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1. INTRODUCTION 

ONE of the important problems of molecular chemistry concerns the evalua- 
tion of the correlation energy of molecules and the study, in general, of cor- 
relation effects in many-electron systems. The motions of the electrons in 
atomic of molecular systems ate not independent of each other but are 
dependent on (or correlated with) the positions and spins of the other elec- 
trons. This correlation now is of two kinds--the first one arising from the 
limitations imposed by the Pauli Exclusion Principle which forbids two 
electrons of the same spin to stay in the same state, and the second kind 
arising from the strong Coulomb repulsion experienced by any two electrons 
when they try to approach each other closely. 

The standard method of solving many-electron problems in quantum 
mechanies is by means of the Hartree-Fock equations, which are the varia- 
tional equations of the Hamiltonian operator f o r a  wave function that is a 
determinantal expression in the one-electron orbitals. Since the wave 
function is a determinant in the one-electron orbitals of the different electrons 
of the system, it will vanish when the co-ordinates of any two electrons 
having the same spin become identical and thus the Pauli Principle is implicit 
in this scheme. Or in other words, the Hartree-Fock equations suggest 
and bring within their scheme the correlation between electrons of the same 
spin, but because of the o:~e-electron approximation they fail adequately to 
take into account of the Coulomb repulsion effects between the electrons. 
Experience has in fact shown that the H. F. equations give a much higher 
value for the energy of a molecular system than the experimentally observed 
one; this is to be expected because the H.F. equations neglect the Coulomb 
correlation between the electrons and wouId consequentty contribute a much 
higher value for the repulsion energy of the system than is actually possible. 

Coulomb correlation between the electrons can be brought into the 
theoretical formalista in several ways, but the simplest and most direct method 
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of them all is to multiply the wave function by a correlation factor g (rl~, rl~) 
. . . .  ) which is symmetric in the inter-electronic distances rl~, r13 . . . . . . .  etc. 
Such a method has been found to be very effective for two electron systems 
like He+ions and the hydrogen molecule, and ir has been shown by Hylleraas, 
L6wdin and Redei that by using simple correlation factors of the type ear~, 

or (1 -k ar l2 ) ,  the energy for the Helium atom could be improved much 
beyond the value yielded by the H.F. equations. The introduction of the 
correlation factor modi¡ the field in which an electron is moving, and 
each electron moves in the average potential field of the remaining electrons 
subject to the condition that no two electrons can approach each other 
closely. The wave functions of the different electrons moving in such a 
correlated ¡ will be different from the one electron orbitals obtained by 
solving the H.F. equations, and an important problem in the study of cor- 
relation effects is to determine the one-electron orbitals in this case. The 
equations determining these orbitals are given in Section 4 by making use 
of a formula given by L6wdin ; in Section 8 we give the correlated Hartree- 
Fock equations for non-stationary systems. In Section 4, we have given 
the integro-differential equations satisfied by the generalised density matrices, 
and from these it is shown that one can obtain ah expression for the energy 
matrix of the system which will be useful in determining a correlated Thomas- 
Fermi destribution. In Section 7, some remarks are made on the effects 
of correlation by a study of the general equations for the simple case of two 
electron systems. 

2. DENSITY MATRICES 

Let ~g (x~, x2 , . . . ,  xN) be the normalised eigenfunction of the system 
so that we have 

J" ~*~gd~- -~ 1 

where 

I1) 

S d ~I - S dxldx~ . . .  dx~  

denotes integration over all space co-ordinates and summafion over spin 
co-ordinates. The generalŸ density matrices have been defined by 
L6wdin as follows: 

r ( x ;  I x~) 

~- N f ~ *  ( x l '  x~. . . . XN) ~ (XlX,,~ . .  XN) dx,z . . .  d x N  
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r ( x / x ;  I x~x,) 

~~~r ~,(x~,x,x~ ~~~~(x~~, x~, ~x~ ~x~ 
= , , j2i  j . . . . . . . . .  

_ T e ( X l ' X  , �9 �9 �9 X ' I X l X g . .  . ~  X V  ) 

= ( N p ) y  7t ,  (x l , xz , . . "  xp 'xp+1. . ,  xN) ~ ( X l . . . X N )  

• dxrr~. 1 . . .  dxN. (2) 

For  a system of N electrons, ~ is ah  anti-symmetrie function of  the co- 
ordinates (space as well as spin) of  the eleetrons and we choose for ~ the 
fotlowing determinant:  

~~ (xO r . . .  ~~ (xO 

~t = (N 1)-* ~b x (x,) ~b~ (x2) . . .  ~bN (x,) (3) 
, , ,  . . . . .  , . ,  . . . . . .  . . . . . ,  , 

~1 (x~) 4', (x,O . . .  ~,~ (x~) 

We assume for the sake of  simplicity that  the ~b's form ah ortho-normal 
system so that  we have 

(4) 

Now 

1 1 
,/s, ~ = �9 p = �9 ~. det Ii PiS 

where 

N 

pis = 27 ,~k* (xi) ,h, (xs). 
/t----1 

For  future applications, we nced also the quantity p'ij dcfincd by 

(s) 

N 

o'ts = 2: 4,k* (xi') ~k @9. (6) 
kffi l  

Since the ~b's forro an ortho-normal set, we have 

S p'iNp~jdx~ = P'i j . (72 
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The integral of p over the co-ordinates of the various electrons has been 
givert in Mott  and Sneddon. 5 By adopting a similar procedttre for the 
evaluation of  th~ integrals and making use of (7), we can show that 

P ( x f [ x O  = p'~~ = Pi' 

T' ( x / x~ '  l x l x , )  = l l p'~. 
P'~2 

I 
2 FwtX ~X p �9 �9 X p '  [ , 1 ~ . Xl . .  Xp) = =~ 

F "  

1 

Pi11 . . ,  p11t ) 

. . . . . . .  o o  o o  

P ' p l  �9 �9 �9 P'pp 

= ~ P'v (8) 

where we have written p'p for the determinant in the above line containing 
p ro,xs and p co~umns. 

