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Abstract

We present an analytic formulation to model the fluctuating component of the H I signal from the epoch of
reionization during the phase of partial heating. During this phase, we assume self-ionized regions, whose size
distribution can be computed using excursion set formalism, to be surrounded by heated regions. We model the
evolution of the heating profile around these regions (near zone) and their merger into the time-dependent
background (far zone). We develop a formalism to compute the two-point correlation function for this topology,
taking into account the heating autocorrelation and heating-ionization cross-correlation. We model the ionization
and X-ray heating using four parameters: efficiency of ionization, ζ; number of X-ray photons per stellar baryon,
Nheat; spectral index of X-ray photons, α; and minimum frequency of X-ray photons, νmin. We compute the H I
signal in the redshift range 10<z<20 for the ΛCDM model for a set of these parameters. We show that the H I
signal for a range of scales 1–8Mpc shows a peak strength of 100–1000 (mK)2 during the partially heated era. The
redshift at which the signal makes a transition to a uniformly heated universe depends on the modeling parameters;
e.g., if νmin is changed from 100 eV to 1 keV, this transition moves from z;15 to z;12. This result, along with
the dependence of the H I signal on the modeling parameters, is in reasonable agreement with existing results from
N-body simulations.
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1. Introduction

The probe of the epoch of reionization (EoR) remains one of
the outstanding aims of modern cosmology. In the past 15 yr,
important strides have been made in this direction, mainly led
by the detection of the Gunn–Peterson effect at z;6 and the
cosmic microwave background (CMB) temperature and
polarization anisotropy detections by WMAP and Planck (Fan
et al. 2000; Becker et al. 2001; Hinshaw et al. 2013; Planck
Collaboration et al. 2014, 2016). The former discovery
suggests that the universe could be making a transition from
neutral to fully ionized at z;6, while the latter shows that the
universe might have been fully ionized at z;8.5. The current
best bounds on the reionization optical depth from Planck put
stringent constraints on the redshift of reionization: zreion=
8.5±1 (Planck Collaboration et al. 2016).

One important missing piece in these probes is that neither
seems capable of discerning the dynamics of the reionization
process. For instance, the CMB anisotropies (both polarization
and temperature) are sensitive only to the integrated optical
depth through the surface of reionization (e.g., Dodelson 2003).

Theoretical estimates suggest that the dark age of the
universe might have ended around z;30 with the formation
of the first structures in the universe. These structures are
expected to emit UV light, which might have reionized the
universe at z;9 (see, e.g., Barkana & Loeb 2001; Morales &
Wyithe 2010; Pritchard & Loeb 2012; Natarajan &
Yoshida 2014 and references therein). The most direct way
to probe this transition is through the detection of the redshifted
hyperfine 21cm line of neutral hydrogen (H I). The past decade
has seen major progress on both the theoretical and
experimental front in this endeavor. Currently, there are many
ongoing experiments that are attempting to detect both the
global H I signal and its fluctuating component from the epoch

of reionization. The H I signal from the epoch has been
computed both analytically and using numerical simulations.
Theoretical estimates show that the global signal is observable
in both absorption and emission, with its strength in the range
−200–20 mK in a frequency range of 50–150MHz, which
corresponds roughly to a redshift range 25>z>8 (e.g.,
Madau et al. 1997; Tozzi et al. 2000; Gnedin & Shaver 2004;
Sethi 2005). The fluctuating component of the signal is likely
to be an order of magnitude smaller on scales in the range
3–100Mpc, which implies angular scales in the range ;1′–30′
(e.g., Furlanetto et al. 2004a, 2004b; Zaldarriaga et al. 2004;
Pritchard & Furlanetto 2007; for comprehensive reviews, see,
e.g., Morales & Wyithe 2010; Pritchard & Loeb 2012;
Natarajan & Yoshida 2014). Many of the ongoing and
upcoming experiments have the capability to detect this signal
in hundreds of hours of integration (e.g., Mesinger et al. 2014;
Ahn et al. 2015a). Upper limits on the fluctuating component of
the H I signal have been obtained by many ongoing experi-
ments: GMRT, MWA, PAPER, and LOFAR (Paciga
et al. 2013; Ali et al. 2015; Beardsley et al. 2016; Patil
et al. 2017). The best current upper limits correspond to
k3P(k)/(2π3)<(22.4 mK)2 for 0.15<k<0.5 hMpc−1 at
z;8.4 (Ali et al. 2015).
The H I signal carries crucial information about the first

sources in the universe. In particular, the H I signal is
determined by the radiation emitted by these sources in three
frequency bands: UV radiation that ionizes the medium, Lyα
radiation (frequencies between the Lyman limit and Lyα), and
X-ray photons (all photons with energies much higher than the
hydrogen and helium ionization threshold). The emission in
these three bands determines the evolution of the global H I
signal. And, along with primordial density perturbations given
by the ΛCDM model, the perturbations of these radiation fields
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establish the length scales of the fluctuating component of the
signal.

In this paper, our main focus is the analytic modeling of the
fluctuating component of the H I signal in its early phase when the
universe is partially heated. This phase of the EoR has
been extensively studied using numerical methods and analytic
estimates (e.g., Pritchard & Furlanetto 2007; Mesinger et al. 2011;
Visbal et al. 2012;Mesinger et al. 2013; Tashiro & Sugiyama 2013;
Pacucci et al. 2014; Fialkov et al. 2014; Ghara et al. 2015; Fialkov
et al. 2017). We present a new formalism in this paper that seeks to
unravel the correlation structure of the fluctuations based on the
topology of the ionization and heating regions.

In the next section, we review the H I signal from the epoch of
reionization and discuss the impact of three radiation fields on the
signal. In particular, the modeling of X-ray heating is described in
detail. In Section 3, we present our formalism for computing the
two-point correlation function of the H I signal. We also discuss
various approximations, assumptions, and limits germane to our
formulation. In Section 4, we present our results and compare
them with the inferences of other studies. In Section 5, we
summarize our findings and make concluding remarks. Through-
out this paper, we assume the spatially flat ΛCDMmodel with the
following parameters: Ωm=0.254, ΩB=0.049, h=0.67, and
ns=0.96, with the overall normalization corresponding to
σ8=0.83 (Planck Collaboration et al. 2016).

2. Cosmic Dawn and Epoch of Reionization

In the rest frame, hyperfine splitting of the ground state of
neutral hydrogen causes an energy difference that corresponds
to a wavelength λ=21.1 cm. The excitation temperature of
this line, TS, is determined by three processes in the early
universe: emission and absorption of CMB photons, which is a
blackbody of temperature TCMB; collisions with atoms; and the
mixing of the two levels caused by Lyα photons (the
Wouthuysen–Field effect). Here TS can be expressed in terms
of the color temperature of Lyα photons, Tα; gas kinetic
temperature, TK; and TCMB (Field 1958; Pritchard &
Loeb 2012):
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Here yc∝nH and yα∝nα (nH and nα are the number densities
of neutral hydrogen atoms and Lyα photons, respectively)
determine the efficiency of collisions and Lyα photons,
respectively. In the early universe, 1000<z<100, TS relaxes
to TCMB. In the redshift range 100<z<30, collisions
determine the spin temperature, and TS relaxes to the kinetic
temperature TK of the matter. As the epoch of reionization
commences, the production of Lyα photons couples the spin
temperature to the color temperature of Lyα Tα. It can be
shown that multiple scattering of Lyα photons with H I causes
Tα to relax to the kinetic temperature (e.g., Field 1959; Rybicki
& dell’Antonio 1994; Chen & Miralda-Escudé 2004). There-
fore, if ytot=yc+yαTCMB/TK, then TS is strongly coupled
to TK. Otherwise, it relaxes to TCMB.

The H I emits or absorbs 21 cm radiation from the CMB
depending on whether its TS is greater than or less than TCMB.
This temperature difference is observable and can be expressed
as (e.g., Madau et al. 1997; Shaver et al. 1999; Gnedin &

Shaver 2004; Sethi 2005; Pritchard & Loeb 2012)
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Here we ignore redshift space distortion. In writing the
expression, we have expressed the H I number density as
n n n 1 ;H H d= +¯ ( ) δ corresponds to density inhomogeneities in
the gas. The value of the mean density nH¯ has been absorbed in
the prefactor of Equation (2). In our formulation, every small
volume is either completely neutral or completely ionized;
therefore, we define a variable n, which is unity if the medium
is neutral and zero otherwise. In addition to density
inhomogeneities, there are ionization and spin temperature,
TS, inhomogeneities (as the medium is partially ionized or
partially heated). We further define dimensionless temperature
fluctuation as (Zaldarriaga et al. 2004)

n
T

T
n s1 1 1 1 . 3
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⎛
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⎠⎟( ) ( )( ) ( )

We have defined s=TCMB/TS. The statistics of ψ allows us to
study the main physical processes that cause brightness
temperature fluctuations: δ (density perturbations), n (ionization
inhomogeneities), and s (fluctuations of spin temperature). All
these quantities are functions of position in space, but we
suppress this dependence for notational clarity. In this paper, we
assume Tα=TK everywhere, as discussed in Section 2.3.
We next consider the impact of the three radiation fields—

ionizing radiation, Lyα photons, and X-ray photons—on the
brightness temperature inhomogeneities.

2.1. Photoionization

At the end of the dark ages, high-density regions of the
universe collapse and form structures of different masses. In
our work, we assume that the smallest mass that can collapse
corresponds to the H I–cooled halo (e.g., Barkana &
Loeb 2001):

M
h z
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8
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These collapsed structures emit UV photons, which are
absorbed in the immediate vicinity of the sources and carve
out H II regions around them in the intergalactic medium
(IGM). These structures also emit Lyα and X-ray radiation,
which penetrates further into the IGM.
The size distribution of the ionization bubbles can be

computed using excursion set formalism by defining self-
ionized regions (Furlanetto et al. 2004a). These regions have
enough sources to ionize all the gas in them. Such regions are
not created by a single source but rather a set of highly
clustered sources, which is the case in the early universe for the
ΛCDM model; therefore, these regions are larger than the H II
regions of a single source. Here we briefly describe the
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formalism (for details, see, e.g., Furlanetto et al. 2004a and
references therein). We start by defining ζ, the ionization
efficiency factor:

f f N N . 5esc ion rec
1

z = - ( )

Here få is the fraction of collapsed baryons that is converted
into stars, fesc equals the fraction of ionizing photons that
escape the source halo, Nion is the number of hydrogen-ionizing
(UV) photons created per stellar baryon, and Nrec is the number
of recombinations. We assume ζ to be constant in this paper,
even though it could be time-dependent owing to the evolution
of the quantities used to define it. Inside a self-ionization
region, 1/ζ=fcoll=Mcoll/Mtot, where fcoll is the fraction of
collapsed mass inside the self-ionized region.

