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ABSTRACT

We derive the synchrotron distribution in the Milky Way disc from H1 region absorption
observations over —40° < [ < 40° at six frequencies of 76.2, 83.8, 91.5, 99.2, 106.9, and
114.6 MHz with the GalLactic and Extragalactic All-sky Murchison widefield array survey
(GLEAM). We develop a new method of emissivity calculation by taking advantage of the
Haslam et al. (1981) map and known spectral indices, which enable us to simultaneously
derive the emissivity and the optical depth of H1I regions at each frequency. We show our
derived synchrotron emissivities based on 152 absorption features of H 1 regions using both
the method previously adopted in the literature and our improved method. We derive the
synchrotron emissivity from H1 regions to the Galactic edge along the line of sight and, for
the first time, derive the emissivity from H1 regions to the Sun. These results provide direct
information on the distribution of the Galactic magnetic field and cosmic ray electrons for
future modelling.

Key words: cosmic rays—H1I regions — Galaxy: structure —radio continuum: general.

1 INTRODUCTION

At frequencies from about 10 MHz to 1 GHz, the diffuse emis-
sion in the Milky Way is dominated by the synchrotron emission
originating from cosmic ray electrons spiralling in the Galactic
* E-mail: hongquan.su@icrar.org (HS); J.Macquart@curtin.edu.au (JPM): magnetic field. The two-dlmenS{on.al distribution of this emission
nhw @icrar.org (NHW) has been mapped and used for building the Global Sky Models (e.g.
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de Oliveira-Costa et al. 2008; Zheng et al. 2017, and references
therein). However, its three-dimensional distribution is difficult to
infer (Beuermann, Kanbach & Berkhuijsen 1985), largely due to the
difficulty of separating different components along the line of sight.
One method of obtaining depth information relies on the presence
of optically thick H1 regions embedded in this medium. At low ra-
dio frequencies near 100 MHz, some H 11 regions become optically
thick to the background synchrotron emission. The absorption of
these H1I regions enables us to separate the synchrotron emission
into components in front of and behind these regions. Using this H1I
region absorption technique, Nord et al. (2006) derived the bright-
ness temperature behind 42 H 1 regions, mainly in the northern sky,
using data obtained with the 74 MHz receivers on the Very Large
Array. More recently, Su et al. (2017a,b) derived brightness tem-
peratures behind 47 H 1 regions and detected 306 H 11 regions in total
(Hindson et al. 2016) using data at 88 MHz from the Murchison
Widefield Array (MWA; Bowman et al. 2013; Tingay et al. 2013).

Observations of the synchrotron emissivity obtained in conjunc-
tion with H 11 regions can, in principle, constrain the structure of the
Milky Way. The synchrotron emission distribution is believed to
be correlated with the spiral arm structure of the Milky Way, how-
ever, there is no firm observational evidence available. The warp
of the Milky Way’s disc should also affect the synchrotron distri-
bution. The outer disc warps upwards (northwards) in the first and
second quadrants, downwards on the opposite side (Burke 1957;
Kerr 1957), and at least 12 H1 regions exist in the outer Scutum-
Centaurus arm with a distance of about 15 kpc to us (Armentrout
et al. 2017). However, a denser sampling of the synchrotron emis-
sion distribution is needed to investigate its relationship to such
structures.

To date, the distribution of the Galactic synchrotron emission
along the line of sight is too sparsely sampled to constrain its com-
plex distribution. Models of the synchrotron emission based on the
derived emissivity from H 11 region absorption are rudimentary (Nord
et al. 2006; Su et al. 2017a), with the emission usually assumed to
be confined to an axisymmetric cylinder with a radius of 20 kpc and
a height of 2 kpc. This radius is a reasonable assumption because
the most distant H1 regions detected so far have Galactocentric
radii more than 19 kpc (Anderson et al. 2015), which may present
the outer limit to the extent of the massive star-forming disc. The
extragalactic synchrotron emission outside of this disc is usually
neglected, assumed to be small compared to the disc contribution.

