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ABSTRACT

The nuclear star cluster surrounding the massive black hole at the Galactic Centre consists of
young and old stars, with most of the stellar mass in an extended, cuspy distribution of old
stars. The compact cluster of young stars was probably born in situ in a massive accretion disc
around the black hole. We investigate the effect of the growing gravity of the disc on the orbits
of the old stars, using an integrable model of the deformation of a spherical star cluster with
anisotropic velocity dispersions. A formula for the perturbed phase-space distribution function
is derived using linear theory, and new density and surface density profiles are computed. The
cusp undergoes a spheroidal deformation with the flattening increasing strongly at smaller
distances from the black hole; the intrinsic axis ratio ∼0.8 at ∼0.15 pc. Stellar orbits are
deformed such that they spend more time near the disc plane and sample the dense inner parts
of the disc; this could result in enhanced stripping of the envelopes of red giant stars. Linear
theory accounts only for orbits whose apsides circulate. The non-linear theory of adiabatic
capture into resonance is needed to understand orbits whose apsides librate. The mechanism
is a generic dynamical process, and it may be common in galactic nuclei.

Key words: Galaxy: centre – Galaxy: kinematics and dynamics – galaxies: kinematics and
dynamics – galaxies: nuclei.

1 IN T RO D U C T I O N

There is strong evidence that the Galactic Centre (GC) source Sgr A∗ is a massive black hole (MBH) with mass of about 4 × 106 M�,
embedded in a nuclear star cluster (NSC) of 2.5 × 107 M� with a half-light radius of about 4 pc, consisting of both late-type (old, >1 Gyr)
and early-type (young, <10 Myr) stars (Genzel, Eisenhauer & Gillessen 2010; Schödel et al. 2014; Boehle et al. 2016; Gillessen et al. 2017).
The first high angular resolution observations seemed to imply that the old stars were distributed in a density cusp (Genzel et al. 2003;
Schödel et al. 2007). But when the contamination of light from the young stars was accounted for, the old giant population appeared to have a
core-like, rather than a cuspy, surface density profile (Buchholz, Schödel & Eckart 2009; Do et al. 2009; Bartko et al. 2010; Fritz et al. 2016).
Recent work has refined our knowledge of the distribution of the old stars (Gallego-Cano et al. 2018; Schödel et al. 2018). Within about 3 pc
of the MBH the density profile of resolved faint stars and subgiants and dwarfs (inferred from diffuse light) is cuspy, and well described by a
single power law. But red clump and brighter giant stars have a similar cuspy profile only beyond a projected radius of about 0.3 pc, inside
which they display a core-like surface density profile.

There are about 200 young stars in a compact cluster of size � 0.5 pc around the MBH, including Wolf–Rayet (WR) stars, O, B-type
main-sequence stars, giants, and supergiants (Allen, Hyland & Hillier 1990; Krabbe et al. 1991; Ghez et al. 2003; Paumard et al. 2006; Bartko
et al. 2010; Do et al. 2013). Stellar orbits have a range of eccentricities, inclinations, and orientations, with about 20 per cent in a clockwise
disc that extends between about 0.03 and 0.13 pc, with mean eccentricity ∼0.3 (Yelda et al. 2014). It has been suggested that all the young
stars could have been born in situ in a starburst event in a massive, fragmenting accretion disc around the MBH (Levin & Beloborodov 2003).
If this is the case then the young star cluster has evolved dynamically since its birth in a dense and thin accretion disc. Repeated passage of
the red clump and brighter giant stars through the dense inner parts of the accretion disc could have robbed them of their envelopes, rendering
the innermost stars invisible; this would explain the difference between the core-like profiles of the old giants and the cuspy profiles of old
stars lacking extended envelopes (Amaro-Seoane & Chen 2014). In contrast the accretion disc’s gravitational field will deflect the orbits of all
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old stars in the same manner. What is the gravitational response of an old stellar cusp to the accumulation of gas in an accretion disc around
the MBH?

In this paper we address this question by constructing a simple model of the process within the radius of influence of the MBH, rinfl �
2 pc. The problem is stated in Section 2 for a non-rotating, spherical stellar cusp with anisotropic velocity dispersions, which experiences
gravitational perturbations due to a growing gas disc; we argue that disc growth is slow compared to typical apse precession periods of cusp
orbits. In Section 3 we cast the dynamical problem in terms of the secular theory of Sridhar & Touma (2016), which is its natural setting. In
Section 4 we derive a formula for the linear perturbation to the phase-space distribution function (DF): the magnitude of the perturbation is
largest for orbits that are highly inclined with respect to the disc plane; it is positive when the angle between the lines of apsides and nodes
is less than 45◦ and negative otherwise. This is explained in terms of the secular, adiabatic dynamics of individual orbits in the combined
gravitational potentials of the cusp and disc. Linear theory accounts only for orbits whose apsides circulate. The non-linear theory of adiabatic
capture into resonance is needed to understand orbits whose apsides librate. In Section 5 we use the formula for the DF to compute the oblate
spheroidal deformation of the three-dimensional density profile of the cusp, as well as the surface density profiles for different viewing angles.
We conclude in Section 6 with a discussion of linear stability, extensions to rotating and axisymmetric cusps, and that the process studied in
this paper may be common in galactic nuclei.

2 STAT E M E N T O F TH E P RO B L E M

We are interested in describing stellar dynamics within 1 pc of a MBH of mass M• = 4 × 106 M�. Let r and u be the position vector and
velocity of a star, relative to the MBH. Since this region is well inside rinfl � 2 pc, the dominant gravitational force on a star is the Newtonian
1/r2 attraction of the MBH. Hence the shortest time-scale associated with a stellar orbit of semimajor axis a is its Kepler orbital period,
Tkep(a) � 4.7 × 104 a3/2

pc yr, where apc = (a/1 pc).

2.1 The unperturbed stellar cusp

This is assumed to be spherically symmetric about the MBH, with a density profile

ρc(r) = (3 − γ )Mc

4πr3
c

(
rc

r

)γ

. (1)

For the GC cusp γ = 1.23 ± 0.05, and Mc = 106 M� is the stellar mass within a radius rc = 1 pc of the MBH (Gallego-Cano et al. 2018;
Schödel et al. 2018). The gravitational potential due to the cusp (γ �= 2) is

ϕc(r) = GMc

(2 − γ )rc

(
r

rc

)2−γ

, (2)

where a constant additive term has been dropped. The cusp’s spherically symmetric gravitational field will make the apsides of Kepler
orbits precess in a retrograde sense in their respective orbital planes. The typical apse precession period is T c

pr(a) ∼ (M•/Mca) Tkep(a), where
Mca = Mc a(3−γ )

pc is the mass in cusp stars inside a sphere of radius a. Then T c
pr(a) ∼ 1.8 × 105 a(γ−3/2)

pc yr. Within a parsec the apse precession
period is always longer than the Kepler orbital period. We assume that the distribution of these precessing orbits is such that, at every
point in space, the mean velocity vanishes but the velocity distribution is anisotropic. This anisotropy is characterized by the parameter
β(r) = 1 − (σ 2

θ + σ 2
φ

)
/2σ 2

r , where the σ s are velocity dispersions along the three principal directions of a polar coordinate system centred
on the MBH. When β(r) is negative(positive) the velocity distribution is tangentially(radially) biased.