There are several problems that deal with time-dependent proeesses, 
and the density matrices in such cases can be de¡ analogous to (2), Thus 
if VI (x~x2 . . .  x~t) is the normalised time-dependent wave function for the 
system, we define the density matrix of order p as follows : - -  

V(xl'x~' . . .  xp't' l xlx2 . . .  xpt) 

_ _ - -  ( N )  Jl" kg*dxv+x(xl'x=' dxs.X"XP+l ""  xNt') ~g (xz ""  x~t) (2 a) 

If  as before we choose for kg a determinant built from one-electron orbitals 
so that 

kg (xx . . .  x~t) = (NI) -~ det {~b a (Xlt) . . .  4J~ (xNt)} (3 a) 

where the orbitals ~b 1, ~ ~ , . . . ,  ~br~ satisfy the orthonormality conditions 

J" ~bi* (xt) ~k* (xt) dx =- �91 (4 a) 

then it foUows that 

l ! P I 
I" (x~ x.,. . , . x p ' t '  I x~ . . .  x p )  = ~ .  �9 (8 a) 

In the above 

ppt 

Ptzz P'z~ �9 �9 �9 P 'zp 

P'Sl P'~~ " , .  P'sp 

P'pl P'P~ " ' "  P'PP 
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and 

o'0 = o' (x ( t ' ;  xj t)  = 2 4,k* (x( t ' )  4,k (xjt) 
k 

c6 a 

Further ir G ( x t x z  . . .  x~) is a symmetric function of the co-ordinates o 
l eleetrons, it can be shown (see Appendix I for proof) that 

(7) N!f 
ly 
G (XxX~ . . .  xz) ~o's a.. dx~ 

~'  ( N - - t - - l )  
G (xa xz) p z+l dx• dXl+l + 

�9 " - T i -  ' "  i ~  

P ' l l  . . . . . . . . .  P l [ '  P ' I [ + I  

. . . . . . . . . . . . . . .  ~ , .  

y G(x l  . . .  xz) 
• dxa . . .  dxt+~ p 'h  . . . . . . . . .  p 'u  p'Lz+~ 

?P'l+l, 1 bP'l+l'l 0 
3t " " " 3t 

(9) 

3. THE ENERGY OF THE SYSTEM 

The Hartree-Fock equations ate the Euler differential equations of the 
variational principle 

8 j" 7 t* H 7 t &  - = 0. (10) 

In view of the one-eleetron approximafion, the Hartree-Foek equations 
do not adequately take into aceount of the Coulomb eorrelation, and we shall, 
following L6wdin, take the correlat› wave function of the system as the 
product of a correlafion factor which is a symmetric function of the inter- 
eleetronie distances and the Slater determinant. The wave function q~ for 
the system then beeomes 

= g(r l~ ,  lr3 . . . )  ~ .  (11) 

For g, we shaU choose the forro 

g (r~2, ra,~ . . . )  = a + fl 27 f ( r  0) (11 a) 
i1 

where the functions f ( r 0 )  are supposed to be known. The simple functions 
rl~. or (earl, - -  1) may be regarded as good choices for the correlation function 
f ( r l~ ) .  One of the constants, say a, can be determined from the r 
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and fl can then be chosen as the best parameter minimising the energy. Now 
the best one-electron wave functions ~bi (x) (i = 1, 2, . . . ,  N) can be dete _~ined 
from the variational principle 

�91 = 8 1 ~* H~dr = 81 II"* Hcg*dr = 0 (12) 

where 

Hc = gHg. (13) 

Before writing down the variational equations we shall first fix the forro 
of He. 

Now 

He a + f l  '~ ~=a ,,k 

{ ,~ f(rij)} X e + f l  ,J 
t < t  

N 

+ al3 ~ S [f(rst),E(i)] 
•=I t ,  t 

+ 2afl ~ ~ f (r , t )  F(xi, xk) 
el  ii: 

s < ~  ' i < / r  

+ ti" S I 
i = l  #t#P 

~ - # < t  e P < t  ~ 

f(rst) E (i)f(rs,t,) 

) 
+ Z X 2 f(rst) F (xi, xk)f(rs,t,)~ 

St ~k ~ t l '  J s ~ t  ~ < k  t t ~ t  n 

= T1 + T2 + Ta + T  ̀ (14) 

In the above [u, v] denotes the operator (uv + vu). Consider now the terna Ta. 