The purpose of this paper is to present synchrotron emission
measurements using low-frequency MWA data to derive the free—
free opacities of 152 H1 regions in the Milky Way and determine
the synchrotron emission in front of and behind these clouds at six
frequencies of 76.2, 83.8, 91.5, 99.2, 106.9, and 114.6 MHz. The
data from the MWA enable us to triple the sample of H1 region-
absorbed measurements from the multifrequency observations with
much-improved angular resolution and surface brightness sensitiv-
ity. Furthermore, we develop an improved method and re-derive
results from other works using this methodology.

In Section 2, we introduce the data used for this work. The new
method we developed is discussed in Section 3. In Section 4, we
present our newly derived emissivities and in Section 5 we discuss
our results and compare them to previous work. We summarize our
findings in Section 6.

2 DATA

We use data obtained by the MWA as part of the GaLactic and
Extragalactic All-sky MWA survey (GLEAM; Wayth et al. 2015).
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Table 1. Parameters of the GLEAM survey data with a bandwidth of
7.68 MHz each. The resolution element is described by the beam major
axis (BMAJ) and beam minor axis (BMIN).

Frequency BMAIJ BMIN Conversion factor
MHz arcmin arcmin Jy beam™! to K
76.2 5.41 443 2445.01

83.8 4.78 3.89 2598.84
91.5 435 3.54 2633.47
99.2 4.03 3.30 2596.70
106.9 3.99 3.22 2310.85
114.6 3.63 2.89 2467.46

The data in this work were collected in four weeks within the first
year of the GLEAM survey between 2013 June and 2014 July. This
survey covers all the sky south of declination +30° corresponding
to a Galactic longitude range of —50° < [ < 60° at b = 0° with
H1 region absorption found in the range of —40° < [ < 40°, —2°
< b < 4°. Hurley-Walker et al. (2017) presented the calibration,
imaging, and mosaicking of the GLEAM survey, particularly for
the extragalactic catalogue. The data reduction of the Galactic plane
region will be reported in Hurley-Walker et al. (in preparation). Here
we only highlight that a multiscale clean in WSCLEAN (Offringa
etal. 2014) is performed to better deconvolve the complex structures
on the Galactic plane.

The GLEAM survey has an angular resolution of about 4 arcmin
at 100 MHz and excellent u — v coverage. This resolution is a
30-fold improvement over existing full-sky maps at comparable
frequencies, which have angular resolutions >2°. This angular res-
olution enables us to resolve 10 percent of the 8000 H1I regions
in the Wide-Field Infrared Survey Explorer (WISE) H 11 region cat-
alogue (Anderson et al. 2014). The angular resolution varies be-
tween 5.41arcmin and 2.89 arcmin depending on the frequency.
We convert the average surface brightness of our selected regions
to brightness temperature using the listed conversion factors in Ta-
ble 1. Typical root-mean-squared (rms) values of the GLEAM maps
are 0.2 Jy beam™! at 76.2 MHz to 0.1 Jy beam™! at 114.6 MHz,
estimated using the Background and Noise Estimator v1.4.6 from
the AEGEAN package (Hancock et al. 2012; Hancock, Trott &
Hurley-Walker 2018). The GLEAM survey observes across the fre-
quency range between 72 and 231 MHz, but here we utilize data at
the lowest six frequencies from 72 to 118 MHz with a bandwidth
of 7.68 MHz each (see Table 1), these being the most pertinent to
the detection and characterization of the absorption features caused
by H1I regions.

We use the all-sky 408 MHz map of Haslam et al. (1981, 1982)
reprocessed by Remazeilles et al. (2015) to estimate the total power
of Galactic synchrotron emission along the line of sight towards
the H1 regions at the GLEAM frequencies. The Haslam map is a
combination of four different surveys from the Jodrell Bank MKI,
Bonn 100 m, Parkes 64 m, and Jodrell Bank MkIA telescopes.
This map is dominated by the Galactic synchrotron emission with
6 per cent free—free emission (Dickinson, Davies & Davis 2003) as
neglectable contamination for this work. We also neglect the free—
free absorption due to the unresolved Hn regions and the warm
interstellar medium. The reprocessed Haslam map removed the
strong point sources in the destriped/desourced (dsds) version. Thus,
the contamination of the extragalactic sources is minimized.
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Figure 1. A schematic of how the missing flux density affects the derived
emissivities in the simplified method (top) and in the improved method
(bottom).

