbation cannot change the angular momen-
tum of a star. Hence it is only non-axisymmetric, or g-dependent,
perturbations that are of interest in secular theory. Since τ and g
appear in the LCBE only as (∂/∂τ ) and (∂/∂g) we can look for
linear modes of the form F1 ∝ exp [i(mg − ωτ )], where m �= 0
is the azimuthal wavenumber. Using only the general symmetric
properties of �(R,R′), the following result was proved in ST1 for
DFs that are strictly monotonic functions of L.

Stationary, axisymmetric discs with DFs F0(I, L) are neutrally
stable (i.e. ω is real) to secular perturbations of all m when ∂F0/∂L

is of the same sign (either positive or negative) everywhere in its
domain of support, −I ≤ L ≤ I and Imin ≤ I ≤ Imax.

As noted in ST1 these secularly stable DFs can have both prograde
and retrograde populations of stars because −I ≤ L ≤ I. The discs
have net rotation and include physically interesting cases, such
as a secular analogue of the well-known Schwarzschild DF. To
investigate secular instabilities, the above stability result motivates

3 �(I, L, g, I′, L′, g′) depends on the apses only in the combination |g − g′|,
so the integral over g′ is independent of g.
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us to look at axisymmetric discs with DFs, F0(I, L), that are either
non-monotonic or not strictly monotonic functions of L at fixed I.

A general way to proceed would be to develop stability theory,
using only the symmetry properties of �(R,R′), as ST1 did. But
the goal of this paper is more specific: We wish to construct the
simplest class of disc models that permits quantitative study of the
onset and growth of linear non-axisymmetric instabilities. In order
to do this we must be able to calculate physical quantities such
as the apse precession frequency �0(I, L), using equations (7) and
(8). Hence we need to use explicit forms for �, for a physically
motivated model of a stellar disc.

3 MO N O - E N E R G E T I C D I S C S

3.1 Collisionless Boltzmann equation

�(I, L, g, I′, L′, g′) depends on the apses only in the combination
|g − g′|, and can be developed in a Fourier series in (g − g′). When
the spread in the semimajor axes of the disc stars is comparable
to the mean disc radius, the Fourier coefficients are, in general,
complicated functions of (I, L, I′, L′) – although for numerical cal-
culations it is straightforward to calculate them on any grid in this
four-dimensional space. Analytical forms are readily available if
restrictions are placed on L and L′, such as both the rings being
near-circular and well separated (the ‘Laplace–Lagrange’ limit of
planetary dynamics) or both rings being very eccentric, correspond-
ing to the ‘spoke’ limit of Polyachenko et al. (2007). But secular
dynamics and statistical mechanics are really about the exchange
of angular momentum of stars at fixed semimajor axes, so it seems
preferable if we do not place such severe restrictions on L or L′.
Let us consider discs with a small spread in semimajor axes; since
this is equivalent to a small spread in Keplerian orbital energies,
the disc may be called nearly mono-energetic. Having nearly the
same semimajor axes, any two rings either cross each other or come
very close to each other, so �(R,R′) can be large, even infinite,
in magnitude. For nearly circular rings the dominant contribution,
which is a logarithmic singularity, was worked out by Borderies,
Goldreich & Tremaine (1983).

In a nearly mono-energetic disc most pairs of rings intersect
each other. It is useful to consider the strictly mono-energetic
limit, I = I0 = √

GM•a0, when every ring intersects every other
ring. Since all rings have the same semimajor axis a0, they also
have the same Keplerian orbital period, Tkep = 2π(a3

0/GM•)1/2.
Hence it is convenient to use a dimensionless slow time variable,
t = τ/Tkep = time/Tsec, to study the dynamics of mono-energetic
discs. The state of a ring at time t can be specified by giving its peri-
apse, g, and the dimensionless specific angular momentum � = L/I0.
Since −1 ≤ � ≤ 1, the motion of any ring is restricted to the unit
sphere (Fig. 1) on which � = cos (colatitude) and g = azimuthal-
angle are canonical coordinates. For a mono-energetic disc F takes
the form

F (I , L, g, τ ) = δ(I − I0)

I0
f (�, g, t). (11)

Then equation (1) implies the following normalization for f:∫
d� dg f (�, g, t) = 1. (12)

Hence f(�, g, t) is the (dimensionless) DF for mono-energetic discs
on the (�, g) phase space of Fig. 1. The eccentricity of a ring, e =√

1 − �2, is equal to the length of the projection of the corresponding
position vector on the sphere’s equatorial plane. The eccentricity
vector (or Lenz vector) is defined as e = (ex, ey) with ex = ecos g

and ey = esin g. We can think of (ex, ey, �) as a right-handed Cartesian
coordinate system, with the ring phase space realized as the unit
sphere, e2

x + e2
y + �2 = 1.

The formula of Borderies et al. (1983) for the ring–ring interac-
tion potential, ψ(�, �′, g − g′) = �(I0, I0�, g, I0, I0�

′, g′), takes the
following attractive form given in Touma & Tremaine (2014):

ψ(�, �′, g − g′) = GM•
a0

{
− 4

π
log 2 + 1

2π
log

∣∣e − e′∣∣2 } . (13)

This expression for ψ is, strictly speaking, valid only when e,
e′ � 1. But Touma & Tremaine (2014) have shown that this for-
mula for ψ serves as a good approximation for all values of e and
e′, and used this fact to study axisymmetric and non-axisymmetric
secular thermodynamic equilibria; they also provide an improved
fitting formula but we do not use this. Henceforth we take equation
(13) as the basic ‘law of interaction’, between any two rings in a
mono-energetic disc. Using equation (11) in equation (2) we see
that the mean-field self-gravitational potential ϕ(�, g, t) = �(I0,
I0�, g, τ ) is given in explicit form as

ϕ(�, g, t) =
∫

d�′ dg′ ψ(�, �′, g − g′)f (�′, g′, t)

