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ABSTRACT

Starting from Breit’s relativistic equation for a system of two electrons,
it is shown that for a hydrogen molecule (or for a system of two electrons
moving in a field of cylindrical symmetry) the component of the total
angular momentum (J,) along the axis of the molecule (axis of symmetry)
is a constant of motion. Thus every cigenstate of the system is simul-
taneously an eigenstate of J, also, and a state of the system will specify,
besides its energy, only the eigenvalue of the component of the angular
momentum parallel to the axis of symmetry. The form of the four large
components of the wave function relating to their dependence on the
azimuthal co-ordinates has been given.

The case of Russel-Saunders approximation has been considered
in detail and the nature of the components of the wave function for the
singlet and triplet states has been discussed. It is shown that the wave
function for the ground state of the hydrogen molecule could be expressed
as a sum of a set of symmetric functions of which the first term is the
Heitler-London function, and that the wave function for a triplet state
should be a superposition of anti-symmetric molecular orbitals. It is
shown that relativistic theory brings about in a natural manner the facts
relating to the ground state of the molecules C, and Q,. Finally, some
remarks are made concerning the case of molecules for which the spin-
orbit and the spin-spin couplings are strong.

1. INTRODUCTION

THE theoretical solution of problems of molecular chemistry are based usually
on one or the other of two methods, known as the Molecular Orbital Theory
and the Valence Bond Theory.! In the former method, the binding electron
is supposed to belong to the entire molecule and is assumed to be moving in
the average potential field of the other electrons and the nuclei.
is the well-known theory of hydrogen molecule given by Heitler and London.
An important consequence of this theory is that the ground state of the hydro-
gen molecule is the singlet state in which the spins of the two electrons are
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opposite to each other and that the states with the spins parallel to each
other are unstable. In both the above-mentioned methods, the spin of the
electron is introduced as an independent extraneous factor in such a way as
to comply with the requirements of the Pauli Exclusion Principle, but is not
brought out as an integral part of the theory itself. In view of the very
important role that the spin of the electron plays in the chemical binding in
molecules, it is desirable to develop a theory based on a relativistic equation
which will bring out the spin as an essential part of the mathematical for-
malism itself, and to analyse the consequences of such a theory. This, pre-
cisely, is the object of the present paper.

II. Tue HAMILTONIAN OF A SYSTEM OfF TwoO ELECTRONS

Let us consider a system of two electrons interacting with each other.
Let ¢!, A” and ¢', A" denote respectively the scalar and vector potentials
of electrons I and II disregarding their interaction. A relativistic wave
equation for a system of two electrons interacting with each other and with
an external electromagnetic field was given by Breit? in the year 1929.

The equation is

Do+ T (ax'pi! + a'prl) + (e + ) me

k=1,2,3
2 I, 11 S[‘ - 0 (1)
where
O e
ka =]—- ik a—x'k“I + (Z’) Akl;
. d
= — b L+ (8) A
and
_ ik e m _ €
po =224+ -2 @)

The matrices a;' and ¢! are the usual Dirac matrices, but now they operate
on the first and second suffixes respectively. The representations that we
choose for these are given in Appendix I. The wave function ¢ has sixteen
components which will be designated by $uy (m, n =1, 2, 3, 4), the first
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suffix m referring to electron I and the second suffix » referring to electron II.
If 4' and b be any of the above-mentioned matrices, then

(albn‘/’)m,n = LZ; Amic'bri™ it 3

Equation (1) is thus equivalent to sixteen differential equations in the sixteen
functions $my.

By writing in (1)
a1 == P10y, Qg = P03, dg == p103 @

where p,, a;, 65, o5 are the matrices (4) of Appendix I, we see that the
Hamiltonian of the system is given by

2
H=e@ + ¢ +% —ple(@ - p)
_ plllc (011 . pII) — mcz (a4l + a4II)

2 Il 1L 11
- % [(Pfal . plo™) + (pr'e” - r)fé’l ¢ - r)] )

III. THE x-COMPONENT OF THE TOTAL ANGULAR MOMENTUM

We shall consider the case of the hydrogen molecule which is the simplest
example of a two-electron molecular system. Let the origin be chosen at
one of the nuclei and let the line of action of the molecule coincide with the
positive direction of the x-axis. If the nuclei are denoted by the suffixes A
and B, the potentials ¢' and ¢! are given by

raq rb1
and
1 1
11 — - .
¢l=e ra, + Iy,

where ry=4/x2+y2+2z2 and rp=+(x—R)2+ 2+ 22, R being
the internuclear distance.

