
T H E  R E L A T I V I S T I C  T H E O R Y  O F  C H E M I C A L  
B I N D I N G  

BY K. S. VISWANATHAN, F.A.Sc. 

(Memoir No. 113 ti'oro the Raman Research lnstitute~ Bangalore-6) 

Received March 3, 1959 

ABSTaACT 

Starting from Breit's relativistic equation fo ra  system of two electrons, 
it is shown that for a hydrogen molecule (of for a system of two electrons 
moving in a field of cylindrical symmetry) the component of the total 
angular momentum (J~) along the axis of the molecule (axis of symmetry) 
is a constant of motion. Thus every eigenstate of the system is simul- 
taneously an eigenstate of J~ also, a n d a  state of the system will specify, 
besides its energy, only the eigenvalue of the component of the angular 
momentum parallel to the axis of symmetry. The form of the four large 
components of the wave function relating to their dependence on the 
azimuthal co-ordinates has been given. 

The case of Russel-Saunders approximation has been considered 
in detail and the nature of the components of the wave function for the 
singlet and triplet states has been discussed. It is shown that the wave 
function for the ground state of the hydrogen molecule could be expressed 
as a sum of a set of symmetric functions of which the first term is the 
Heitler-London function, and that the wave function for a triplet state 
should be a superposition of anti-symmetric molecular orbitals. It is 
shown that relativistic theory brings about in a natural manner the facts 
relating to the ground state of the molecules Ca and O3. Finally, some 
remarks are made concerning the case of molecules for which the spin- 
orbit and the spin-spin couplings are strong. 

I .  INTRODUCTION 

THE theoretical solution of  problems of  molecular chemistry are based usually 
on onc or the other of  two methods, known as the Molecular Orbital Theory 
and the Valence Bond Thcory. 1 In the former method, the binding electron 
is supposed to bclong to the entirc molecule and is assumed to be moving in 
the average potential ficld of the othcr clectrons and the nuclci. The latter 
is the w•ll-known thcory of  hydrogen moleculc given by Heitlcr and London. 
An important cons•quence of  this theory is that the ground state of  the hydro- 
gen molecule is the sing[et state in which the spins of  the two clectrons are 
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opposite to each other and that the states with the spins parallel to eaeh 
other ate unstable. In both the above-mentioned methods, the spin of the 
electron is introduced as an independent extraneous factor in suela a way as 
to comply with the requirements of the Pauli Exclusion Principle, but is not 
brought out as an integral part of the theory itself. In view of the very 
important role that the spin of the electron plays in the chemical binding in 
molecules, it is desirable to develop a theory based on a relativistic equation 
which will bring out the spin as an essential part of the mathematical for- 
malism itself, and to analyse the consequences of such a theory. This, pre- 
cisely, is the object of the present paper. 

II. TI-lE HAMILTONIAN OF A SYSTEM OF TWO ELEC'I'RONS 

Let us consider a system of two electrons interacting with each other. 
Let ~~, M and ~ri, MI denote respectively the scalar and rector potenfials 
of electrons I and II disregarding their interaction. A relativistic wave 
equation for a system of two electrons interacting with each other and with 
an external electromagnetic field was given by Breit 2 in the year 1929. 

The equation is 

q Po + S (%'Pk' + akHPk n) + (a4' + a4tl)mc 
k=l, 2, a 

+ 2 ~  ~k'ak" + (~' " r)r "~(~'' . r) 

where 

r = 0 (1) 

~ (e) Pk' = ] - -  ih ~-~ + AkI; 

~ ( e )  Ak" Pk" = -- i¡ ~ + 

and 

ih ib e ~n) e2 
Po -- c ~t + e (~~ + -- e-~ (2) 

The matrices ak I and ~t~ II a t e  the usual Dirac matrices, but now they operate 
on the first and second suffixes respectively. The representations that we 
ehoose for these are given in Appendix I. The wave function ~b has sixteen 
eomponents which will be designated by ~bmn (m, n = 1, 2, 3, 4), the first 
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suffix m referring to electron I and the second suI¡ n referring to electron II. 
If a ~ and b t~ be any of the above-mentioned matrices, then 

(alblr~b)ra, n = ~ amkIbnzH~bkz (3) 

Equation (1) is thus equivalent to sixteen differential equations in the sixteen 
functions ~bmn. 