Using the extended Press–Schechter model, the collapse
fraction can be expressed as
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Here σ2(m) is the variance of the density fluctuations for mass
m, the mass of the self-ionized region at z=0; min

2s º
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mins ( ); and δc(z)=1.68/D+, the critical density for collapse
at redshift z and D+ is the growing mode of the density
perturbations. Here m z,xd ( ) is the redshift and mass-dependent
barrier for excursion set formalism. The linear fit to this true
barrier at m  ¥ is
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where K erf 11 1z z= -- -( ) ( ). To find the self-ionized region,
we need to find the first up-crossing of δ above the curve
described by B(m, z). We can write the mass function
analytically as (Sheth 1998)
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where B z K2c0 mind z sº -( ) ( ) is the value of the barrier at
m  ¥. Equation (6) gives the comoving number density of
the self-ionized bubbles in the mass range m m dm, +( ). Here
r̄ is the background mass density. We use the ΛCDM power
spectrum (the matter power spectrum of the ΛCDM model is
generated using the publicly available code CMBFAST) for
solving Equation (6). We note that this formalism has been
used extensively for analytic work and for simulations of the
epoch of reionization, including in the publicly available code
21 cmFAST (Mesinger et al. 2011). In a numerical simulation,
the self-ionized region is constructed by identifying the largest
contiguous region that satisfies the condition for a self-ionized
bubble: fcoll=1/ζ. This region need not be spherical. For
analytic work, we assume the region to be spherical. We
discuss the implications of this assumption in a later section.

Figure 1 shows the effect of ζ on the global ionization
fraction fi of the universe. For a higher value of ζ, the
reionization is completed at a higher redshift. In Figure 2, we
show the distribution of the volume fraction occupied by
bubbles of different sizes and its evolution with redshift. We
show the volume fraction as a function of halo mass, which can

be related to the comoving size of the self-ionized bubble as
R M M0.09 Mpc 10x

8 1 3 1 3z ( ) . Figure 2 agrees with the
results of Furlanetto et al. (2004a; their Figure 2) for the set of
parameters used by them. For the set of parameters used in this
paper, the self-ionized bubbles are smaller; e.g., at z=12, the
peak of the bubble distribution corresponds roughly to a scale
of Rx;10Mpc for Furlanetto et al. (2004a), while it peaks at
Rx;3Mpc for our case.

2.2. X-Ray Heating

Photons of energy E ? 13.6 eV are not absorbed in the H II
region but escape into the surrounding medium. These photons
ionize and heat the medium through photoionization and
secondary collisional ionization and excitation. These photons
can ionize the medium to a level of less than 10% and impart
up to 20% of their total energy into heating the medium (e.g.,
Shull & van Steenberg 1985; Venkatesan et al. 2001). As the
fraction of ionization in this process is generally tiny, in our
study, we assume the medium outside the ionized region to be
comprised of neutral hydrogen and neutral helium with
primordial abundances. We hope to study the effect of partially
ionized regions in future work.
A key fact in X-ray heating of the mostly neutral gas outside

the H II region is that the photoionization cross section falls as
1/ν3 for energies far larger than the threshold energy. As the
low-energy X-ray photons are absorbed with higher prob-
ability, they contribute to heating the medium immediately
surrounding the H II region, whereas the higher-energy photons
free-stream through the medium. As they are redshifted, their

Figure 1. Evolution of the global ionization fraction ( fi) for different values
of ζ.

Figure 2. Evolution of the size distribution of self-ionized regions as a function
of halo mass for ζ=10.
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probability of absorption slightly increases. These photons
uniformly heat up the whole IGM to some background
temperature Tbg.

In this section, we calculate the profile of the kinetic
temperature around the self-ionized regions. In our analysis, we
separate the regions into near and far zones. In the near zone,
the heating is dominated by X-ray photons from an individual
self-ionized region. In the far zone, the contribution from only
the faraway background sources is taken into account.

2.2.1. Near Zone

To compute the temperature profile for an individual source
at a redshift z, we calculate the total energy absorbed (over the
entire history of the source) by a point close to the source at
redshift z′. In this subsection and the following one, primed
quantities are calculated at the receiving point (point P),
unprimed quantities are at the source (point S), and quantities
with a 0 subscript are comoving quantities.

The energy attained by electrons due to the ionization of
species i (here i runs over hydrogen and neutral helium with
their relative fractions xi=12/13 and 1/13 of the baryon
number, respectively) per unit time per unit comoving volume
per unit frequency (at P) is

dE i

dt d dV
h h
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dt d dV
P i, . 7i

0 0n
n n

n
n
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= ¢ -

¢

¢ ¢
¢n n¢ ¢( ) ( ) ( ) ( )

Here dN dt d dV0n¢ ¢ ¢n ¢ ( ) is the number of X-ray photons (of
frequency ν′) received per unit time per unit frequency per unit
comoving volume, and P(i, ν′) gives the probability of the
ionization of species i by a photon of frequency ν′ in a shell of
thickness dl′:
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3¢ = + ¢( ) is the local number density of species

i, and σi (ν′) is the ionization cross section of an atom by an
X-ray photon of frequency ν′3,
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with νi being the ionization threshold of species i. We assume
the X-ray photon luminosity to be given by a power law (e.g.,
Mesinger et al. 2011 and references therein),
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where νmin is the lowest frequency (in the rest frame of the
source) of X-ray photons escaping from ionizing sources. We
also have
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The optical depth between two points separated by a comoving
distance R0 is given by R P i, ,i0 òt n n¢ = å ¢( ) ( ).

We calculate the X-ray luminosity of a self-ionized region
following the prescription of the last section, which allows us

to relate Nt˙ to ζ (Equation (5)) and the comoving radius of the
self-ionized region Rx,

N
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where Nheat is the number of X-ray photons emitted per stellar
baryons, få is the fraction of collapsed baryons that is converted
into stars, N R n4 3 xhalo

3
0p= is the number of baryons in a

self-ionized region of radius Rx, and f 1coll,ion z= is the
collapsed fraction in an ionized region. We further assume that
the collapsed fraction inside an ionization region follows the
global collapsed fraction, fcoll,g, which we obtain from the
excursion set formalism. This gives us
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Using Equations (7)–(13), using dV R dR40 0
2

0p= , adding a
contribution due to all the species, and integrating over all the
frequencies ν>νmin, we get the energy that goes into heating
the medium per unit time per unit volume,
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where z z1 1min minn n¢ = + ¢ + =( ) ( ) the minimum frequency
from the source that reaches P. We assume that fH=0.15 is the
fraction of the energy of the emitted photoelectrons that goes
into heating the medium (Shull & van Steenberg 1985;
Venkatesan et al. 2001).
Equation (14) gives the energy that goes into heating the

medium by X-ray photons per unit time per unit comoving
volume at a distance R0 from the center of a self-ionized
bubble of radius Rx. To get the total increase in temperature
due to this heating, we need to integrate this over time. If zc¢ is
the redshift at which we compute the heating profile, then to
take into account the adiabatic cooling since higher redshift z′,
we multiply by z z1 1c

2 2+ ¢ + ¢( ) ( ) . We neglect all other
cooling processes. Here Rx(t′), the radius of the given
ionization region at time t′ in the past, is not a straightforward
quantity to calculate, as excursion set formalism does not give
the time evolution of the radius of a particular self-ionized
region. Given that the formalism allows us to compute the
evolution of the average ionized fraction fi, we assume

3 We use here the approximate expressions for the frequency dependence of
the ionization cross section of hydrogen and neutral helium; for more precise
formulae, see, e.g., Osterbrock (1989). Our results are not affected by this
choice.
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Finally, this allows us to compute the increase in temperature
due to a self-ionized region of radius Rx at a distance R0 from
the center of the ionized region:
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We can estimate the typical energies of the photons that are
absorbed close to the source: at z=20, for ν;100 eV, the
photon is absorbed at a comoving distance ;3Mpc from the
source, while a photon of 1 keV is absorbed at ;300Mpc.
Therefore, the low-energy photons are absorbed locally and
determine the heating profile of the near zone, while the high-
energy photons play the role of determining the evolution of
the average temperature, which we discuss next. One can
compute the optical depth of the high-energy photons to
determine the fraction of these photons that is absorbed until
the epoch of interest; for ν=2 keV, nearly 80% of the photons
emitted at z=20 remain unabsorbed at z=15. This means
that some of these photons are not absorbed locally and they
also do not participate in heating in the far zone; we return to
this point in the next subsection. We also note that X-ray
photons are not absorbed within the H II region; hence, the
effective length for computing the optical depth is not R0 but
R0−Rx, which we take into account in our numerical
computation.

2.2.2. Far Zone

In the far zone, multiple sources contribute to the heating at
any point. As noted above, low-frequency X-ray photons are
preferentially absorbed close to the ionizing region in the near
zone (Equation (8)), while higher-frequency photons escape far
away from the ionizing centers and contribute to global
heating. This can be simplified when the distance traveled by
the photon before being absorbed exceeds the mean distance
between sources. As the comoving mean distance between
sources is on the order of 1 Mpc at z;20 for many of the
models we consider, it is a good approximation for our study.

In calculating the far-zone temperature, we essentially take
into account all the X-ray frequencies emitted by all the sources
since the time they were turned on. To calculate the increase in
temperature due to all faraway sources, we choose a random
point and calculate the increase in temperature at that point due

to sources that lie in a shell of thickness dR0 at a distance R0,
and then we integrate it over all R0. We can take the upper limit
of R0 to correspond to the redshift of star formation Rfinal=
R0(zå). If we take the minimum value of R0 to be 0, we get the
total (average) temperature increase due to all sources over the
history of the universe.
Using the global ionization fraction for the redshift of the

chosen shell f z Ri 0( ( )), the volume of ionized gas inside this
shell at a comoving distance R0 is R dR f z R4 i0

2
0 0p ( ( )). There-

fore, we can compute the impact of distant sources by replacing
R4 3 x

3p in Equation (16) with R dR f z R4 i0
2

0 0p ( ( )) and integrat-
ing over R0. This gives us
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2.2.3. Overlap

During the initial phase of the evolution of the heated
bubbles, when the ionized and partially heated fractions ( fi and
fh, respectively) are small, the partially heated fraction grows,
and so does the background temperature. At low redshift, the
heating bubbles will expand and start to overlap. In this
subsection, we discuss how we take into account the impact of
these overlaps. Defining the ionization volume fraction

f N R R
4

3
, 18i

R
x x

3

x

å p
= ( ) ( )

where Rx are the radii of the ionization bubbles and N(Rx) is the
number density of the bubbles with an ionization radius Rx.
Similarly, we can define the volume fraction due to the heating
bubbles to be

f N R R R
4

3
. 19hb

R
x h x

3 3

x

å p
= -( )( ) ( )

This quantity can exceed unity due to significant overlap as the
universe evolves. Therefore, we define another quantity, fh, that
corresponds to the actual volume fraction occupied by the
heating bubbles. This can be derived by recognizing that, in the
case of overlap, within every heating bubble, there can be part
of another heating bubble or ionization bubble:

f N R R R f f

f f f

4

3
1

1 .

h
R

x h x i h

hb i h

3 3

x

å p
= - - -

= - -

( )( )( )
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This gives us

f
f f

f

1

1
.h

hb i

hb

=
-

+
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Here fh remains less than unity even if the value of fhb becomes
much larger than unity and approaches fhb when the heating
and ionization fractions are small. This allows us to success-
fully model the overlap of the heating bubbles.
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Also, since the bubbles overlap, the temperature of a profile
around an ionizing source should contain a contribution due to
other overlapping bubbles:

T T T . 20p s o= + ( )

Here Tp, the resultant temperature, is the sum of Ts, the
temperature due a nearby source, and To, the average
contribution due to overlap. We recursively define To as
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where Rx and Rh are the radii of the chosen ionization bubble
and the outer radius of the corresponding heating bubble,
respectively, and Rs and ΔRs are the inner radius of the shell
with a temperature s around the chosen bubble and the
thickness of this shell, respectively. We add To to the
fluctuations but subtract To/fn from the background to maintain
the energy budget.

