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Synopsis

In this thesis, the issue of quantum entanglement is studied from a geometrical per-

spective. We have explored the geometry of the quantum state space and relativistic

space-time structure to study the condition for detecting quantum entanglement in

bipartite quantum systems.

The issue of entanglement is then explored in the context of quantum measure-

ment. In all quantum measurement process, the observable to be measured is coupled

to a suitable pointer degree of freedom. This coupling establishes an entanglement

between state of the system and the pointer state. By reading the pointer variable

we obtain information about the observable. The extent of entanglement between

the pointer state and the system state then sets a limit on the amount of information

that can be obtained by reading the pointer variable. We have used this concept

in the analysis of the Stern-Gerlach experiment and explored the concept of coarse

measurement in the quantum phase space.

Later, we investigated the role of quantum entanglement in distinguishing two

quantum states. We explored the geometry of quantum state space and looked at

a couple of the Riemannian metrics (namely the BH and the BKM metrics) that

can be defined on these space. We give a geometrical picture of the space of density

matrices analogous to that of MacAdam ellipses on the space of colours. Some of

these metrics can better distinguish between two neighbouring quantum states if we

use entanglement between the copies of states. We also explore the thermodynamic
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Abstract vii

meaning of the metric and establish a relation between the fluctuations in the free

energy with the BKM-metric.

Finally, we prove a theorem which states that any two parameters (location-µ

and scaling-σ) sub-manifold of a classical probability distribution is isomorphic to

the Poincaré half plane.

The thesis is structured as follows. In chapter 1, we present an overview of the

subject matter and discuss some of the earlier work on quantum entanglement and

measurement. In chapter 2, we discuss a space-time approach of detecting quantum

entanglement, where we show with a few examples how this criterion works using a

Mathematica program. Chapter 3 discusses the Lorentzian Singular Value decompo-

sition and gives the details and the proofs related to the entanglement test proposed

in chapter 2. In chapter 4 we discuss the role of entanglement in a quantum mea-

surement, where we calculate the entanglement entropy between the spin and the

center of mass of the silver atom and argue that when there is sufficient entanglement

between them coarse-graining the Wigner function can give some information about

the spin of the atom. In chapter 5, we discuss how entanglement can lead to better

discrimination of quantum states. We give an operational meaning to the BKM- met-

ric on the quantum statistical manifold and discuss its relation with the fluctuation

in the free energy. In chapter 6, we state and prove a theorem stating that any two

parameter sub-manifold of a classical probability space is isomorphic to the Poincaré

half plane. Finally, in chapter 7, we end the thesis with some concluding remarks and

discuss future directions.
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Chapter 1

Introduction

1.1 Entanglement: A useful resource

Quantum entanglement is one of the most important quantum resources which has

no classical counterpart. Subsystems comprising a quantum system are considered

to be entangled if it is not possible to ascribe states to the individual subsystems

comprising the full quantum system. For example, consider a spin singlet state of

a pair of electrons |ΨAB〉 = 1/
√

2(|↑A〉 |↓B〉 − |↓A〉 |↑B〉), where |↑〉 and |↓〉 represent

spin “up” and “down” along z-axis and A and B label the two electrons. Clearly, this

state can’t be written in the form |ψA〉 |ψB〉 where |ψA〉 and |ψB〉 are the states of the

individual electrons. The subsystems of a bipartite quantum system are correlated in

such a way that measurement on one of the subsystems determines the possible state

of the other. This means that when we measure the state of one of the subsystems,

the measurement affects the possible result that one could obtain when measuring

the other subsystem.

1
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Quantum entanglement is not just an interesting mathematical concept which is

a subject of philosophical debate, it has also been put to real life applications. It is a

resource which can be utilized to perform tasks that are not possible to do classically.

For example, Bennett etal. have shown that sharing a pair of entangled states and

communicating classically it is possible to teleport[1] a quantum state. Entanglement

turns out to be a useful resource in teleportation.