The summation here contains N 2 ( N -  1)/2 terms. Of these, the number 
of terms for which i, s and t are different is 3 (~) while the number of terms 
:nvolving two indices only is N ( N -  1), 
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Then 

Let us write 

T2 (i, s) = al3 [f(ris), E (i) q- E (s)] 

Tz (i, s, t) = al3 {[f  (rst), E (i)] -k- [ f  (rit), E (s)] 

q- [f(ris), E (t)]}. (15 a) 

T2---- S Tz(i,s) q- S T~(i,s,t). (15b) 
~# i , a t  

i ~ s  i '<e-<$ 

Consider next Ta. The summation over i, k, (i < k) and s, t (s < t) 
contains N 2 ( N -  1)3/4 terms. Of these, there are (~) (~) terms of the 
type rst F (xi, xk) involving four different indices, 6 (I) terms of the type 
F(xi, xt)ris involving three different indices and (~) te rms  of the type 
rik F (xi, Xk) involving two indices only. If  we write 

thcn 

Ta (i, s) = 2afl f(ris ) F (xi, Xs) 

Ta (i, s, t) = 2a/~ [F  (xi, xt) (f(ris) +f(rst))  q- F (xi, Xs) 

x (f(rit)  q- f(rst)) q- F (x s, xt) (f(rsi) q- f(rti)) ] 

T3 (i, k, s, t) = 2a/3 [ f ( r ik)  F (Xs, xt) + five similar terms arising 

from the permutation of i, k, s and t], 

T3 = 2~ T3 (i, s) d- ~ T3 (i, s, t) -k 27 T~ (i, k, s, t). (16) 
i/~ 4k ,  s i , k , s ,~  

We shall finally consider T4. The first term of Te, involving the operators 
Ei, consists of N 3 ( N -  1)3/4 terms and these can be split up into 30 (~) 
terms containing ¡ different indices, 48 (~) terms containing four differ- 
ent Ÿ 21 (~) terms contairting three different indices and 2 (~) terms 
containing two different indices. Similarly the second term of T4 involving 
the operators F (xi, Xk) consists of N 3 (N -- 1)3/8 terms ~ nd the term~ irtvol- 
ving 2, 3, . . . ,  6 different indices in this ate given by the relation 

N 3 ( N  - -  1)3 90(~) + 1~0(7) +~~4(7) + ~4(7) 
+(~) (17) 
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Let us denote by T4 (i, s), T4 (i, s, t), T4 (i, k, s, t) . . .  T4 (i, k ,  s, t, s', t') the 
temas in T4 involving 2, 3 . . . .  , 6  different indices. Then 

T 4 =  ~ T4( i , s )  q- . . .  q- Z' 27 S T4 (i, k, s, t, s', t'). (18) 
i ' ~ 8  , ~ <  ] [  < II < I~ < :  l P  ( i ~  t 

We shall now write 

He 1 = ~~ E (i) 

He ~ (i, s) = a~ F (xi, xs) + T2 (i, s) + T.~ (i, s) + T4 (i, s) 

He 3 (i, s, t) = T2 (i, s, t) q- Ta (i, s, t) + T4 (i, s, t) 

. . ~  ~ 1 7 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ ~ 1 7 6  ~ ~ 

He ~ (i, k,  s, t, s, t') = T4 (i, k ,  s, t, s', t'). (~9) 

Then obviously 

N 

He = He 1 (i) § N He '  (i, s) + . . .  -t- ~.f 

•  Z Z -~~~',..-,''~. 
4k, S t ,  S t � 9 1  p 

(2O) 

We may note that the functions He z (xi, x, . . . .  , xz) are symmetrie in theŸ 
arguments. 

N o w  

W = f q3* Hc~d~ - = f ~ *  HEZ&'. (2I) 

From (20) and (8) we have 

W = f He ~ (xa) F(xa' ] xO dXl Al- I He t~ (XlX2) 11 (Xl,Xt2 i xlx2 ) dxldxf ~ 

+ . . .  I Hc o (x~x~...,xO r ( x / . . . x o '  I x~...x~) dx, . . .dx~.  

(22) 

where we ate following the convention that, in the integrands, the operators 
He 1 (xi), He 2 (xi, x2) �9 �9 �9 operate only on the unprimed co-ordinates xi, . . . ,  x6 
and that, after these operations have been carried out, we have to put 
x i ' =  xi;  x~' = x2; . . .  ; x6' = x6 before the integrations. 

We see from (22) that the energy of  the system is a funetional o f  the 
density matrices alone. 
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4. THE CORRELATED HARTREE-FOCK EQUATIONS 

L6wdin has determined the onr functions ~~, ~~, . . . .  ~b~ 
that make the determinant ~ the 'br  approximafion for the eigenvalue 
problem 

t2op. ~ : W 7  t (23)  

where ~9op. is a many-particle operator expressible as 

I ~ ' D o + l Z ' I 2 i j k +  (24) Qop. = *'2o + Z t2~ + ~ . . . . .  
i 4t t jk  

The prime in the above indicates that the summation excludes temas having 
two or more Ÿ equal. 

The equations determining the functions ~bx, ~b2, . . . .  #N ate given by 

t2,r (xO + f t212 [ q,~ (xi) ~k(x~) I p (x,', x3 p (xz'xz) dx2 

+ ~  

r (xO ~,k (x.) r (x.) 
t X p (X;Xl) p (x, ,) p (x;x~) 

p (x;xO t, (x;x,3 p (x;x,) 

dx~dx3 

N 
= 27 Aki~bi (xi). (25) 

t[=.1 

Now He is a many-particle operator similar to (24) and thus the best one- 
electron orbitals that minimise the energy of the system can be obtained 
from (25) by replacing 9op. by He. By expanding the determinants in (25) 
along the first row and denoting by p'Z;lj the co-factor of p'lj in p't, we can 
write the integro-differential equations determining the correlated orbitals as 

Hd (x0 'bk (x0 + ~ f H, z (x~x,.. .  xO 
Iffi2 

1 

x ~ P'l; ~~k (x_j) dx2 ... dxt 
j.= l 

N 

-- Z Ak#i (xO = 0 (k  = l ,  2 . . . .  , N ) .  (26), 
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The conjugate complex of the above equation is given by 

2 , He ~ (xi) ~bk* (x1) J l -  (l -- 1)! Y Hct (Xl . . .  X{) 
/=2  

• 

| 

Z 
./----1 

P'*l; ~~,'b*k (x~) dxz . . .  dx{ 

N 

- Z a~kr (x3 
i----1 

= o (27) 

Equations (26) determine the correlated orbitals ~bi(xi). They are 
a generalisation of the Hartree-Fock equations and since they explicitly take 
into account of correlation effects, they can be expected to give better theo- 
retical values for physical parameters like energy, than the simple Hartree- 
Fock system of equations. 