2.2.4. Modeling

Equations (16) and(17) can be used to compute the
temperature profile for a single self-ionized region and the
evolution of global heating.

We use the following prescription for defining the near and
far zones. The radius of the near zone is defined as the distance
at which the temperature increase due to that source (over its
history) is less than 1K. The temperature in the far zone
depends on the choice of minimum R0 in Equation (17). We
choose R0=0, which means the photon energy absorbed in
the near zone is also included. However, as we can
independently estimate the total amount of energy absorbed
in the near zone, we subtract this energy from the energy
budget used to estimate the far-zone temperature. The far-zone
temperature is then added to the temperature profile of the near
zone to consistently take into account the fact that
Equation (17) gives the global temperature at all points,
including the near zone.

We note that while the definition of the radius of the locally
heated region is somewhat arbitrary, its impact on the breakup
of the energy budget is negligible. Also, and importantly, the
correlation functions as defined in the next sections are
minimally affected by this definition, as the correlation
functions depend only upon the gradient of temperature.

We explore three parameters to model heating in this paper.

1. α: X-ray spectrum power index. We take three possi-
ble values, 1.0, 1.5, and 2.0, with the middle value to
be the standard case. For a higher value of α, there are
more photons at a low frequency. These photons more
effectively heat up the medium, since there is a higher
probability of them being absorbed. Therefore, with
higher α, the background temperature is high, and the
heating profiles are steeper.

2. Nheat: number of X-ray photons emitted per stellar
baryon. For our study, we assume Nheat in the range
0.1–10.0.

3. νmin: minimum X-ray frequency escaping the source halo.
We take two possible values, 100eV and 1keV. For a
given Nheat, a higher value of νmin means the emitted
photons are more energetic. They free-stream into the
medium and uniformly heat the medium with little
fluctuations around source halos.

To explore more complicated models, where the X-ray
luminosity is not a power law (e.g., Fialkov et al. 2014), we can
take Nheat and α to be a function of frequency ν and time.
However, we do not explore such models in this paper.
In Figure 3, we plot temperature profiles around an

ionization bubble at z=17 for ζ=10, Nheat=1.0, and three
values of α. The figure also displays a case when
νmin=1 keV. In this case, owing to the absence of low-
energy photons, the near-zone profile around the source is very
shallow. Also, as noted above, the heating is suppressed in this
case even in the far zone, as many high-energy photons remain
unabsorbed (Fialkov et al. 2014). In Figure 4, we show the
evolution of the heating profile around an ionized bubble
(similar results have been obtained by, e.g., Venkatesan &
Benson 2011; Ghara et al. 2015). This figure captures the

Figure 3. Heating profiles around a bubble at z=17 for various values of
α and νmin with ζ=10 and Nheat=1.0. It is seen that for νmin>1 keV, the
temperature is smaller and the profile around a source is shallow, or there is less
distinction between the near and far zones (for details, see text).

Figure 4. Evolution of the heating profile around an ionized bubble for α=
1.5, νmin=100 eV, ζ=10, and Nheat=1.0. The size of the fiducial ionized
bubble is assumed to grow as the mean ionized fraction in the universe. The
smallest radius in each profile displayed is the size of the ionized region. The
profiles shown reflect the growth of the mean ionization fraction and the
increase in the background temperature.

6

The Astrophysical Journal, 860:55 (25pp), 2018 June 10 Raste & Sethi



impact of the growth of the ionized region and average
ionization fraction on the heating profile and background
temperature. In Figure 5, we show the heating bubble size
distribution corresponding to the ionization bubbles from
Figure 2.

2.3. Lyα Radiation

As noted in Section 2, Lyα radiation plays an important role
in determining the brightness temperature of H I emission from
the EoR. For EoR studies, all the radiation between Lyα and
the Lyman limit is referred to as Lyα, and we shall follow this
convention. Photons in this frequency band are not absorbed in
the H II region but escape into the surrounding medium and
redshift until the frequency nearly equals the resonant
frequency of one of the Lyman series lines. Given the
complicated frequency structure of Lyman series lines, these
photons are absorbed at varying distances from the source. Our
aim here is to determine the conditions under which this
radiation couples the spin temperature of the H I line TS to the
matter kinetic temperature TK. This coupling depends on two
factors: the region of influence of the Lyα radiation and the
coupling coefficient yα (Equation (1)).

First, we find the Lyα influence region, which is mainly
determined by the distance traveled by the Lyβ photons to
redshift to Lyα frequency. If these photons were emitted at
z=ze and absorbed at z=za with νe=νβ and νa=να, then
the comoving distance traveled by the photon before it is
absorbed in an expanding universe is

R
z

1422 Mpc

1
.

e
max 1 2+


( )

We note that Rmax is much larger than the mean distance
between ionization bubbles at any redshift. For ζ=15, the
values of the mean comoving distance between the bubbles for
redshifts 25, 20, and 15 are 9.66, 2.61, and 1.08 Mpc,
respectively. Therefore, the Lyα regions are very large and
merge very early. However, this would create a homogeneous
coupling to H I atoms only if yα is high enough (Equation (1)).

The Lyα coupling coefficient, yα, is a function of the Lyα
photon (physical) number density, n ¢a (Field 1958; Chen &
Miralda-Escudé 2004):

y
n

T
5.9 10 . 22
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11
3 2

= ´
¢

a
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For efficient coupling between the kinetic temperature TK and
spin temperature TS, we need yα  TCMB/TK.
We assume that the Lyα contribution comes through two

main factors: Lyα emitted from the sources and Lyα created
due to X-ray photoelectrons (Venkatesan et al. 2001). The latter
is generally negligible. To calculate the number density of Lyα
photons from ionizing sources, we use the same method
applied in the previous section, which seeks to express the Lyα
photon luminosity in terms of the radii of ionizing regions. This
method allows us to compute both the near- and far-zone
contributions from Lyα photons. In this paper, we compute
only the far-zone contribution, which comes from photons
between Lyα and Lyβ. Assuming a flat spectrum between Lyα
and Lyβ, the number density of Lyα photons at a comoving
distance R0 from the source is

n
N

cR
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 p
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D
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Here Na˙ is the Lyα luminosity of a given halo, and nD =a

kT m c8 ln 2 p
2 na( ) is the Doppler line width. This factor

arises because at the source, the photons are emitted with
frequencies between νβ and να, but the only frequencies that
are absorbed at redshift z′ are in the range of Δνα around να.
The Lyα luminosity, Na˙ , can be expressed in terms of the

size of the ionization halo, assuming that the Lyα luminosity
scales with the ionizing luminosity with a factor fL and the
balance between ionization and recombination in the ionizing
region:

N f n CR z
4

3
1 .L B x0

2 3 3p
a= +a˙ ( )

Here 10<fL<100 (e.g., Chen & Miralda-Escudé 2004).
We can calculate the Lyα number density due to faraway

sources in the same way as described in the previous section. In
a thin shell of width dR0 at a comoving distance R0 from the
receiving point, the contributing ionization fraction is

R dR f z4 i0
2

0p ( ). Therefore, we integrate over R0. Here we take
the lower limit of the integral R0=0, while the upper limit is
given by the Lyα influence region:
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Here Rmax is the distance corresponding to zmax=
(1+z′)(νβ/να)−1.
From Equation (1), it follows that for q≡yα TK/TCMB�1,

we expect the spin temperature to relax to the matter
temperature TK. Using Equations (22) and(23), we can
compute yα. Given the complicated temperature structure of
the regions outside the ionized region, q can vary substantially
as it scales as TK

1 2- . We find that for all the models we
consider here, q exceeds unity for z<20; e.g., for ζ=10,
α=1.5, Nheat=0.5, fL=100, C=2, and z=20, the
background temperature is 9.1K, the value of yα is 40,
and q=6.3.

Figure 5. Evolution of the size distribution of the heated regions (see text for
details) as a function of halo mass for ζ=10, α=1.5, and Nheat=1.
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Here we do not calculate the effect of higher-order Lyman
transitions (e.g., from Lyγ to Lyβ), since their total number
density is less than that of the photons between Lyβ and Lyα.
Moreover, they will be absorbed closer to the source.

3. Autocorrelation of Brightness Temperature Tb

The autocorrelation of ψ (Equation (3)) can be defined as

n s n s

n s

1 1 1 1

1 1 . 24

1 2
2

1 1 1 2 2 2

1 1 1
2

m y y y
d d

d

=á ñ - á ñ
= á + - + - ñ

- á + - ñ

( )( ) ( )( )
( )( ) ( )

Here n1, δ1, and s1 are the values of ionization, overdensity, and
heating (TCMB/TS) at point 1 (r1). Similarly, n2, δ2, and s2 are
values at point 2 (r2). It should be noted that the autocorrelation
function μ is a function of r rr 2 1= -∣ ∣, as the process of
reionization is statistically homogeneous and isotropic. To
calculate μ, we need to find all the pairs of points that are
separated by a distance r and average them over the entire
space. To compute the correlation function, we use geometric
arguments to find the probability of pairs with given values and
take their weighed average.

Equation (24) can be greatly simplified if we assume that
density has no correlation with ionization or heating (h =
n 0dá ñ = and s 0dá ñ = ). In this work, we make the assumption
that cross-correlation between ionization and density, as well as
between heating and density, is subdominant. We expect a
positive correlation between ionization and density, since dense
regions collapse and get ionized first. Using excursion set
formalism, Furlanetto et al. (2004a) computed this cross-
correlation and showed that it is generally subdominant as
compared to autocorrelation terms (Figure 5 of their paper).
The correlation of heating with density is also expected to be
positive, as the dense regions surrounding ionization bubbles
should have larger temperatures. However, on the scale of
heated regions, the density correlation is smaller at high
redshifts. Simulations show that the density-heating cross-
correlation is subdominant (Ghara et al. 2015) as compared to
other contributions. This gives us

n n s s s s

n n s s s s

1 1

1 1 ,
1 2 1 2 1 2 1 2 1 2
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d d d d
x
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where r r1 2x d d= á ñ( ) ( ) is the autocorrelation function of the H I

density perturbation; we compute ξ using the ΛCDM model
power spectrum, assuming the relative bias between the dark
matter and the H I, b=1. And,

n s n s
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since 0dá ñ = and f nn = á ñ is defined as the dimensionless
average neutral volume fraction at that redshift. This finally
yields

n n n n s n n s
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We can greatly simplify correlation functions higher than
second order. Let us first consider n n s1 2 1á ñ. This corresponds to

the joint probability that the point r r1= is both neutral and
heated to a temperature such that s=s1, while the second point
is neutral. As noted above, n can be either unity (neutral point)
or zero (ionized point), while s can take any arbitrary value
depending on the kinetic temperature. However, in our model,
TK?TCMB if and only if that point is ionized (TK∼104 K).
In other words, for a point s=0 if and only if that point has
n=0. Therefore, the condition of point 1 being neutral
(n1=1) is fulfilled by it being not heated to a very high
temperature (s 01 ¹ ). This allows us to simplify higher point
correlation functions as

n n s n s

n n s n s

n n s s s s .