= −4GM•
πa0

log 2 + GM•
2πa0

∫
d�′ dg′ log

∣∣e − e′∣∣2
× f (�′, g′, t). (14)

We have already cast the independent variables (�, g, t) in dimen-
sionless form. Equations (4), governing the dynamics of a ring, can
now be written in the following dimensionless form:

d�

dt
= − ∂H

∂g
,

dg

dt
= ∂H

∂�
, (15)

where

H (�, g, t) = Tkep

I0
ϕ(�, g, t)

=
∫

d�′ dg′ log
∣∣e − e′∣∣2 f (�′, g′, t) + constant (16)

is the dimensionless secular Hamiltonian. These equations of mo-
tion imply the natural Poisson Bracket on the (�, g) unit sphere:

[ f , H ] = ∂f

∂g

∂H

∂�
− ∂f

∂�

∂H

∂g
. (17)

Substituting equation (11) in equation (5) we obtain the following
CBE governing the self-consistent evolution of the DF:

∂f

∂t
+ [ f , H ] = 0. (18)

Equations (16)–(18) provide a complete, dimensionless description
of the collisionless dynamics of mono-energetic Keplerian discs.

3.2 Linear stability of axisymmetric equilibria

In the study of axisymmetric equilibria and their linear, non-
axisymmetric perturbations it is useful to have at hand the Fourier
expansion of the ring–ring interaction potential, log

∣∣e − e′∣∣2, that
appears in the definition of the Hamiltonian in equation (16). From
equation (C.2) of Touma & Tremaine (2014) we have

log
∣∣e − e′∣∣2 = log

[
e2 − 2ee′ cos(g − g′) + e′2 ]

= log
(
e2
>

) − 2
∞∑

m=1

1

m

(
e<

e>

)m

cos [m(g − g′)],

(19)

where e< = min(e, e′) and e> = max(e, e′).
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Any DF of the form f = (2π)−1f0(�), which is normalized as∫ 1
−1 d� f0(�) = 1, represents an axisymmetric equilibrium. Using

equation (19) in equation (16), we have the corresponding axisym-
metric Hamiltonian:

H0(�) =
∫ 1

−1
d�′ log

(
e2
>

)
f0(�′)

=
∫ |�|

0
d�′ log

(
1 − �′2) {f0(�′) + f0(−�′)

}
+ log

(
1 − �2

) ∫ 1

|�|
d�′ {f0(�′) + f0(−�′)

}
, (20)

where we have dropped a constant term. The apse precession fre-
quency is given as

�0(�) = dH0

d�
= − 2 �

1 − �2

∫ 1

|�|
d�′ {f0(�′) + f0(−�′)

}
. (21)

Some general properties of �0 are (i) since the product �.�0(�)
≤ 0, the apse precession of a ring is always opposite to the faster
Keplerian orbital motion; (ii) as � → 0 we have �0(�) → −2�,
so highly eccentric rings precess very slowly; (iii) in the limit of
circular rings � → ±1, and �0(�) → ∓{f0(1) + f0( − 1)} goes to a
finite limit.

When the axisymmetric equilibrium is perturbed the total DF is
f (�, g, t) = (2π)−1f0(�) + f1(�, g, t), and the corresponding self-
consistent Hamiltonian is H0(�) + H1(�, g, t). Substituting these in
the mono-energetic CBE (equation 18) and linearizing, we obtain
the LCBE governing the evolution of f1:

∂f1

∂t
+ �0(�)

∂f1

∂g
= 1

2π

df0

d�

∂H1

∂g
, (22)

where

H1(�, g, t) =
∫

d�′ dg′ log
∣∣e − e′∣∣2 f1(�′, g′, t). (23)

We seek solutions of the form f1(�, g, t; m) =
Re{f1m(�)exp [i(mg − ωmt)]} and H1(�, g, t) =
Re{H1m(�)exp [i(mg − ωmt)]}, where, without loss of gener-
ality, we take m to be a positive integer. Equation (23) gives
H1m = −2π/m

∫ 1
−1 d�′(e</e>)mf1m(�′). Then the LCBE reduces

to the following equation:

[ ωm − m�0(�) ] f1m(�) = df0

d�

∫ 1

−1
d�′

(
e<

e>

)m

f1m(�′), (24)

which is an integral eigenvalue problem, for the eigenvalues ωm and
corresponding eigenfunctions f1m(�). This equation is a special case
of equation (75) of ST1, which is valid for a general disc. Proceeding
in a manner similar to ST1, it is straightforward to prove the stability
result: all DFs f0(�) that are strictly monotonic functions of � are
linearly stable. This raises again the question of the stability of DFs
that are not strictly monotonic in �. Since this question is now posed
in the context of equation (24) – which is given in explicit form –
we can proceed to explore it quantitatively. Among all the DFs that
are not strictly monotonic functions of �, the simplest are probably
the ‘waterbag’ DFs that are discussed below.

3.3 Waterbags and the linear stability problem

A mono-energetic waterbag is a region of the unit sphere phase
space of Fig. 1 within which the DF takes a constant positive value

and is zero outside this region.4 Time evolution that is governed
by the CBE of equations (16)–(18) conserves both the area of the
region and the value of the DF. Hence the dynamical problem re-
duces to following the evolution of the contour(s) bounding the
region. Analogous to the contour dynamics of fluid vortices on a
sphere (Dritschel 1988), the deformation of the contour(s) defining
a waterbag stellar disc can be very complicated.