The cusp is described by a probability DF, fc(r, u), in the six-dimensional phase space, {r, u}. For a non-rotating system with anisotropic
velocity dispersion, Jeans theorem implies that the unperturbed DF is a function of the energy per unit mass, E = u2/2 − GM•/r + ϕc(r),
and magnitude of the angular momentum per unit mass L = |r × u| (Binney & Tremaine 2008). Let us consider the double power-law DF,

fc(r, u) =
⎧⎨
⎩

A

2π
(−E)m Ln, E < 0,

0, E > 0,
(3)

which is composed entirely of bound orbits; m > 0 for the DF to be continuous at E = 0. For r ≤ 1 pc the Kepler potential of the MBH
dominates the cluster potential, so E � Ek = u2/2 − GM•/r = Kepler energy is a good approximation. Henceforth we will consider the DF
of equation (3) to be a function of Ek and L. The reason we begin with a two-integral (anisotropic) DF, fc = F(Ek, L), rather than an isotropic
DF, F(Ek), is the following. We have to deal with the response of a Keplerian stellar system over time-scales that are much longer than Kepler
orbital periods. As explained in more detail in Section 3 the Kepler energy, Ek, is a secular invariant for processes that vary on (secular)
times scales of the order of the apse precession periods, or longer. So a DF of the form, F(Ek), would remain unchanged when perturbed by
secularly varying gravitational potentials. Therefore we need to begin with at least a two-integral DF, in order to study non-trivial secular
response.

There is one relation among the three parameters (A, m, n) due to the normalization of the DF,
∫

fc dr du = 1. The density is obtained by
integrating the DF over velocity space: ρc(r) = Mc

∫
fc du, which is straightforward to do in the standard manner (Binney & Tremaine 2008).

Comparing with equation (1) gives two more relations between (A, m, n) and (rc, γ ). It is convenient to choose the independent parameters
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as (rc, m, n) and write

A = 3 − γ

4π 2
n+1

2 B( n
2 +1, 1

2

) B(
m+1, n+3

2

) r
3−γ
c (GM•)γ+n

, (4)

γ = 2m − n + 3

2
,

where B(p,q) is the β function. It is also straightforward to calculate the velocity anisotropy, β = −n/2, which is now constant. We note that
for the density to be finite, n > −2 (or β < 1), which puts an upper limit on how radially biased the double power-law DF of equation (3) can
be.

2.2 The perturbing gas disc

Levin & Beloborodov (2003) proposed that the young stars at the GC were formed in situ, in a massive accretion disc around the MBH. As
gas accumulated in the accretion disc it became gravitationally unstable in efficiently cooling regions with Toomre Q � 1, and fragmented
into massive stars (Nayakshin 2006; Levin 2007). A thin gas disc that is supported by external irradiation prior to fragmentation can have a
steep surface density, 
d(R) ∝ R−3/2, according to Levin (2007). This is consistent with the steep surface density profile of the clockwise
disc of young stars that lies within about 0.13 pc of the MBH (Paumard et al. 2006; Bartko et al. 2009; Lu et al. 2009; Yelda et al. 2014). We
assume that the mass of the progenitor gas disc grew in time from some small value to a maximum value, just before the birth of the young
stars. We need to choose a mass model representing an axisymmetric, thin accretion disc with surface density profile 
d(R) ∝ R−3/2. The
gravitational potential of this mass model should be of a simple form, to enable explicit computation of the secular perturbation it exerts on
the orbits of the old cusp stars. We found the following two-component model to be a suitable three-dimensional density distribution:

ρd(r, θ, t) = 2

11 π

Md(t)

r3
d

(
rd

r

)5/2 [
δ
(
θ − π

2

)
+ 9

16
(1 − |cos θ |)2

]
, (5)

where Md(t) is the mass inside a sphere of radius rd = 1 pc at time t. The disc consists of two components: within a sphere of radius r, about
73 per cent of its mass is in a razor-thin component confined to the equatorial plane; about 27 per cent is in an extended but flattened corona.
It is straightforward to verify that the gravitational potential due to ρd(r, θ , t) is

ϕd(r, θ, t) = − 8

11

G Md(t)

rd

(
rd

r

)1/2
[

9
(
33 + cos2 θ

)
100

− | cos θ |
2

]
. (6)

We are interested in determining the perturbation caused by the time-dependent disc potential of equation (6) to the DF of equation (3). In
order to do this we assume that Md(t) grows monotonically on a time-scale, Tgrow, to its maximum value, Mdm, just before the birth of the
young stars. We now estimate Mdm and Tgrow.

Disc mass. A circumnuclear disc (CND), composed of molecular clouds, orbits the MBH at distances ∼1.5–5 pc (Gatley et al. 1986;
Guesten et al. 1987; Yusef-Zadeh et al. 2001). The CND is presumably a remnant of the outer parts of the gas disc. If we assume that the
total mass – but not the necessarily its distribution – in the annulus has not changed much over the last Myr, then we can estimate Mdm as

follows. Since 
d(R) ∝ R−3/2, the gas mass within R is ∝ R1/2, so we set Mdm

(√
5 − √

1.5
)

= MCND. Estimates of MCND range from 104

(Etxaluze et al. 2011; Requena-Torres et al. 2012) to 106 M� (Christopher et al. 2005). Adopting a mid-value, MCND ∼ 105 M�, we infer
that Mdm ∼ 105 M�, which is similar to the value suggested by Nayakshin & Cuadra (2005).

Growth time. Tgrow depends on the agency that removes angular momentum from the gas flow at a radius of about a parsec. If it is accretion
disc ‘α-viscosity’, then Tgrow ∼ Tkep(1 pc)/(αξ 2), where α ∼ 0.3 for gravitationally induced turbulence (Gammie 2001) and ξ � 0.1 is the
half-opening-angle of the thin disc; this gives Tgrow � 1.5 × 107 yr. If angular momentum is lost through non-axisymmetric gravitational
perturbations, then Tgrow ∼ Tkep(1 pc)/δϕ is the flow time-scale, where δϕ is the fractional non-axisymmetry in the gravitational potential at a
radius of a parsec. Even for the pronounced m = 1 asymmetry of the nuclear disc of M31, δϕ ∼ 10−3–10−2 (Chang et al. 2007). Hence we
expect, in either case, that Tgrow � 107 yr for the GC accretion disc.

2.3 Adiabatic nature of the perturbation

The perturbation due to the disc contributes to both apsidal and nodal precession. We can estimate the perturbation by imagining gas
of total mass, Mdm = 105 M�, to be distributed spherically symmetric with density profile ∝ r−5/2, instead of being highly flattened as
given by equation (5). Such a spherically symmetric approximation to the perturbation does not cause nodal precession but contributes to
retrograde apse precession over times, T d

pr(a) ∼ (M•/Mda) Tkep(a), where Mda = 105 a1/2
pc M� is the disc mass inside a sphere of radius a.

Then T d
pr(a) ∼ 2 × 106 apc yr is an increasing function of a. This should be compared with the retrograde apse precession period due to the

cusp stars, T c
pr(a) ∼ 2 × 105 a−1/4

pc yr (for a fiducial value of γ = 5/4), which is a decreasing function of a. Since the apse precession due to
gas and stars are both retrograde, the net precession frequency is the sum of the individual frequencies. The corresponding precession period
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Figure 1. Time-scales in the problem, as functions of the semimajor axis: the thin vertical line corresponds to a = 0.16 pc for which T c
pr = T d

pr.

then provides the natural time-scale for secular dynamics, Tsec(a) = T c
pr(a) T d

pr(a)/
[
T c

pr(a) + T d
pr(a)

]
. These different time-scales, together

with the short Kepler orbital period, Tkep(a), are plotted in Fig. 1. As can be seen, the net precession period, Tsec(a), is dominated by the disc
mass for a < 0.16 pc and by the cusp mass for a > 0.16 pc. This precession period attains its maximum value of about 2 × 105 yr within 1 pc,
which is much shorter than our earlier estimate of Tgrow � 107 yr, the growth time of the disc. Hence the perturbation may be assumed to be
adiabatic.1

3 SE C U L A R C O L L I S I O N L E S S DY NA M I C S

We have three well-separated time-scales in the problem. These are the short Kepler orbital period, Tkep(a) � 4.7 × 104 a3/2
pc yr, the long

time-scale of disc growth, Tgrow � 107 yr, and the intermediate secular time-scale, Tsec(a) � 2 × 105 yr: we always have Tkep(a) � Tsec(a)
� Tgrow for a ≤ 1 pc. In order to study the evolution of the cusp DF over times greater than Tsec(a), we can average the orbit of every star
over the rapidly varying Kepler orbital phase. The appropriate framework to do this is the secular theory of collisionless evolution (Sridhar
& Touma 2016), which is briefly described below.