By writing in (1) 

C�91 = PlO'I;  0�91 = plO'$; ~�91 ~ plO'3 

where t,1, cq, ~r2, cr s are the matrices (4) of Appendix I, 
Hamiltonian of the system is given by 

e 2 H = e ($i + 6~i) + ~ _ plic (a~ . pl) 

- -  pl l Ic  (O, II �9 pII) - -  mc 2 (r .21 _ C�91 ) 

2re" [ ( p l i a  I . p lHai i  ) + COlIa i �9 rzr)(pi'ta tI �9 r ) ]  

III. THE x-COMPONENT OF THE TOTAL ANGULAR MOMENTUM 

(4) 

we see that the 

(5) 

~I  = e + 

~~~ = e ( 1  + 1 )  

where r a = x / x  ~ + y z + z  2 and 
the internuclear distante. 

Let mx ~ and taz tI denote the 
momenta of electrons I and II respectively. 

r b = ~ v / ( x - - R )  2 + y ~ + z  2, R being 

x-component of the orbital angular 
Then the dynamical variable 

and 

We shall consider the case of the hydrogen molecule which is the simplcst 
example of a two-electron molecular system. Let the origin be chosen at 
one of the nuclei and let the line of action of the molecule coincide with the 
positive direction of the x-axis. If the nuclei are denoted by the suffixes A 
and B, the potentials ~~ and ~�91 are given by 
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Ma: = (mx t + ma: ~I) represents the x-component of the total orbital angular 
momentum of the system. In the same way, the quantity 

~�91 1 
Sz = 2 (~x + ~x 1I) 

gives the component of the total spin angular momentum parallel to the axis 
of the molecule. The sum Jx of these two (i.e.) 

Ja: = taz' + taz H + ~ (aa: + gaii) (6) 

represents therefore the x-component of the total angular momentum of the 
system parallel to the axis of the molecule. 

It has been proved in Appendix II that 

JxH - -  H Ja: = 0 (7) 

One can see from the Appendix that neither Sx nor Mx commutes with the 
Hamiltonian but only their sum has the property of commuting with H. 

Thus the component of the total angular momentum parallel to the axis 
of the molecule is a constant of motion. 

Since Ja: commutes with H, every eigenfunction of H will be simulta- 
neously an eigenfunction of Ja: also. An eigenstate, thus, is specified by two 
parameters, namely, the energy of the state and the eigenvalue of the com- 
ponent of the total angular momentum parallel to the axis of the molecule. 

IV. THE EIGEN ~Ÿ OF Ja: 

Let us denote the eigenvalues of Jx by Mh where Mis  yet undetermined. 
The equation 

Ja:~b = M~~b (8 a) 

o f  

/t axn)] ~h MM, [ ma:~ + mx~I + 2 (~x" + = (8 b) 

wiU then be equivalent to sixteen equations in the sixteen components of ~b. 
We write here only four of these equations, namely, those involving the four 
large components ~ba3, ~ba4, ~b43 and ~b44 of ~b. From (3), it foltows that the 
(3, 3), (3, 4), (4, 3) and (4, 4)th components of the equation (8) are given by 
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Hence 

(~ ~) 

(~ ~) - i  ~ q - ~  ~b4,=(Mq-1)~b44 

~b~~ = f3.~ (vi, r2, 01, 0~) e ~ <~r�91162162 

~b34 = f3a (rl, r2, 01, 0~) e i ~m~r162 

~b43 = f43 (ra, r2, 01, 02) e i imr 

~b~4 ~-~ f44 (gl, g o, 01, 02) e i <m ~~+m~+1r 

(9) 

(lo) 

w h e r e  m i  + ma = M. 

Since the ~b's should be single-valued, the numbers mi and m2 are integvrs. 

One can verify that the other twelve small components satisfy differential 
equations of the type (9) and their form is therefore similar to the expressions 
given by (10). 

Now it has been shown by Breit z, 3 that equation (1) involving sixteen 
components can be reduced to an approximate equation with four compo- 
nents expressed in terms of Pauli's spin matrices. This reduced equation is 
given by (6) of Appendix I and is equivalent to a set of four equations in the 
four large components of ~ which, following Breit, we denote by ~bs 3, ~b34, 
~b43 and ~b4~ respectively. Since the equation (6) of Appendix I i s  sutficient 
for all physica[ purposes and gives quantitative results correct to the order 