3.3.1 Axisymmetric equilibria

An axisymmetric mono-energetic waterbag has a DF, f0(�), that
takes a constant positive value for � ∈ [�1, �2], and is zero outside
this interval. Since our primary interest in this paper concerns the
stability of discs in which stars orbit the MBH in the same sense,
we assume that 0 ≤ �1 < �2 ≤ 1. The normalized DF for such a
‘prograde waterbag’ is

f0(�) =
⎧⎨
⎩

1

�2 − �1
for �1 ≤ � ≤ �2,

0 otherwise.
(25)

There are two different cases, corresponding to �2 = 1 (polarcap)
and �2 < 1 (band) – see Fig. 2. It can be seen that bands have
DFs that are non-monotonic in �, whereas polarcaps have DFs that
are not strictly monotonic in �. Hence the stability result, stated
below equation (24), does not apply to either of these systems. But
their stability properties can be determined completely, as we show
below.

The waterbag DF describes a circular annular disc composed
of stars with eccentricities e = √

1 − �2 ∈ [e2, e1], where ei =√
1 − �2

i for i = 1, 2. The inner and outer radii of the disc
rmin = a0(1 − e1) and rmax = a0(1 + e1) are determined by the
most eccentric rings in the disc. The normalized surface density
profile, 
0(r), is obtained by integrating f0(�) over the velocities, as
is done in Appendix A. This gives


0(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sin−1 [�2/�0(r)] − sin−1 [�1/�0(r)]

2π2a2
0(�2 − �1)

, |r − a0| ≤ a0e2,

cos−1 [�1/�0(r)]

2π2a2
0(�2 − �1)

, a0e2 < |r − a0| ≤ a0e1,

0, a0e1 < |r − a0|,
(26)

where �0(r) =
√

2r/a0 − r2/a2
0 . Surface density profiles are plot-

ted in Fig. 3(a) for the polarcap and band of Fig. 2, and also a
broad-band (�1 = 0.1, �2 = 0.9), whose stability is studied later.
We note that the 
0(r) profiles of a polarcap and a band are very
different: the former has a single maximum at the centre of the disc,
whereas the latter has a characteristic double-horned shape.

The apse precession frequency �0(�) can be determined by using
equation (25) in equation (21). For a polarcap,

�0(�) =

⎧⎪⎪⎨
⎪⎪⎩

− 2 �

(1 − �2)
, 0 ≤ |�| ≤ �1,

− 2 �

(1 + |�|)(1 − �1)
, �1 < |�| ≤ 1,

(27)

4 The ‘waterbag’ model was originally developed for the Vlasov equation
by Berk & Roberts (1970).

MNRAS 476, 4104–4122 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/476/3/4104/4875943
by Raman Research Institute user
on 08 May 2018



Secular instabilities of Keplerian stellar discs 4109

Figure 3. Physical features of waterbags: solid and dashed lines are for the polarcap and band of Fig. 2, respectively. The broken dashed line is for a broad-band,
to be studied later.

and for a band,

�0(�) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 2 �

(1 − �2)
, 0 ≤ |�| ≤ �1,

− 2 �

(1 − �2)

(
�2 − |�|
�2 − �1

)
, �1 < |�| ≤ �2,

0, �2 < |�| ≤ 1.

(28)

Even though the waterbag itself occupies only the interval [�1, �2]
we calculate �0(�) for all � ∈ [ − 1, 1], because it gives the apse
precession frequency of any test ring that may be introduced into
the system. �0 is an antisymmetric function of �, as can be seen in
Fig. 3(b). For a polarcap �0 is non-zero when � = ±1, whereas for
a band �0(�) vanishes for all |�| > �2.

3.3.2 Stability to non-axisymmetric modes

An arbitrary collisionless perturbation of a waterbag can be de-
scribed as a deformation of its boundaries. From Fig. 2 we see
that a polarcap has just one boundary at � = �1 whereas a band
has two boundaries, at � = �1 and � = �2. Non-axisymmetric per-
turbations of the boundaries can be resolved as a Fourier series
in the apsidal longitude g. Fig. 4 shows an m = 3 deformation
of the polarcap and band of Fig. 2, where m is the azimuthal
wavenumber of perturbation. Polarcaps are linearly stable to all
non-axisymmetric modes. In order to prove this we note that, for
a polarcap, df0/d� = (1 − �1)−1δ(� − �1). Substituting this in the
integral equation (24) we obtain

[ωm − m�0(�)] f1m(�) = δ(� − �1)

1 − �1

∫ 1

−1
d�′

(
e<

e>

)m

f1m(�′),

(29)

where �0(�) is given by equation (27). The physical solution is
f1m(�) = Am δ(� − �1), where Am is a complex amplitude. Using this
in equation (29) we obtain the eigenvalue,

ωm = m �0(�1) + 1

1 − �1
. (30)

Since ωm is real for all m = 1, 2, . . . and 0 ≤ �1 < 1, all normal
modes are stable and purely oscillatory. For each m there is a normal

mode with

f1(�, g, t ; m) = Re {Amδ(� − �1) exp [im(g − λPt)]} , (31)

where

λP(m, �1) = ωm

m
= − 2 �1

(1 − �2
1)

+ 1

m(1 − �1)
(32)

is the precession frequency of the m-lobed, sinusoidal deformation
of the polarcap boundary. The first term on the right-hand side is
just the apse precession frequency in the unperturbed polarcap, and
is negative. The second term comes from the self-gravity of the
deformation, which is positive. The competition between these two
terms results in the following interesting features of λP(m, �1), as
can be seen in Fig. 5.

(i) For a polarcap with given �1, λP is a decreasing function of
m. This is because the self-gravity of the deformed edge is smaller
for bigger m, due to mutual cancellation from its lobes and dips. In
the limit m → ∞ this vanishes altogether and λP → �0(�1).

(ii) The m = 1 mode always has prograde precession, with
λP = 1/(1 + �1).

(iii) Modes with m = 2, 3, . . . precess in a prograde sense for
0 ≤ �1 < 1/(2m − 1), and in a retrograde sense for 1/(2m − 1) < �1

≤ 1. λP vanishes when a polarcap is such that �1 = 1/(2m − 1) for
some m; then it has a stationary time-independent deformation with
m lobes.