From (26) we have 

1 
hki= Z (l -1)! f 

| ffil  

~i* (xi) He { (xi . . .  x0 

• Z P't; xj~k (xi) dxl ... dxt (28) 
jffil 

a n d  from (27) we see that 

;~ki = h*ik. (29) 

As in the H.F. scheme we see that the ;~ki are a set of arbitrary constants 
forming a Hermitean matrix. Again as in the H.F. scheme, the set of orbitals 
~hl, ~b2, . . . .  ~N are not uniquely determined as the equations (26) ate in- 
variant under an orthogonal transformation of these functions. The ele- 
ments p'ij of the density matrices (and consequently the density matrices 
themselves) are, however, uniquely determined. 

Multiplying (26) by ~'k* (xi'), summing over k and remembering that 

l 

l ~ ~ ' ~  't ' . .  ' ., 17 P ; l jP  li ~ P ( x l '  . xz ]x~ �9 xz) (30) 
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we get from (26), (28) and (30) that 

6 

.Z 'Y"c'~. x..r~xl..x. �9 ' '  2 ~ ~ 1 7 6  

/ = 1  

, x (  [ x~ . . .  xz) d x ,  . . .  clm 

1 =Z'~,-1,,Y 
l l l l  

p~~I-Ifl (x~,x2 . . .  xO 

X 

' ' l  
Pa~ P1~ . . . P l l  

P'2~ P'22 . . .  P'21 d x t ~ d x 2  . . .  d x l .  
. ~ 1 7 6  . . . . . . . . . .  o 

; p t 

P llz P l8 . . .  P l l  

(31) 

Multiplying (26) by r (x` and subtracting from it the corresponding 
equation for the conjugate of ~Ir (x,J multiplied by ~k (xi) and summing 
over k, one gets 

6 

1 ~l (l--1)lf Hel(xlxD 

X 

P'al P'~2 . . .  P'a% 

P'21 P'22 . . .  P'27, 
, , ,  . . . .  , ~ . ,  . . . . . .  

P'lz P'12 . . .  P'll 

dx2 . . .  d x l  

6 

l = 1  

1 
(1-- 1 ) ! ,~  He/(x~ . . .  

g 
Xl) 

X i.x O l a  P 1 2  . . .  Pl l  
p i ! 

P ~ a  P 2 3  - . . P 2 l  
2 " ' '  

i i I 

PI , ,  PI2 " . .  P l l  

dxz. (32) 

Equations (31) and (32) are integro-differential equations governing the density 
matrices. When correlation effects are neglected, we have g = 1 and there- 
fore a = 1 and/~ = 0. it can easily be verified that in this case equations 
(26) reduce to the ordinary Hartree-Fock equations. Further, ff we write 
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F (xi, x2) ----- e= [ rlz and B (xO = I F (x 1, x2) p (x~, xz) dx~, then equation (32) 
reduces to the well-known equation: 

{E(x)  + B(x)  - E(x') - B(x')}p(x,x') 

--  .f [F (x, x")'-- F (x', x")] p (x, x") p (x' ,  x') dx" = 0. (33) 

I f  we write 

p,. h 2 
E (x)  = ~ + V (x) = 8 , : m  V x ~  + V (x),  

equation (31) becomes 

h~ y -- V x p ( x , x ) d x '  + ( V  + B)•(x ,x)  87:m �91 (x x') 2 , 

= I F(x,  x') lp(x, x')IZdx' + fp (x ' ,  x) E (x ' )p ( x ,  x ')dx'  

+ I F (x', x") l p (x, x')12 p (x", x") dx'dx" 

-- I F (x', x") p (x', x) p (x, x") O (x ", x') dx'dx". (34) 

The above equation can be used to determine the charge density o (x, x) 
of the electron cloud of the atom. 

5. THE ENERGY MATRIX 

Let us now consider in greater detail the left-hand side of equation (32). 
We have 

2 I f He~(x* " xO L.H.S. = He t (xi)P'=t+ ( l -  1)! dx~ . . .  dxz 

X 

P'=I P'=~ "." P'r 
P'9.z P'~~ . . .  P'2Z 

. . . . . .  �9 . . . .  . . . .  

P'h P'la - . .  P'I/, 

8 

1 

Ir=2 

X 'r 11 "3F P ' = k P ' l ;  zk d x 2  �9 �9 �9 d x h  

k==2 

(35) 
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Now since He t (xi . . .  xt) is a symmetric function of  xx, x2, . . . ,  xi,  it can 
be seen by simple transpositions (x~, xk ) (k  = 3 , . . . , / )  of the integration 
variables x~, xa, . . . ,  xk that the ( l -  1) terms in the second summation of  

. . . i t d x  the above integral are all equal to j" He t (x~ xz) j9 aNO [; lgU. 2 " ' '  dxz. 

Thus,  

~y L.H.S. == He 1 (xO P'el + ~ He ~ (xl . . .  xO 

• {p',iP't; u + (l -- 1) P',,zp't; u} dx2 . . .  d.xz. (36) 

Now Pij = P (xi, xi)  = Y, ~bk * (xi) ~k (x:) can be regarded as the (xi, xj)-th 
element of  a continuous matrix p. We shall define a matrix K (x~, x~) 
by means of  the foUowing relation: 

6 

(x~, x~) ~ 37) 
1 

K (x~, x 0  = K ~ (x2, x , )  + (1 - -  1)! K~ 
I = 9 .  

where  

and  

K * (x~, x~) = I a (x~ - -  '7) H~ ~ (,J,p~) a ('7 - -  x~) & 

K z (x2, x~) = �91 (x2 - -  x , )  B z (x~) + ( l  - -  1) I H~ ~ (x~ . . .  x~) 

X P'l; tedxa . �9 �9 dxt ; 

- -  f H ~  ~ (x ,  . . .  xi,) 

(38)  

P*I,1 " " �9 P'l| 

dx~ . . .  dxv  (41~ 

B l (Xl) : f He  I (x1 . . .  xi)  P'Z; 11 dx~ . . .  dxl. (39)  

We shall define the (~l)-th element of  the product  by pK l by 

(pKZ)~l = S K z (xe, xi) P (x~,x~) d.'q. (40) 

The definition is the same as the usual matrix multiplication law, but  we take 
care to write p (x,, x2) after the operator K (x2, xi) so that  the latter can 
operate on p (x,, x~). We can then show the left-hand side of equation 
(32) to be the (al)- th element of  pK. We have in faet 

(pKl),~a = f 3 (xa --  x~) B 1 (xi) P (x~, x2) dx2 

+ ( 1 - -  1 ) ~ H e l ( x l . . . x z ) p z ; l ~ p ~ 2 '  ' . . . d v ~ . . . d a : ~  
! 