of (v/c) ~, we shall in the foUowing sections be discussing the eonsequences 
following from this only. 

The matriees ~i and ou in (6) of Appendix I are the Pauli matrices and 
they operate on the s u ~ e s  3 and 4. The operation rule for the product 
of any two matrices on ~ is still governed by (3), but now the summation for 
k or l extends over the numbers 3 and 4 only. One can verify that the 
equation Jz~ = Mh~b is identical with the four equations given by (9), and 
the forro of the four large components is therefore still given by the 
equations (10). 
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By solving the simultaneous differential equations (7), Appendix I, one 
can determine the functions r r r and r respectively. Thus a state 
r which we denote by the column vector [r Cza, r r consists in general 
of four non-zero r 

V. THE RU$SEL-SAUNDERS COUPLING 

When the spin-orbit interaction is small eompared to the eleetrostatic 
interaction of the two electrons, the terms involving B ~, B n, Cxy as weU as the 
last four terms in the expression for A in equation (6, Appendix I) could be 
ignored in the first approximation. This is the assumption underlying the 
case of the well-known Russel-Saunders coupling. The equations (7, 
Appendix I) now reduce to 

( H  - -  W)  r = 0;  (H - -  W )  r = 0 

(H -- W)Caz = 0; (H -- W)r = 0 (11) 

where H is the non-relativistic Hamiltonian of the system. The above equa- 
tions ate satisfied by four different states of the system in each of which all 
components, excepting one, are zero. Thus, solutions of (11) exist which have 
the forro 

r = [r 0 0, 0];  

r = [0, 0, ~,3, 01; 

Since the spin-orbit coupling 

r = [0, r 0, 0] 

r  = [0, 0, 0, r  

terms are neglected in the Hami l -  
tonian (6, Appendix I), one can see that both 

/J 
Ma: = mx  I + m x  H and Sx = ~ (az I + crxn) 

are constants of motion in this case, and further r and r are states belong- 
ing to the eigenvalues ~ and -- h of Sz respectively, whereas the states r  
and r have zero as the eigenvalue of Sx. From the forro of ~ba4 and r 
in (10), one can see that the states 

r = r + r = [0, r r 0] 

and 

r = r  - r = [0, r - r  01 

have the eigenvalue M for the x-component of the total orbital angular mo- 
mentum and zero for the x-component of the total spin angular momentum. 
Further if 

Z~ = �88 [(~x ~ + ~z") ~ + (~~~ + ~u") ~ + (~z ~ + ~?')'~] 
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one can verify from (3) that the states ~bl, ~z and ~b4 are eigenstates of 27 2 
belonging to the eigenvalue 2 (or the value 1 for S), and the state ~b 3 has the 
eigenvalue zero for 27. The former set of states are thus the well-known 
triplet states of two electron systems whereas the state ~~ represents the singlet 
state. 

Now aecording to the Pauli Exclusion Principle, every state should be 
anti-symmet¡ with respect to an exehange of the two electrons. An exehange 
operator, which we denote by P, interchanges the spin states of the two 
electrons as well as theŸ positions and thus under its influence, a component 
of the state ~mn (1, 2) gets transfonrted into ~bnm (2, 1). The state 

~b =-= [~b33 (1, 2), ~34 (1, 2), ~b~z (1, 2), ~b,4 (1, 2)] 

therefore ehanges into ~b = [~ba3 (2, 1), ~b43 (2, 1), ~ba4 (2, 1), ~ha4 (2, 1)] under the 
influence of P. In order to salisfy the Exclusion Prineiple, the following 
relations should therefore be obeyed by the components of a state: 
(1) ~b3a (2, 1) ---- --  ~b33 (1, 2); (2) ~ba4 (2, 1) ---- -- ~b4z (1, 2) and (3) ~b~4 (2, 1) 

-- ~b4~ (1, 2). One can see that the states ~bx and ~b4 will be anti-symmetric 
ir the components ~33 and ~44 are anti-symmetric functions of  the posxtion 
of the two electrons. Sinee ~b3~ and ~b43 are solutions of the same 