1 2 1 2 1

1 2 2 1 2

1 2 1 2 1 2

á ñ = á ñ
á ñ = á ñ
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And, since we choose two points randomly, we also have

n s n s .1 2 2 1á ñ = á ñ

Finally, we have

n n n s s s f n s1 2 .

25
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Here we have introduced cross-correlations between kinetic
temperature (heating) and ionization ( n s1 2á ñ) and autocorrela-
tion of heating ( s s1 2á ñ). These terms have a significant effect in
brightness temperature correlation. As noted above, all the two-
point correlations are functions of the distance between two
points r r2 1-∣ ∣.
In the following subsections, we explore certain simplifying

cases and limits.

3.1. Simplifying Cases

3.1.1. Uniform Heating

As a simplifying case, we examine a model where there is
uniform heating outside the ionized bubbles, and all the neutral
gas of the IGM is at a uniform temperature of Tbg:

n s1 1 .by d= + -( )( )

The correlation is

s n n

s n

s n n f

1 1 1

1 1

1 1 . 26

b

b

b n

2
1 1 2 2

2
1 1

2

2
1 2

2

m d d
d

x

= - á + + ñ

- - á + ñ

= - + á ñ -

( ) ( ) ( )
( ) ( )

( ) (( ) ) ( )

Here sb=TCMB/Tbg. At early times, Tbg can approach the
adiabatically cooled temperature of the IGM gas, which is
smaller than TCMB. If the ionization fraction is too small,
n n f 1n1 2

2á ñ   . This gives us

s1 .b
2m x= -( )

At late times, Tbg ? TCMB owing to X-ray heating, driving
sb to zero, which gives

f n n1 . 27n
2

1 2m x= - + + á ñ( ) ( )

This result is consistent with Zaldarriaga et al. (2004).
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3.1.2. Correlation at Very Large and Small Scales

We can compute the small- and large-scale limits of the
correlation function given by Equation (25) under fairly general
conditions. Both ionization and heating inhomogeneities are
caused by bubbles of a given size distribution, which determine
the scales of correlation. As discussed in the foregoing, the size
distribution evolves, and bubbles could have complicated
profiles. However, for scales greater than the largest bubbles,
the correlation function owing to the ionization and heating
inhomogeneities vanishes, and the H I correlation function is
determined by only density perturbations. In this limit, we get

n n n n f

n s n s f s

s s s s s .

n
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2
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In this limit, the correlation function scales as the density
correlation function ξ. We also note that the correlation
function vanishes when f sn = á ñ (close to the global heating
transition).

In the small-scale limit (r r2 1= ), we get
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Here ξ0=ξ(0), or the correlation function computed at zero
lag, which equals the rms of the density perturbations. Since
Equation (29) gives an rms, it is always positive.

We verify Equations (28) and(29) as the large- and small-
scale limits of the H I correlation function computed using the
methods described in the next sections.

3.2. Modeling and Notations

Our aim in this paper is to analytically model the early phase
of the EoR. This issue can essentially be reduced to computing
the autocorrelation of the neutral fraction n n1 2á ñ, the ionization-
heating cross-correlation s n1 2á ñ, and the heating autocorrelation
function s s1 2á ñ. We make several assumptions to make this
problem analytically tractable. The main assumption is that for
a given self-ionized region, the heating and ionization bubbles
are spherical and concentric and the ionization centers are
uncorrelated. Each self-ionized and heating region can be
treated as isolated, so long as both the ionization and heating
fractions are small, which is expected during the early phase of
reionization. As discussed in Section 2.2, X-ray heating can be
split into near- and far-zone effects. While the near-zone effects
are owing to the vicinity of a self-ionized region, the far-zone
effects take into account the impact of all the sources and their
evolution. We model them both in this paper. An additional
complication in the case of heating is that near-zone heating has
a smooth profile around it, as opposed to ionized bubbles,
which have uniform ionization within the bubble with a sharp

boundary. We explicitly account for the heating rate as a
function of distance from the source and its smooth merger into
the background. In Figure 6, we show the geometry of the self-
ionized region and the heating zone beyond it. To compute the
correlations, we assume two random points separated by a
distance r as shown in Figure 7. The formalism used for the

Figure 6. Topology of the ionized and heated regions typical of the partially
heated universe. The ionized region of size Rx (with a sharp boundary) is seen
to be surrounded by a heated fuzzy region of radius Rh. The color scheme
shows the temperature, T; T ; 104 in the ionized regions and is much smaller in
the heated region. It falls with distance from the source center and smoothly
merges with the background.

Figure 7. Randomly choosing a point and finding a correlation with its
neighbor at a distance r.
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computation of the correlation functions is described in
Appendix B.

We assume that at a given z, the ionized bubbles have
various radii Rx. The number density of the bubbles of radius
Rx is N Rx( ). Between Rx and Rh, the outer boundary of the
heating bubble (Figure 6), we take shells of thickness

R R s,xD ( ) having a nonzero temperature s=TCMB/TS. A
detailed description of the notations followed in this paper
given in Table 1.

If the point is randomly chosen,
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The heated volume fraction can be expressed as
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= = -( ) ( ) ( ) ( )

The background volume fraction is

f
f

f
f f

N R f R R R

1

1
1

1
4

3
. 31

b
i

hb
i h

R
x b h x x

3 3 3

x

å p

=
-
+

= - -

= - - +( ) ( ( ) ) ( )

It should be noted that when fhb is small, fh approaches fhb
and fb;1−fi−fhb, the values expected if the overlap is
neglected.

3.3. Complete Model

Our main aim is to calculate ionization and heating
correlations for epochs at which the ionization volume fraction
is small. This ensures that the ionization bubbles are separate
and nonoverlapping. However, as described in Section 2.2, our
formulation allows us to deal with the overlap of heating
bubbles. We describe in detail our formalism to compute the
neutral fraction autocorrelation, neutral fraction-heating cross-
correlation, and heating autocorrelation next.

3.3.1. Correlation of Neutral Region n n1 2á ñ( )

We need to find the probability (fraction) of pairs with both
points neutral (outside the ionization bubble):

n n P n n P n n

P n n P n n
P n n

1 0

0 0
.

1 2
2

1 2 1 2

1 2 1 2

1 2

Ç Ç
Ç Ç

Ç

á ñ= +
+ +

=

~ ~
~
~

( ) ( )
( ) ( )

( )

Using Equation (53),

P n n P n P n n .1 2 1 1 2Ç Ç= - ~( ) ( ) ( )

First, we assume that point 2 is ionized. Therefore, it lies in
some ionized bubble. The statement that its neighbor (point 1)
at a distance r lies in a neutral region means that point 1 lies
outside that bubble and also outside any other bubble. Using
Equation (52),

P n n P n n n
P n n n

P n n

out same out other
out other out same

out same .

1 2 1 1 2

1 1 2

1 2

Ç Ç Ç
Ç

Ç

=
=
´

~ ~
~

~

( ) (( ( ) ( )) )
( ( )∣( ( ) ))

( ( ) )

If we assume that the bubbles are uncorrelated and non-
overlapping, then P n n nout other out same1 1 2Ç~( ( )∣( ( ) )) is the
probability that point 1 is neutral, given that point 2 lies in
some bubble and point 1 lies outside that bubble. This quantity
is equal to the average neutral fraction fn in the present case.4

Now we need to find P n nout same1 2Ç =~( ( ) ) the prob-
ability that point 2 is in an ionization bubble and point 1 lies
outside of that bubble. Point 2 can be in a bubble with any

Table 1
Notations

Symbols Explanation

δ Overdensity of H I gas
n Ionization state of H I gas; neutral means n=1 and ionized

means n=0
s Temperature state defined as s=TCMB/TS
ψ Dimensionless brightness temperature: n s1 1y d= + -( )( )
ξ Autocorrelation of overdensity δ: 1 2x d d= á ñ
μ Autocorrelation of dimensionless brightness temperature

ψ: 1 2
2m y y y= á ñ - á ñ

fi Average ionized volume fraction
fn Average neutral volume fraction
fhb Total volume fraction due to heating bubbles (without taking into

account the overlaps)
fh Average heated volume fraction after taking into account the

overlaps
fb Average background volume fraction
Rx Radius of the given ionization bubble
Rh Outer radius of the given heating bubble, R R Rh h x= ( )
Rs Inner radius of the shell with temperature s around the given

bubble
ΔRs Thickness of the shell with temperature s around the given bubble
N Rx( ) Number density of ionization bubbles of radius Rx

P np( ) Probability of point p being neutral

P np
~( ) Probability of point p being ionized

P n Rp x
~( ( )) Probability that point p belongs to an ionization bubble of radius

Rx

P(s) Probability that the given point has a temperature s
P sb( ) Probability that the given point is in the background
P s R, x( ) Probability that the given point has a temperature s and lies in the

bubble of ionization radius Rx

4 If we assume that the bubbles are uncorrelated and randomly distributed,
then once a point is outside a certain bubble, its probability of being ionized or
neutral is proportional to the global ionized or neutral fractions, respectively.
However, this formalism applies because we are assuming an infinite volume.
If we had assumed a finite volume (as would be the case for a simulation), the
ionized volume fraction around an ionized bubble would be less than the global
ionized volume fraction, since we need to take into account the volume
occupied by said ionization bubble. For a finite volume, this effect should cause
an anticorrelation between the bubbles. Throughout this paper, we assume an
infinite volume for averaging.
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radius Rx. Therefore,

P n n P n n R

P n R P n n R

N R R D x R

out same out same

out same

4

3
, ,

R
x

R
x x

R
x x x

1 2 1 2

2 1 2

3

x

x

x

Çå

å

å

Ç

p

=

=

=

~ ~

~ ~

( ( ) ) ( ( ) ( ))

( ( )) ( ( )∣ ( ))

( ) ( )

where P n n R D x Rout same ,x x1 2 = =~( ( )∣ ( )) ( ) the probability
that point 1 is outside of the bubble, given that point 2 is inside
a bubble of some radius Rx. Therefore,

n n f f N R R D r R
4

3
, . 32n n

R
x x x1 2

3

x

å p
á ñ = - ( ) ( ) ( )

This expression reduces to the results of Zaldarriaga et al.
(2004) when a single scale corresponding to size of ionized
bubbles is taken for a fixed ionization fraction. It also follows
from our discussion that the scenario envisaged in Figure 6 is
valid at an early time.

3.3.2. Correlation between Neutral Region and Heating n s1 2á ñ( )

We need to find the correlation between neutral points and
points with s 0¹ :

n s s P n s sP n s . 33b b
s s

1 2 1
0

1

b

Ç Çåá ñ = +
< <

( ) ( ) ( )

Here sb corresponds to the background (far zone) temperature
at any redshift. The first term can be written as

P n s P s P s n .b b b1 1Ç Ç= - ~( ) ( ) ( )

We apply the procedure followed in the previous section. As
point 1 is ionized, it lies in some ionization bubble. The
statement that its neighbor (point 2) at a distance r lies in the
background region means that point 2 lies outside the heating
bubble corresponding to that ionization bubble and outside any
other heating bubble:

P s n P s s n

P s n

out other out same
out same .

b 1 2 2 1

2 1

Ç Ç
Ç

=
´

~ ~
~

( ) ( ( )∣( ( ) ))
( ( ) )

As the bubbles are assumed to be nonoverlapping and
uncorrelated, P s s nout other out sameb b 1Ç ~( ( )∣( ( ) )) gives the
probability that point 2 is in the background region, given that
point 1 lies in some ionization bubble and point 2 lies outside
the heating bubble corresponding to that ionization bubble.
This probability equals the fraction of the universe heated at a
background temperature fb (see footnote 2).