(iv) For �1 > 1/3, only the m = 1 mode has positive pattern
speed.

Bands have richer stability properties because, for each m, there
are two normal modes (as shown in Section 5). Each of these is
composed of sinusoidal disturbances of the two edges of phase-
space DF – see the lower panels of Fig. 4 for a representation of
an m = 3 mode. For bands df0/d� = {δ(� − �1) − δ(� − �2)}/��,
where �� = (�2 − �1). Substituting this in equation (24) we obtain
the following integral equation:

[ ωm − m�0(�) ] f1m(�) = δ(� − �1) − δ(� − �2)

��

∫ 1

−1
d�′

(
e<

e>

)m

× f1m(�′), (33)
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Figure 4. m = 3 normal mode for polarcap and band. The panels on the left show the deformed polarcap (upper panel) and band (lower panel) DFs. The
panels on the right are for the corresponding probability densities, n(ex, ey) = �−1 × DF, in the (ex, ey) plane. Since the DF is constant within the deformed
boundaries, n ∝ 1/

√
1 − e2.

where �0(�) is given by equation (28). Hence the eigenfunctions
are of the form

f1m(�) = Am1 δ(� − �1) + Am2 δ(� − �2), (34)

where Am1 and Am2 are complex amplitudes. When equation (34) for
f1m(�) is substituted in equation (33) the integral equation reduces to
a 2 × 2 matrix eigenvalue problem. This is the simplest linear sta-
bility problem in secular dynamics that can be studied analytically
in detail – see Section 5. Before doing this we present numerical
simulations of an unstable band and a stable band, so the reader
may have an immediate picture of the time evolution going beyond
the linear evolution of small disturbances.

4 N U M E R I C A L E X P L O R AT I O N O F
WATERBAG STA BI LI TY

We performed N-ring numerical simulations of waterbag bands,
for a range of system parameters (�1, �2). The full list is given
in Table 1. The last entry has �2 = 1, so is a polarcap and not
a band. It is included in the table as a limiting case of a class
of broad-bands. Here we discuss the stability of the two bands
whose 
0(r) and �0(�) profiles feature in Fig. 3: one is the band
waterbag_1_s0 with (�1 = 0.7, �2 = 0.9), and the other is the
broad-band waterbag_2_s0 with (�1 = 0.1, �2 = 0.9).

We simulate a planar system of N rings, each of which has the
same semimajor axis a0 and mass m�, orbiting an MBH of mass M•.
The total disc mass M = Nm� is chosen to be much smaller than
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Figure 5. Precession frequency of normal modes of polarcaps. The inter-
sections of the vertical dashed line with the λP curves gives the spectrum of
the normal modes of the polarcap of Fig. 2. Only the m = 1 normal mode
has positive precession for all values of �1.

Table 1. List of all numerical simulations. The upper five cases correspond
to Set I and the lower ones to Set II. The total duration of each simulation,
Tend, is given in units of Gyr; it is of order a few secular times and differs
from case to case.

System name �1 �2 Tend Stable?

waterbag_1_s0 0.7 0.9 2.5 No
waterbag_2_s0 0.1 0.9 9.4 Yes
waterbag_3_s0 0.8 0.9 10.0 No
waterbag_4_s0 0.85 0.9 6.17 No
waterbag_5_s0 0.7 0.97 8.79 Yes
waterbag_ �1_0.8_ �2_0.81 0.8 0.81 1.8 No
waterbag_ �1_0.8_ �2_0.82 0.8 0.82 10.0 No
waterbag_ �1_0.8_ �2_0.83 0.8 0.83 12.5 No
waterbag_ �1_0.8_ �2_0.84 0.8 0.84 13.3 No
waterbag_ �1_0.8_ �2_0.85 0.8 0.85 1.65 No
waterbag_ �1_0.8_ �2_0.86 0.8 0.86 34.2 No
waterbag_ �1_0.8_ �2_0.87 0.8 0.87 0.28 No
waterbag_ �1_0.8_ �2_0.88 0.8 0.88 5.9 No
waterbag_ �1_0.8_ �2_0.89 0.8 0.89 5.9 No
waterbag_ �1_0.8_ �2_0.90 0.8 0.90 41.2 No
waterbag_ �1_0.8_ �2_0.91 0.8 0.91 20.0 No
waterbag_ �1_0.8_ �2_0.92 0.8 0.92 10.8 No
waterbag_ �1_0.8_ �2_0.93 0.8 0.93 6.4 No
waterbag_ �1_0.8_ �2_0.94 0.8 0.94 44.0 No
waterbag_ �1_0.8_ �2_0.95 0.8 0.95 38.7 No
waterbag_ �1_0.8_ �2_0.96 0.8 0.96 18.4 No
waterbag_ �1_0.8_ �2_0.97 0.8 0.97 5.1 No
waterbag_ �1_0.8_ �2_0.98 0.8 0.98 211 Yes
waterbag_ �1_0.8_ �2_0.99 0.8 0.99 16.3 Yes
waterbag_ �1_0.8_ �2_1.00 0.8 1.00 19.0 Yes

M•, so ε = M/M• � 1 and the secular time-scale, Tsec = ε−1Tkep,
is much longer than the Kepler orbital period. Each ring can be
thought of as a point on the unit sphere phase space of Fig. 1,
with coordinates (�i, gi) for i = 1, 2, . . . , N. The projection of the
points on to the equatorial plane gives N eccentricity vectors, ei =
ei(cos gi x̂ + sin gi ŷ), where ei =

√
1 − (�i)2 is the eccentricity.