Schroedinger equation in the Russel-Saunders approximation, the state q~z 
will be anti-syrnmetric if its components ~b34 and ~b43 are such that ~ba4 (I, 2) 
---- ~b43 (1, 2) = -- ~bz4 (2, 1) = -- ~�91 (2, 1), and similarly the state ~b3 will be 
anti-symmetrie if 

~.~~ (1, 2) = ~~4 (2, 1) = -- ~~3 (1,2) ----- -- ~~~ (2, 1) 

(a) The symmetric and anti-symmetric states.--Let r (ra1) . . . . . .  
denote a complete set of eigenfunctions of  a hydrogen atom whose nucleus 
is at position A. Then these funetions forro a complete basis for the expan- 
sion of any arbitrary single-valued function of  the position ra = (xa, Yl, zl) 
of the electron 1. Similarly, th: set of eigenfunctions (r (rb) of a 
hydrogen atom with its nucleus in positŸ B forra a complete set of eigen- 
functions for the expansion of an arbŸ function of the position r~ of the 
electron 2. Then, by a well-known theorem, ~ the set of functions 

~n~m (ra,) r (rb)  n' = 1, 2 . . . . . . .  

forro a complete basis for the expansion of an arbitrary function ~ (ra, rO 
of the two electrons, that vanishes when rx ~ oo and r2--~ oo. Thus we 

can write 

(ra, r~) ---- Z' Fnn, ~n (ra,) ~n' (rb)  (12) 
n n  ~ 
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where we have written n and n' for the set of three quantum numbers (n, 1, m) 
and (n', l', m') of the hydrogen atoms. 

Now if the wave function r (rl, r~) is symmetric with respect to an inter- 
change of the two electrons, we get from (12) by interchanging the suffixes 
(1) and (2) that 

r (rl, r~) --- ~ Fnn' en (ra,) en' (rb,) (13) ,,, 

The above equation alternatively follows from the expansion of  
ff (rl, r~) in terms of the set of functions r (ra,) ~bn' (rb,) . . . .  which also forro 
a complete basis for the expansion of a function of  the two electrons. 

By adding (12) and (13)* we see that any symmetric function of the 
electrons 1 and 2 can be written as 

~b§ (rl, r~) = L" fnn '  [~bn (ra,) en' (rb,) + ~bn (ra,) en' (ro,) (14) ~~, 

where fnn '  ----- �89 Fnn'. The sufftx -4- has been used to indicate that the func- 
tion r  symmetric with respect to an interchange of the electrons. 

In the same way we can see that an anti-symmetric function r (ti, r2) of 
the electrons has the form 

r (rb r~) = S gnn' [~hn (ra,) en' (rb,) -- en (ra,) ~bn' (rbl)] (15) 

(b) The singlet state.--We have seen before that the singlet state r is 
represented by the vector [0, ~b3 +, -- r 0] where ~b34+ is a symmetric func- 
tion of  the two electrons. Now from the equations (10) ir follows that r 
has the forro given by 

~34 ~---.f34 (rl, r2, 01, 03) e i cm,r (10 a) 

where m~ and m2 are integers satisfying the relation mi + taz : M. Thus 
the general form of r consists of  a superposition of terms of the type (10 a) 
for all integral values of mi and m2 satisfying the condition rol + m., = M. 

Let us consider the case where the component of the total angular 
momentum parallel to the axis of  the molecule is zero, i.e., rol + m2-----0 
or mi = -- taz. It is well known that the ground state of  the hydrogen mole- 
eule belongs to this species. Thus from (14) and (I0 a) it follows that the 
eigenfunction of the ground state is given by 

r + (r,, rz) = 2: Z' fnn '  [r (ra,) Cn't'-m (ro,) 
n | ~  I# l  t 

+ ffntrn (ra)  ~bn'V-m (ro)] (16) 

* We a s s u m e  the  absolu te  convergence  o f  these series. 
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The first term of the above series is 

[~bloo (ra,) ~bloo (rb,) q- r (ra,) ~/hoo (rb)] 

which is the well-known Heitler-London wave function. 

(17) 

This function 
explains qualitatively in a satisfactory manner the chemical binding of the 
hydrogen molecule, but quantitatively it gives a value of 3" 14 e.v. for the 
binding energy of the molecule, the observed value being 4:72 e.v. The 
quantitative inaccuracy of the Heitler-London function is not surprising 