3.1 General formulation of secular dynamics

Let the stellar system be described by a normalized DF, f (r, u, t), which satisfies the collisionless Boltzmann equation (CBE). The dynamics
is governed by the Hamiltonian Horg(r, u, t), given in equation (6) of Sridhar & Touma (2016). Since secular dynamics corresponds to a
perturbed Kepler problem, it is convenient to switch from {r, u} phase-space variables to the Delaunay action-angle variables {I, L, Lz; w, g,
h}. The three actions are related to the natural variables, a = semimajor axis, e = eccentricity, and i = inclination, as follows: I = √

GM•a;
L = I

√
1 − e2 the magnitude of the angular momentum; and Lz = Lcos i the z-component of the angular momentum. The three angles

conjugate to them are, respectively: w the Kepler orbital phase (or mean anomaly); g the angle to the periapse from the ascending node; and
h the longitude of the ascending node. Since the Kepler orbital energy Ek(I) = −1/2(GM•/I)2 depends only on the action I, all the Delaunay
variables except w are constant in time for the unperturbed Kepler problem; w itself advances at the (fast) rate 2π/Tkep(a) = (GM•/a3)1/2.
Self-gravity is a small perturbation to Ek(I) and so is, often, the potential due to external sources (such as the disc potential in our problem).
In this case the total perturbation causes slow, secular orbital evolution and hence a natural measure of time is the ‘slow’ time variable
τ = (Mc/M•)t. This slow dynamics is described by averaging over w, and its salient features are as follows.

(i) The Hamiltonian Horg(r, u, t) is orbit averaged over w to give the secular Hamiltonian H (I , L, Lz, g, h, τ ) =
(M•/Mc)

∮
Horg(r, u, t) dw/2π that governs the secular dynamics of the system. The phase space of the system reduces from six to

five dimensions, with (‘Gaussian ring’) coordinates denoted by R = {I , L, Lz, g, h}. The stellar system is described by the orbit-averaged
DF, F (R, τ ) = ∫ f (r, u, t) dw. Since

∫
F (R, τ ) dR = 1, we may regard F as a probability DF in R-space.

1 Our estimates of apse precession periods accounted only for the sizes of stellar orbits (i.e. semimajor axes a), but not for orbital eccentricities. Highly eccentric
orbits precess very slowly – see equation (13) – and the adiabatic approximation is not valid for these; this is discussed in Section 4.2.
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(ii) Ring orbits are governed by the secular Hamiltonian, H (R, τ ) = �(R, τ ) + �tid(R, τ ), which is the sum of (scaled) contributions
from self-gravity, �, and the tidal field of external sources, �tid (relativistic effects, included in Sridhar & Touma (2016) have been ignored
here). The self-gravitational potential is related to the DF by

�(R, τ ) =
∫

F (R′, τ ) �(R,R′)dR′, ring mean-field potential, (7a)

�(R,R′) = −GM•

∮ ∮
dw

2π

dw′

2π

1

|r − r ′| , ‘bare’ inter-ring potential. (7b)

(iii) Since the Hamiltonian is independent of w, its canonically conjugate action, I, is an integral of motion even when the Hamil-
tonian is time dependent. Hence the orbit of each star is confined to the four-dimensional I = constant surface, which is equivalent
to the secular conservation of its semimajor axis. On this surface the motion of each ring is governed by the following Hamiltonian
equations:

dL

dτ
= −∂H

∂g
,

dg

dτ
= ∂H

∂L
;

dLz

dτ
= −∂H

∂h
,

dh

dτ
= ∂H

∂Lz

. (8)

(iv) F (R, τ ) obeys the secular CBE:

dF

dτ
≡ ∂F

∂τ
+ [F, H ] = 0, (9)

where [ , ] is the four-dimensional Poisson bracket,

[χ1, χ2]
def=
(

∂χ1

∂g

∂χ2

∂L
− ∂χ1

∂L

∂χ2

∂g

)
+
(

∂χ1

∂h

∂χ2

∂Lz

− ∂χ1

∂Lz

∂χ2

∂h

)
. (10)

(v) Secular collisionless equilibria F = F0(R) are stationary solutions of the secular CBE equation (9) and satisfy[F0(R), H0(R)] = 0.
These can be constructed by a secular Jeans’ theorem that states that F0 is a function of R only through the time-independent integrals
of motion of H0(R), and any (positive and normalized) function of the time-independent integrals of H0(R) is a stationary solution of
equation (9).

3.2 The cusp–disc system

We are now in a position to formulate our problem in terms of the above description of secular collisionless dynamics.
The unperturbed cusp. The secular DF for the spherical unperturbed cusp is

F0(I , L) = 2π fc(Ek, L) = A (GM•)2 m Ln

2m I 2 m
, (11)

where we have used equation (3). The corresponding (scaled) orbit-averaged potential, �c(I, L), is related to F0 through equation (7a), but
we do not need to use this; it is easier to orbit-average equation (2). Then we get �c(I , L) = (M•/Mc)

∮
ϕc(r) dw/2π, is proportional to a

hypergeometric function, but the following approximate expression will suffice for our purposes:2

�c(I , L) = GM•
(2 − γ ) rc

(
a

rc

)2−γ

(1 + αγ e2), where αγ = 23−γ �( 7
2 − γ )√

π �(4 − γ )
− 1. (12)

This formula is exact for γ = 1, and a good approximation for our fiducial value, γ = 5/4. �c(I, L) acts as the Hamiltonian for secular
dynamics so the apse precession frequency, dg/dτ = �c(I, L), is

�c(I , L) = ∂�c

∂L
= − 2 αγ

2 − γ
�kep(rc)

I 3−2 γ

(GM• rc)
3
2 −γ

L

I
, (13)

where �kep(rc) = (GM•/r3
c )1/2 is the Kepler frequency for an orbit of semimajor axis rc. Since �c ∝ −a(3/2−γ )

√
1 − e2 , the (retrograde)

apse precession is fastest for near-circular orbits and slowest for highly eccentric orbits. Moreover for γ < 3/2, which is of interest to us,
orbits of smaller a precess slower.

Orbit-averaged disc perturbation. �d(I , L, Lz, g, τ ) = (M•/Mc)
∮

ϕd(r, θ, t) dw/2π can be written in terms of elliptic integrals for
the potential of equation (6), as given in Appendix A. The following approximation, which is convenient for calculations, has a maximum
fractional error �2 per cent:

�d = 16 GM•
11π rc

μ(τ )

√
rd

a

[
− 9

100

√
1 + e E(k)

(
33 + sin2 i

2

)
+ sin i

2

(
1 + a0e

2 + b0e
4 + c0e

6
)

−
(

λ

2
sin i − 9

100
sin2 i

) (
ate

2 + bte
4 + ct e

6
)

cos 2g

]
, (14)

2 Both the exact expression and the approximation are given in equations (4.81) and (4.82) of Merritt (2013).
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where k = √
2e/(1 + e), E(k) is the complete elliptic integral of second kind defined in equation (A3), and a0 = −0.0742572, b0 = 0.0417887,

c0 = −0.0672152, λ = 0.848835, at = 0.495367, bt = −0.492259, ct = 0.703998. Here μ(τ ) = [Md(τ ) rc/Mc rd] is a time-dependent small
parameter characterizing the strength of the disc perturbation relative to the cusp: μ(τ ) → 0 as τ → −∞ and μ takes its largest value of 0.1
when Md = 105 M�.