3 IMPROVED METHOD OF EMISSIVITY
CALCULATION

A simplified method of calculating the Galactic synchrotron emis-
sivity was adopted by Nord et al. (2006) and slightly modified to
include the contribution of the measured background by Su et al.
(2017a,b). We believe this approach can be improved in two ways.

First, it assumes the optical depths of H 11 regions are much larger
than 1. However, this assumption may not be correct for some
H1 regions because they show only mild absorption (zr ~ 1) at
the frequencies used to separate the foreground and background
emission.

Secondly, the method underestimates the emissivity behind H11
regions when some flux density is resolved out by an interferometric
observation, especially when the all-sky ‘zero-spacing’ component
is omitted (see Fig. 1). The shortest spacing of the MWA tiles is
about 7 m, corresponding to an angular scale of about 30 deg,
indicating that the MWA is sensitive to the whole sky emission
with fluctuations on scales smaller than 30 deg. Structures on larger
angular scales are resolved out by the MWA. This undetected emis-
sion has the effect that the derived emissivities are underestimated.
The surface brightness of the Galactic synchrotron emission in-
creases towards lower frequencies, making its contribution large at
the 2100 MHz frequencies relevant to the detection of H1I regions
compared to 408 MHz at which the Haslam map was obtained.

To improve this method, we have developed a procedure that at-
tempts to solve for both the optical depth of the H 1 regions and the
brightness temperature of the emission associated with the missing
interferometric spacings. We scale the 408 MHz all-sky image to
the frequency of interest by a global brightness temperature spec-
tral index (a: S,ow®) to estimate the total power along the line
of sight and then use it to deduce the brightness temperature on
scales resolved out by our interferometer. We use two data sets
from the GLEAM survey with each one containing three frequen-
cies (76.2, 83.8,91.5 MHz; and 99.2, 106.9, 114.6 MHz) to perform
calculations and assume that synchrotron and optical depths have
a power-law scaling with the frequency. More details of this new
method are described in what follows.
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3.1 Definition of parameters

Fig. 1 shows a schematic of the absorption process, indicating the
variables needed to solve for the emissivity. As usual, we assume
the Galactic synchrotron emission is confined to an axisymmetric
cylinder with a radius of 20 kpc and a height of several kpc. Note
that this assumption is only for the definition of the emissivity in
Section 3.2.1. We can avoid making this assumption if we are only
interested in the brightness temperature instead of the emissivity.

The measured or known parameters are the measured brightness
temperature in the direction of the absorbed region 7}, the measured
brightness temperature from the Sun to the Galactic edge in the
absence of H1I region emission Ty, (i.e. as derived from a region
near the line of sight to the H11 region), the observation frequency v,
the spectral index of the synchrotron brightness temperature «, the
spectral index of the H11 region optical depth 8, the total brightness
temperature (without missing flux density) from the Sun to the
Galactic edge in the absence of H1 region absorption 7}, and the
electron temperature of the H i1 region 7. « is taken to be —2.7 £ 0.1
for the Milky Way (Guzmén et al. 2011; Zheng et al. 2017). Note
that this spectral index varies between —2.1 and —2.7 depending on
the sky regions (Guzman et al. 2011). We use a low spectral index
of —2.7 for the synchrotron emission in this work because the high
spectral index is due to the thermal free—free absorption of both the
H1 regions and warm interstellar medium. § is taken to be —2.1
for frequencies v < 10'°T, (v is in GHz and T, is in K) and T,
< 9 x 10° K derived on page 47 of Lang (1980), which is always
true for H1 regions at the GLEAM frequencies. Note that § is a
constant does not mean the H 11 region must be optically thick; it can
be optically thin. The errors caused by these two spectral indices are
discussed in Section 4.3. T, is derived from the improved Haslam
map (Remazeilles et al. 2015), scaled from 408 MHz to the GLEAM
frequencies using the spectral index of «. T, is from Balser et al.
(2015) and Hou & Han (2014) and references therein.