Then the normalized secular energy of the whole system is

H = 1

N

∑
i,j
j>i

log
∣∣ei − ej

∣∣2, (35)

which serves as the N-ring Hamiltonian for secular dynamics on the
sphere:

dgi

dt
= ∂H

∂�i
,

d�i

dt
= −∂H

∂gi
(for i = 1, 2, . . . , N), (36)

where t = time/Tsec is, as earlier, the dimensionless time variable.
The Hamiltonian equations can be rewritten compactly as

dei

dt
= 2

N

N∑
j=1
j �=i

(ei − ej ) × �i∣∣ei − ej
∣∣2 , (37)

where �i = �i ẑ. These vectorial equations are similar to those pre-
sented in Touma et al. (2009), with the difference that our inter-
action Hamiltonian is unsoftened and logarithmic. The equations
have been solved using a Bulirsch–Stoer integrator, with relative
and absolute tolerances equal to 10−8. Our fiducial system has the
following parameters.

(i) The disc is composed of N = 1000 rings.
(ii) Semimajor axis of each ring is a0 = 1 pc.
(iii) Black hole mass M• = 107 M�, giving a Kepler orbital

period Tkep = 0.03 Myr.
(iv) Disc mass M = 103 M�, so ε = 10−4 and the secular time-

scale Tsec = 0.3 Gyr.

The typical relative energy and angular momentum errors for the
simulations listed in Table 1 are ∼10−6.

The evolution of the two bands, waterbag_1_s0 and wa-
terbag_2_s0, is shown in Figs 6 and 7, respectively. The upper
two panels are for the surface mass density in the x–y plane, and
the lower two panels show the rings represented as 1000 points on
the (ex, ey) plane.5 We begin with initial conditions corresponding
to the two bands of Fig. 3. The following overall features can be
noticed.

(i) For waterbag_1_s0 a non-axisymmetric m = 3 instability
grows; it is seen very clearly around 0.3 Gyr and, by ∼0.6 Gyr, there
are distinct signs of non-linear evolution.

(ii) In contrast the broad-band waterbag_2_s0 is seen to be
stable over a time-scale of 5 Gyr.

Dynamical behaviour can be characterized in more detail by look-
ing at mode amplitudes, am(t), which were evaluated by computing
fast Fourier transforms over annuli of the projected mass density.
These are plotted in Fig. 8(a) for waterbag_1_s0 and Fig. 8(b)
for waterbag_2_s0. The main features are as follows.

(i) For waterbag_1_s0 the initially unstable mode has m = 3,
and this remains dominant until about 0.6 Gyr. Later there is growth
of other modes, especially, m = 1 and m = 2.

(ii) Modes of all m maintain a low amplitude for wa-
terbag_2_s0. We note that sampling noise, which is unavoidable
in the initial conditions, was such that a m = 2 mode had a greater
initial amplitude than the other modes (see Fig. 8b). The m = 2
mode is seen to be stable and precessing in Fig. 7. Interactions of
some stars with the m = 2 mode has, presumably, scattered them
in phase space. Whereas a study of this mode–particle scattering is

5 Since we are dealing with prograde discs, all the points have positive �i.
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Figure 6. Evolution of the unstable band waterbag_1_s0. Upper two rows show the surface density in real space (with distances measured in parsec), and
the lower two rows show the distribution in the eccentricity plane at the same respective time. The m = 3 mode is clearly visible as three overdensity lumps in
the surface density plots and as a triangular feature in the eccentricity plane. Note that the time (in years) is indicated within the subfigures.

beyond the scope of this paper, simulations with a larger number of
particles will help clarify the nature of this process.

In the next section we present a detailed account of the linear
stability of bands. We will also discuss how linear theory accounts
for the behaviour of waterbag_1_s0 and waterbag_2_s0.

5 L I N E A R STA B I L I T Y O F BA N D S

A normal mode of a waterbag band has the form f1(�, g, t;
m) = Re{f1m(�)exp [i(mg − ωmt)]}, where ωm is a complex eigen-
frequency. Since a normal mode is composed of sinusoidal distur-
bances of the two edges of the phase-space DF, the corresponding
eigenfunction is of the form, f1m(�) = Am1 δ(� − �1) + Am2 δ(� − �2),
where Am1 and Am2 are complex amplitudes – see equation (34).
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Figure 7. Evolution of the stable broad-band waterbag_2_s0. Upper two rows show the surface density in real space (with distances measured in parsec),
and the lower two rows show the distribution in the eccentricity plane at the same respective time. Note that the time (in years) is indicated within the subfigures.

When this is substituted in the integral equation (33), it reduces to
the following 2 × 2 matrix eigenvalue problem:⎛
⎜⎜⎜⎜⎝

1

��
+ m �0(�1)

1

��

(
e2

e1

)m

− 1

��

(
e2

e1

)m

− 1

��
+ m �0(�2)

⎞
⎟⎟⎟⎟⎠
(

Am1

Am2

)
= ωm

(
Am1

Am2

)
.

(38)

Here �� = (�2 − �1), and equation (28) gives �0(�1) ≡ �1 =
−2�1/(1 − �2

1) and �0(�2) = 0. The solutions for the eigenfrequency
and the ratio of edge disturbance amplitudes are

ω±
m = m�1

2
± 1

��

√[
1 + m �� �1

2

]2

−
(

e2

e1

)2m

, (39a)
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Figure 8. Evolution of mode amplitudes am(t).

(
Am2

Am1

)±
= −

[
1 + m �� �1

2

](
e1

e2

)m

±
√[

1 + m �� �1

2

]2 (
e1

e2

)2m

− 1. (39b)

A number of properties of linear modes are as follows.

(i) For each m = 1, 2, . . . there are two normal modes denoted
by ‘±’. Each normal mode is made up of two edge disturbances
corresponding to the DF boundaries � = �1 and � = �2.

(ii) The eigenfrequencies, ω±
m, are either real or complex con-

jugates of each other. If they are both real then both the normal
modes are stable with pattern speed λ±

P = ω±
m/m. When the eigen-

frequencies are complex conjugates, then one normal mode grows
exponentially (an instability) and the other decays exponentially,
with both modes having the same pattern precession frequency.