Secular evolution of the cusp DF. The spherical cusp DF of equation (11) responds to the time-dependent, axisymmetric disc potential
of equation (14). The DF of the axisymmetrically deforming cusp must be independent of the nodal longitude h, and takes the general form,
F(I, L, Lz, g, τ ). Let �(I, L, Lz, g, τ ) be the (scaled) self-gravitational potential, which is related to F through equation (7a). The secular
Hamiltonian is

H (I , L, Lz, g, τ ) = �(I , L, Lz, g, τ ) + �d(I , L, Lz, g, τ ). (15)

Since both F and H are independent of h, the CBE of equation (9) simplifies to

∂F

∂τ
+ ∂H

∂L

∂F

∂g
− ∂H

∂g

∂F

∂L
= 0. (16)

Both I = √
GM•a and Lz = I

√
1 − e2 cos i are secular integrals of motion, even though H is time dependent. If H were time independent,

it is itself a third integral of motion; in contrast to unaveraged stellar dynamics, all time-independent, axisymmetric secular dynamics is
integrable (Sridhar & Touma 1999). Then the secular Jeans theorem (Sridhar & Touma 2016) implies that a steady state F must be function
of (I, Lz, H). We need to solve the problem for an adiabatically varying H.

4 ADIABATIC RESPONSE OF THE STELL AR CUSP

The time dependence of H is driven by disc growth over times, Tgrow � 107 yr, that are much longer than Tsec � 2 × 105 yr. In this case
H is not conserved, but the principle of adiabatic invariance can be used to calculate a new action, J = ∮ L(H, I, Lz, g, τ ) dg/2π, that is
conserved for orbits that are far from a separatrix, and undergoes a probabilistic change that can be calculated for orbits encountering a
separatrix (Goldreich & Peale 1966; Henrard 1982); the corresponding evolution of the DF was worked out in Sridhar & Touma (1996) –
see Section 4.2 for a more detailed discussion of these points. The non-linear, axisymmetric, adiabatic response is an integrable and solvable
problem. We derive an explicit formula for the linear response of the DF due to the growing disc potential while neglecting the change in
the cusp potential, as discussed below. This is used in the next section to calculate density deformation. Then we study orbital structure: this
provides a physical interpretation of the linear deformation, clarifies the limits of linear theory, and sets the stage for the non-linear theory of
adiabatic deformation.

4.1 Linear adiabatic response

The unperturbed cusp has DF F0(I, L) and Hamiltonian H0 = �c(I, L). As the disc grows the cusp DF is F = F0(I, L) + F1(I, L, Lz, g, τ ), with
the corresponding new Hamiltonian H = H0 + H1, where H1 = �d(I, L, Lz, g, τ ) + �1(I, L, Lz, g, τ ). Here �1 is the (scaled) self-gravitational
potential due to F1, and related to it through the Poisson integral of equation (7a):

�1(I , L, Lz, g, τ ) =
∫

F1(I ′, L′, L′
z, g

′, τ ) �(R,R′) dR′. (17)

From the discussion of time-scales in Section 2.3, we expect that disc perturbation is small for a � 0.2 pc. Substituting for F and H in the
CBE of equation (16), and keeping only terms linear in the small quantities, {F1, �d, �1}, we obtain the linearized collisionless Boltzmann
equation (LCBE) governing the evolution of F1:

∂F1

∂τ
+ �c(I , L)

∂F1

∂g
= ∂F0

∂L

∂

∂g
{�d + �1} . (18)

The price to be paid for linearization is that we will not be able to describe capture into resonance (which is discussed later in Section 4.2).
Since �1 is given as an integral over F1, the LCBE is a linear integro-differential equation for the unknown F1. Calculating even this

linear response requires substantial numerical computations. For a first cut at the problem we proceed by dropping �1 (the likely effect
of this would be to underestimate the response of the cusp). Then the right-hand side of equation (18), (∂�d/∂g), represents only the
known driving due to the disc, and the LCBE reduces to a linear partial differential equation. Further simplification occurs because of the
adiabaticity of the problem, which was established in Section 2.3: the first term on the left-hand side, (∂F1/∂τ ), is smaller than the second
term, �c(∂F1/∂g), by a factor (T c

pr/Tgrow) ∼ 2 × 10−2. Hence, dropping ∂F1/∂τ , we can integrate over g to find F1.3 The physical solution

3 Since |�c| ∝ a(3/2−γ )
√

1 − e2 decreases as a decreases (for γ < 3/2), and e increases, this assumption is not valid for small and/or highly eccentric orbits.
But we need to account for non-linear effects long before we face this limitation of the adiabatic approximation in the linear theory itself. This is discussed
later in this section.
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cannot have a g-independent part because such a deformation is not allowed through collisionless, secular Hamiltonian deformations in phase
space. Therefore

F1(I , L, Lz, g, τ ) = 1

�c(I , L)

∂F0

∂L

[
�d − 〈�d〉g

]
, (19)

where 〈�d〉g = ∮ �d dg/2π. Using the purely g-dependent part on the right-hand side of equation (14), together with equations (13) and
(11), we obtain the following explicit expression:

F1 = D(τ )

(GM•rc)3/2

rc

a
(1 − e2)(

n
2 −1) (ate

2 + bte
4 + ct e

6
) (λ

2
sin i − 9

100
sin2 i

)
cos 2g,

where D(τ ) = 4n (2 − γ )(3 − γ )

11π2 αγ 2(γ+n) B( n
2 +1, 1

2

) B(
m+1, n+3

2

)
√

rd

rc
μ(τ ). (20)

The secular linear deformation has been written in terms of physical variables, instead of Delaunay variables, so we can read-off its general
properties.

(i) F1 ∝ a−1 is independent of the cusp power-law index because γ cancels out in the ratio, �−1
c (∂F0/∂L), in equation (19). The magnitude

of F1 increases with decreasing a because the perturbing gas density rises steeply at small radii. Linear theory requires that |F1| � |F0| ∝
a3/2 − γ , so applies at small a only when γ > 5/2. For the shallow cusp we consider, γ ≈ 5/4, equation (20) would not correctly represent
the perturbation at small a.

(ii) The magnitude of F1 is an increasing function of the inclination, i, because F1 is proportional to the g-dependent part of the disc
potential, whose effect increases with inclination.

(iii) For n ≤ 2, the magnitude of F1 is an increasing function of the eccentricity, e. For n > 2 orbits with intermediate values of e contribute
the most, because the unperturbed cusp has very tangentially biased velocity dispersions.

(iv) Since F1 ∝ cos 2g it is positive/negative for orbits whose angles between their lines of apses and nodes are lesser/greater than 45◦. F1

is positive and maximum for g = (0◦, 180◦), and negative and minimum for g = (90◦, 270◦).

Of the four properties the first three pertain to the magnitude of F1. The fourth item alone determines the sign of F1, and hence the
flattening of the cusp. In order to understand this physically it is necessary to work out the broad characteristics of the individual orbits making
up the stellar system. This also enables an appreciation of what is involved in calculating non-linear, adiabatic response.