1.1.1 Quantum Teleportation

In order to see how it is used as a resource (which doesn’t have any classical

counterpart) in teleportation[2] of a quantum state, consider two parties Alice and

Bob sharing a maximally entangled state
∣∣φ+
AB

〉
= 1√

2
(|↑A↑B〉+|↓A↓B〉) where A and B

refer to Alice’s and Bob’s qubit respectively. Alice wants to teleport a quantum state

|ψS〉 = 1√
2
(α |↑S〉 + β |↓S〉) to Bob. To this end Alice performs a joint measurement

(in the Bell basis {
∣∣φ+
AS

〉
,
∣∣φ−AS〉 , ∣∣ψ+

AS

〉
,
∣∣ψ−AS〉}) on both the qubits in her possession;

one which is entangled with Bob’s qubit and the one she wants to teleport. This

immediately collapses Bob’s qubit to one of the following states respectively {α |↑B〉+

β |↓B〉 , α |↑B〉−β |↓B〉 , β |↑B〉+α |↓B〉 , β |↑B〉−α |↓B〉}. If Alice communicates to Bob

her measurement outcome over a classical channel, then Bob can apply an appropriate

local unitary transformation on his qubit to prepare the desired output. For example,

let Alice obtain
∣∣ψ+

AS

〉
as the outcome of her measurement and communicate it to Bob.

Bob will know with certainty that the state of his qubit is β |↑B〉 + α |↓B〉 so he will

apply a σz operation on his qubit and transform his quantum state to exactly |ψS〉.

Alice has successfully teleported her quantum state to Bob. We must note here two
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things. First, energy or matter is not teleported in this protocol, only the state of a

quantum system(Alice’s quantum state |ψS〉) has been teleported. Second, the need

for a classical communication channel, over which Alice needs to send the information

of her measurement outcome. Unless she communicates(classically) her measurement

result to Bob, she will not be able to teleport her quantum state. Hence, it doesn’t

violate Special Relativity. The other thing to be noticed is the role of sharing an

entangled qubit (e-bit). The teleportation protocol necessarily requires sharing a

maximally entangled e-bit, in the absence of which it is not possible to teleport a

quantum state. Teleportation is secure against eavesdropping. If an eavesdropper

intercepts the classical communication between Alice and Bob, she/he will not be

able to produce the quantum state since it requires sharing an e-bit between the

sender and the receiver.

One of the other domains where entanglement is used extensively as a valuable

resource is quantum cryptography[3, 4]. In a typical cryptographic problem, a sender

(say Alice) encrypts a message for an intended recipient (say Bob) then she shares a

key through a secure channel so that the intended recipient can decrypt the message.

The security of the communication then depends on the security of the channel used

for sharing the key.

1.1.2 Quantum Key Distribution Protocol: E-91

In this protocol, maximally entangled pairs of photons are shared between two

parties say Alice and Bob. These entangled photons can be created either by Alice

or Bob or any other third party such that both Alice and Bob get one photon from
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each entangled pair say
∣∣φ+
AB

〉
= 1/

√
2(|+,−〉 − |−,+〉). The reliability of the key

distribution is guaranteed by the following two properties of entanglement.

I. The measurement outcomes of a pair of entangled states are perfectly correlated.

That is to say if Alice performs a measurement on her qubit and finds her state

to be |−〉 then if Bob chooses a compatible basis he will obtain |+〉 with 100%

certainty. Instead, if Bob chooses an incompatible basis, his result will be

random.

II. An attempt to measure one of the subsystems will introduce local realism to

the system and will destroy the quantum correlation.