Let my' and my" denote the x-component of the orbital angular
momenta of electrons I and II respectively. Then the dynamical variable
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M; = (my' + m;") represents the x-component of the total orbital angular
momentum of the system. In the same way, the quantity

S:L‘ = ;(le + Ua.-")

gives the component of the total spin angular momentum parallel to the axis
of the molecule. The sum J, of these two (i.e.)

Iz = myg' + myp!" + g("xl + az') (6)
represents therefore the x-component of the fotal angular momentum of the

system parallel to the axis of the molecule.
It has been proved in Appendix II that
J:H—Hlz =0 @)
One can see from the Appendix that neither S nor M. commutes with the
Hamiltonian but only their sum has the property of commuting with H.

Thus the component of the total angular momentum parallel to the axis
of the molecule is a constant of motion.

Since J, commutes with H, every eigenfunction of H will be simulta-
neously an eigenfunction of J, also. An eigenstate, thus, is specified by two
parameters, namely, the energy of the state and the eigenvalue of the com-
ponent of the total angular momentum parallel to the axis of the molecule.

IV. THE EIiGEN s OF IJx

Let us denote the eigenvalues of J, by M#% where M is yet undetermined.
The equation

Jatp = My (8 a)

or
[m;,;l - mg't 4 Z(C’x” + Uacn)] b = My (8 0)

will then be equivalent to sixteen equations in the sixteen components of .
We write here only four of these equations, namely, those involving the four
large components iz, $hay, a3 and ¢y, of . From (3), it foHows that the
(3, 3), (3, 4), 4, 3) and (4, 4)th components of the equation (8) are given by
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— i (55 + 54) Yoo = (M — Dy
— (55, + 55,) b = Miba

— i (55 + 35;) e = M+ Doy ©)

Hence
gy = faz (1 T2 03, 05) et M1 m,g,)
P3a = faa (11, Tas 02, 02) € Mt ™,00)
bys = Sz (11, 72, 03, 02) gt (M b4, 9,)

P40 = f4a (F1, 125 0y, 02) gl My P+ 410, (10)

where m; -+ my, = M.

Since the #’s should be single-valued, the numbers m; and m, are integers.

One can verify that the other twelve small components satisfy differential
equations of the type (9) and their form is therefore similar to the expressions

given by (10).

Now it has been shown by Breit? 3 that equation (1) involving sixteen
components can be reduced to an approximate equation with four compo-
nents expressed in terms of Pauli’s spin matrices. This reduced equation is
given by (6) of Appendix I and is equivalent to a set of four equations in the
four large components of ¢ which, following Breit, we denote by i, ¥4,
s and P4, respectively. Since the equation (6) of Appendix I is sufficient
for all physical purposes and gives quantitative results correct to the order
of (v/c)?, we shall in the following sections be discussing the consequences

following from this only.

The matrices o' and o' in (6) of Appendix I are the Pauli matrices and
they operate on the suffixes 3 and 4. The operation rule for the product
of any two matrices on i is still governed by (3), but now the summation for
k or I extends over the numbers 3 and 4 only. One can verify that the
equation Jp = M is identical with the four equations given by (9), and
the form of the four large components is therefore still given by the

equations (10).
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By solving the simultaneous differential equations (7), Appendix I, one
can determine the functions i3, a4, ¥4 and ¢,, respectively. Thus a state
s which we denote by the column vector [¢as, P34, a3, $44] CODSsists in general
of four non-zero components.

V. THE RUSSEL-SAUNDERS COUPLING

When the spin-orbit interaction is small compared to the electrostatic
interaction of the two electrons, the terms involving B!, B!, C,, as well as the
last four terms in the expression for A in equation (6, Appendix I) could be
ignored in the first approximation. This is the assumption underlying the
case of the well-known Russel-Saunders coupling. The equations (7,
Appendix T) now reduce to

H — W) 33 = 0; (H—~W)iiy, =0

(H— W)y =0; (H—~W)yy=0 (1)
where H is the non-relativistic Hamiltonian of the system. The above equa-
tions are satisfied by four different states of the system in each of which all

components, excepting one, are zero. Thus, solutions of (11) exist which have
the form

= [, 0 0, 0]; Py’ = [0, 34, 0, 0]
s = [0, 0,443, 0]; $s =1[0,0,0, 4]