The unknown variables are the optical depth of the H1 region 7,
the total (the sum of the measured and missed) brightness tempera-
ture of the synchrotron emission from the H 11 region to the Galactic
edge along the line of sight 7}, and the corresponding brightness
temperature of the synchrotron emission from the H 11 region to the
Sun T, the brightness temperature of the emission on the missing
short interferometric spacings, respectively, between an H 11 region
and the Sun X¢, and between the Galactic edge and the Sun Xp.

The selection criteria of the absorbed region and its nearby back-
ground region are the same as those in Su et al. (2017a). We define
these regions at the lowest frequency of 76.2 MHz and then apply
them to all other five frequencies to get the brightness temperatures
within these regions. H1I regions overlapped with supernova rem-
nants are not selected (e.g. H1 region G35.6 — 0.5 with distance
measured by Zhu et al. 2013). Note that our selected background
regions are about 1 deg away from the absorbed regions, the super-
nova remnants in Green (2014) catalogue, and obvious point-like
sources in the GLEAM survey. Therefore, the contamination of
these sources is negligible, although the Haslam map has a low
angular resolution of 51 arcmin.

3.2 Equations to solve for the optical depth and brightness
temperature

A single-dish observation can recover the total power along the
line of sight in the case that the Hu region fills the beam. The
brightness temperature is a result of the contributions from three
components: the electron temperature of the H1 region, and the
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brightness temperature of the synchrotron emission behind and in
front of the H1 region (Kassim 1987),

Th=T.(1—e ")+ The " +Tr (1

An interferometer observation does not sample the large angular
scale structures corresponding to visibility measurements at small u
— v distances. Thus, equation (1) should be revised by subtracting
the missing term from the brightness temperature both behind and
in front of the H1I region,

Th=T.(1—e ")+ (T — Xp)e " + Tt — X;. ()

Note that this equation does not require the # — v coverage to
be identical at different frequencies because we do not assume the
brightness temperature of the missing term follows the same spectral
index. We allow the value of the X terms to float with frequency, as
X depends on the angular scale at which emission is being missed,
which varies with frequency.

The total brightness temperature from the Sun to the Galactic
edge in the absence of H1 region absorption is simply the sum of
the brightness temperatures behind and in front of the 11 region,

L =T +T. 3

The measured brightness temperature on the source-free region
(i.e. immediately adjacent to the H1 region) becomes the difference
between the total brightness temperature and that of the brightness
temperatures of the emission associated with the missing interfero-
metric u — v spacings,

T =T — X; — Xp. 4)

As well as the above three relations, we have supplementary in-
formation that encodes the scaling of the brightness temperature and
the optical depth with frequency. The total brightness temperature
both behind and in front of the 1 11 region should follow a power-law
distribution,

Tb X VD[,
Ty o v*, (%)
T o VP,

We apply equations (2)- (5) to our measurements at different
frequencies to solve for the optical depth of H1 regions and the
brightness temperatures behind and in front of each H11 region. In
summary, we have
Ty, = To(1 —e ™) + (T, — Xp)e " + Ty, — Xy,

T, =Ty + Ty,

Vi “
Ty =Ty, | —
b b‘(vl) ’ ©)

where the subscript i = (1, 2, 3) indexes the frequencies from low
to high. A minimum of three frequencies is required to solve for the
unknown variables.

We derive the values of t, Ty, Tf, Xp, and X; using equation (6).
Using two sets of three frequencies data, we obtain emissivities at
the six frequencies listed in Table 1. We use data at 76.2, 83.8, and
91.5 MHz to derive the emissivities at these three frequencies. And
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then use another three frequencies of 99.2, 106.9, and 114.6 MHz
to perform the same analysis. So we derive the emissivities at six
different frequencies. Table Al lists the emissivities at 76.2 MHz
only. We did not use other combinations of data to derive emissivi-
ties. We can derive X, and X; using the Haslam map to estimate the
total emission along the line of sight. We then compare this total
emission with that measured. Therefore, our equations can find out
how much emission is undetected in our observations.

3.2.1 Definition of emissivity

The emissivity is defined to be the brightness temperature divided
by the corresponding distance, i.e.