(iii) From equation (39a) we see that the condition for instability
is(

1 − �2
2

1 − �2
1

)m/2

>

∣∣∣∣ 1 − m (�2 − �1) �1

1 − �2
1

∣∣∣∣ . (40)

(iv) It can be verified that the above inequality cannot be satisfied
for any 0 ≤ �1 < �2 < 1, when m = 1, 2. So all bands have stable
m = 1 and m = 2 modes, and only modes with m = 3, 4, . . . can be
unstable.

(v) The unstable band waterbag_1_s0 has �1 = 0.7 and
�2 = 0.9. The stable broad-band waterbag_2_s0 has �1 = 0.1
and �2 = 0.9. Using these values of (�1, �2) in equation (40) it can
be verified that (a) waterbag_1_s0 has precisely two unstable
modes, for m = 3 and m = 4; (b) for waterbag_2_s0 modes of
all m are stable. This is in agreement with the numerical simulations
discussed in Section 4.

(vi) The inequality condition (40) defines a region of instability
in the (�1, �2) parameter plane, for each value of m. These are
displayed in Fig. 9 for m = 3, 4, 5, 6. As m increases the crescent-
like region of instability expands.

5.1 Structure of normal modes

Stable modes. When inequality condition (40) is not satisfied the
two normal mode eigenfrequencies ω±

m, given by equation (39a),
are both real with corresponding pattern speeds λ±

P = ω±
m/m. The

DF of the normal modes is

f ±
1 (�, g, t ; m) = Re

{
A±

m1 exp [im(g − λ±
P t)] δ(� − �1)

+ A±
m2 exp [im(g − λ±

P t)] δ(� − �2)
}

. (41)

The four complex amplitudes, A±
m1 and A±

m2, are related by equa-
tion (39b), which implies that (Am2/Am1)± are real whenever ω±

m

are real. When the ratio is positive/negative, the normal mode is
an in-phase/out-of-phase combination of the two sinusoidal edge
disturbances. Moreover the product (Am2/Am1)+ (Am2/Am1)− = 1,
which implies (i) if the ‘+’ mode is an in-phase (or out-of-phase)
combination of the two edge disturbances so is the ‘−’ mode, and
vice versa; (ii) if disturbance at one of the edges makes a dom-
inant contribution to the ‘+’ mode, then the other edge distur-
bance makes a dominant contribution to the ‘−’ mode. To sum-
marize, a stable ‘±’ mode is either an in-phase or out-of-phase
superposition of the edge disturbances, with generally unequal am-
plitudes. The pattern speeds, λ±

P , of the ‘±’ modes are generally
unequal.

Unstable modes. When inequality condition (40) is satisfied the
two normal mode eigenfrequencies ω±

m, given by equation (39a),
are complex conjugates of each other. We write ω±

m = mλP ± i ωI,
where λP is the pattern speed and ωI > 0 can be thought as
the growth rate of the ‘+’ mode, or as the damping rate of the
‘−’ mode; we will refer to ωI as the growth rate. Equation (39a)
gives

λP = �1

2
= − �1

1 − �2
1

, (42a)

ωI =
√

1

��2

(
1 − �2

2

1 − �2
1

)m

−
(

1

��
− m �1

1 − �2
1

)2

. (42b)
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Figure 9. Instability region in (�1, �2) plane for m = 3, 4, 5, 6.

The pattern speed is negative and depends only on �1. On the
other hand the growth rate depends on all of (�1, �2, m).

Equations (39a) and (39b) imply that whenever ω±
m are com-

plex conjugates, (Am2/Am1)± are also complex conjugates. More-
over magnitude of the amplitude ratio |(Am2/Am1)±| = 1, so we can
write (Am2/Am1)± = exp [ ± i m θm], where

θm = 1

m
cos−1

[(
1 − �2

1

1 − �2
2

)m/2 (
m �1 ��

1 − �2
1

− 1

)]
, (43)

where θm is the relative phase shift between the two edge distur-
bances composing a normal mode. Then the DF of the growing
and damping normal modes of a given m is given by the following

superposition of the two edge disturbances:

f ±
1 (�, g, t ; m) = exp [±ωI t] Re

{
A±

m exp [im(g − λPt)] δ(� − �1)

+ A±
m exp [im(g ± θm − λPt)] δ(� − �2)

}
, (44)

where A±
m is a complex amplitude that is common to both edge

disturbances. In contrast to a stable mode, an unstable ‘±’ mode is
a superposition of the edge disturbances with a relative phase shift
but equal amplitudes, and a pattern speed λP = �1/2 that is the
same for both ‘±’ modes.

In order to get an idea of the dependence of the growth rate as
a function of the parameters (�1, �2, m), we plot in Fig. 10 the
growth rate as a function of m for different values of �� and �2. For
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Figure 10. Growth rate ωI variation with m. Left-hand panel (a) corresponds to waterbags with fixed �2 = 0.9. Right-hand panel (b) for waterbags of fixed
thickness �� = 0.1.

fixed �2 = 0.9 and three different values of ��, we see that bands
with smaller �� are unstable over a larger range of m, with higher
maximum growth rates occurring at larger m. For fixed �� = 0.1
and three different values of �2, the maximum growth rates are
similar but occur at smaller m for larger �2.

We note that waterbag_1_s0 has unstable modes for
m = 3, 4 with the m = 3 mode having the higher growth rate,
ωI ∼ 0.72 T −1

sec � 2.4 Gyr−1; this is consistent with the initial
growth of the m = 3 mode in Figs 6 and 8(a). In the next section we
present a more detailed comparison of numerical experiments with
linear theory.