Since the spin-orbit coupling terms are neglected in the Hamil-
tonian (6, Appendix I), one can see that both

My = mg" + my! and Sg = g (02" + o™

are constants of motion in this case, and further ¢, and i, are states belong-
ing to the eigenvalues % and — % of S respectively, whereas the states i’
and ¢;" have zero as the eigenvalue of S;. From the form of 5, and ¢,
in (10), one can see that the states

thy = ‘/’2' + ‘/‘3’ = [0, a4, Pas; 0]
and
Py = ‘l’zl - ‘/‘3’ = [0’ Pggs — Y3 0]

have the eigenvalue M for the x-component of the total orbital angular mo-
mentum and zero for the x-component of the total spin angular momentum.
Further if

22 — _‘%_ [(o.xl + o.xll)2 + (O'yl + O.yll)2 + (o.zI + O.ZII)2]
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one can verify from (3) that the states i, b and i, are eigenstates of 22
belonging to the eigenvalue 2 (or the value 1 for X), and the state i, has the
eigenvalue zero for X. The former set of states are thus the well-known
triplet states of two electron systems whereas the state ¥, represents the singlet
state.

Now according to the Pauli Exclusion Principle, every state should be
anti-symmetric with respect to an exchange of the two electrons. An exchange
operator, which we denote by P, interchanges the spin states of the two
electrons as well as their positions and thus under its influence, a component
of the state ¢y, (1, 2) gets transformed into ¢, (2, 1). The state

‘/’ = [l/’:sa 1,2), ¢34 {1, 2), ‘/‘43 (1; 2), ‘/‘44 (1, 2)]

therefore changes into @ == [ihs5 (2, 1), 43 (2, 1), ¥4 (2, 1), 44 (2, 1)) under the
influence of P. In order to satisfy the Exclusion Principle, the following
relations should therefore be obeyed by the components of a state:
(D) P32 1) = —t33(1,2); (D #51(2, 1) = — ¢y (1,2) and (3) ¥ (2, 1)
= —¢,.(1,2). Onecan see that the states 4, and ¢, will be anti-symmetric
if the components 3 and ¢4, are anti-symmetric functions of the position
of the two electrons. Since ¢, and 4 are solutions of the same
Schroedinger equation in the Russel-Saunders approximation, the state i,
will be anti-symmetric if its components 3, and ,5 are such that i, (1, 2)
= (1,2) = — ¢4 (2, 1) = — g (2,1), and similarly the state {; will be
anti-symmetric if

Pas (ls 2) = ‘/’34 (2, D=— ‘/’43 {, 2) = — 3 (29 1)

(@) The symmetric and anti-symmetric states.—Let Ppim (ta) -+ ...
denote a complete set of eigenfunctions of a hydrogen atom whose nucleus
is at position A. Then these functions form a complete basis for the expan-
sion of any arbitrary single-valued function of the position r; = (x1, 1, 21)
of the electron 1. Similarly, th- set of eigenfunctions (pym: (rp,) of a
hydrogen atom with its nucleus in position B form a complete set of eigen-
functions for the expansion of an arbitrary function of the position r, of the
clectron 2. Then, by a well-known theorem,* the set of functions

n=51L2........
‘/"nlm (ra’) ‘!‘n’l’m’ (rbz) ( nl — 1, 2 )

form a complete basis for the expansion of an arbitrary function ¢ (1, ry)
of the two electrons, that vanishes when r,—> oo and rp— co. Thus we

can write

i (ry, 1p) = 2, Fon n (va,) ¥n (b)) (12)
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where we have written # and #’ for the set of three quantum numbers (, /, m)
and (»',/’,m’) of the hydrogen atoms.

Now if the wave function ¢ (r,, r,) is symmetric with respect to an inter-
change of the two electrons, we get from (12) by interchanging the suffixes
(1) and (2) that

g (ry, ¥) = Z: Frw ¥n (ta,) $n (Xp,) (13)
The above equation alternatively follows from the expansion of
& (ry, rp) in terms of the set of functions ¢, (rg,) ¥’ (ry,) - . . . Which also form

a complete basis for the expansion of a function of the two electrons.

By adding (12) and (13)* we see that any symmetric function of the
electrons 1 and 2 can be written as

Pt (1, 1) = 2, SFrw [n (0a,) ¥ (t5,) + ¥ (¥a,) P (b)) (14)

where fun = 4 Fpu. The suffix -+ has been used to indicate that the func-
tion ¢ is symmetric with respect to an interchange of the electrons.