4.2 Orbital structure and non-linear theory

The Hamiltonian governing orbital structure is H(I, L, Lz, g, τ ) = �c + �d. Using equations (12) and (14) we have

H = G M•
rc

[
1

(2 − γ )

(
a

rc

)2−γ

(1 + αγ e2) + 16 μ(τ )

11 π

√
rd

a

{
− 9

100

√
1 + e E(k)

(
33 + sin2 i

2

)

+ sin i

2

(
1 + a0e

2 + b0e
4 + c0e

6
) −

(
λ

2
sin i − 9

100
sin2 i

)
(ate

2 + bte
4 + ct e

6) cos 2g

}]
. (21)

As we discussed at the end of Section 3, this time-dependent Hamiltonian always has two integrals of motion, I = √
GM•a and Lz =

I
√

1 − e2 cos i. Therefore the eccentricity and inclination execute coupled oscillations: when e increases i decreases, while a = constant. In
order to say more about orbits we need some information on the time dependence of H, which arises through the parameter μ(τ ).

‘Time-frozen’ Hamiltonian. Where μ(τ ) = constant, then H would be time independent, and is itself the third integral of motion.
Orbital dynamics can be visualized by first fixing some values of (I, Lz), and drawing isocontours of H in the (L, g) phase plane, for L ≥ |Lz|.
For μ = 0 we have H = �c(I, L), so the isocontours are just L = constant horizontal lines. For μ �= 0 the isocontours have a more complicated
topology: these are displayed in Fig. 2 for μ = 0.1 (its maximal value), a = 0.5 pc, and two different values of Lz. The orbital structure shares
the following generic features of secular dynamics in time-independent, axisymmetric potentials around an MBH (Sambhus & Sridhar 2000;
Merritt 2013).

Circulating orbits, for which g advances by 2π over one period. These can be thought of as perturbations of the L = constant orbits of the
μ = 0 case, exhibiting periodic oscillations of both L and g. The perturbations need not necessarily be small, but they are small enough so
that the basic topology of the orbit remains unchanged.

Librating orbits, for which g librates periodically about g = (π/2, 3π/2). These populate two ‘islands’ parented by two elliptic fixed point
orbits (marked by the dots), which correspond to Kepler ellipses of fixed (a, e, i, g) whose nodes precess at a steady rate.

Two separatrix orbits (dashed lines) that meet at the hyperbolic fixed points at g = (0,π). These partition the phase plane into circulating
and librating orbits. The period of a separatrix orbit is infinite, as apse precession slows down terminally near the fixed points.

Adiabatically varying Hamiltonian. When μ(τ ) varies slowly with time, H is no longer an integral of motion. At early times μ → 0
so H → �c(I, L), which is just the unperturbed cusp. All orbits circulate at constant L, corresponding to retrograde apse precession at the
constant rate �c. As μ(τ ) increases two islands appear around the elliptic fixed points, together with their separatrices. As μ(τ ) increases the
separatrices expand and the islands grow until their areas attain a maximum when μ = 0.1. There are two cases to consider.

MNRAS 477, 112–126 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/477/1/112/4925001
by Raman Research Institute user
on 09 May 2018



Cusp deformation due to a gas disc 119

Figure 2. Isocontours of H(I, L, Lz, g) in the (L, g) phase plane, in units of GM•/rc, for μ = 0.1 and a = 0.5 pc. The exact expressions for �c, given in equation
(4.81) of Merritt (2013), and �d, given in equation (A13), have been used.

Figure 3. Apse precession rates for three circulating orbits in the phase plane of Fig. 2(a), for H = 0.70, 0.74, and 0.77.

(1) Adiabatic invariance and linear theory. For circulating orbits that do not ever encounter the growing separatrices, μ(τ ) may be
considered to be slowly varying. Then J = ∮ L(H, I, Lz, g, τ ) dg/2π is an adiabatic invariant, so we have three secular integrals of motion
(I, Lz, J). The secular Jeans theorem implies that the full, non-linear DF is of the form F(I, Lz, J). The linear response calculation of Section 4.1
is a particular case, valid for those circulating orbits that remain close to an unperturbed L = constant orbit. In this case F = F0(I, L) + F1(I,
L, Lz, g, τ ), where F0 and F1 are given in equations (3) and (20). We can now understand the general form of F1, by following individual
circulating orbits.

From Fig. 2 and the conservation of Lz = Lcos i, we see that both L and i take their smallest value at g = (0◦, 180◦), and largest value
at g = (90◦, 270◦). Fig. 3 shows the (retrograde) apse precession rate, ġ = ∂H/∂L, as a function of g, for three circulating orbits taken from
the left-hand panel of Fig. 2. Apse precession is slowest at g = (0◦, 180◦), and fastest at g = (90◦, 270◦). Since the orbit spends the most
time where it precesses slowest, we expect a positive perturbation to the DF near g = (0◦, 180◦), when the orbit also attains its maximum
eccentricity and minimum inclination. Precisely the opposite behaviour obtains near g = (90◦, 270◦). All of these contribute to an overdensity
in the perturbation close to the disc plane, and an underdensity away from the disc plane, thereby flattening the cusp. Indeed the density
deformation ρ1, shown in Fig. 4(a), has this expected form.

(2) Adiabatic capture and non-linear theory. When a circulating orbit encounters one of the growing separatrices, it will be captured into
the respective island and become a librating orbit. We now discuss the generic situation, which includes cases when one or both separatrices
shrink.

Adiabatic invariance is broken in the vicinity of a time-dependent separatrix, both on the librating and circulating sides. This is because
the orbital periods are formally infinite on the separatrices, and there is a band of actions around the separatrices for which the orbital
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Figure 4. Cusp deformation: isocontours of three-dimensional densities, for γ = 5/4 and n = 1/2. (a) solid curves are for ρ1 > 0, and dashed curves are for
ρ1 < 0; the dotted straight line at θ = 57.◦37 is for ρ1 = 0. (b) isocontours of the total density, ρ, showing an oblate spheroidal deformation.

periods are longer than the time of variation of the self-consistent Hamiltonian. This band, which includes the unstable fixed points, is
very narrow in the adiabatic limit. But for orbits within it, the movement of the separatrices is not slow, and the dynamics within the
band is chaotic because the orbit-separatrix encounter is very sensitive to the phase of the encounter. The behaviour of the orbit has
been described in probabilistic terms in the planetary dynamics literature (Goldreich & Peale 1966; Henrard 1982), i.e. in terms of the
probabilities of capture into, or escape from the islands of libration. Sridhar & Touma (1996) reconsidered this general problem in terms of
the collisionless behaviour of a distribution of particles, and showed that the capture/escape probabilities can be calculated, without doing
the detailed non-linear dynamics of the encounter of an orbit with a separatrix. We note their main results, and discuss it in the context of our
problem.

(i) Let f be the fine-grained DF of the particles that obeys the CBE, whose Hamiltonian (which could be self-consistent or not) allows for a
resonant island bounded by separatrices, which distort over time-scales much larger than generic orbital periods (by generic we mean orbits
that do not lie in the narrow band discussed above). Even if f was a smooth function to begin with, the chaotic orbit-separatrix encounter
discussed above results in the post-encounter DF acquiring extremely fine-grained structure within the narrow band around the separatrix.

(ii) We begin by noting that, at any given time, the band around the separatrices is very narrow. Then the fine-grained structure is essentially
reflected in a rapid dependence of f as a function of the instantaneous angle variable. Hence it seems natural to introduce a coarse-grained
DF, f̄ , which equals f averaged over the instantaneous angle variable.

(iii) From the single principle of conservation of the total mass in the coarse-grained DF, f̄ , Sridhar & Touma (1996) derived the evolution
of f̄ in phase space at any given time: (a) away from the separatrices f̄ retains its adiabatic invariant form, for both circulating and librating
orbits; (b) in the immediate vicinity of the separatrices, f̄ undergoes changes, as listed in table 1 of their paper. These rules automatically
provide the classical expressions for capture probabilities, derived in planetary dynamics, so the coarse-grained description indeed gives
correct results.