when we recall that it is only the first term in the expansion of the wave 
function in terms of symmet¡ wave functions built from the hydrogen atomic 
orbitals. Since the discrepancy between the energy value derived from 07)  
and the experimentally observed one is not very large, one can hope that 
the series (16) converges rather rapidly and that the addition of  a few more 
terms to (17) will lead one to the correct value for the binding energy of the 
molecule. 

(c) The triplet states.--As an example of the triplet states, consider the 
state ex which is described by a non-vanishing anti-symmetric component 
~33-(rl, r2) and three vanishing components. From (10) we have 

~b3~ =~faa (rl, r2, 01, Os) e i (~)t ~,+~�91 (18) 

whem rol -l- m~ = (M -- I). 

Since the component of the total spin angular momcntum for this state 
is /~, the component of the total orbital angular momentum is equal to 
(M -- I) h. The general form of  r will consist of a superposition of terms 
of the type (18) for all integral values of  mi and m2 satisfying the relafion 
m~ -)- m2 ---- (M -- l). Thus from (15) it follows that r is given by 

Osa- (rl, rO = 2: 2: g.n' [r (ra,) r  (rb,) 
n | m  he |P ro  p 

- -  ~nzm (ra,) ~.'rm' (rb,) (19) 

where m -~- m' = (M -- 1). 

In other words, the statc ~b~ is a superposition of all anti-symmvtric mole- 
cular states for which the componcnt of the total orbital angular momentum 
is eqaal to (M -- 1)h. In the sana• way we can obtain the wave function 
for the state r by superposing anti-symmetric molecular states havc the 
cigenvalue ( M - { - 1 ) ~  for the componcnt of the total orbital angular 
momcntum parallel to the axis of the molecule. 

Regarding the state r we shall eonsider the particular case M = O. 
r is described by the vector [0, Ca~, Ca~-, 0] where r is anti-symmetric 
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with respeet to an interchange of the two electrons. From (15) and (10 a) 
it follows that the form of ~z4- is given by 

~bz~ (r~, r2) = ~ S gnn' [~.nZm (ra1) .~n't'-m (rb) 
l l |m IlPl" 

- ~nz~ (ra) r (rb) (20) 

The ¡ term of the above series is 

[~bloo (ra,) ~b~oo (br,) - -  ~b,oo (ar,) ~/'~oo (rb)]  (21) 

It is a wcll-known fact that this function leads to an unstable ehemioal state. 

(d) The case of  C~ and Oz.--From (19) or (20), it follows that the wave 
funetion for a triplet state is a superposition of a number of terms eaeh of 
wlueh is anti-symmetrie with respeet to an interchange of the two electrons. 
Further, all the terms in a series belong to the same speeies, i.e., the states 
belonging to these terms have all the same eigenvalue for the x-eomponent 
of the total orbital angular momentum. 

According to the Heitler-London thoory, the ground state of the hydro- 
gen moleeule is the singlet state and the triplet states are unstable. The 
theory therefore requires as an essential condition f o r a  stable bond that the 
spins of the two electrons should be antiparallel. This rule is obeyed by a 
large class of molecules, but nevertheless, exceptions are also present of which 
we may cite the exampk s of C~. and Oz. The ground state oŸ C~ is the state 
designated in spectroscopic notation by 8Hu whereas for oxygen, the ground 
state is 327o--. Oxygen is in addition paramagnetic. Heitler 6 and Nord- 
heim-PoschF showed that by adding to the wave function (21) a few more 
terms of the same speeies, or in other words, by taking hato aeeount the inter- 
aetion between states of the same species, the deviations between theory and 
experiment can be removed. Now in the Russel-Saunders approximation, 
X has the value 1 for the triplet states and l z  has the values 1, 0, -- 1 res- 
pectively for the states ~~, ~2 and ff~. Further eaeh term in (19) or (20) eor- 