In the same way we can see that an anti-symmetric function ¢~ (ry, ry) of
the ¢clectrons has the form

b (r, 10) = 5:: &nn [Pn (¥a) P (tp,) — by (¥a,) & (T0,)] (15)

(b) The singlet state—We have seen before that the singlet state ¢ is
represented by the vector [0, #i;3,7, — 3,7, 0] where i, is a symmetric func-
tion of the two electrons. Now from the equations (10) it follows that i,
has the form given by

Pag = faq (r1, 7a, 0y, 05) €8 (T FTP,) (10a)

where m, and m, are integers satisfying the relation my, + m, = M. Thus
the general form of 3, consists of a superposition of terms of the type (10 a)
for all integral values of m, and m, satisfying the condition m; + m, = M.

Let us consider the case where the component of the total angular
momentum parallel to the axis of the molecule is zero, ie., m; +-m, =0
or my = — m,. It is well known that the ground state of the hydrogen mole-
cule belongs to this species. Thus from (14) and (10 a) it follows that the
eigenfunction of the ground state is given by

Pt (7)) = X 2 fun [bnim (ra,) Ynv—m (rp,)

+ Pnim (Xa,) Pnv-m (Tp,)] (16)

* We assume the absolute convergence of these series.
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The first term of the above series is

[hag0 (Xa,) P00 (Tb,) + P100 (Ta,) Proo (T1,)] a7

which is the well-known Heitler-London wave function. This function
explains qualitatively in a satisfactory manner the chemical binding of the
hydrogen molecule, but quantitatively it gives a value of 3-14e.v. for the
binding energy of the molecule, the observed value being 4:72ev. The
quantitative inaccuracy of the Heitler-London function is not surprising
when we recall that it is only the first term in the expansion of the wave
function in terms of symmetric wave functions built from the hydrogen atomic
orbitals. Since the discrepancy between the energy value derived from (17)
and the experimentally observed one is not very large, one can hope that
the series (16) converges rather rapidly and that the addition of a few more
terms to (17) will lead one to the correct value for the binding energy of the
molecule.

(¢) The triplet states.—As an example of the triplet states, consider the
state ¥, which is described by a non-vanishing anti-symmetric component
P33~ (r, ¥;) and three vanishing components. From (10) we have

Pag = fa3 (11, I 015 02) et (M P+ Mm,$,) (18
where m; + m, = (M — 1).

Since the component of the total spin angular momentum for this state
is %, the component of the total orbital angular momentum is equal to
(M — 1) s. The general form of 33 will consist of a superposition of terms
of the type (18) for all integral values of m;, and m, satisfying the relation
my; +my= (M — 1). Thus from (15) it follows that 5~ is given by

P (1, ) = 2 3 g’ [¥nim (0a,) Pnvm (80,)

nlm n’'l’m’

— Ynim (Fa,) Irm (Tv,) (19)
where m+m' = (M — 1).

In other words, the state ¢, is a superposition of all anti-symmetric mole-
cular states for which the component of the total orbital angular momentum
is equal to (M — 1) 4. In the same way we can obtain the wave function
for the state i, by superposing anti-symmetric molecular states have the
eigenvalue (M + 1) for the component of the total orbital angular
momentum parallel to the axis of the molecule.

Regarding the state ¢, we shall consider the particular case M = Q.
Y, is described by the vector [0, ¢34, ¥34, 0] where 5, is anti-symmetric
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with respect to an interchange of the two electrons. From (15) and (10 a)
it follows that the form of 5, is given by

Yo (X1, 1) = Zl;’" 2:::' gnw [Ynim () ¥nr—m (rp,)

— Ynim (¥a,) Yn'v—m (¥p,) (20)
The first term of the above series is
[100 (Fa,) P00 (bT.) — P10 (ar’,) Y100 (¥b,)] (21)

It is a well-known fact that this function leads to an unstable chemical state.

(d) The case of C; and O;,—From (19) or (20), it follows that the wave
function for a triplet state is a superposition of a number of terms each of
which is anti-symmetric with respect to an interchange of the two electrons.
Further, all the terms in a series belong to the same species, i.e., the states
belonging to these terms have all the same eigenvalue for the x-component
of the total orbital angular momentum.