Our next task is to compute P s nout same2 1Ç ~( ( ) ), which is
the probability of point 1 being in an ionization bubble and
point 2 being out of the heating bubble corresponding to that
ionization bubble. Given the distribution of radii of the
ionization bubbles, Rx, we have

P s n

N R R P s n R

out same
4

3
out same .

R
x x x

2 1

3
2 1

x

å
Ç
p

=

~

~

( ( ) )

( ) ( ( )∣ ( ))

We see that P s n R E r R R Rout same , ,x x h x2 1 =~( ( )∣ ( )) ( ( )), the
probability that point 2 is outside of the heating bubble

corresponding to the ionization bubble of radius Rx in which
point 1 lies. Thus, we have

P n s f f N R R E r R R R
4

3
, , .

34

b b b
R

x x x h x1
3

x

Ç å p
= -( ) ( ) ( ( ))

( )

We also note that, in the limit R Rh x , E r R R, ,x h ( )
D r R, x( ), which allows us to take the limit in which the region
outside the ionizing bubbles is uniformly heated.
Now we need to find P n s1 Ç( ), where 0<s<sb. Here

point 2 is inside a heating bubble but outside an ionization
bubble. Point 2 can be in a heating bubble of any radius; thus,

P n s P s R P n s R, ,
R

x x1 1

x

Ç å=( ) ( ) ( ∣ ( ))

where P n s Rx1( ∣ ( )) is the probability that point 1 is in some
neutral region, given that point 2 is in the partially heated
region of an ionization bubble of size Rx with s2=s. If it is
outside that ionization bubble, then its probability to be
neutral=(1 - the probability of that point being inside an
ionization bubble). Using the result of Section 3.3.1,

P n s R N R R D r R

C r R R R R

1
4

3
,

, , , ,

x

R
x x x

s s s x

1
3

x

å p
= - ¢ ¢ ¢

´ + D

¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ∣ ( )) ( ) ( )

( )

where C(r, P, Q, R), as discussed in Appendix B.3, gives the
probability that if point 1 is between radii P and Q from the
center of a sphere, then its neighbor point 2 at a distance r is
outside a radius R of the same sphere. Therefore,

P n s N R f R R R

N R R D r R

C r R R R R

4

3

1
4

3
,

, , , . 35

R
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1
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3

x

x

å
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Ç
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p
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´ + D

¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( ) (( ) )

( ) ( )

( ) ( )

This gives us the final expression:

n s s f s f N R R E r R R

N R R D r R f N R

s R R R

C r R R R R

4

3
, ,

1
4

3
,

4

3

, , , .
36

b b b b
R

x x x h

R
x x x b

R
x

s R
s s s

s s s x

1 2
3

3

3 3

x

x x

x

å

å å

å

p

p

p
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+ - ¢ ¢ ¢

´ + D -

´ + D

¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )
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( )
( )

( )

In writing Equation (36), we have suppressed the dependence
of Rh and Rs on Rx.
We also need to calculate the correlation between ionization

and heating at the same point n s s1 1á ñ = á ñ( ). The signal will be

11

The Astrophysical Journal, 860:55 (25pp), 2018 June 10 Raste & Sethi



nonzero only if the chosen point is neutral. Therefore,

n s s f f N R

s R R R

4

3

. 37

b b b
R

x
s R

s s s

1 1

3 3
x x

å åp
á ñ = +

´ + D -

( )

(( ) ) ( )
( )

This quantity can also be represented as the global average of s,
as s=0 where n=0.

3.3.3. Correlation of Heating s s1 2á ñ( )

The signal will be nonzero only if neither of the points are
completely heated or, equivalently, both the points lie outside
the ionized regions. Therefore, s 01 ¹ and s 02 ¹ :

s s s P s s s s

s sP s s s s

s s P s s s s

2

. 38

b b b

b
s s

b

s s s s
p q p q

1 2
2

1 2

0
1 2

0 0
1 2

b

p b q b

å

å å

Ç
Ç

Ç

á ñ= = =

+ = =

+ = =
< <

< < < <

(( ) ( ))
(( ) ( ))

(( ) ( )) ( )

Following the logic of Section 3.3.1,

P s s s s P s P s s s s .b b b b b1 2 1 2Ç Ç= = = - = = ~(( ) ( )) ( ) (( ) ( ))

If point 2 is not in the background region, it can be in the
ionized or heated profile region. In any case, its neighbor point
1 will be in the background region only if it is outside the
heated region of the bubble in which point 2 is. Therefore,

P s s s s

f f N R R R

f C r R R R R E r R R

4

3

, , , , , . 39

b b

b b
R

x h x

b x h h x x h

1 2

3 3

3
x

å
Ç

p
= =

= - -

´ +

(( ) ( ))

( ) (( )

( ) ( )) ( )

We have

P s s s s P s s
s s P s s s

out other out same
out same ,

b1 2 1 1

2 1 2

Ç
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= = =
´ = =

(( ) ( )) ( ( )∣( ( )
( ))) ( ( ) ( ))

where P s s s sout other out same1 1 2Ç =( ( )∣( ( ) ( ))) is the prob-
ability that point 1 is in the background region, given that point
2 is partially heated with a temperature s and point 1 is not
inside the bubble in which point 2 is. This probability equals
the fraction of the universe heated to a background temper-
ature, fb (see footnote 2). Here P s s sout same1 2Ç =( ( ) ( )) is
the probability that point 1 is out of the bubble in which point 2
is, and point 2 is partially heated with a temperature s. As point
2 can be in a bubble with any ionization radius Rx, we have

P s s s

N R f R R R

P s s s R

out same
4

3

out same .
R

x b s s s

x

1 2

3 3

1 2

x

å
Ç
p

=

= + D -

´ =

( ( ) ( ))

( ) (( ) )

( ( )∣( )( ))

Here P s s s Rout same x1 2 = =( ( )∣( )( )) is the probability that
point 1 is out of the bubble that has an ionization radius Rx and
contains point 2 with temperature s. This equals the probability
that point 1 is out of the bubble with an outer radius Rh in
which point 2 is located between a radius Rs and R Rs s+ D .

This gives us

P s s s s f N R

f R R R

C r R R R R

4

3
, , , . 40

b b
R

x

b s s s

s s s h

1 2

3 3

x
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(( ) ( )) ( )
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In the case where both points are partially heated, these points
can belong to the same bubble or different bubbles, which
gives

P s s P s s P s ssame diff .
41

1 2 1 2 1 2Ç Ç Ç= +( ) ( ( )) ( ( ))
( )

Here P s s same1 2Ç( ( )) is the probability that points 1 and 2
have temperatures s1 and s2, respectively, and belong to the
same bubble. We calculate P s s Rsame x2 1( ( )∣ ( )), which is the
probability that if point 1 is located in a bubble with an
ionization radius Rx and has a temperature s1, then point 2 is in
the same heating bubble with a temperature s2. If point 1 is
located at a distance between Rs1 and R Rs s1 1+ D from the
center of the sphere, then the fraction of its neighbors at a
distance r that are outside the sphere of radius Rs2 and inside
the sphere of radius R Rs s2 2+ D can be computed. However,
since bubbles can overlap, point 2 can be neutral or ionized,
which leads to

P s s R
C r R R R R

C r R R R R R

N R R D r R

same
, , ,

, , ,

1
4

3
, .

x

s s s s

s s s s s

R
x x x
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x
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Therefore,

s s P s s

N R

s s f R R R

C r R R R R

C r R R R R R

N R R D r R

same

4

3

, , ,
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1
4

3
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R
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s R s R
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s s s s

s s s s s

R
x x x
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1 2 1 2
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3
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x x x

x
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1 1 1
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⎞
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( ))
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Now we turn to the second term on the right-hand side of
Equation (41). Here P s s diff1 2Ç( ( )) gives the probability that
point 1 has a temperature s1, point 2 has a temperature s2, and
they both belong to different bubbles. Here we take a simple
assumption that if point 2 is outside the bubble in which point 1
is, then its probability of having s=s2 is equal to the global
probability of an s2 temperature shell. Since points 1 and 2 can
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belong to bubbles of any size,

P s s P s R C r R R

R R P s R
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which gives us
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Using Equations (39),(40),(42), and(43), we finally obtain
the expression for the heating correlation function:
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We also calculate the correlation of heating at the same point
s s s1 1

2á ñ = á ñ( ). The signal will be nonzero only if the chosen
point is not heated to a very high temperature. Therefore,

s s s f f N R

s R R R
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2 3 3
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x
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This quantity is the global average of s2.

3.4. A Simple Model: Uniform Heating

In this case, we assume a limit where there is no heating
profile around the ionization bubble. We should get back the
result derived in Section 3.1.1.

If there are no heating shells, the second term of
Equation (33) and second and third terms of Equation (38)

can be dropped. In this limit, we also obtain Rh=Rx,
E r R R D r R, , ,x x x=( ) ( ), and fb=fn.
Simplifying the results of Sections 3.3.1–3.3.3,

n n f f N R R D r R
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The total correlation is given by

n n n s s s f n s

s s f N R R D r R

f s f

s n n f

1 2

1 1 2 1
4

3
,

1 1 .

n

b b n
R

x x x

n b n

b n

1 2 1 2 1 2 1 1
2

2 3

2

2
1 2

2

x

å

m x

x
p

x

= + á ñ - á ñ + á ñ - - á ñ

= + - + -

- -

= - + á ñ -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )( ) ( )

( )( ) ( ) ( )

( )
( ) (( ) )

This expression agrees with Equation (26) from Section 3.1.1.
Our model goes to the correct limit for this simplified case.
Here, if we take only one bubble size, we have

s f f D r R f1 1 1 1 , . 45b n n x n
2m x= - + - - -( ) (( )( ( ) ( )) ) ( )

3.5. A Simple Model: One Bubble Size, Flat Heating Profile

One of the principal aims of this paper is to establish the new
scales that emerge in the H I correlation function for a partially
heated universe. For a fully heated universe (TS?TCMB in
neutral regions), these scales are determined by the size
distribution of ionized regions. In the partially heated case,
there is a separation between unheated and heated neutral
regions. This situation is expected to introduce new scales
linked to the sizes of heated regions. Our detailed analysis of
the physical conditions that exist during the early phase of
reionization is difficult to interpret in terms of demarcated
ionized, heated, and unheated regions, because unlike ionized
regions, which have sharp boundaries, the heated regions have
shallow profiles that smoothly merge into the background.
However, for the purposes of understanding our formalism, we
consider a simple model: a single bubble size (both ionized and
heating) and a heating profile with a uniform temperature (flat).
Thus, there are small ionization bubbles embedded in larger
heated bubbles. We first ignore density fluctuations for
simplicity in this section and later present the results including
these perturbations. In this case, there are only three values of
ψ=n(1−s) present in the universe: ψi, ψh, and ψb. Here
ψi=0, since n=0 inside the ionized region. In the heated and
background regions, respectively,

s
T

T

s
T

T

1 1

1 1 .

h h

b

CMB

heat

bg
CMB

bg

y

y

= - = -

= - = -

( )

( )