responds to the same value of the component of the total orbital angular 
momentum parallel to the axis of the moleeule. The expansion (19) is, there- 
fore, nothing but a superposition of states of the same species. Relativistic 
theory offers thus a clear explanation of the faets relating to Cz and 02 and 
brings about natttrally the concept of interaetion of states of the same species. 

VI. STRONG SPrN-ORBIT COUPLING 

The discussion of the last seotion holds good only for the case of Russel- 
Saundcrs coupling. Stricfly speaking, the Russcl-Saunders coupling and the 
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j-] coupling are two extreme ideal cases and the coupling in most eases is 
intermediate. When the spin-orbit interaction is strong compared to the 
electrostatic interaction of the two electrons, the above discussion wiU break 
down. In such a case, only the component of the total angular momentum 
along the axis is a eonstant of motion and none of the quantities 2~, 2~ x and 
Mx is a constant of motion. An eigenstate of the energy wiU be an eigenstate 
of Jz also and conversely every state of the system will specify, besides the 
energy, only the x-component of the total angular momentum. For the case 
of strong spin-orbit coupling, the usual spectroscopie notation whieh pre- 
sumes that all the quantities 27, 27z and Mx are constants of motion, is there- 
fore inconsistent with theoretical considerations and requires modification. 

When the spin-orbit coupling is strong, the solution of the equations 
(7, Appendix I) will lead to non-zero values for aU the four components of 
the wave function. Further it follows from equations (6) and (7) of 
Appendix I that a state will be anti-symmetric with respect to an interchange 
of electrons only if the components have the following properties: 

(1) ~~3 (2, 1) = - -  ~83 (1, 2);  

(2) ~b3, (2, 1) = -- q',3 (1, 2); 

(3) q,,, (2, 1) = -- r (1, 2). 

Thus q'8~ and ~b44 are anti-symmetric funcfions, while ~bz4 or r can be a mix- 
tute of both symmetrie and anti-symmetric functions. The form of the 
former components is therefore given by (15) while the latter can be expanded 
asa  series of the type (12). Now the energy of the system is given by 

W = I ~b*H~bdrldr" 
J" ~b*~bdrldr ~ (22) 

where ~* is the transpose of the rector ~b and is given by the row vector 
[~'~~*, ~~~*, ~,8", ~,,*l. 

In practice, the computation of the energy will be faeilitated if (1) the 
series for the function ~3a, etc., are terminated at a particular point and their 
coet¡ determined by the variational principle and (2) ii" use is made 
of the tables giving the values of exchange, coulomb and other related 
integrals.S, 9, lo 

We can now interpret the quantities ~ba3 ~, ~340"+ r and ~44 ~as the 
probabilit;es of ¡ the spins of the electrons respectively (1) parallel to 
the x-axis, (2) opposite to each other and (3) paraUel to the negative direction 
of the x-axis. The ground state of the molecule ~.ill be the state having the 
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least value for the energy of all the states, subject to the condition that it is 
stable besides. 

The author's grateful thanks are due to Professor Sir C. V. Raman 
for bis kind interest in this work and valuable suggestions. 
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APPENDIX I 

For the sake of easy reference, we collect here some of the results and 
equations of Breit that ate made use of in the paper. The relativistic wave 
equation of Breit is given by 

q po -I-  

+ ,<~,'e~ ~'f~~ y + (*<'' ') r"@"" '0} I 
= o (1) 

Here Po, P~ and pU are given by equations (2) of Section II. The wave fune- 
tion ~ has sixteen components which are denoted by Oran (m, n = 1, 2, 3, 4). 
The matrices ai and o ~I ate the usual Dirac matrices, but now they operate 