According to the Heitler-London theory, the ground state of the hydro-
gen molecule is the singlet state and the triplet states are unstable. The
theory therefore requires as an essential condition for a stable bond that the
spins of the two electrons should be antiparallel. This rule is obeyed by a
large class of molecules, but nevertheless, exceptions are also present of which
we may cite the examplcs of C, and O,. The ground state of C, is the state
designated in spectroscopic notation by 2II, whereas for oxygen, the ground
state is 3Zg~. Oxygen is in addition paramagnetic. —Heitler® and Nord-
heim-Poschl’ showed that by adding to the wave function (21) a few more
terms of the same species, or in other words, by taking into account the inter-
action between states of the same species, the deviations between theory and
experiment can be removed. Now in the Russel-Saunders approximation,
X has the value 1 for the triplet states and X, has the values 1, 0, — 1 res-
pectively for the states #,, ¢, and ,. Further each term in (19) or (20) cor-
responds to the same value of the component of the total orbital angular
momentum parallel to the axis of the molecule. The expansion (19) is, there-
fore, nothing but a superposition of states of the same species. Relativistic
theory offers thus a clear explanation of the facts relating to C, and O, and
brings about naturally the concept of interaction of states of the same species.

VI. STRONG SPIN-ORBIT COUPLING

The discussion of the last section holds good only for the case of Russel-
Saunders coupling. Strictly speaking, the Russel-Saunders coupling and the
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J-j coupling are two extreme ideal cases and the coupling in most cases is
intermediate. When the spin-orbit interaction is strong compared to the
electrostatic interaction of the two electrons, the above discussion will break
down. In such a case, only the component of the total angular momentum
along the axis is a constant of motion and none of the quantities 2, 2 and
M is a constant of motion. An cigenstate of the energy will be an eigenstate
of J also and conversely every state of the system will specify, besides the
energy, only the x-component of the total angular momentum. For the case
of strong spin-orbit coupling, the usual spectroscopic notation which pre-
sumes that all the quantities %, 2 and M, are constants of motion, is there-
fore inconsistent with theoretical considerations and requires modification.

When the spin-orbit coupling is strong, the solution of the equations
(7, Appendix I) will lead to non-zero values for all the four components of
the wave function. Further it follows from equations (6) and (7) of
Appendix I that a state will be anti-symmetric with respect to an interchange
of electrons only if the components have the following properties:

(1) 33 (2, 1) = — if33(1, 2);
() ¥342,1) = — $43(1, 2);
(3) l//44 (2a 1) = - ¢44 (1’ 2)

Thus ¢33 and ¢4, are anti-symmetric functions, while ¢, or ¢,; can be a mix-
ture of both symmetric and anti-symmetric functions. The form of the
former components is therefore given by (15) while the latter can be expanded
as a series of the type (12). Now the energy of the system is given by

) ‘/’*H‘l’dﬁﬁ 2

W =" g, @)

where ¢* is the transpose of the vector ¢ and is given by the row vector

[4’33*’ 4’34*’ l/143*9 ‘l’44*]'

In practice, the computation of the energy will be facilitated if (1) the
series for the function iy, etc., are terminated at a particular point and their
coefficients determined by the variational principle and (2) if use is made
of the tables giving the values of exchange, coulomb and other related
integrals.8, 9, 10

We can now interpret the quantities g3? 3,% -+ s and 4,2 as the
probabilities of finding the spins of the electrons respectively (1) parallel to
the x-axis, (2) opposite to each other and (3) parallel to the negative direction
of the x-axis. The ground state of the molecule will be the state having the
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least value for the energy of all the states, subject to the condition that it is
stable besides.

The author’s grateful thanks are due to Professor Sir C. V. Raman
for his kind interest in this work and valuable suggestions.
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APPENDIX I

For the sake of easy reference, we collect here some of the results and
equations of Breit that are made use of in the paper. The relativistic wave
equation of Breit is given by

po+ X (a'pr! + a"pr™) + (af! + o) me

k=1,2,3
11
+ Zcr {2 aplag! + r)r(za r)}

p=0 (h
Here p,, p' and p" are given by equations (2) of Section II. The wave func-
tion ¢ has sixteen components which are denoted by ¢y (m, n = 1,2, 3, 4).
The matrices o' and o™ are the usual Dirac matrices, but now they operate
on the suffixes I and II respectively. They are given by