€, = T/ Dy,

7
e = Tt/ Dy, @

where €y is the average emissivity between the H1I region and the
Galactic edge, €y is the average emissivity between the H1I region
and the Sun, Dy, is the distance from the H 1 region to the Galactic
edge, and Dy is the distance from the H1 region to the Sun. The
value of Dy is derived from Anderson et al. (2014), Anderson et al.
(2017), Balser et al. (2015), and Hou & Han (2014). The value of Dy,
is calculated from Dy assuming a Galactocentric radius of 20 kpc.

4 RESULTS

4.1 Emissivities from simplified equations

We calculate the synchrotron emissivities behind H 11 regions using
the 152 u1 region absorption features detected in the GLEAM sur-
vey using the previous simplified method (Col. 11 in Table Al).
The last column in Table Al shows the emissivities derived from
the simplified method described in Su et al. (2017a). The measure-
ments are made at six frequencies from 76.2 to 114.6 MHz. The
emissivities behind H 1 regions at 76.2 MHz are plotted in Fig. 2.
The derived emissivities in the fourth Galactic quadrant are consis-
tent with our previous results in Su et al. (2017a,b). The emissivities
in the first quadrant are consistent with those in Nord et al. (2006)
within three standard deviations.

We check the spectral index of the emissivities at six frequencies
derived from each Hu region. The average index is about —1.5,
which is higher than the expected synchrotron emission spectral in-
dex of —2.7 (see Fig. 3). The difference between these observed two
spectral indexes is most likely caused by the missing flux density
mentioned in Section 3. To produce a flat spectrum with a spec-
tral index of —1.5, the brightness temperature of the emission on
scales that are resolved out should be frequency-dependent, with
brightness temperatures underestimated at lower frequencies in our
observations, even though our lower frequencies recover more of
the extended emission than the high frequencies: This demonstrates
that we need to improve this simplified method to derive more
accurate emissivities.

4.2 Emissivities derived from our new method

Using the improved method described in Section 3, we obtained
the synchrotron emissivities and H1I region optical depths at six
frequencies simultaneously (see Table A1l). Fig. 4 shows the emis-
sivities at 76.2 MHz and the paths over which these emissivities
are averaged. The electronic version of the full tables with our
derived emissivities at all six frequencies is available from VizieR.
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Figure 3. The spectral index distribution of the derived emissivity from the
simplified method and improved method. The spectral index is calculated
from the emissivity (behind the H1 region) at the frequencies from 76.2 to
99.2 MHz, from 83.8 to 106.9 MHz, and from 91.5 to 114.6 MHz. The bin
width is 0.3. Most of the spectral indices from the simplified method are far
away from the expected value of —2.7 shown by the black vertical line, indi-
cating the missing flux density is affecting the simplified method. However,
the emissivity from the improved method gives a spectral index close to
—2.7. Note that emissivity is defined by the brightness temperature divided
by a distance. For each H 11 region, its distance is a constant, so the emissivity
behind that 111 region and the corresponding brightness temperature should
follow the same spectral index of —2.7.

Figs 5 and 6 show our derived emissivities at 76.2 MHz both behind
and in front of H 11 regions using the improved method.

4.3 Error estimation

For the emissivities derived from simplified equations, we propagate
the error throughout the simple equations to estimate their errors.
For our improved method, the equations are too complex to permit
directly calculating the uncertainty of each solution caused by the
variance of the known parameters from the measurements. The
sources of the error include

(i) the error of the H 1 region electron temperature,

(ii) the error of the distance from H 11 region to us,

(iii) the rms of the brightness temperature for the absorbed region
in the GLEAM map,

(iv) the rms of the brightness temperature for the background
region in the GLEAM map,

(v) the rms of the brightness temperature for the background
region in the Haslam map,

(vi) the variation of the spectral indices of the synchrotron bright-
ness temperature and the H 11 region optical depth.