If N is the number density of the bubbles, then the total ionized
volume fraction of the universe and the heated volume fraction
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without correcting for overlap are, respectively,

f R Nf R R N
4
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4

3
,i x hb h x

3 3 3p p
= = -( )

where Rx is the ionization bubble radius and Rh is the heating
bubble radius. Allowing for overlap, the actual heated volume
fraction and the remaining nonheated volume fraction are,
respectively,

f
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f
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1
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b i h=
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This allows us to calculate the dimensionless temperature
correlation:
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Now we derive each term separately,

P
P P
f f C r R R R, , , . 46

h b

h b h

h b x h h

1 2

1 2 1

Çy y y y
y y y y y y
= =

= = = =
=

(( ) ( ))
( ) (( )∣( ))

( ) ( )

The other terms give
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In Equation (47), the third and fourth terms represent the
correlation of the ionized and heated regions of different
bubbles and the same bubble, respectively:
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Putting the terms in Equations (46), (47),and (48) together, we
have
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If the impact of the density perturbations is included, we get
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To verify the validity of our formalism, we need to consider
Equations (49) and(50) in different limits. (a) At large scales,
all the functions C(., ., ., .) tend to unity. In this case,
Equation (49) vanishes, and Equation (50) approaches the
correct large-scale limit (Equation (28)). (b) In the case of
ψb=ψh, there is no distinction between the heated bubble and
the background, and we expect the correlation information
from the heated bubbles to disappear. In this case,
Equation (50) reduces to Equation (45), the case in which
only ionized bubbles and density perturbations contribute to the
correlation. One subcase of this scenario is when both ψb and
ψh approach unity, the limit in which the entire universe is
uniformly heated at high temperatures TS?TCMB. (c) Finally,
if we assume R Rh x , fh=0, and fb=fn, we get
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This is the same result as Equation (45).
The agreement of our formulation with the expected results

in different limits shows we have taken into account the
relevant physical processes in our study.
Our formalism allows for negative correlation. Such a

situation might arise if s>1 inside the heated bubble and
s<1 in the background. However, we do not find many
instances of negative correlation in all the cases we study here,
even when we neglect density correlations. As ξ is positive for
all the scales we consider in this paper, inclusion of this term
ensures we do not get negative correlation in any case. We
check that we can generate negative correlation by assuming
the centers of ionizing bubbles to be anticorrelated.

4. Results

The brightness temperature correlation is caused by density,
ionization, and heating inhomogeneities. The main aim of this
paper is to study the era dominated by heating inhomogeneities.
There are two main effects in modeling the correlations in this
era. (a) The near-zone effect introduces new scales corresp-
onding to heated bubbles around self-ionized bubbles
(Figures 3 and 4). The correlation function during the partially
heated era is determined by the scales of these bubbles, which
are much larger than the ionization bubbles. (b) The evolution
of s=TCMB/TK in the far zone starting from an era where s
can exceed unity.
We explore four modeling parameters in this paper:

photoionization efficiency ζ, X-ray spectral index α, number
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of X-ray photons per stellar baryon Nheat, and minimum X-ray
frequency escaping the source halo νmin. These parameters
have already been introduced in Sections 2.1 and 2.2. Here ζ is
constrained by Planck results that fix the optical depth to the
reionization surface; ζ in the range 10–15 is in agreement with
these results (Figure 1; Planck Collaboration et al. 2016). We
take runs in the redshift range 10–20.

4.1. Simple Model

To understand the evolution of the correlation function at a
given scale, we first consider the simple model based on an
initial bubble distribution given by an ionized bubble of a
single size that is surrounded by a heating bubble of a single
profile temperature (flat heating profile), with the ratio of
heating to ionized bubble size remaining constant (Section 3.5).
We also neglect the impact of density perturbations in this case.
We show the evolution of the ionized, heated, and background
fractions—fi, fh, and fb—for such a case in Figure 8. The initial
radius of the ionized (heated) bubble is assumed to be 0.1Mpc
(0.7 Mpc). The initial ratio of the heated and ionized fractions
is the cube of the ratio of these radii. Initially, nearly 90% of
the universe is in the phase outside the heated bubbles. As the
universe evolves, the ionized bubbles grow, and so do the
heated bubbles, resulting in an increase in both the ionized and
heated fractions with a decrement of the background fraction.
This process is accompanied with an increase in the back-
ground and bubble temperatures. At a certain redshift, the
heated bubble begins to merge, driving the background fraction
to zero. Eventually, the ionized fraction becomes large enough
to drive the heated fraction to zero.

The evolution of the correlation function (normalized using
Equation (2)) for a set of scales is shown in Figure 9.5 Here the
background temperature is assumed to evolve according
to Equation (17) for the modeling parameters ζ=10,
Nheat=1.0, and α=1.5, while the heating bubble temperature
is kept at a constant value above the background temperature.
Initially, the correlation function is small, which is expected,
because the function tends to zero as fi and fh approach zero in
the absence of density perturbations. The correlation function

rises as fh increases and then decreases again owing to multiple
reasons.
There are three distinct factors that can wipe out the

information on the correlation scales generated by heating
inhomogeneities. (a) An increase in temperature in the heated
bubbles and the background. When these temperatures rise
substantially above TCMB, s=TCMB/TS is driven to zero,
causing both the autocorrelation of s and its cross-correlation
with the ionization inhomogeneities to approach zero. This is
the primary cause of the evolution of the correlation function,
as seen in Figure 9. (b) A decrease in the gradient of the
temperature between the heated bubble and the background.
This effect plays an important role when the fuzzy boundaries
of the heating regions are taken into account, which we discuss
in the next section. It can also be achieved when νmin is
increased, as seen in Figure 3. In this case, the heating inside
the bubble decreases, and most of the X-ray photons are used in
raising the background temperature. We discuss this case in the
next section. (c) Merging of bubbles. This process destroys the
distinction between the heated bubble and the background,
thereby erasing the correlation information on the scales of the
bubbles. The difference between this case and case (b) is that
the latter is possible for even small heating fractions, fh.
All these reasons play some role in determining the transition

from heating to the ionization inhomogeneities regime. For the
parameters we consider in this paper, the effect of both cases
(a) and (c) can be suppressed by considering a small Nheat,
while the scenario considered in case (b) can be achieved by
varying νmin.
This behavior is generic to all models, even though the

evolution on the range of scales displayed in Figure 9 could
change as it is determined by the sizes of the heating bubbles.
For instance, in Figure 9, the correlation on the scales of
;3Mpc remains close to zero at all times owing to our choices
of initial scales. The magnitude of the correlation function
is also determined by the background and heated temperatures.
Both rise as the universe evolves, decreasing s and therefore
decreasing the correlation function. In Figure 9, T fh h

1 +-

T fb b
1- reaches TCMB

1- at z;16; at this redshift, the global H I
signal vanishes, and the universe makes a transition from being
observable in the H I signal from absorption to emission.
However, as discussed above, the redshift at which the
correlation function reaches its minimum is determined by a
multitude of other causes, and this transition is reached
at z;15.

Figure 8. Evolution of ionized and heating fractions for a fiducial model
(described in the text) for ζ=10, Nheat=1, and α=1.5. Figure 9. Evolution of the correlation function for a set of scales for the model

in Figure 8.

5 We also show the evolution of the rms, which corresponds to the plot for
r=0, to guide the eye. For an experiment, the relevant quantity would be the
rms smoothed with the three-dimensional resolution of the radio interferometer,
which, as discussed below, could be around 3–5Mpc for ongoing and
upcoming experiments. Therefore, the measured rms would always be smaller
than the quantity shown in Figure 9.
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The minimum of the correlation function around z;15
signals the beginning of the phase in which the universe is
uniformly heated. The signal at this time reaches nearly zero for
all scales in our case, because fi;0.01 at the time of the
heating transition; therefore, the ionization inhomogeneities are
small, and we ignore the density perturbations. As the ionized
fraction increases, the ionization inhomogeneities start rising,
reaching a peak around fi;0.5, and subsequently decline as
the universe becomes fully ionized. It should be noted that the
peak of the correlation function when it is dominated by
ionization inhomogeneities is smaller than when it is
determined by heating inhomogeneities. This is expected, as
s is larger than unity in the earlier phase and zero during the
later phase.

To isolate the impact of merging from the effect of heating
on the evolution of the correlation function, we show in
Figure 10 a different model, which is also based on the
evolution of the ionization and heating fractions shown
Figure 8. In this case, the initial background temperature is
5 K, the temperature inside the heated bubble is 10 K, and the
temperatures are kept at their initial values throughout.
Therefore, in this case, the heating inhomogeneities are
destroyed by the merging of the heating bubbles and not the
heating, which delays the transition to the uniform heating
regime as compared to Figure 9.

Figures 9 and 10 allow us to identify the relevant physical
processes involved in the modeling of the correlation function
in the phase when heating inhomogeneities dominate, the end
of this phase (owing to either heating above CMB temperature
or merger), and the transition to ionization inhomogeneities
domination phase. As we shall notice later, the features seen in
the figures are also present when more exact modeling is
attempted. In this paper, we assume the centers of ionization
bubbles to be uncorrelated. If the centers are correlated, new
correlation scales can emerge; we briefly discuss this scenario
in Appendix C.

4.2. Complete Model

In this subsection, we present results for the complete model
based on the ΛCDM model. This generalizes the case discussed
in the previous subsection in the following aspects: (a) there is
a size distribution of the ionization and heating bubbles
(Figures 2 and 5), and (b) the heating bubbles have shallow
profiles (Figure 4), which makes it harder to identify the impact
of the sizes of the heating bubbles on the correlation function.

Dependence on modeling parameters and redshift. In
Figure 11, we show the correlation functions for the complete
model for different choices of modeling parameters using
Equations (2),(6),(16),(17),(25),(32),(36), and(44). The
correlation functions shown in the figure are large at small
scales (Equation (29)), decrease as the distance between two
points increases, and approach Equation (28) at large scales. On
intermediate scales, the structure of the correlation function is
determined by the size distribution of the heated bubbles (e.g.,
Figure 5).
As the value of the spectral index α is increased for a fixed

Nheat, there are more low-frequency photons resulting in a
higher background temperature (Figure 3); this results in a
decrease in the correlation function as it scales as

s s1 1b- = - á ñ( ) ( ) during this phase (Equation (28)). For
the same reason, when Nheat is increased, the correlation
decreases. Figures 12 and 13 show the correlation function at
different redshifts for different values of Nheat. At high
redshifts, the correlation function is large owing to a smaller
background temperature. As the universe gets heated, sb
decreases, reaching fn at a certain redshift and resulting in the
vanishing of the correlation function at large scales
(Equation (28)). As the sb decreases further, the impact of
partial heating disappears, the correlation function increases
again owing to ionization inhomogeneities, and the H I signal is
now observable in emission. We have already seen this
transition for the single-bubble, flat heating profile case
(Figures 9 and 10). In Figure 14, we show the evolution of
the global H I signal for a range of parameters. The dependence

Figure 10. Evolution of the correlation function for a set of scales for a model
in which the background temperature is held constant (see text for details).

Figure 11. Two-point correlation functions for different values of Nheat, α, and
νmin for ζ=10 at z=17.

Figure 12. Evolution of the correlation function for α=1.5, ζ=10, and
Nheat=0.1.
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of the strength and the transition from absorption to emission of
the signal on different parameters is as expected from the
discussion in this section.