6 EVO LUTION OF INSTABILITIES

We ran a suite of numerical simulations of waterbag bands, with
parameters listed in the Table 1. The primary goal is to put the linear
theory of the previous section to stringent tests, and is explored
through the upper (Set I) and lower (Set II) groups shown in Table 1.

(i) Set I consists of five cases, of which two – the unstable band
waterbag_1_s0 and the stable band waterbag_2_s0 – have
already been discussed.

(ii) Set II is a detailed test of the linear theory prediction of the
transition from instability to stability of a band with fixed �1 = 0.8,
as �2 is varied over a range of values.

Then we give a taste of the long-term evolution of an unstable
band that goes well beyond the applicability of linear theory. Here
the point of interest is in the collisionless relaxation to a state with
a wide spread in eccentricities.

6.1 Set I

Of the five cases in Set I, waterbag_1_s0 and
waterbag_2_s0 have been discussed earlier. wa-
terbag_5_s0 is stable according to linear theory, and the
simulation results confirmed this, showing stable evolution similar
to waterbag_2_s0. We now consider two new unstable bands,
waterbag_3_s0 and waterbag_4_s0. In Table 2 we list

Table 2. Theoretical predictions for the unstable bands of Set I.

Fastest growing mode
System name Unstable m m0 ωI, max (Gyr−1) λP0 (rad Gyr−1)

waterbag_1_s0 3, 4 3 2.4 −4.57
waterbag_3_s0 3, 4, 5 4 8.5 −7.41
waterbag_4_s0 3–7 6 20.6 −10.21

the predictions of linear theory for these two bands, including
also waterbag_1_s0 whose instability was discussed earlier.
For each band all its unstable modes are identified, and the
growth rate (ωI, max) and pattern speed (λP0) of the most unstable
mode (m0) are computed using equations (42b) and (42a).
Simulations of waterbag_3_s0. From Fig. 11 we see that a
m = 4 pattern emerges by ∼0.06 Gyr, which is in agreement
with linear theory. Non-linear interactions, mainly with the
unstable m = 5 mode, lead to distortions of the pattern. This can be
seen clearly in Fig. 13(a) that plots the mode amplitudes am versus
time: the m = 4 mode has the maximum amplitude until ∼0.2 Gyr,
after which the m = 5 mode begins to dominate.

Simulations of waterbag_4_s0. From Fig. 12 we see that a
m = 6 pattern emerges by ∼0.03 Gyr, which is in agreement with
linear theory. Non-linear interactions with other unstable modes lead
to distortions of the pattern. This can be seen clearly in Fig. 13(b)
that plots the mode amplitudes am versus time: the m = 6 mode
dominates until ∼0.2 Gyr, after which there seems to be non-linear
interactions among many modes.

Table 3 shows the general agreement between linear theory and
simulations.

6.2 Set II

The narrowest band in Table 1 is waterbag_ �1_0.8_
�2_0.81, with �� = 0.01. According to linear theory this band
is unstable to a wide range of modes with m = 3–57, with
m = 36 having the fastest growth rate. Fig. 14 shows the evolution
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Figure 11. Similar to Fig. 6, but for waterbag_3_s0. A m = 4 pattern emerges by ∼0.06 Gyr.

of this narrow band, whose initial evolution shows an instabil-
ity dominated by m ∼ 36 mode, in agreement with linear the-
ory.

Linear theory also predicts a transition from instability to stability
when the lower boundary is held fixed at �1 = 0.8 and the band is
made broader by increasing �2. This transition occurs at �2 = �crit �
0.963: bands with �2 < �crit are unstable to various modes whereas

broader bands with �crit < �2 < 1 are stable for all m. In order to test
this precise prediction, we ran a total of 20 simulations increasing �2

in steps of 0.01, from 0.81 to 1, and looked for signs of instabilities.
From the last column of Table 1 we see that the simulations confirm
linear theory, with the small difference that the transition seems
to happen when �2 crosses 0.97, instead of the predicted value of
0.963.
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Figure 12. Similar to Fig. 6, but for waterbag_4_s0. A m = 6 pattern emerges by ∼0.03 Gyr.

6.3 Collisionless relaxation

As instabilities unfold and non-linear interactions between modes
dominate, what can we expect of evolution over long times? We
have earlier in this section followed the short-time evolution of
the unstable band waterbag_3_s0, with its initial growth of a
dominant m = 4 mode over ∼0.06 Gyr, followed by the rise of a

m = 5 mode around ∼0.2 Gyr lasting until at least ∼0.34 Gyr. What
happens after this? Here we follow the evolution for ∼4 Gyr.

Fig. 15 shows both the initial and final states of
waterbag_3_s0. When compared with the intermediate states
of Fig. 11, the final state appears more axisymmetric. The final
state also has a wider range of eccentricities than the initial state.
It consists of a nearly circular high-density ring, surrounded by
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Figure 13. Evolution of mode amplitudes am. (a) waterbag_3_s0, (b) waterbag_4_s0.

Table 3. Comparison between linear theory and simulations for the unstable
bands of Set I.

Fastest growing mode
System name m0 (theory) m0 (simulations) Agreement

waterbag_1_s0 3 3 Yes
waterbag_3_s0 4 4 Yesa

waterbag_4_s0 6 6 Yesa

aThere is good agreement for waterbag_3_s0 for t < 0.2 Gyr, and for
waterbag_4_s0 for 0.05 < t < 0.15 Gyr.

a lower density halo of particles with a wide range of eccentric-
ities. The strong non-axisymmetric instabilities that plagued the
initial state seem to have saturated, leaving behind a relaxed, coarse-
grained state that is approximately axisymmetric and steady in time.
The secular precessional time-scale for the initial state is
Tsec ∼ 0.8 Gyr, so the total duration of the run, 4 Gyr is about
5 Tsec. This is too short a duration for a collisional process like
resonant relaxation to be effective. Hence what we have witnessed
must be collisionless relaxation, where non-axisymmetric instabili-
ties provide the pathway for transition from one axisymmetric state
to another.