= B z (x�91 p'.~ + I H~ ~ (Xx . . .  xz) ~ p'z; ~kp'..kdx~ . . .  dxt  
k,=2 

t �9 
P ~ t  P '~~  " " P ~ l  

P'21 Pt'a2 ' ' '  Pt2~ 
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Further He ~ (Xl)P'al is obviously the (a!)-th element of  p K  1. 

hand side of  equation (32) is the (a!)-th element of  pK. Similarly 
6 

R.H.S. HcX (x,~) p ' ~ 1 f H c l ( x ' ~ ' ' ' x l )  
= "1~ + (l 1)! dx2 . . .  dxz 

1=-2 

t t , , ,  
O l a  0 1 2  . . .  P l l  

I t 1 ~ 
X Osa 022 . . .P2l  

t ? r 
P la P I 2  " ' "  P l l  

= He 1 (xo) va1, + ( N  - -  O! (l  - -  1)! 
I z 2  

X I ~ ( X l X  $ . . .  X N )  He ~ (x,~x2 . . .  xl) 
x 7 t* (x,,x2 . . .  xN) dx2 . . .  dxx 

6 

= He I (xa) Pal' "~ (N --  l)! (l --  1)! 
I=2  

X I ~ *  (x,~x~ . . .  x~) He ~ (x~x2 . . .  xz) 
X 71 (xlx2 . . .  x~) dx2 . . .  dxN 

sinee He t is a real operator. 

Thus  we have 

R.H.S. = He 1 (xa) Pal' + 

X 

1 (x~ 
(l I) f He/ ... x0 

-- ! dx~ . . .  dxz 
t t t 

P ~ I  P 0.2 " " " [3 dtl 

P'21 P'22 . . .  P '2l  

. . , , , , o , , , , , . o , ,  

P t l l  �9 �9 �9 pr l l  

Now 

Thus the left- 

(42) 

(43) 

6 

(Kp).~ --  X q ~ r 
1) ! y K ~ (Xa, X~) (X~, X~) dx2 

1=1 

6 

Z 1 {B z x ' = ( . )  o ~~ + (1 - 1) I He z (x~ x~ . . .  x~) 
(t - 1)! 

I----1 

X P'l; 2,P'21dx2 �9 .. dxl} 
= R.H.S. (44) 
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as can be seen by expanding the determinants in (43) along their first columns. 
Thus the equation (32) is the (~l)-th element of K p -  pK. Hence we can 
write 

Kp -- pK = 0. (45) 

The second term in Kt (x2, x0 subtracts from the matrix B (x2, x a ) =  
8 (x~. -- x0 B (x0 the physically irrelevant terms corresponding to the action of  
ah electron upon itself and at the same time accounts for the exchange elTect. 

We can in fact express the energy of the system in terms of the matrices 
K t (x~, x~) we have 

W = D  p , ~.t (46) 

1=1 

where D denotes the diagonal sum or spur. 

The matrix K is a generalisation of the mat¡  (E § B -- A) (see Frenkel, 
pages 428-36) for the case when correlation is introduced into the theoretical 
formalista, and reduces to the latter when correlation is neglected. Ir can 
thus be regarded as the energy matrix for the system in analogy with the 
theory of the density matrix based on the Hartree-Fock equations. The 
importance of the energy matrix lies in the facility with which it enables one 
to pass on to a representation in the phase space and thus to obtain a semi- 
classical expression for the density of the charge cloud of the system. It is 
weU known that by transforrning the matrix K (xi, x2) into one {K (xi, pO} 
involving t h e  position and momentum of the particles, one can obtain 
the so-caUed Thomas-Fermi-Dirac equation that includes exchange effects 
besides. Thus the matrix K (xi, x~) defined in (37) can be used as a con- 
venient starting-point to derive the equation governing the charge cloud of a 
molecular system; the details of this transformation theory leading to a 
correlated Thomas-Fermi cbarge distribution wiU be published separately 
in a different paper. 

6. A G~hr~gAL CORRELATION FACTOR 

In the above discussion, we have chosen a correlation factor which is 
a linear function of  f ( r i j )  where rij is the inter-electronic distante between 
the i-th and j-th electrons; each term of g thus contains the co-ordinates of 
two electrons only. While this type of correlation factor is the simplest 
to deal with artd can certainly be expected to improve the H.F. equations, 
it does n o t  take into account of the multiple correlations connecting the 
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positions of different electrons at the same time. A general correlation 
function is either a polynomial in the (~) inter-electronic distances of a 
convergent power se¡ in them. Let us suppose that He ( =  gHg) is of the 
form 

~Iz ol H e  = ~ I-I~ z (x~,  x~ . . . .  , x . 

| : 1  :1,. .  Ill 

(47) 

The correlated H.F. equations in this case beeome 

N l 

1 
Z (l_ l ) l f  He~(Xl, X2, ...,xO Z 

1=1 j = t  

p't; ~jr (x~) dx, ... dxz 

-- Z ~ki~i(x~) = 0 ( k =  1, 2 . . . . .  N). (48) 
i i 1  

The difference between (48) and (26) consists only in the summatiort 
for l; while in (26) the summation for l runs from 1 to 6, in (48), it runs from 
1 to N. The integro-ditferential equations satisfied by the density matrices 
in this case can be obtained from (31) and (32) by making the summation 
for l to run from 1 to N. 