0 0 1 0 0 0 0 |
0 0 0 —1 0 0 1 0

ay = . Ay = ;
| 0 0 0 0 i 0 0
0 —1 0 0 | 0 0 0

(03

0 0 0 —i 1 0 0 0
0 0 i 0 0 1 0 0

Uy = s a4 =
0 —i 0 0 0 0 —1 0
i 0 0 0 0 0 0 —1

If we set
ay = py031; Ty = Py09; O3 == Py03, 3
where

I 0 0 0 0 1 0 0
0 —1 0 0 1 0 0 0

gy = > 0= >
0 0 1 0 0 0 0 1
0 0 0 -1 0 0 1 0
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0 —i 0 0 0 0 1 0
i 0 0 0\. 0o 0 0 1
“Zlo 0o 0] "T11 o o o
0 0 i o/ \o 1 0 o

equation (1) becomes

Po+pi (e - p) 4 p Mt (" P F (o + ) me
+ 2‘% [(Pllal gty 4. (pila' - 1) (pMalt . 7)p ¥ =0 )

r2
It follows that the Hamiltonian of the system is given by equation (5)
of Section II.

Next the Breit equation in the Schroedinger-Pauli form is given by

{E — 2mc? + eV — o [(pl)z + (p")?] + @)+ @

T 8mi3cd

e
+ 2W2 [r—l (pl, p!!) + r-3 (inI -— xil) (x],II — le) pilp].II]

(', o) + (HP, o] + ¢ S0, (6, B) + (6", p1)]

2hrmc

r“ p . rII__rI pI
+2€ —r~—><m,a)+2e( 73 n——i,an)]

— 4’n'n/u:) ((vll I) (VIOH) r-—l)} ¢ 0 (6)

where
H! = curl A, H" = curl AH

1V —
¢'=—grad'V= (axl’ W azI)V

e
V=gitgn—t
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() means the differential operators p', p" apply only within the ().
The ¢’s are the Pauli matrices and have the representations given by

(b (@ D))
Let us write

E—2mcz=W;

A =eV — ; {(pl)2 (P + @' )48’;2{;6(5")4

e?
T grga PP P A T (6 — ) O™ — %" pitp"]

+ oo (€ 9 + (&7, )

I __ plI i1
Bl = &chz [6’1 x BN P ] = (B, By', B,

Ir __
Bl,[ = eh [(‘3’” + 26 r l' X %] = (Bx“’ By", Bz")

8mmc?
and
— (G N (1, ) (71, 01 1) = £ Cayolyt
where
_ eh \2 > d _
ny—" m) —a?b—y]r 1.

Then the equation (6) is equivalent to the following four equations:

(A + B' + By" 4+ Cpx + W) gy + (B,'—iB," +- Cxy~iCy2) 3q
+ (By' — iBy' + Cyz — iCry) $h43 + (Cyy — Csp
— iCy; + Czy) g = 0.
(Byn + iBzII + ny + icxz) ‘/‘33 + (A + Bxl_ Bx“_'clf-r + W) '/'34
+ (Cyy + Cz2) a5 + (B — iB,! — Cyz +iCop)hyy =0
Q)]
(By' + iB' + Cyz + iCrz) 33 + (Cyy + Czz) s
+ (A + Bg" — By — Cyp + W) 5 + (By'— iB,U— Czy
+iCr) $sa =0
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(Cyy — Coz + iCyz + Cpy) g3 + (By' + iB — Cyp — iCay) Pas
+ (By" + iB," — Cyy — iCyz) a3 + (A — B! — B"
+ C:c::c + W) l:044 =0.

APPENDIX 11

Proof of the relation JoH — HJ, = 0.—We have seen that the Hamil-
tonian for a hydrogen molecule is given by

He—e@ + 9 +% —plc@ . p) = plc @ p)

— myc? (e + a1 — ;; { plo! - ploll) - (pro! ~_f_)_r(231_"g{l'[)}
(1)

where

md (L]

1,1 1
ta,  tu,J’

-+

raq rbz

#=e

r is the interelectronic distance. Each of the angular momentum variables
my' and my" commutes with 74, 7p,, 7, and rp, and hence with the potentials
#' and ¢". Further

[my' 4+ mg", r®) = [m' + mg", Tx,2 + Zx,2 — 2 2 X1%,]
= — 22 — 221) — 2 Doz, — Nz) =0 #))

(my' + my") commutes with 72 and hence with any function of r, particularly
with 1/r and 1/r