We use a Monte Carlo method to statistically estimate the error
of these solutions caused by the first five error sources. Specifically,
we use the values of known parameters to calculate the solutions
and then sample around these parameters. We set each input pa-
rameter to be a random number following a Gaussian distribution
with a mean from the best input value and a standard derivation
from our 1o measurement error. Using these new input parameters,
we can find new solutions. By repeating the calculation, we get a
distribution of each solution and then calculate the 1o upper and
lower limits. The estimated errors are about 10-90 per cent of the
emissivity values (see Table Al). Note that we do not include the
contribution of the spectral indices of the synchrotron brightness
temperature and the H 11 region optical depth because finding the so-
lutions becomes computationally expensive with these two spectral
indices included. The spectral index of the brightness temperature
causes a difference of about 15 percent of the emissivity values,
estimated from the variance of the Haslam map scaling, when this
spectral index changes from —2.7 to —2.6. Although this causes
extra error to the derived emissivities, it is still necessary to use
the Haslam map; otherwise, the derived emissivities behind the H11
regions will be underestimated due to the missing flux density, and
the emissivities in front of H11 regions cannot be calculated. The er-
ror contributed by the spectral index of the H 11 region optical depth
is small (< 1percent of the emissivity) because the term e~ " in
equation (6) is small when the optical depth is much larger than
one.

We check which input parameter dominates the errors of the
final emissivities. We set only one input parameter to be a random
number while setting all other parameters to be constants. Then,
similarly to the above error estimation, we calculate the 1o upper

MNRAS 479, 4041-4055 (2018)
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Figure 4. Our new derived emissivities at 76.2 MHz both behind and in front of H11 regions. Each line indicates a path over which the emissivity is averaged
with a white dot on it indicating the location of the H 11 region. The background image is an artist’s concept with the up-to-date information about the structures
of the Milky Way. We adjusted its colour to avoid obscuring the colour of emissivities. Background image credit: NASA/JPL-Caltech/R. Hurt (SSC-Caltech)
with this link: https://www.nasa.gov/jpl/charting- the- milky- way- from-the-inside-out.
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to us (distance). Each error here is an average of all the 152 absorption
measurements. ‘Front’ on the y-axis means the emissivities are averaged
along the path from H11 region to the Sun (in front of H11 region). The error
from the rms of the Haslam map contributes the most to the final error of the
derived emissivities. The horizontal line indicates the average uncertainties
of all the derived emissivities between the n1 region and the Sun. Note
that the error involved in scaling the Haslam map to our frequencies is not
included here.

and lower limits of the emissivities. The error contribution of each
input parameter is shown in Fig. 7. We find the rms of the brightness
temperature of the Haslam map contributes the most to the final
errors of the derived emissivities.

In the future, new maps using new data processing techniques
may be able to recover the total power along the line of sight,
which will avoid extrapolating the Halam map from 408 MHz to
the GLEAM frequencies. For example, Eastwood et al. (2017) use a
new widefield imaging technique, named the Tikhonov-regularized
m-mode analysis imaging, to map the northern sky with most of the

large-scale structures recovered. The lunar occultation technique
enables measuring the Galactic synchrotron emission integrated
along the line of sight where the Moon occults the sky (e.g. Shaver
et al. 1999; McKinley et al. 2013, and McKinley et al. submitted).
Future large single-dishes observing at around 150 MHz will assist
further.

5 DISCUSSION OF THE DERIVED
EMISSIVITIES

We compare the emissivities from the simplified method and our
improved method in Fig. 2 (left). The emissivities from the old
method are systematically lower than those from the new method,
which indicates the old method underestimates the emissivities due
to the missing flux density.

We compare the total and missing brightness temperatures be-
hind the H1 region in Fig. 2 (right). The unrecovered brightness
temperature behind H1 regions (Xp) is about 50 per cent of the to-
tal brightness temperature behind H1u regions (7}), indicating that
about 50 per cent of the large-scale structure behind H 11 regions has
not been recovered in our observations. The brightness temperature
in front of H1I regions that was not recovered (X¢) is comparable
with the total brightness temperature in front of Hu regions (7%)
indicating that nearly all the large-scale structures in front of H11
regions have not been recovered. Thus, the missing structures must
be considered in the emissivity calculation. Note that the X}, and X¢
are comparable, while 7} is about 50 per cent of Ty. It is reasonable
that most of T} are not detected because an interferometer measures
the difference along the H 11 region direction and its nearby direction,
and also because most H 11 regions are nearby so that accumulated 7}
is small compared to T},. The emission from the H 11 region to us is
nearly the same for both directions, therefore, is not easily detected.
However, Ty, is ‘different’ on the H 11 region direction and its nearby
direction because most of the Ty, is absorbed by the H 11 region on its
direction, so the MWA detects a portion of Ty,