7. SPEC~ CASE 

In this section, we wfite down the explicit form of the correlated H.F. 
equations for the case of the simplest two-electron system, namely the Helium 
atom. We do not propose to evaluate the energy of the system as this has 
been done by several authors, but give the form of the equations (26) as this 
might enable one to have some insight into the meaning of these equations. 
We have here 

t2m ~ J 

He ~ (Xx, x2) = a 'F (xi, x,) + a/3 [f(rl ,) ,  E (xl) + E (x~)l 

+ 2afle=f(r1~) + fl=f(rx~) lE (xi) + E (x,)]f(r~,) 

+ fl*etf ~ (rl,) (49) 
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Equations (28) become 

I--Ie I (x) ~1 (xO "q- [ I He 2 (xi, x~) ~b�91 ~ (x2) dx2] ~bl (xO 

- [ I rI~~ (x, .  x,) ~~* (x,) q.. (x~) dxd q., (xO 

= F~~~~ (xO (50) 

�91 a similar equation for electron 2 which may be obtained from the above 
by interchanging the Ÿ 1 and 2. In the above we have chosen a dia- 
gonal representation for the matrix (~ij), and Ea and E2 denote the diagonal 
elements. He I denotes the kinetic energy operator of the el~ctron 1 plus 
its potential energy in the field of the nuclei. The second term in the brac- 
ket gives the average of the operator He ~ (xa, x2) fora  l l  po sitions of the electron 
2 and the third term gives the exchange effects. Since He ~ (xi, x2) contains 
a terna a2F (xi, x2), the part of ir containing the factor ~~ can be interpreted 
as the potential energy of electron 1 moving in the average electric field of 
electron 2. The terms al3 [ f ( rx2) ,E(x l ) -b  E(x �91  gire the inttuence of 
correlation on the kinetic energies of the electrons. The term [afl S f ( ru )  
~b~. 2 (x2)dx~] E (xO especially shows that the kinetic energy of electron 1 
is not independent of the motion of the electron 2, but is correlated with it. 
Since correlation reduces the chances of two electrons coming close to each 
other, it also reduces the fluctuations in the kinetic energies of the electrons 
and thus tends to make the distributions of the kinetic energies rather uni- 
form. ff we take f(rl~) = rl~, then a/3 ~.ff(ra~)/rx~ ~P�91 (x~) dx2 = afl~~ and 
therefore the Hamiltonian for the electron 1 contains a constant term. By 
transferring this term to the right-hand side, the latter becomes (e x -- afle 2) ~b~ 
and thus the irdtuence of the correlation factor is to reduce the energy of 
the system. Since f(r~2) is an increasing function of r12, the effect of the 
term [32e~f ~ (r~~)/r~2 in He ~ (x~, x~) wiU be to increase the average inter-electro- 
nic distante and consequently to dimir¡ the energy of the system. 

8. NON-STATIONARY SY$TEMS 

There are several problems of physŸ and chemical importance that 
depend for their solution on the time-dependent Schroedinger equation 

H + ~ - i  x = 0. (51) 

In this section, we consider such non-stationary systems and find out the 
orbitals ~bk (x, t) that make the function ~b = g~U, where ~q is given by 

A~ 
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(3 a), the ' b e s t '  approximation for the equation (51). These orbitals are 
given by the variational principle 

O f  

where 

h b 8 f ~b* (H + ~ ~ )  ~d.  = 0  (52) 

G = g e  

r 1Z' = a ~ + G (i, j) + ~~. G(i ,L  k, 
~J 

1Z + ~ G q,A k, t) (53) 

G (i, j)  = 2aflf(rª + fl2f~ (r0); 

"f' r G (i,j,  k , / ) = 2 f i  2 {f(r i j~f(rkz~ + f ( r i k ) f ( r j z )  + . / (  iOf(rjk)}.  (54) 

We shalt now evaluate the variation in (52 a) in two steps : first find out the 
variation of Jx -- J" ~* Hc~dr and secondly calculate the variation of 

j~ = f ,-,_m, ~k~ ~ , ~ -  ~ a~. (55) 

(a) First consider 

M, ---- S 8~* Hc~Pd~ + S ~~Hc ~v* d-r. (56) 

Now ~ ~*  He ~vd~- is given by (22) and S ~T* HcTd, can be obtained 
from tkis by varying only the primed quantities (or the quantities with an 
ar without varying ~b~, ~b2, . . . ,  eN. We shall dcnote variations of 
this typr by �91 Similarly-S �91 d-r can be obtained by replacing the 
F's in (22) by their complex conjugates and varying only the functions 
~1, ~2 . . . . .  $N in I'* (x~'x2' . . .  xz' [ xi . . .  x0 (1 = 1, 2, . . . ,  6). As mr 
tioned earlier we follow the convention that the operators He 1 and a/at 
operate only on the unprimed quantities and that after thcse operations have 
been performed one should put x i ' :  xi ( i---1,  2 . . . .  , N) and t ' =  t in 
the intr 
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Since by (8 a) the T"s are functions of  P'ij, we llave 

�91 r(Xl 'X2'  . . .  xz' l xl  . . .  x~) 

Z ~r(x(  ... xl'lx~ .. xO 
= ~ ~ -  " �91 P'ij 

Pt~ 

' ( 2  ,) 1 Z  ' " = ~ P z;o 8~k* (xi') ~k (xi 
t ,  J : l  = 

'Z where p ; i# is the co-factor of  P'ij in P't, 

N o w  

(57) 

S 8 ~ *  H c ~  d* 
6 

= �91 Z SHe z(xl . . .  x 0  P ( x l '  . . .  xi '  [ xi . . .  xt) dxl . . .  dxl 
| = 1  

= ~ I He z (xi . . .  xz) X Z O'Z; 0 Z �91 qJk* (xi') ~blr (xi) 
| ~ - I  ~[. j = l  k m l  

X dxx . . .  dxt 
6 

1 
= Z ~ f Hcl (Xl . . . xO 

1=1 

x e'z; li 8 Ck* (xi') ~k (x9 

ZZ'~Z 1 + P ;ii ~~k* (x()  ~k (x9  �9 (58) 

N o w  the terms corresponding to the cases i = 2, 3, . . . ,  l can all be obta ined 
f rom the first t e rm of  the above  bracket  by  means  o f  the cyclic permuta t ions  
(xi, x~); (xi, xa) ; . . .  (xi, xz) of  the integrat ion variables and  thus the sums 
corresponding to the cases i = 2, 3, . . . .  l a te  all identical with the sum cor- 
responding to the case i = 1. Thus  

f � 9 1  t* H e ~  d~" 
6 1 

=~( l  1),f He z (x~ . . .  xO 

I z 2  ,} 
--~1 k = l  
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A similar expression follows for j" $~He~* dz in which the variation acts 
on the unasterisked quantŸ alone. Thus 

Z s~~ 1 ,~~~* (xO 
~Jx = ( l -  1)! 