(iv) The rules for f̄ around the separatrices are such that all entropy (or H) functions associated with it grow in time (in contrast all entropy
functions computed with respect to the fine-grained DF, f, are conserved during collisionless evolution). Hence the coarse-grained evolution
is both mixing and irreversible, which should not be surprising because the non-linear dynamics within the band around the separatrices is
chaotic.

In the context of the cusp–disc problem studied in this paper, the islands grow monotonically from vanishingly small sizes in the distant
past. Hence every librating orbit was once a circulating orbit that was captured by the growing separatrices. Since the DF inside the islands is
built up over time by capturing circulating orbits, the DF for the librating orbits depends on the entire time evolution of the system, in contrast
to the case discussed above when J was conserved. The secular adiabatic evolution of an axisymmetric system – even when the self-gravity
of the perturbation is included – is an integrable problem. So the full non-linear problem, with application of the rules from Sridhar & Touma
(1996), can be computed in a definite manner, but this is beyond the scope of this paper.

5 SP H E RO I DA L FL AT T E N I N G O F TH E C U S P

Here we compute the deformation of the three-dimensional density and the surface density, as seen from different viewing angles. The
density perturbation can be calculated by integrating F1 of equation (20) over velocity space. This can be carried through analytically (see
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Figure 5. Surface density profile, 
(X, Y) in units of Mc/r
2
c , for two different viewing angles. Distances are measured in units of rc.

Appendix B), and the result is this simple formula:

ρ1(r, θ, τ ) = Mc

2π

∫
F1(I , L, Lz, g, τ ) du = 3 − γ

4π
Cn,γ (τ )

Mc

r3
c

(
rc

r

)5
2

�(θ ),

where �(θ ) = λ

2π

[ E(sin θ ) − 2 cos2 θ K(sin θ )
]− 9

400
(1 − 3 cos2 θ ),

Cn,γ (τ ) = 16n (2 − γ )B(n, γ )

11π 2
(

γ− 1
2

)
αγ

√
rd

rc
μ(τ ). (22)

Here B(n, γ ) is a function of the indices (n, γ ) of the unperturbed spherical cusp, as given in equation (B13). It should be noted that the
dependence of ρ1 on r and θ is independent of (n, γ ).

This expression for ρ1 is valid only when the F1 of equation (20) is a reasonable approximation. This would be true for many of the
circulating orbits of Fig. 2 but not for the librating orbits that are trapped in the islands, as discussed in the previous section. For any (I, Lz)
the librating orbits occur for the lowest values of L, so linear theory cannot be expected to work well when the unperturbed cusp has radially
anisotropic velocity dispersions. But the GC cusp is probably tangentially anisotropic, with β ≈ −1/4 for r < 2 pc (Feldmeier-Krause et al.
2017), so we can expect the linear theory result of equation (22) to be a useful first approximation.

Fig. 4(a) shows the isocontours of ρ1 in the (R, z) meridional plane, for γ = 5/4 and n = −2β = 1/2, for which B(1/2, 5/4) = 2.41145.
The density perturbation ∝ r−5/2 rises steeply with decreasing r, similar to the density of the perturbing disc, ρd. It is positive close to the
equatorial plane of the disc (for 57.◦37 < θ < 122.◦63) and negative otherwise, a property that is independent of the cusp parameters (n, γ ). This
behaviour is consistent with what we expected from the orbital dynamics discussed in the previous section. Fig. 4(b) plots the isocontours of
the total density, ρ(r, θ ) = ρc + ρ1. These reveal an oblate spheroidal deformation of the spherical cusp. The flattening increases steeply with
decreasing r, with the axis ratio ∼0.8 at ∼0.15 pc – see Fig. 6. We also computed 
(X, Y), the surface density profile of the deformed cusp,
by integrating ρ(r, θ ) along different lines of sight up to a distance of 3 pc from the MBH, because this corresponds to the break radius of the
cusp (Gallego-Cano et al. 2018). Fig. 5 shows the isocontours of 
 on the sky plane for io = 45◦ and 90◦, where io is the angle between the
line of sight and the disc normal. The flattening increases steeply with decreasing r, similar to the density profile; the edge-on view (io = 90◦)
shows maximal flattening, as can be seen from Fig. 6.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a simple model of the deformation of a spherical stellar cusp (with anisotropic velocity dispersion) around an MBH, due to
the growing gravity of a massive, axisymmetric accretion disc, for parameter values appropriate for the GC NSC. The mechanism is generic
and may be common in galactic nuclei.

We argued that the disc grows over times that are much longer than the typical apse precession period of cusp stars within a parsec of
the MBH. The dynamical problem is not solvable in general stellar dynamics. But within rinfl � 2 pc, the dominant gravitational force on a
star is the Newtonian 1/r2 attraction of the MBH, and the semimajor axis of every star is an additional conserved quantity for evolution over
several apse precession periods (Sridhar & Touma 1999). We used the secular theory of Sridhar & Touma (2016) to construct an integrable
model of the adiabatic deformation of the cusp DF. Although the non-linear, self-consistent problem is integrable, the full solution requires a
lot of numerical computations. In order to get an idea of the nature of the deformation, we used linear secular theory to obtain an analytical
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Figure 6. Axis ratio of the isocontours of total density, ρ, and surface density, 
, versus the major axis (in units of rc) of the isocontours.

expression for the DF perturbation due to the ‘bare’ effect of the disc. We explored orbital structure that enables us to not only understand
the physical properties of the linear deformation, but also to bound the limits of linear theory and discuss non-linear effects. The circulating
orbits of linear theory are such that stars tend to spend more time near the equatorial plane of the disc, when their orbital eccentricity is
maximal; this takes them closer to the inner, dense parts of the gas disc, an effect that could enhance the stripping of the envelopes of red
giants (Amaro-Seoane & Chen 2014).

Orbital structure also reveals the limits of linear theory, which does not apply to orbits whose apsides librate around 90◦ or 270◦. For
any given I and Lz, these orbits occupy regions of the highest eccentricities. Their DF depends on the entire orbital history – in contrast to
the orbits of linear theory that respect adiabatic invariance – and requires computations based on the non-linear theory of adiabatic capture
into resonance. For an initially tangentially anisotropic velocity dispersion, which seems to be the case for the GC NSC on scales <2 pc
from the MBH (Feldmeier-Krause et al. 2017), the relative number of eccentric orbits is small. Hence linear theory should do well as a first
approximation for semimajor axes in the range 0.16–1 pc.

Secular stability is an important issue that we now review in the light of earlier results for the linear dynamical stability of non-rotating
spherical DFs, F0(I, L). For the lopsided l = 1 linear mode, Tremaine (2005) showed that DFs with (∂F0/∂L) < 0 are secularly stable,
whereas DFs with (∂F0/∂L) > 0 are either stable or neutrally stable when F0 = 0 at L = 0 (i.e. an empty loss cone). The latter applies
to the tangentially anisotropic case, n = 1/2, we have considered in this paper. Polyachenko, Polyachenko & Shukhman (2007) considered
mono-energetic DFs, F0(I, L) = δ(I − I0)f(L), dominated by nearly radial orbits. They found linear secular instabilities for l ≥ 3 when f(L)
is a non-monotonic function of L. Relaxing the restriction to nearly radial orbits, Polyachenko, Polyachenko & Shukhman (2008) concluded
that the non-monotonicity of the DF as a function of L is the main requirement for this (empty) loss cone instability to l ≥ 3 modes. The cusp
DFs of equation (3) are monotonic functions of L for n �= 0, and may be expected to be stable in this sense; when n = 0, the DF is a function
only of I and cannot be changed by any secular process because I is a secularly conserved quantity. So we are somewhat assured that the
unperturbed cusp is likely to be linearly stable. But this does not imply that an axisymmetric deformation, forced by a disc of small (but not
infinitesimal) mass, is necessarily stable; it could run away in an axisymmetric manner, or be vulnerable to the growth of non-axisymmetric
modes. To investigate this aspect, we need to first include the effect of the self-gravity of the perturbation on its own evolution, and then
explore the problem through N-body simulations.