on the sufftxes I and II respectively. They are given by 

/ 0  0 1 0 ~  / 0  0 0 1 ~  

0 0 0 --1 . 0 0 1 0 . 

"-t, ) "t, ) 1 0 0 0 " 0 1 0 O 

0 --1 0 0 1 0 0 0 

(2) 

( 0  0 0 - - i ~  ( 1  0 0 0 ~  

0 0 i 0 0 1 0 0 

t o _ , o o ;  to o_, o) 
i 0 0 0 0 0 0 --1 

If we set 

where 

al-----pie1; ~ = : p z e ~ ;  %=pzGa~ (000) (010 
0 --1 0 0 1 0 0 

G 1 ~ ; 0" 2 
0 0 l 0 0 0 0 

0 0 0 --1 0 0 1 

(3) 

0~ 
0 . 

0 
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I 0  - - i  0 0 0 0 
i 0 0 0~ / 0  0 
0 0 0 - - i  1 O 

0 0 i 0 0 1 

10) 
0 1 

0 0 

0 0 

equation (1) beeomes 

l 
P0 ~- Pl I ( al" P') + Pl II (ff|I p") + (a; + a,I) mc ) 

E 
e 2 ( p i t a ' .  r)(pllI~ I I  �9 r )  

"Jf- 2ti (pllGI " pIIlffII) "Al'- r ~ 
= 0 (5) 

It follows that the Hamiltonian of the system is given by equation (5) 
of Section II. 

Next the Breit equation in the Schroedinger-Pauli form is given by 

{ 1 (p,,)~] (Pg' + (px~)a 
E --  2mc r~ + eV -- ~ [(p,)2 + + 8mac a 

e 2 + 2 ~  ~ [r-X (pi, pn) + r-3 (x~ii - -  X�91 - -  X~I) p{Ip~ll] 

4 e ~  c ehi + [(II', ~') + (H n, ~~')] + 8~~~c2 [(~', p,) • (~ii p,,)] 

eh 

r 
_ r H 

+ 2e ~ rx r3 

# ) ( pn ) 

pII (r  n _ _  r____~i pi 
- - - - - -  X ~ '1  0 'I) + 2e ra X ~1 G'II)] 

( eh ,~8 ieii) r_l>} (6) 

wherc 

H I = c u r l A  t, H r I = c u r l A  n 

# ' = - - g r a d  ~ V = -  ~ ,  ~y~, ~ V; 

V = ~' + ~" - _e 
g 



1 
Erx = 0 

Let us write 

The Relativistic Theory of  Chemical Binding 

( )  means the differential operators # ,  pU apply only within the 
The a's are the Pauli matrices and have the representations given by 

o). (o �91 (o-o) 
_ _ 1  , a y  ~--- 1 , a z ~--- 

and 

where 

E -- 2mc ~ = W; 

1 (pH)2} (pi)4 + (pU)4 
A = eV -- 2¡ {(pi),. + + 8m3e 

e ~ 
+ 2mfc ~ [r-1 p~. p~r + Z,r-3 (xiH _ xit) (xjr~ _ xj~)pi~pjH] 

ehi {(gr, p,) + (gH, pH)}. 
+ 8rrm~c ~ 

B~ eh [ p~ r~--r '~ p~] 
= 8~~mc ~ $~ • m + 2e r ~  • : (Bx ~, By I, Bz I) 

BII $II X m 2e rH ra X = (Bx ti, By u, Bz II) 

- -  \4rrmc] ( (V  li, a~) ( V  ~, a~~) r -~) = S, Cxycrxr~,,yH 

15 

( eh "~~ ~ ~ r_~. 
Czy = -- \4rrmc] ~x ~~ ~,y~ 

Then the equation (6) is equivalent to the following four equations: 

(A + Bx ~ + Bx a + Cxz + W) r "q'- (By II -- iBz ~~ + Cxv . -  iCxz) ~a~ 

-q- (By ~ -- iBz ~ + Cuz --  iCzx) r q- (Cyy -- Czz 
-- iCyz + Czu) ff44 = O. 

(Bv n + iBz u + Cxy + iCxz) r  + (A + Bx ~ -- Bx H -  Czx + W) ~3, 

+ (Cuu + Czz) ~b4~ + (By ~ -- iBz I -- Cuz + iCzx) ~b44 = 0 

(7) 

(By ~ + iBz ~ + Cyx + iCzx) ~3a + (Cyy + Czz) ~84 

+ (A + Bx u -- Bx I -- Cxx + W) r + (By I I -  iBz u -  Cxy 

+ iCxz) r = 0 
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(Cv~ --  Czz + i Cuz + Czy)r + (By ~ + iBz x --  Cuz --  iCzx)  %ba~ 

+ (By *~ + iBz n --  Cxu --  iCxz) $aa + (A - -  B x  I - -  Bx n 

+ C z z  + W) ~~~ = O. 

APPENDIX II 

Proof  o f  the relation J x H -  H J z  = 0 . - -Wr  hay• seen that the Hamil-  
tonian f o r a  hydrogen mol•cule is given by 

e z 
H = --  e (~~ + ~�91 + 7 - -  plIc ((lI" pt) - -  p~uc (on .  pn) 

where 

e 2 c ( p l o  I �9 r )  
- m o :  (~~~ + ~i~) _ 2~ ~p~~~ " o:~oH) + 

( 

( p 1 %  n �9 r ) )  

r ~ )" 

O) 

,'----efe+;) ~n~ :=e(:-+i>' ) 
r is the interelectronic distante.  Each o f  the angular momen tum variables 
taz ~ and ma: n commutes  with ra,, rb~, ra, and rb~ and hence with the potentials 
~�91 and ~�91 Fur ther  

[ t a z  I -q- Fnx II, r 2) .~- [mz ~ + taz n, 2 x ,  ~ + Z x~ 2 --  2 Z x,x~] 

= --  2 (y~z~. --  Y2ZO -- 2 (y~z~ --  ytz2) = 0 (2) 

(mx t + mx t') commutes  with r ~ and hence with any funct ion of  r 2, particularly 
with 1/r and 1/r 3. 

N o w  
i~ (rhx ~ + th:c u) = (mz I + taz n) H --  H (mx I + taz *I) (3) 

Since (mz I -I-taz ~I) eommutes  with 4x, 4,~, 1/r and 1/r 3, we have 

il~ OiZx ~ + thz n) ---- --  cpi t {mx ~ (o ~ �9 p~) --  (a ~ �9 pi) mx~ 