|~1 J=i z"=l 

X {He ~ (xl . . .  x i )  p'•; ij@/r (x i)  dx~ . . .  dxl} 

+ .f �91 dT. (60) 

(b) Next we have 

SJ~ = G S ~ *  -~- d r  - -  G S ~  ~ d . .  (61) 

Now 

$* f G~* ~/- dr 

6~ 2 

N 

~t dxx 

+ 
4 

8"~ G (Xl . . . x z ) - - ~ q  dx~ . . . d x b ~  

1=2 

where 

Q/+I : 

+ 
4 

X ( N - l -  l~ 1) �91 f G(xl . . . . . .  x z ) Q t + x d x l  dxz+l, 

(62) 

P11 P12 . . . . . . . . .  PII;,-x 

,021 P28 . . . . . . . . .  P2I+1 

P/I PI~ . . . . . . . .  PZ~+~ 

bp'l+1, i bP'I+I' I 0 
bt " "  3t 

(63) 

C�91 

N 

XI 
�91 

�91 (xi, t) b~bk (xi, t) dxx + tz q- t a 
bt 

(64) 
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where t~ and t3 denote respectively the second and third terms in the above 
expression. We shall first consider tv We have 

4 

t, = Z ~ �91 f G (x t . . x l )  ~  l+z  d " �9 bt .~a . . .  dxl+x 
|=2 

4 

1 -I~Y G (xa . . .  xz) ~t 8" ,o'z+~ dxa . . .  dxz+l 
i=2  

4 

d x x . .  dxl+l 

X P l+l; ii 

4=1 J=l 

Z S~~* (xi') 4,~ (x9 �9 
~=1 

(65) 

; ff~ (x~, t) ~k (x~, t) . .  ~I, (xz+~, t) ! 
I r t 

pkl+ 1=  P 2 1  P 2 2  " �9 " P 21+1 
, .  . . . . . . . . . . . . . . . . . .  . ~  . . . . . .  

t t t 
P I+1, I P / + 1 , 2  �9 �9 �9 P / + 1 ,  I+1 

t2; 

4 

Z ( N - -  l-- 1) G(x~ . 1! f ..  xz) dxl.. dxl+l 

X Qt+a; ii �91 (xi) ~bk (xj) 
= J = l  '- k 

(z ~I )} + Z QI+I; l + l ,  ~ � 9 1  ( X ] + l )  ~ ~  X i )  . 

t=1 

(67) 

(68) 

Next 

where 

Now the integrals of the sums corresponding to the cases i = 2, 3 , . . . ,  1 
are aU identical with the integral for the case i = 1. Further let us inter- 
change the integration variables xi and xz+l in the sum corresponding to 
the case i = l + l .  Then we get 

4 

|ffi2 

N X ' t  . P k / +  1 
• ~ ~ 4,k* (xl) ~ T -  dx~ . . .  dx~~.~ (66) 

k = l  
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Now 

Q~+I; Z+l, j = PI+l; ~+1, j" (69) 
Interchange as before the variables XZ+l and xx in the second terna in the 
bracket of the above integral. Then we get 

N 
- t - l )  

im2 k--1 

~~lk * (X O dXl  . . .  dx[+ 1 

X IG (xi . . .  xi) Qz+I; li ~bk (xj) 
t=1 

1 

tm=l 

(7o) 

(c) ThŸ the orbitals $~ (x) satisfy the orthonormality conditions 

I ~bk* (xi) r (xx) dxl = 0 (71) 

O~ 

~tk, 1 ~r * (x3 ~~ (x3 dx, + Aki ~ r * (xi) *t,, (xx) dxl ---- 0 
(~ ,k=  1,2 . . . .  ,N) 

where ~k~ ate arbitrary constants. 

(72) 

Subtracting (72) flora �91 ( J ~ -  i/~ J~) which is givert by (60), (64), (66) and 
(70) and equating to zero the coefficients of the variatŸ �91 (xi), we get 

$ 
1 

l=-2 

Z 

• f , o , ( x , . . ,  x~) Z"'~;~, *~(x,)~x '  ~x, 

4 

- ' .Z  ~Y ('~176247176 
1=2 

?Pkz+l dxz dxt+x x - - - -~ -  . . .  

4 

-- i~l Z (N-- l ! l - -  11 

! s 2  
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X f IG (X 1 . . ,  X|) Ql+a; 1~ ~bk (xi) 
J~=l 

' } 
11=1 

--- ~ 2tkt ffi (xi) (73) 

�91 a similar equation for the complex conjugate of Ck (xx). 