To confirm that the portion of missing detection is reasonable,
we compare the GLEAM map and the Haslam map at the visibility
plane. We use nine square regions with a size of 10°, 30°, and 60°
centred at [/ = 0°, 20°, and 340°, b = 0°. We use the GLEAM
map at the frequency of 76.2 MHz. The Haslam map is scaled
from 408 MHz to the same frequency of 76.2 MHz using a spectral
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Figure 8. Comparison of the visibility of the GLEAM and Haslam maps
in the square region centring at / = 340°, b = 0° with a box size of 10°.
The unit of the u — v distance is A rather than kA, because of the long
wavelength of about 4 m. The visibility data is binned (2000 bins) to show
the differences clearly. The x-axis on the top of the plot shows the angular
size corresponding to the # — v distance. The y-axis has an arbitrary unit, but
this does not affect our comparison because they should use the same factor
to make it as a physical unit. The y-axis is in log scale, so the amplitude
with u — v distance close to zero dominates the total difference of the two
amplitudes. The minimum # — v distance of the GLEAM map is small
(about 0.51, corresponding to an angular scale of about 30°). The u — v
distance between the two vertical lines is included in the Haslam map but
is not included in the GLEAM map because of the shortest baseline of
7.7 m. The maximum u — v distance is the same for both maps because
we smoothed them to the same resolution. The integrated amplitude with
the u — v distance of the GLEAM map is 40 per cent lower than that of
the Haslam map in this region. This percentage varies with regions on the
Galactic plane. The average percentage of all the nine regions we checked
is about 60 per cent.

index of —2.7. The GLEAM map is smoothed to the same angular
resolution of the Haslam map (51 arcmin), and the two maps are
made with the same pixel size. For each region, we convert the two
images to the visibility plane using Fast Fourier Transform and then
plot the amplitude against u — v distance to compare the difference
between the two visibilities (see Fig. 8). The difference varies with
the region size and location. On average, about 60 per cent of the
amplitude in the visibility of the Haslam map is not detected in the
GLEAM survey. Our absorption analysis shows that 50 per cent of
the large-scale structures are not recovered for the emission behind
H 1 regions, and nearly all emission from the column between the H11
region and the Sun is not detected. These two results are generally
consistent.

The most apparent feature in the derived emissivities is that they
increase towards the Galactic centre. Both the emissivity and the
brightness temperature peak near the Galactic centre and decrease
as the line of sight goes far away from the Galactic centre (Fig. 2). To
further confirm this trend, we check the average emissivity measured
in the GLEAM map from the Sun to the Galactic edge (Fig. 9).
It is evident that the emissivity along the path from the Sun to
the Galactic edge peaks at the Galactic centre direction. This trend
indicates the emissivity decreases with Galactocentric radius, which
is modelled in Su et al. (2017a,b). This is consistent with the lowest
order of disc component of the Galactic magnetic field, which is
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Figure 9. Distribution of the measured average emissivity in the GLEAM
survey along the path from the Sun to the Galactic edge with Galactic
longitude from 50° to —50° and latitude || < 3°. All detected sources and
diffuse emission are included in this plot. The bin size in Galactic longitude
is 4/85 and in Galactic latitude is —3° < b < 3°. The Galactic centre direction
has higher average emissivity compared with other directions. The existence
of spiral arms possibly causes other low peaks. Note that these emissivities
are directly from the GLEAM map without any correction using the Haslam
map.

usually assumed to be exponentially distributed in the previous
models (e.g. Beuermann et al. 1985; Sun et al. 2008). Face-on
galaxies with spiral arms directly observed also show a similar
profile as the one in Fig. 9, e.g. the LOw Frequency ARray (LOFAR;
van Haarlem et al. 2013) observation of the Whirlpool galaxy (also
known as M51) at the frequency of 150 MHz (see fig. 13 in Mulcahy
etal. 2014).