_ cpn  {mzU (crI*. pn)  __ (c;u. pn )  ma:'} 

e ~ ~(m~' + mos") (pi I0rI. r) (pl"O II . r) 
(4) ~r ~ [ -  ~o/o~. r) (? ~~oH. r) (m~* + m~')S 

Now 

{mxl (=i . pl) _ (oi. pl) mzl} __ ((ii mx,pl _ #taz I) 

= i~ (,72p3 -- c,3p~)I (5) 
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Similarly 

{mx u (oH. piX) _ ((rxi. pn) mzf, x} = i~ (aep s _ (tapa)XI 

Next  the following Poisson bracket relations can be verified: 

[ mx  x d- mx  u, 

[ m x  ! .q- m x  n, 

[ m x  I _i- mxII, 

LFmxlAc mglI '  (yg. r J - 3 Y l ) ~  1 _ 2  ( y 2 -  y x ) ( - Ÿ  z1) . 
. . . . . . .  r3 

FI~IXI'2y m x  II, (z 2 - - Z 1 )  9~'] _ - 2  ( Y 2 -  Yl)(z2- z1) 
L ~ J r 8 �9 

Hence if we denote the components  of  the vectors p~Lx and p~~~(r n by 

(az% av I, az I) and (az n, ay n, azn), 

we get f rom (3), (4), (5), (6) and (7) that 

ik (mx I d- rhx n) 

= --  i]i Cp11 ((r2p3 - -  aap~) I --  il~ Cpl II ((r2p3 - -  azp2) n 

'(axXa~ H + auIax n) (x~. - -  xa) (z~ - -  z0  1 

__ i~e ~ --  (axlaz n + azlaz rt) (x2 --  xi) (Y2 - -  Yl) 

2ra q- (auIaz II q- azIay II) [(z2 --  zl) 2 --  (Y~ --  Yl)~]~ 

q- 2 (aylau n --  azXaz n) (yz --  Yl) (zz --  z~) ] 

Next we have 

Also 

(cr~ot - - . ' a x l ,  1)i) = 2i  ((rzpz - -  a~pz) I 

(,, aaH _ o % x U ,  p~~) = 2 i  (,,3p~ - ~2P3) ~~ 

[ {}'X I Al- Ca: II, (pl I I'11 . p ln . I I ) ]  
r3 j = 0 

A2 

(xz --  xx) (Y2 --  Yl)] (x2-- x0  (z~ --  za) 
r a = ra ; 

(X2 - -  XI)r ](Z2 - -  Z1)] - -  (X2 - -  X1)13 (yz --Yl) ," 

(Y~- Y l ) ( z 2 -  zl)] _--- [ [ (z~-  zl) s - - ( y ~ -  yl)~] . 
t "3 ~ 

17 

(6)  

(7) 

(8) 

(9) 

(10) 
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Further 

ax I (plL I �9 r)(pllL u . r) -- (pito I . r)(pluo u . r)crz I 

= 2i {az I (Y2 - -  yl) -- ay I (z2 -- Zl)} {az  u (x2 - -  xi) 
_~_ II a z i i  av (Y2 -- Ya) -4- (z~ -- zl)} 

~ z  'I (palo I �9 r)(pxIIo lI , r) -- (plIo I . r ) ( p~%r ,  r )~z  n 

= 2i {az H (Yz  - -  Ya) - -  a 9  I I  ( z 2  - -  Z1)} { a z  I (X2 - -  Xa) 
+ I av (Y2 --  Yl) + az I (23 - -  21)} 

From (9), (10) and (11), we get 

ih (/~z I + ~x u) 

= ( ~ i  + ~~,,) H --  H (~~~ + ~ i i )  

= - -  2icpl~ (%P2 - -  ~2P3) I - -  2icp~ n (cr3P2 - -  cr2P~) 

( a x l a z  n + a z ' a x  'I) (Y2 - -  Ya) (x2 -- x,) 1 
11 

,2 Id II II II $ 2 - -  2ie  ~ -k ( z u -k az au ) {(y2 - -  y l )  - - ( z2 - -z~)} [  

2r3 -k  2 (azIaz  n - -  ay Iav  u) (Y2 - -  Yl) (z2 - -  ZI) > 

- -  (a~Iax  II -k  avI Iax  I) (z2 - -  z O  ( x z  - -  x i )  

From (8) and (12) it follows that 

g/x I + t//x lI + ~ 
2 (~xl + ~zI~) 

Of, in other words, 

= 0 .  

(ll) 

(12) 

J z  = t a z  ~ + t a z  II + ~ ('~z I + " z  ~) is a constant of  motion. 

F M d s  p o s s e s s i n g  cy l i ndr i ca l  s y m m e t r y . - - T h o u g h  the above result has 
been proved for the case of  a hydrogen molexule only, it holds good in general 
for any system of  two electrons moving in a field possessing cylindrieal sym- 
metry. If  the x-axis is chosen as the axis of  symmetry, the potentials q,x 
and ~�91 in this case ate functions of  two variables only, i .e. ,  ck I = ckI ( x i ,  r l )  

and ~ia = ~ia (x2,  r2), r~ and re being the distances of  the electrons from the 
origin. Since Mz = t a z  ~ + t a z  aI commutes with all the variables xi, x,, r~ and 
r2, it commutes with the first term in the Hamiltonian (1). The remaining 
terms do not involve ~�91 or 'U and are the same as for the hydrogen molecule. 
Thus f o r a  system of two electrons moving in a field of  cylindrical symmetry, 
the component of the total angular momr along the axis of  symmetry 
is a constant of  motion. Since for most diatomic moleeules and individual 
bonds in complex molecules the charge cloud approximately satisfies cyfindri- 
cal symmetry, the above result can be applied to such cases also. 