7 C O N C L U S I O N S

Mono-energetic waterbags are the simplest models of low-mass stel-
lar discs around a MBH. We studied, analytically and numerically,
the stability of initial states that are prograde and axisymmetric.
These waterbags have a DF, f0(�), which is constant when 0 ≤ �1

≤ � ≤ �2 ≤ 1, and zero when � is outside this range. There are two
types of waterbags: polarcaps with �2 = 1 and bands with �2 < 1.
The linear stability problem can be solved simply: for each m the
growth rates of instabilities, pattern speeds of stable and unstable

modes and the complete normal mode structure have been deter-
mined explicitly as functions of (�1, �2), the waterbag parameters.

(i) Polarcaps have one stable normal mode for each m, with
the noteworthy feature that the m = 1 mode always has positive
pattern speed. For a polarcap consisting of orbits with eccentric-
ities e < 0.9428, only the m = 1 mode has a positive pattern
speed.

(ii) Bands have two normal modes for each m, and can be either
stable or unstable. Very narrow bands (with �1 � �2) are unstable to
modes with a wide range in m, whereas broad-bands approaching a
polarcap (with �2 � 1) are stable.

The evolution of instabilities was also explored through numer-
ical simulations, which can explore both linear and non-linear
regimes. A variety of numerical experiments were performed by
which we demonstrated good agreement with linear theory. Long-
time integration showed the growth of instabilities of different m,
which interacted with each other non-linearly, then saturated and
later relaxed collisionlessly into a quasi-steady state, which has a
wider range of eccentric orbits than the initial state. This suggests
secular non-axisymmetric instabilities could provide pathways for
stars to exchange angular momentum via the mean self-gravitational
field, and spread out in eccentricities.

It is straightforward to extend our study to include external gravi-
tational sources (such as nuclear density cusps or distant perturbers)
and general relativity, as described in ST1. But one clearly needs
to go well beyond our simple models in order to study real sys-
tems, like the disc of young stars at the Galactic Centre. We need
to consider more general DFs and include orbits with a range of
semimajor axes and inclinations. But self-gravitational dynamics
poses difficult problems and secular dynamics is still in its infancy,
so we need to build the tools step-by-step; describing the collision-
less relaxation of even an unstable band remains a challenge for
dynamists.
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Figure 14. Similar to Fig. 6, but for waterbag_�1_0.8_�2_0.81. A high m pattern emerges by ∼0.02 Gyr.
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Figure 15. Collisionless relaxation of waterbag_3_s0.
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APPENDI X A : SURFAC E PRO BA BI LI TY
DENSI TY

The surface probability density function is obtained by integrating
the disc DF over velocity space:


(r) =
∫

du f̂ (r, u), (A1)

where the DF f̂ (r, u) is written as a function of r and u, which
are the position vector and velocity of a star, respectively, in the
MBH’s rest frame. For a razor-thin disc, the four-dimensional phase
volume, dr du = Idw dI dg d�. Hence the DF of an axisymmetric
mono-energetic disc (not necessarily a waterbag) is related to the
DF, f0(�), of Section 3.2, as follows:

f̂ (r, u) = f0(�)

4π2I0
δ(I − I0). (A2)
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Then


0(r) = 1

4π2I0

∫
du dφ u f0(�) δ(I − I0), (A3)

where u is the speed, φ is the angle between u and r , and
I0 = √

GM•a0 . Since the discs we consider have only prograde
orbits, � > 0, which implies that 0 ≤ φ ≤ π. We now express the
(scaled) Delaunay variables, {�, I}, in terms of {u, φ}:

I =
(

2

GM•r
− u2

(GM•)2

)−1/2

, (A4a)

� = L/I = I−1ru sin φ. (A4b)

Hence

δ(I − I0) = δ(u − u0)

|dI/du|u0

=
(

GM•
a3

0

)1/2
δ(u − u0)

u0
, (A5)

where

u0(r) =

⎧⎪⎨
⎪⎩
√

GM•

(
2

r
− 1

a0

)
for r ≤ 2a0,

0 for r > 2a0

(A6)

is the speed at radius r of an orbit with semimajor axis a0. Substi-
tuting equation (A5) in equation (A3) and using equations (A4b)
and (A6), the surface density for a general mono-energetic DF:


0(r) = 1

4π2a2
0

∫
dφ f0(�0(r) sin φ) , (A7)

where

�0(r) = ru0(r)

I0
=

⎧⎪⎨
⎪⎩
√

2r

a0
− r2

a2
0

for r ≤ 2a0,

0 for r > 2a0.

(A8)

For the waterbag DF of equation (25), f0(�) =
1/�� = 1/(�2 − �1) = constant for 0 ≤ �1 ≤ � ≤ �2 ≤ 1
and is zero outside this range. This implies that 
0(r) is non-zero
only when |r − a0| ≤ a0e1. Within this range of radii,


0(r) = 1

4π2a2
0��

�φ(r), (A9)

where �φ(r) is the range in φ for which

�1

�0(r)
≤ sin φ ≤ �2

�0(r)
. (A10)

All we need to do now is to determine �φ(r). There are two cases
to consider.

Case 1: �2 ≤ �0(r). Using equation (A8), this condition is
equivalent to |r − a0| ≤ a0e2. Then �φ(r) = 2(φ2 − φ1), where
φ1(r) = sin −1[�1/�0(r)] and φ2(r) = sin −1[�2/�0(r)].

Case 2: �1 ≤ �0(r) ≤ �2. Using equation (A8), this condition is
equivalent to a0e2 ≤ |r − a0| ≤ a0e1. Then �φ(r) = 2 (π/2 − φ1).

Substituting these expressions for �φ(r) in equation (A9), we
obtain equation (26) for the surface probability density of an ax-
isymmetric mono-energetic waterbag.
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