The density perturbation corresponding to the linear deformation results in an oblate spheroidal deformation of the formerly spherical
cusp. The flattening increases steeply with decreasing distance from the MBH; the intrinsic axis ratio ∼0.8 at ∼0.15 pc. Surface density
profiles for different viewing angles were presented. The appearance will depend on the assumed plane of the gas disc, and one could consider
this for the GC NSC. The planes of the young stellar disc close to the MBH, and the CND farther away, have a high mutual inclination
(Paumard et al. 2006). It is possible that the young stars were formed nearly coplanar with the CND and underwent dynamical evolution,
also being perturbed by the CND (Šubr, Schovancová & Kroupa 2009). The ionizing radiation from the hot young stars also seems to have
pushed gas out from beyond 0.5 pc, and this would tend to decrease the spheroidal deformation we calculated at these distances. But a distinct
possibility is that the accretion disc itself was warped.

The gravitational perturbation of a warped gas disc would cause a non-axisymmetric deformation of the spherical cusp, so our calculation
needs to be extended to account for this. We considered an unperturbed spherical stellar cusp with anisotropic velocity dispersion, because we
wanted to begin the simplest generic case.4 Chatzopoulos et al. (2015) constructed a self-consistent, flattened and rotating DF, f(E, Lz), for the
GC old stellar cusp. For r < rinfl, this implies an unperturbed secular DF of the form F0(I, Lz). Such a DF is immune to all secular axisymmetric

4 An isotropic secular DF, F0(I), cannot undergo any secular change, either through collisionless perturbations or through resonant relaxation, because I is a
secular invariant.
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perturbations, because I and Lz are conserved quantities for every stellar orbit. However, F0(I, Lz) would respond to the non-axisymmetric
perturbation of a warped gas disc, because the Lz of every orbit would then evolve with time, even though I remains constant. The deformed
cusp would then not be axisymmetric, a feature explored recently through triaxial modelling of the GC NSC (Feldmeier-Krause et al. 2017).
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APPENDIX A : O RBIT-AVERAGED D ISC POTENTI AL

In order to compute the orbit-averaged disc potential, �d(I, L, Lz, g, τ ), we need the following relations between (r, z) and Keplerian orbital
elements:

r = a
√

1 − e Cη, cos θ = z

r
=

Si

(
Sg (Cη − e) + Cg

√
1 − e2 Sη

)
1 − e Cη

, (A1)

MNRAS 477, 112–126 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/477/1/112/4925001
by Raman Research Institute user
on 09 May 2018

http://dx.doi.org/10.1088/2041-8205/781/1/L18
http://dx.doi.org/10.1088/0004-637X/697/2/1741
http://dx.doi.org/10.1088/0004-637X/708/1/834
http://dx.doi.org/10.3847/0004-637X/830/1/17
http://dx.doi.org/10.1086/521018
http://dx.doi.org/10.1093/mnras/stu2452
http://dx.doi.org/10.1086/427911
http://dx.doi.org/10.1088/0004-637X/703/2/1323
http://dx.doi.org/10.1088/0004-637X/764/2/154
http://dx.doi.org/10.1088/0004-6256/142/4/134
http://dx.doi.org/10.3847/0004-637X/821/1/44
http://dx.doi.org/10.1086/320631
http://dx.doi.org/10.1093/mnras/222.2.299
http://dx.doi.org/10.1086/377127
http://dx.doi.org/10.1103/RevModPhys.82.3121
http://dx.doi.org/10.3847/1538-4357/aa5c41
http://dx.doi.org/10.1086/109947
http://dx.doi.org/10.1086/165355
http://dx.doi.org/10.1007/BF01228946
http://dx.doi.org/10.1086/186204
http://dx.doi.org/10.1111/j.1365-2966.2006.11155.x
http://dx.doi.org/10.1086/376675
http://dx.doi.org/10.1088/0004-637X/690/2/1463
http://dx.doi.org/10.1111/j.1365-2966.2006.10772.x
http://dx.doi.org/10.1086/503273
http://dx.doi.org/10.1111/j.1365-2966.2007.11821.x
http://dx.doi.org/10.1111/j.1365-2966.2008.12938.x
http://dx.doi.org/10.1086/309497
http://dx.doi.org/10.1093/mnras/279.4.1263
http://dx.doi.org/10.1046/j.1365-8711.1999.02218.x
http://dx.doi.org/10.1093/mnras/stw542
http://dx.doi.org/10.1086/429713
http://dx.doi.org/10.1088/0004-637X/783/2/131
http://dx.doi.org/10.1086/322496


124 K. Kaur and S. Sridhar

where S and C are shorthand for sine and cosine of the angle given as subscript, and η is the eccentric anomaly. From equation (6), we see
that the following three averages over the Kepler orbital phase, w (or mean anomaly), need to be computed:

〈
1/

√
r
〉
,
〈|cos θ | /√r

〉
,

and
〈
cos2 θ/

√
r
〉
. Using w = η − esin η all of these can be expressed in terms of the elliptic integrals, listed below for ease of

reference:

F (ζ0, k) =
∫ ζ0

0
dζ

1√
1 − k2 sin2 ζ

and K(k) =
∫ π

2

0
dζ

1√
1 − k2 sin2 ζ

(A2)

are incomplete and complete elliptic integrals of the first kind, and

E(ζ0, k) =
∫ ζ0

0
dζ
√

1 − k2 sin2 ζ and E(k) =
∫ π

2

0
dζ
√

1 − k2 sin2 ζ (A3)

are incomplete and complete elliptic integrals of the second kind. Then the first average is〈
1√
r

〉
=
∮

dη

2π

(1 − e cos η)√
r

= 1

π
√

a

∫ π

0
dη
√

1 − e cos η = 2
√

1 + e

π
√

a
E(k) , (A4)

where k(e) = √
2e/(1 + e).

The second average is〈 |cos θ |√
r

〉
=
∮

dη

2 π
(1 − e cos η)

| cos θ |√
r

= sin i√
a

∫ 2π

0

dη

2π

|Sg(Cη − e) + Cg

√
1 − e2Sη|√

1 − e Cη

. (A5)

Note that |Sg(Cη − e) + Cg

√
1 − e2 Sη| =

√
1 − e2 cos2 g | cos (η − η0) − cos θ0|, where

η0(e, g) = tan−1(
√

1 − e2 cot g), θ0(e, g) = tan−1

(√
1 − e2

e| sin g|

)
. (A6)

In the angular interval η ∈ [η0, η0 + 2 π], the expression within ‘| |’ changes sign at η = η0 + θ0 and η = 2π + η0 − θ0. Rewriting

〈 |cos θ |√
r

〉
= sin i√

a

∣∣∣∣∣∣
∮

dη

2π

Sg(Cη − e) + Cg

√
1 − e2Sη√

1 − e Cη

− 2
∫ 2π+η0−θ0

η0+θ0

dη

2π

Sg(Cη − e) + Cg

√
1 − e2Sη√

1 − e Cη

∣∣∣∣∣∣, (A7)

we obtain〈 |cos θ |√
r

〉
= 2 sin i

π
√

a
S(e, g), (A8)

where the function

S(e, g) =
√

1 + e

e
| sin g|

[
− E(k) + E(η2, k) − E(η1, k)

+ (1 − e) {K(k) − F (η2, k) + F (η1, k)}
]

+ cos g
1 − e2

e

[
1√

1 − e cos g
− 1√

1 + e cos g

]
. (A9)