We show the evolution of the correlation function for a range
of scales in Figure 15 for different values of Nheat and νmin. For
a smaller value of Nheat and larger value of νmin, the heating
transition is delayed, and the signal is larger during the era of
partial heating, in line with the discussion in the foregoing; this
result is in qualitative agreement with similar analyses of
delayed heating, e.g., Fialkov et al. (2014).

Correlation scales. The scales at which we expect significant
correlation are determined by the distribution of the sizes of the
heating bubbles, whose sizes are determined by the sizes of the
ionization bubbles, Rx, the heating parameter Nheat, α, and νmin

(Equation (16)). In Figure 5, we show the size distribution of
the heating bubbles for a set of parameters. The heating bubbles
are larger than the self-ionized bubbles by roughly a factor of
4.5 for this case and at z;14, and the heating scales lie in the
range 2–7Mpc. However, as noted above, the correlation
function depends on the gradient of the temperature, and the
fuzziness of the heating bubble does not allow one to readily
identify these scales in the correlation function.

Generically, a larger Nheat for a fixed Rx results in larger
heating bubbles and therefore causes correlation at larger
scales. An increase in νmin causes shallow heating profiles,
which results in reducing the gradient of the temperature
between the heating bubbles and the background, thereby

reducing the correlation on a given scale for the same
background temperature.
In this paper, we consider a set of models in which

parameters such as Nheat and νmin do not evolve with time. If
these parameters are allowed to evolve, the relation between the
temperature inside the heating bubbles and the background
temperature would be more complicated. For instance, if Rx is
larger at an earlier epoch owing to the evolution of ζ, the
heating bubbles could be larger, causing correlations on much
larger scales than shown in this paper.
Can the merger of heating bubbles introduce new correla-

tion scales? In this paper, we assume the centers of ionization
bubbles to be uncorrelated. It should be noted that the
positions of the ionizing sources are expected to be highly
correlated, and this effect has already been included in the
definition of self-ionized bubbles. However, the mean bubble
separation corresponds to much larger scales at which the
density correlation function for the ΛCDM model is much
smaller than unity, and on such scales, the H I correlation
function of the density field is expected to be smaller. The
correlation of different ionizing centers is expected to follow
the correlation function of the density field with a bias (e.g.,
Dodelson 2003 and references therein). In this case, the
merging process is nearly homogeneous and therefore does
not introduce any new scales; its main effect, as noted above,
is to wipe out the correlation scales of the heated bubbles. It
also follows that if the centers of the self-ionized bubbles are
assumed to be correlated, then, in principle, correlation at
much larger scales can emerge. This can occur if the H I field
is highly biased with respect to the underlying density field
(Ahn et al. 2015b). We consider the case of correlated
ionizing centers in AppendixC and show that, while this
effect does not alter our results qualitatively, it can introduce
correlations at new scales.
Power spectrum, comparison with existing results, and the

topology of early reionization. The early phase of reionization
has been extensively studied in the literature using semi-
analytic methods but primarily large-scale simulations (e.g.,
Pritchard & Furlanetto 2007; Visbal et al. 2012; Mesinger
et al. 2013; Tashiro & Sugiyama 2013; Fialkov et al. 2014,
2015, 2017; Pacucci et al. 2014; Ghara et al. 2015). Most of
these studies have been in the Fourier space. Our analysis
suggests that real-space correlation allows us to identify the
physical processes more readily. Our results show that the
entire correlation structure in real space can be written in terms
of a single function, C(., ., ., .), and its limits given by the
functions E(., ., .) and D(., .) (Appendix B). A Fourier
transform with respect the first argument r of this function
yields the power spectrum. In Figure 16, we show the evolution
of the power spectrum for a range of Fourier modes k
for different values of Nheat and νmin (for details, see
Appendix B6).
Existing results show that for k;0.1–0.5 Mpc−1,6 during

the era of early reionization where heating inhomogeneities
dominate, there is a peak in the power spectrum that is followed
by a smaller peak at lower redshifts when the inhomogeneities
are dominated by ionization inhomogeneities (e.g., Pritchard &
Furlanetto 2007; Fialkov et al. 2014; Ghara et al. 2015). Our
results (Figure 16) are in agreement with this general picture.

Figure 13. Evolution of the correlation function for α=1.5, ζ=10, and
Nheat=1.

Figure 14. Evolution of the global brightness temperature TbáD ñ (Equation (2))
for a range of parameters for ζ=10.

6 Generally, a wavenumber k will contribute to a range of spatial scales; for
making a comparison between a real-space correlation function and a power
spectrum, one can use the approximate conversion r;π/k.
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They are also in agreement with analyses that have studied the
impact of partial-heating density perturbations at large scales
(e.g., Mesinger et al. 2013; Tashiro & Sugiyama 2013)7 or the
impact of late heating on the fluctuating component of the
signal (Fialkov et al. 2014). Many of these analyses strongly
suggest that the H I signal is a robust probe of early X-ray
heating, an inference our analysis adequately captures. We also
establish the dependence of the signal on different parameters,
which agrees with the existing results. We do not attempt a
more detailed comparison with the existing results because it is
hard to establish a one-to-one relation between the parameters
we use and those in the literature.

Our results are based on the assumption that the topology of
the early reionization is given by Figure 6: an ionized sphere
surrounded by a fuzzy heated region that merges smoothly
into the background. The density perturbations determine the
size of the ionized regions, but the brightness temperature
correlations on the scales of heating bubbles are dominated
by heating autocorrelation and heating-ionization cross-
correlation.

The assumption of the sphericity of the ionized and heating
regions for the computation of the correlation function is
reasonable even in the presence of density perturbations
because the reionization process is statistically isotropic and
homogeneous.8 However, the inclusion of density cross-
correlation with other fields can alter the correspondence
between the scales for a given set of physical parameters;
e.g., the scale of the heating bubble is given roughly by the
distance at which the optical depth of an X-ray photon
reaches unity. We retain only the background density for
this computation, but to be more exact, we need to
also include the impact of the density perturbations at this
scale. Generally, the correlation of the H I density field is
small unless the H I field is highly biased with respect to
the underlying density field, so this correction should be

small at high redshifts but will become more important at
smaller redshifts. Also, we assume that the ionizing centers
are uncorrelated; this assumption has greater validity at
higher redshifts, when the mean separation between the
centers is larger. At smaller redshifts (z12, depending on
the parameter ζ), the excursion set formalism begins to break
down, since the ionization fraction becomes large and there
is substantial overlap between ionization bubbles. In this
regime, our results are not very accurate; however, we still
show results up to z;10, to emphasize the transition
from the era of domination of heating inhomogeneities to
ionization inhomogeneities.
While N-body simulations assume paramount importance if

the H I density field at large redshifts is to be directly imaged,
all of the ongoing experiments that seek to detect this signal
rely upon statistical detection of this signal. Our method
cannot predict the shape of individual regions but allows us to
compute the statistics of the H I field. Another advantage with
analytic estimates is that they are computationally inexpensive
as compared to simulations. Given the uncertainty in the
early-heating phase of the universe, our analysis can be used
to compare the observed signals for multiple sets of
parameters and better understand their degeneracies at a
fraction of the computational cost needed to carry out an
N-body simulation. For instance, the H I signal in the early-
heating regime depends on the gradient of the temperature in
and across heated regions whose sizes depend on multiple
physical processes. It would be of great interest to determine
whether future data can distinguish between these different
physical processes.
Detectability of the signal. Many operational (e.g., LOFAR,

MWA, PAPER, GMRT) and upcoming (HERA, SKA) radio
interferometers have the capability to detect the fluctuating
component of the H I signal in the redshift range 8<z<25
(for details, see, e.g., Mesinger et al. 2014; Ahn et al. 2015a;
Koopmans et al. 2015). It is customary in the literature to
present the sensitivity of radio interferometers for the detection
of the H I signal in terms of power spectrum, partly because the
radio interferometers measure the Fourier component of the H I
signal. However, these estimates can be extended to the image
plane (which is often a by-product of the analysis pipeline;
e.g., Patil et al. 2017 for LOFAR) or the real-space correlation
functions used for computation of the signal in this paper
(e.g., Sethi & Haiman 2008). We discuss here the expected

Figure 15. Evolution of the two-point correlation function for a range of scales (including the rms corresponding to r = 0) for α=1.5, ζ=10, and two values
of νmin. The thick curves are for νmin=100 eV, and the thin curves are for νmin=1 keV. The left and right panels correspond to Nheat=0.1 and0.5,
respectively.

7 At large scales, the correlation function approaches Equation (28), which is
determined by density inhomogeneities; its value could be enhanced by

s1 2- á ñ( ) at early times. Therefore, a large-scale correlation function at early
times could be a reliable measure of density correlation and its statistical
anisotropy, in agreement with the results of Mesinger et al. (2013) and Tashiro
& Sugiyama (2013).
8 We neglect redshift space distortion in the paper, which renders the density
field statistically anisotropic. However, so long as the ionization and heating
sources are isotropic, their correlation is not affected by this anisotropy.
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sensitivity of SKA1-LOW (Koopmans et al. 2015). For a deep
survey with SKA1-LOW, the error on the power spectrum
( k P k 22 3 2pD º ( ) ( )) is expected to vary from 0.1 (mK)2 at
z;9 to 5 (mK)2 at z;25 for k=0.1 Mpc−1. At z;16,
the expected error is 2 (mK)2, increasing to 10 (mK)2 for
k;0.5 Mpc−1 (for details, see Figure 2 of Koopmans
et al. 2015). Direct comparison with Figure 16 shows that
the H I signal at z;16 can be detected with a signal-to-noise
ratio varying from 50 to 10 for 0.1Mpc−1 <k<0.5Mpc−1.

We can get similar estimates from the signal in real space by
using r;π/k.9

5. Summary and Conclusions

The main aim of this paper is to present a new analytic
formalism to study the phase of the EoR that is dominated by
partial heating.

The main ingredients of our analytic model are as follows.
(a) The correlation of the H I density field is given by the
ΛCDM model. At large scales, this correlation dominates
(Equation (28)). (b) The correlation of the ionization is
determined by the size distribution of the self-ionized
bubbles. The definition of self-ionized bubbles takes into
account the clustering of halos as they form in high-density
regions. The cross-correlation between density and ionization
inhomogeneities is neglected in our work. Cases (a) and
(b) have been extensively studied both analytically and
numerically in the literature. (c) The modeling of heating
inhomogeneities uses the near and far zones around the
centers of the self-ionized regions. While the phase of partial
heating has been studied in the literature, this formulation
is new and allows us to compute the statistical quantities
related to the H I signal. (d) Two-point correlation functions
are computed in real space for a sharp ionized region
surrounded by a fuzzy heated bubble. We develop a formalism
to compute these functions. In particular, we take into account the
heating autocorrelation and heating-ionization cross-correlations

while neglecting the density-heating cross-correlation. We
also take into consideration the correlation for both a single
bubble and multiple bubbles, assuming the centers of self-
ionized regions to be uncorrelated. We also explicitly show
that our formalism reduces to the correct form in different
limits (discussion following Equation (50)). In many exten-
sions of the ΛCDM model, the power at small scales can
differ substantially from the usual model (e.g., Sethi &
Subramanian 2009; Sarkar et al. 2016); our formalism can be
extended to such models by generating the size distribution of
the self-ionized bubbles using the matter power spectra of
these models.
We model the ionization and heating using four para-

meters: ζ, which determines the ionization history of the EoR
and is constrained by the Planck and WMAP results, and
three parameters to model heating—Nheat, the number of
X-ray photons per stellar baryon; α, the spectral index of the
X-ray photons; and νmin, the lowest frequency of the X-ray
photons. We study the impact of these parameters on the
correlation functions and find reasonable agreement with
existing results.
In this paper, we assume a homogeneous coupling between

Lyα photons and neutral hydrogen through the Wouthuysen–
Field effect such that Tα=TK. As discussed in Section 2.3,
this is a good assumption for z<20, but we expect imperfect
coupling at higher redshifts that could create inhomogeneities
in the H I signal, resulting in another peak in the evolution of
the signal at multiple scales (e.g., Pritchard & Furlanetto 2007;
Chen & Miralda-Escudé 2008; Ahn et al. 2015a). These
inhomogeneities arise owing to the absorption of photons
between Lyβ and the Lyman limit closer to the ionizing
sources, unlike the photons between Lyα and Lyβ discussed in
Section 2.3, and these inhomogeneities can be studied using the
formalism developed in this paper. We hope to return to this
issue in the near future.
Given the uncertainty in the heating history during the EoR

and its impact on the H I signal, our analytic formulation
allows us to isolate the impact of different physical parameters
and underline their degeneracies. Future data in the redshift
range of interest, 10<z<20, are likely to put strong
constraints on the physical processes during this era. Our
work is one step in the direction of understanding the data
better.