The average emissivities along the paths near the line of sight to
the Sun are much higher than those far away from the Sun, though
they have large errors. Several reasons can explain this effect. First,
the emissivity near the Galactic edge is much lower than that near
the Galactic centre, which makes our average emissivities along the
path high near the Galactic centre and low near the Galactic edge.
Secondly, it may simply indicate that all distances from the H1 re-
gion to the Galactic edge along the line of sight are overestimated,
which makes the emissivities behind H 11 regions decrease fraction-
ally with distance. Thirdly, it may indicate the region near the Sun
is not a representative region of the whole Milky Way because pre-
vious studies show that we are in a local bubble created by two or
three supernovae (Maiz-Apelldniz 2001), which may increase the
density of cosmic ray electrons within several kpc of the Sun.

No obvious spiral arm structures can be visually seen from our
observed emissivities because the emissivity is averaged along dif-
ferent path lengths. Further modelling work in the future will help
to reveal that whether the emissivity distribution is correlated with
the spiral arms or not, because this information is embedded in
our derived emissivities. From an observational aspect, we can see
the spiral arms as peaks in emissivity and brightness temperature
along the total paths from the Sun to the Galactic edge as a function
of Galactic longitude (see fig. 6 in Su et al. 2017a and fig. 1 in
Beuermann et al. 1985).

We estimate the number density of relativistic electrons in the
Galactic disc to confirm that our derived emissivities are consistent
with existing electron models. Specifically, we get the relativistic
electron density by using the total power of the synchrotron emission



in the Galactic disc divided by the total power of one relativistic
electron and then divided by the volume of the Galactic disc. In
the above calculations, we use an average Galactic magnetic field
strength of 5 & 1 uG (Sun et al. 2008) and an average emissivity of
140.5Kpc~!at 76.2 MHz where 1 K pc ! isequal to 5.75 x 10~
W m~3 Hz~! sr!. We use a typical energy of relativistic electrons
of 10 = 1 GeV (Stephens 2001), a radius of the Galactic disc of
20 kpc (Nord et al. 2006), and a scale height of the Galactic disc
of 1 kpc. We integrate the power of synchrotron emission in the
frequency range 10 MHz to 1000 GHz. We derive a number density
of relativistic electrons of 168 & 108 cm . The relativistic electrons
follow a power-law distribution with energy, n.(E) = k E~315
(Adriani et al. 2017). Using this distribution, we derive the average
density of 10 GeV electrons to be (5.6 & 3.6) x 107> cm™3, which
is similar to the value of (4 + 3) x 10~ cm™> from the literature
(see fig. 4 in Jansson & Farrar 2012, cited from GALPROP in
Strong et al. 2010). Note that the estimated electron density has large
errors due to the above typical values adopted. To further investigate
the electron distribution, future work should use comprehensive
Galactic magnetic field models (Han et al. 2006; Brown et al. 2007;
Sun et al. 2008; Sun & Reich 2010; Van Eck et al. 2011).

6 SUMMARY

We develop a new method of emissivity calculation by improving
upon the previous simplified method. Using this new method, we
calculate the synchrotron emissivities both behind and in front of
152 Hu regions at six frequencies of 76.2, 83.8, 91.5, 99.2, 106.9,
and 114.6 MHz. This new method enables us to derive the H 11 region
optical depth and estimate the amount of flux density missing from
our observations at each frequency. We find that the emissivities
increase towards the Galactic centre. This lowest order of emissivity
variation is consistent with the current Galactic magnetic field and
relativistic electron distributions because both the magnetic field
strength and the relativistic electron density increase towards the
Galactic centre. The high emissivities nearby the Sun (if actually
real) might be caused by the local bubble.

The number of line-of-sight measurements will increase in the
MWA phase II stage (Wayth et al., in preparation) because both the
number of antenna and the maximum baselines are increased, and in
the future, we will have better knowledge of the distance and elec-
tron temperature of H11 regions. The lack of H 1 regions with larger
distances is a key factor holding back the modelling at present
because most H1I regions are located near the Sun with distances
less than several kpc. Future total power surveys at similar fre-
quencies can improve the accuracy of the emissivity measurements.
The derived emissivities may help to recover the 3D distribution
of synchrotron emission in the Milky Way. Furthermore, they pro-
vide direct information on the spatial distribution of the Galactic
magnetic field and the relativistic electrons for the future modelling.
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