Here k is given below equation (A4), (η0, θ0) are defined in equation (A6), and

η1(e, g) = η0(e, g) + θ0(e, g) − π

2
, η2(e, g) = η0(e, g) − θ0(e, g) + π

2
. (A10)

The last average is easier to do:

〈
cos2 θ√

r

〉
=
∮

dη

2π
(1 − e cos η)

cos2 θ√
r

= sin2 i√
a

∮
dη

2π

(
Sg(Cη − e) + Cg

√
1 − e2Sη

)2

(1 − e Cη)
3
2

= 2 sin2 i

π
√

a

[√
1 + e E(k)

2
− T (e) cos 2g

]
, (A11)

where the function

T (e) = √
1 + e

[(
2

e2
− 3

2

)
E(k) − 2

e2
(1 − e)K(k)

]
. (A12)
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Using equations (A4), (A8), and (A11), the orbit-averaged disc potential is

�d = 16 GM•
11πrc

μ(τ )

√
rd

a

[
−297

100

√
1 + e E(k) + sin i

2
S(e, g)

− 9

100
sin2 i

(√
1 + e

2
E(k) − T (e) cos 2g

)]
. (A13)

This expression is used to compute the isocontours shown in Fig. 1. For dynamical calculations, we found it convenient to approximate the
functions S(e, g) and T(e) by the following polynomials in e2:

T (e) � ate
2 + bte

4 + ct e
6, (A14)

S(e, g) � (1 + a0e
2 + b0e

4 + c0e
6
) − λ

(
ate

2 + bte
4 + ct e

6
)

cos 2g, (A15)

where the constants (at, bt, ct, a0, b0, c0, λ) are given below equation (14). This approximation results in a maximum error of ∼2 per cent in
�d, and provides us with the simpler expression of equation (14).

APPENDIX B: D ENSITY DEFORMATION

The density perturbation, ρ1 = Mc/(2π)
∫

F1 du, is defined by a triple integral over velocities, of the DF perturbation, F1, of equation (20).
We use spherical polar coordinates with u = (ur, uθ , uφ). The integrals can be transformed into integrals over E, L, and Lz using the following
relations:

Lz = r sin θ uφ, L = r

√
u2

θ + L2
z

r2 sin2 θ
, E = u2

r

2
+ L2

2r2
− GM•

r
. (B1)

Then we have

ρ1(r, θ ) = 2Mc

πr

∫ 0

− GM•
r

dE

∫ Lm

0
dL

L√
L2

m − L2

∫ L sin θ

−L sin θ

dLz

F1√
L2 sin2 θ − L2

z

, (B2)

where Lm(E, r) = √
2r2E + 2 GM•r is the maximum value of the (magnitude of the) angular momentum that an orbit of energy E can have

at distance r.
As F1 ∝ cos 2g, so we first express cos g in terms of (r, u). Since g is the angle between the ascending node and the periapse, we have

cos g = 1

e
√

L2 − L2
z

[(
L2

GM•
− r

)
(ur cos θ − uθ sin θ ) + rur cos θ

]
. (B3)

Then

e2(L2 − L2
z) cos 2g = E1 + E2(L2 sin2 θ − L2

z) + terms odd in u, (B4)

where

E1 = L2 cos2 θ

[
2L2

(GM•)2

(
E − L2

r2
+ 2GM•

r

)
− 1

]
, (B5)

E2 = 2

r2

(
L2

GM•
− r

)2

− e2. (B6)

Odd terms in u do not contribute to the u integral, so we can drop them. The integral over Lz gives

I1 =
∫ L sin θ

−L sin θ

dLz

F1√
L2 sin2 θ − L2

z

= f1

[
λ

2L

∫
dLz

E1 + E2(L2 sin2 θ − L2
z)√

(L2 sin2 θ − L2
z)(L2 − L2

z)
− 9

100L2

∫
dLz

E1 + E2(L2 sin2 θ − L2
z)√

L2 sin2 θ − L2
z

]
. (B7)

Although we have not shown it explicitly, the limits of the Lz integrals in the second line are the same as those in the first line. Here the factor

f1 = 2
n
2 D(τ )

(GM•)n+ 1
2
√

rc

(−E)n/2 Ln−2
(
at + bte

2 + ct e
4
)
. (B8)
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The transformation, Lz = Lsin θsin α, simplifies the integrals:

I1 = f1

[
λ

L2

∫ π
2

0
dα

E1 + E2L
2 sin2 θ cos2 α√

1 − sin2 θ sin2 α
− 18

100L2

∫ π
2

0
dα
(E1 + E2L

2 sin2 θ cos2 α
) ]

= f1

[
λ

{( E1

L2
− E2 cos2 θ

)
K(sin θ ) + E2E(sin θ )

}
− 9π

100

( E1

L2
+ E2 sin2 θ

2

)]

= 2πf1

[
e2 − 2L2

(GM•r)2
(L2

m − L2)

]
�(θ ), (B9)

where

�(θ ) = λ

2π

[ E(sin θ ) − 2 cos2 θ K(sin θ )
]− 9

400
(1 − 3 cos2 θ ). (B10)

The L integral can be expressed in terms of Beta (B) functions:

I2 =
∫ Lm

0
dL

L√
L2

m − L2
I1

= 2
n
2 +1πD(τ )

(GM•)n+ 1
2
√

rc

(−E)
n
2 �(θ )

∫ Lm

0
dL

Ln−1√
L2

m − L2
(at + bte

2 + ct e
4)

[
e2 − 2L2(L2

m − L2)

(GM•r)2

]

= 2
n
2 +1πD(τ )

(GM•)n+ 1
2
√

rc

(−E)
n
2 �(θ )

[
Ln−1

m

2

(
λaB

(
n
2 , 1

2

) + (λb − λa)
L2

m

I 2
B( n

2 +1, 1
2

) + (λc − λb)
L4

m

I 4
B( n

2 +2, 1
2

)

− λc

L6
m

I 6
B( n

2 +3, 1
2

)
)

− Ln+3
m

(GM•r)2

(
λaB

(
n
2 +1, 3

2

) + λb

L2
m

I 2
B( n

2 +2, 3
2

) + λc

L4
m

I 4
B( n

2 +3, 3
2

)
) ]

. (B11)

The final step is to solve the E integral, ρ1 = (2Mc/πr)
∫ 0

− GM•
r

dE I2. Substituting the explicit form for Lm given below the equation

(B2), and using I = GM•/
√

2(−E), the integrals are once again given in terms of Beta functions. Therefore,

ρ1(r, θ, τ ) = 3 − γ

4π
Cn,γ (τ )

Mc

r3
c

(
rc

r

)5
2

�(θ ), (B12)

where

Cn,γ (τ ) = 16n (2 − γ )B(n, γ )

11π 2
(

γ− 1
2

)
αγ

√
rd

rc
μ(τ ),

B(n, γ ) = 1

B( n
2 +1, 1

2

)B( 2γ+n−1
2 , n+3

2

)
[
λa B( n

2 , 1
2

)B( n
2 +1, n+1

2

) + 22(λb − λa) B( n
2 +1, 1

2

)B( n
2 +2, n+3

2

)

− 23λa B( n
2 +1, 3

2

)B( n
2 +1, n+5

2

) + 24(λc − λb) B( n
2 +2, 1

2

)B( n
2 +3, n+5

2

) − 25λb B( n
2 +2, 3

2

)B( n
2 +2, n+7

2

)

− 26λcB
(

n
2 +3, 1

2

)B( n
2 +4, n+7

2

) − 27λc B( n
2 +3, 3

2

)B( n
2 +3, n+9

2

)
]

,

λa = at + bt + ct = 0.707106, λb = −(bt + 2ct ) = −0.915737, λc = ct = 0.703998. (B13)
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