Now

i (g + mg") = (mye' + my™) H — H (my! + mz) 3
Since (my! -- mg'") commutes with ¢, ¢% 1/r and 1/r3, we have

in (Mg + mg") = — cp,t {mg* (o' . p) — (o . pY mzY

— cplll {mxll (O.II R pII) _— (O.II . pll) mxll}

& (mgl + ma) (o' . ) (pat . 1)
=5 i D ome 4 ) @
Now
a1 01 B — (0" ) i = (o1, magpt — pim)
= ifi (0ap3 — 03p)" (5
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Similarly
{mzt (o'« p1) — (" - PY) Mz} = 1% (0,p3 — o3p)" (6)

Next the following Poisson bracket relations can be verified:

r3 rd >

[mxl + mg, (g — x) (P2 — ¥ _ (xe—X1) (2 — 7))

[mxl + mxn, (x2 —_ xl) (;2 - Z]_)- _ (x2 - xl) (y2_y1) .
rs r ’

-

myt -+ mg', (yp — 3) (22— 2) 7 [[(zz —2)* — (e — yl)”] :

| r3 r3

T+ myT, (9 — zl)f] _ 20— @H—z),
L r3 r3 ’

1 11 Y - _ -
Tm:c + mg”, Q;Lr_ag;)] —_ 2(p: r);1) (22 21). (7)

Hence if we denote the components of the vectors p,'.T and p,"'" by
(aacI, ayl, aZI) and (axu’ ay“, aZH)5
we get from (3), (4), (5), (6) and (7) that
ih (! + my")
= — ik cpyt (03P — o3po)* — ik cpy" (0P — o3pa)"

(ax'ay™ -+ aylaxn) (X2 — x1) (22 — 2z1)

— ike? — (ag'a + alag™) (x; — x1) (2 — 1) ®)
2r + (aylazII + azlayn) [(z2 — z)2 — (2 — ¥1)]
+2 (aylay“ — ala") (yy — y1) (22 — 21)

Next we have

(00" — Togl, pY) = 2i(0sps — 02Ps)'

(027" — o"o L, pY) = 2i (03py — 03p3)" )
Also

[o.xl + o1 (pil ! ;Bp.lnvn)] —o 10)

A2
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Further
oz (pao! - 1) (pN T 1) — (pyfot . 1) (oo™ . 1) 0!
= 2i{a' (y: — y1) — ay' (z2 — z1)} {az" (x; — x1)
+ ay" (y2 — y1) + @ (22 — z,)}
oz (o'’ - 1) (70" . 1) — (pyo" - 1) (pyVo™ . x) o
= 2i{a;" (y2 — y1) — "' (z; — z)} {ax" (x2 — x1)
+ ay' (y2 — y1) + @' (22 — z1)} (11)
From (9), (10) and (11), we got
ih (og' + o)
= (02 + o) H — H (0" + 0"
= — 2icpy? (03ps — 0op3)' — 2icp,™ (030, — 3P3)
(ag'a;" + azlar’) (v — y1) (x2 — xy)
— 2ie? + (@ay" + a"ay") {2 — y1)? — (22— z)%
23 + 2(a'a." — ay'ay") (y2 — y1) (2 — z)

— (ay'a™ + aynaxl) (Z2 — z1) (X3 — x3)

From (8) and (12) it follows that

(12)

}’hxl + n.lxu ‘|_ z(bxl + b'.‘L‘H) = 0
Or, in other words,
Jo = mgt + m¥ + ;(le + o™ is a constant of motion.

Fields possessing cylindrical symmetry.—Though the above result has
been proved for the case of a hydrogen molecule only, it holds good in general
for any system of two electrons moving in a field possessing cylindrical sym-
metry. If the x-axis is chosen as the axis of symmetry, the potentials ¢t
and ¢ in this case are functions of two variables only, ie., ¢' = ¢! (xy, r)
and ¢ = ¢ (x,, r,), r, and r, being the distances of the electrons from the
origin. Since My = my! + m," commutes with all the variables x;, x,, r; and
ry, it commutes with the first term in the Hamiltonian (1), The remaining
terms do not involve ¢! or ¢ and are the same as for the hydrogen molecule.
Thus for a system of two electrons moving in a field of cylindrical symmetry,
the component of the total angular momentum along the axis of symmetry
is a constant of motion. Since for most diatomic molecules and individual
bonds in complex molecules the charge cloud approximately satisfies cylindri-
cal symmetry, the above result can be applied to such cases also.