Figure 16. Evolution of k P k 22 3 2pD = ( ) ( mK 2( ) ) for a range of scales for α=1.5, ζ=10, and two values of νmin. The thick curves are for νmin=100 eV, and the
thin curves are for νmin=1 keV. The left and right panels correspond to Nheat=0.1 and 0.5, respectively.

9 The angular scale above which the H I signal can be reliably measured for
most ongoing and upcoming radio interferometers is a few arcminutes; 1′
corresponds to nearly 3Mpc (comoving) at z;15, or these telescopes are
sensitive to linear scales larger than 5–10 Mpc (comoving). However, these
telescopes have frequency resolutions that correspond to much smaller linear
scales; e.g., MWA’s frequency resolution of 40kHZ corresponds to nearly
1Mpc (comoving) along the line of sight. The 3D H I signal is probed with a
different resolution on the sky plane as compared to the line of sight.

19

The Astrophysical Journal, 860:55 (25pp), 2018 June 10 Raste & Sethi



We would like to thank Saurabh Singh, Steven Furlanetto,
and Jordan Mirocha for useful discussions and comments on
the manuscript.

Appendix A
Probability

Here

P A B
P A B

P B
, 51Ç=( ∣ ) ( )

( )
( )

P A B C P A B C P B C , 52Ç Ç=(( )∣ ) ( ∣( )) ( ∣ ) ( )

P A B P A P A B . 53Ç Ç= -( ) ( ) ( ˜) ( )

Appendix B
Geometry

B.1. A(R1, R2, d)

Given two spheres of radius R1 and R2, the surface area
of the sphere of radius R1 that lies inside the sphere of
radius R2 is
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where d= the distance between the two sphere centers.

B.2. V(R1, R2, d)

Given two spheres of radius R1 and R2, the overlapped
volume is
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where d = the distance between the two sphere centers.

B.3. C(x, P, Q, R)

If point 1 is located between a distance P and Q (P<Q)
from the center of a sphere, then C(x, P, Q, R) is the
probability that its neighbor point 2 at a distance x from point
1 is located outside the concentric sphere of radius R. We

assume a= the distance of point 1 from the center of the
sphere.
(a) x�R−Q. None of the neighbors of point 1 are outside

the sphere of radius R, giving C(x, P, Q, R)=0.
(b) x�P−R. All of the neighbors of point 1 are outside the

sphere of radius R, giving C(x, P, Q, R)=1.
(c) x�R + Q. All of the neighbors of point 1 are outside the

sphere of radius R, giving C(x, P, Q, R)=1.
(d) R−Q�x�R−P. Taking S=R−x, we can

see that all of the neighbors of the points between a distance
P and S are inside the sphere of radius R. Therefore, we
have
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where Ax=4 πx2 is the area of a sphere of radius x.
(d.a) If x�Q−R, taking T=x+R, we see that all of the

neighbors of the points between a distance T and Q are outside
the sphere of radius R:
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(d.b) Otherwise,
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(e) P−R�x�Q−R. Taking S=R+x, we can see that
all the neighbors of the points between distance S and Q are
outside the sphere of radius R. Therefore we have,
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(e.a) If x�P+R, T=x−R, and we can see that all
of the neighbors of the points between a distance P and Q are

10 mathworld.wolfram.com/Sphere-SphereIntersection.html; http://mathworld.
wolfram.com/Zone.html
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outside the sphere of radius R. Therefore, we have
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(e.b) For x�P+R, there are two probabilities. If
x<R−P, we are left with the case (d.b). Otherwise,
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(f) R P x R Q + + . Taking S=x−R, we can see that
all of the neighbors of the points between a distance S and P are

outside the sphere of radius R. Therefore, we have

C x P Q R

S P

Q P

A x R a

A

a

Q P
da

, , ,

1

1
, , 4

.
S

Q

x

4

3
3 3

4

3
3 3

2

4

3
3 3ò
p

=
-

-

+ -
-

p

p

p

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

( )

( )

( )
( )

( )
( )

(f.a) If x�Q−R, T=x+R, and we can see that all of the
neighbors of the points between a distance T and Q are outside
the sphere of radius R. This is the same case as (e.a) (with T and
S exchanged). Therefore, we have
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(g) For the last case, when x�Q−R, x�R−P,
x�P+R,
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B.4. E(x, Q, R)

If point 1 is inside a sphere of radius Q, then the probability
that its neighbor (point 2) at a distance x is outside the
concentric sphere of radius R is E(x, Q, R). We assume a= the
distance of point 1 from the center of the sphere.
(a) R>Q and x<R−Q. All of the neighbors of point

1 are inside the sphere of radius R, giving E(x, Q, R)=0.
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(b) R>Q and R Q x R- < < . Here R−x<Q. If
a<R−x, all of the neighbors of point 1 are inside the
sphere of radius R. For a>R−x, we can use Equation (54):
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(c) R>Q and R<x<R+Q. Here x−R<Q. If
a<x−R, all of the neighbors of point 1 are outside the
sphere of radius R:
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(d) R+Q<x. All of the neighbors of point 1 are outside
the sphere of radius R, giving E(x, Q, R)=1.

(e) Q>R, x<Q−R, and x<R. Here R−x>0 and
x+R<Q. If a<R−x, all of the neighbors of point 1 are
inside the sphere of radius R. If a>R+x, all of the neighbors
of point 1 are inside the sphere of radius R:
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(f) Q>R, x<Q−R, and R<x<Q+R. Here
x−R>0 and x+R<Q. If a<x−R, all of the neighbors
of point 1 are outside the sphere of radius R. If a>R+x, all
of the neighbors of point 1 are inside the sphere of radius R:

E x Q R
x R

Q

A x R a

A

a

Q
da

R x

Q

R

Q

, , 1

1
, , 4

1

1 .

x R

x R

x

4

3
3

4

3
3

2

4

3
3

4

3
3

4

3
3

3

3

ò
p

=
-

+ -

+
+

= -

p

p

p

p

p

-

+

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

( )
( )

( )

( )

( )
( )

(g) Q>R, x>Q−R, and x<R. Here R−x>0. If
a<R−x, all of the neighbors of point 1 are inside the sphere
of radius R:
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(h) Q>R, x>Q−R, and R<x<Q+R. Here
x−R>0. If a<x−R, all of the neighbors of point 1 are
outside the sphere of radius R:
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This can also be derived using E(x, Q, R)=C(x, 0, Q, R).

B.5. D(x, R)

If point 1 is inside a sphere of radius R, then the probability
that its neighbor (point 2) at a distance x is outside the sphere is
D(x, R). We assume a= the distance of point 1 from the
center of the sphere.

(a) x<R. If a R x< - , then all of the neighbors of
point 1 are inside the sphere. For a>R−x, we can use
Equation (54):
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(b) R<x<2R. If a<x−R, then all of the neighbors of
point 1 are outside the sphere. For a>x−R, we can use
Equation (54):
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(c) 2R<x. All of the neighbors of point 1 are outside the
sphere, giving D(x, R)=1:
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This can also be derived using D(x, R)=E(x, R, R)=C(x, 0,
R, R).

B.6. Fourier Transform of 1−C(x, P, Q, R)

As C(x, P, Q, R) goes to unity at large x, we rearrange the
terms of the correlation function so that we only have to deal
with 1−C(x, P, Q, R), which vanishes in this limit.

To take the Fourier transform of 1−C(x, P, Q, R), we can
take six subcases: (1) R�P<Q and P+R�Q−R; (2)
R�P<Q and Q−R�P+R; (3) P�R�Q and
Q−R�R−P; (4) P�R�Q and R−P�Q−R�R+P;
(5) P�R�Q and R+P�Q−R; and (6) P<Q�R. We
can take the cases of C(x, P, Q, R) for different limits for
different cases. However, simplifying them, we get the following

common form:
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The different cases mentioned above give different limits for
the cos integral (Ci) function. They can be rearranged to make
sure that the argument of the Ci function is always positive. To
ensure the power spectrum is a positive definite function, we
extract the symmetric part of the resulting expressions.

Appendix C
Correlation of Bubble Centers

C.1. Correlation of Ionized and Heated Regions

If there are ionization bubbles of only radius Rx, and if we
assume there is no correlation between the ionization bubble
centers, then the probability of a point at a distance r from the
center of an ionized bubble to be ionized is

P f R N R
4

3
,i x x0

3p
= = ( )

where N(Rx)= the number density of the bubbles. Now, if we
assume that there is a correlation between the ionization bubble
centers, then this probability changes. The probability of a point
located at a distance r in a shell of width Δr to be ionized is
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where F(x) is the correlation function of the ionization bubble
centers at a distance x. This gives
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For r 0D  , we have

P f
x F x dx
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Hence, we can get the probability of there being an ionized
region at a distance r from the center of an ionized bubble if we
have a nonzero correlation between the ionization bubble
centers. Using the same method as above, we can also get the
probability of there being a heated region at a distance r from
the center of an ionized bubble given the correlation between
the bubble centers:

P f G r R R1 , , . 60h i h x h= +( ( )) ( )

C.2. A Simple Model: One Bubble Size, Flat Heating Profile

To analyze the effect of the correlation between the
ionization bubble centers, we can again study the simple
model introduced in Section 3.5. Due to the correlation of the
bubble centers, the overlap of bubbles increases, which
decreases the heated volume fraction. It also modifies the
expression for total correlation:
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Here we assume that the correlation of the ionization bubble
centers follows the same form as the density autocorrelation
F r b rx=( ) ( ) with a constant bias b. We take two possible
values of bias: b=1 (no bias) and b=2. Figure 17 shows the
modified correlation for these two cases for the model
considered in Figure 10. We notice that the H I signal increases
due to the correlation of the ionization bubble centers. This
effect is more significant at later times and on larger scales. The
effect of the ionization bubble centers might also introduce
correlations on scales at which the signal would be very small

or zero without the bubble center correlations, e.g., the
correlation at r=5Mpc in Figure 17.
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