In the above equation, the Lagrangian multipliers A/~i ase funetions of 
time; further when correlation is neglected, (21) reduces to the time-dependent 
H.F. equations as can be seen by putting a = 1 and q = 0. 
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S ~ Y  

The paper deals with a study of correlation effects in many-electron 
systems. Coulomb correlation is introduced into the theory by multiplying 
the Slater determinant formed from the one-electron orbitals by a correlation 
factor which is a symmetric and increasing function of the inter-electronic 
distances. The integro-differential equations satisfied by the best one- 
electron orbitals have then been deduced for non-stationary systems. From 
the extended Hast~ee-Fock equations given by L6wdin, the integro-differ- 
ential equations satisfied by the density matrices have been derived. An 
expression for the energy-matrix of the system which is helpful in deriving 
a correlated Thomas-Fermi chasge distribution, has also been given. 

REFERENCES 

1. Hylleraas, E. A. 

2. L/Swdin, P. O. 

3. 

4. 

5. Mott, N. F. and Sneddon, 
I .N.  

6. Frenkel, .I. 

. .  Z .  Physik . ,  1928, 48, 469. 

. .  Phys.  Rev. ,  1955, 97, 1509. 

. .  Rey. Mod.  Phy . ,  1960, 32, 328. 

. .  Advances in Chemical  Physics,  Vot. 2 (Interscir Publishers, 
New York, 1959), pp. 207-322. 

Ir~ave Mechanies  and  its Applieations, Oxford, 1948, PO. 131-33. 

Wave Mechan i c s - -Advanced  General  Theory Oxford. 1934, 
pp. 428--46. 



192 K.S .  VISWANATHAN 

APPENDIX ! 

We shall here evaluate 

(~)f ~,,'-,,~,...,,x. Tz = ~ G (XsX2 . . .  xz) - f f -  (1) 

and prove the relation (9) o f  Section 2. 

~_~)fO(xlx~...xO 
TI = ~ dxj . . .  dxN 

• PN; ii ~t 
' ~  j = l  

= Tx + Ta (say) 

We have 

(2) 

(3) 

where Tx denotes the summation of  i from 1 to 6 and T2 denotes the sum 
of  !erms for i = l + 1 to N. Since G (x~, . . . ,  xz) is a symmetric function 
of  xa, . . . ,  xt ,  the integrals of  the sums corresponding to the terlns i = 2, 3, 
. . , ,  l ate all identical with the sum for the case i---- 1. Thus 

(~) 
TI = N---~. f IG (x~ . . . x t)  X pN; li ~bt dx~ . . .  dx~r. (4) 

j*x l 

Again the integrals corresponding to the cases j = / +  2 , / +  3 . . . .  , N are 
aU identicM with the value of  the integral for the case j ---- l + 1, as can be 
seen by the transpositions of  the integration va6ables (xi+l, xz+~); (xz+l, xz+3), 
�9 . . ,  (xi+l, x~), Further when j < (l + 2), 

S pN; ~j dxz+a . . .  dxN = ( N  - -  l) ! m+~; #.  (5) 

Thus 

1 ~  lG  (x~ . . .  xz) 
TX 

P dxl . . .  axz§ 

• m-m~j -~t + ( N - I )  m+~;,a-~~, ~ j .  (6) 
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We shall next consider T2. 

By means of the transpositions (xL+~ xi+2) �9 �9 �9 (xl+~, XN) of the integration 
variables, one can see that the integrals corresponding to the cases i = l + 2 
to N ate all identical with the value of the integral for i = 1 + 1. Thus 

N 

s ~pt +l,j dx I �9 . dx N G(xl .. �9 :q) P~; 1§ - - ~ ~ ' -  " 

j=l.  

(7) 

{ Z+j~__ ~P'l+l,j • PN;t+~j- ~t + ( N - - l - -  1) 

• p'N; ~+l,t+~ - -~ t - -~  dx~ . .. dxN (8) 

which follows again by the same argument of permutation of integration 
variables used above. Integrating the first term in the above with respect 
to the variables xl+~ to xN and the second term with respect to the variables 
xt+a to x~ one gets 

T2 = i~ y G (x~ ' ' '  xO 
dxl . . .  dx~+l 

{ '+,~ ~P'~+l,J + (N - - / _  1) • (N - -  l) pt+~; L+~,j ~t 

• 3p't+a,t+~ dx I PI+2;/+l,t+2 bt ~+af �9 (9) 

Let us now eonsider the second term of the above expression and denote it 
by T~". Expanding the determinant pt+~;t+a,l+2 along its last eolumn, inte- 
grating with respect to the co-ordinate of the eleetron (l + 1) and changing 
the integration variable x~+2 into x~+~ in the resulting integral, one gets 

- / - l ) y  
T2 ~ = (N l! G(xa . . .  xO dxl . . .  dx~+l 

A3 
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P / + I , / + I  t /+1} �9 X {lp~+l; 1'+1 ~~~  +-'---'~1 -[- ~ P /+1; ]+2, 0o) 

From (9), (10) and (6), we get on summing T1 and T~ and grouping together 
like terms that 

X Z Oz+l; ~ --~i-] dxl . . .  dx~-1 

I f G (xi . . .  xz) 
+ P. dxa .. dxz+l 

x N--l) 
I=I 

t 

P 1+1; l+~, j - -  ~- 
)P'l+l, j 

~t 

"AC P ' l + l ;  /+1, /+1 ~t j (11) 

or 

TI = ~ y G (x~ . . . xz) dxl . . . dX~+l 

I ~  ~+ ' ~P'ij z+ z • Z pi+l; ii -~[- -+- 
~- J=l J=l. 

P l + l ;  �91 ~ l , j  - - - - -  

2 bp,l+a" j + ( N - - l - -  1) j=l Ot+l; L+l j ~. j . 

~t 

(12) 

On writing the summations in the above terna in a determincntal forro, we 
get the relation (9) of Seetion 2. 