The first step of the protocol involves measuring the entangled photon in some set of

pre agreed bases say {A0, Aπ/4, Aπ/2} for Alice and {Bπ/4, Bπ/2, B3π/4} for Bob where

Aθ, Bθ are the bases obtained by rotating |+〉 by an angle θ about z-axis[5]. Both

the parties randomly choose measurement basis for each entangled pair and the order

of choice of bases is kept secret till the end of the protocol. Consider the following

correlation coefficient of the measurement along Aθ and Bφ

E(Aθ, Bφ) = P++(Aθ, Bφ) + P−−(Aθ, Bφ)− P+−(Aθ, Bφ)− P−+(Aθ, Bφ) (1.1)

Where P+−(Aθ, Bφ) denotes the probability of obtaining spin +1 along Aθ and −1

along Bφ and other quantities are defined analogously. Using quantum mechanics

one can show E(Aθ, Bφ) = −Aθ.Bφ. If Alice and Bob use compatible bases for the

measurements on their entangled photon, they will obtain a perfectly anti-correlated

measurement outcome which will be the case roughly with a probability of 2/9. When
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Alice and Bob use different measurement bases then the following correlation coeffi-

cient:

S = E(A0, Bπ/4) + E(Aπ/2, Bπ/4) + E(Aπ/2, B3π/4)− E(A0, B3π/4)

must respect the CHSH(Clauser Horne Shimony Holt) inequality i.e S ≤ 2
√

2. A

classical communication channel is needed in the second step where Alice and Bob

communicate with each other about the sequence of their measurement bases for

successive entangled pairs. This will divide the measurement outcome into two sets,

one being the set of perfectly anti-correlated outcomes which will be the case when

they use same bases for their measurement and the second when they use different

bases for measurement. They can announce the second set of outcomes and must find

for this set S saturates the CHSH inequality. If there is an eavesdropper trying to get

information either by manipulating the source that creates entanglement or by doing

measurement on any of the two qubits he/she will introduce a local realism. In that

case S ≤ 2. Artur Ekert highlights the security of the protocol[4] in the following

lines :

The eavesdropper cannot elicit any information from the particles while
in transit from the source to the legitimate users, simply because there
is no information encoded there. The information “comes into being”
only after the legitimate users perform measurements and communicate
in public afterwards

Entanglement can be used to perform other interesting and useful tasks which

are otherwise impossible to do. For example, the complexity of a communication

can be reduced using entangled states [6]. A pair of entangled states shared between

two spatially separated parties can be used to synchronize atomic clocks [7]. En-

tanglement has given a better understanding of phenomena like high-temperature
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superconductivity[8] and it has been shown that macroscopic entanglement can exist

at high temperatures[9].

1.2 Detecting Entanglement

Detecting entanglement in a general quantum system is a NP(non-deterministic

polynomial time) hard problem[10]. However, it is an easy and achievable task for a

given class of bipartite quantum states. For example, we will see in the rest of this

Section that it is feasible to detect entanglement in an arbitrary pure state and some

low dimensional mixed bipartite states.

1.2.1 Entanglement in pure bipartite systems

I. Pure separable states have pure sub-systems

The state of a composite pure bipartite system consisting of two parts A and B is

a vector in the Hilbert space HAB = HA ⊗HB which has a tensorial structure. The

easiest way to check if a bipartite quantum state ρAB is entangled or not is to look at

the subsystem density matrix ρA (or ρB) that can be obtained by partially tracing out

B(or A) from the composite system. If the subsystem density matrix ρA turns out

to be a pure density matrix, then the system is separable else it is entangled. To see

this let us consider a pure bipartite quantum state |ΨAB〉 = |ψA〉 |ψB〉. The density

operator for this state is ρAB = |ψA〉 〈ψA| ⊗ |ψB〉 〈ψB|. Let us now calculate the

subsystem density matrix say ρA = trB [ρAB] where trB [.] represents partial trace

over the subsystem B. In order to perform partial trace over B let {|iB〉} be an
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orthonormal basis for HB. Then,

ρA = trB [ρAB]

=
∑
iB

|ψA〉 〈ψA| ⊗ 〈iB| (|ψB〉 〈ψB|) |iB〉︸ ︷︷ ︸
=1

= |ψA〉 〈ψA|

is a one dimensional projector corresponding to the pure state of the subsystem A.

Hence for a pure separable state individual subsystems are also pure.

Example:

Consider a two level bipartite quantum state |ψ+〉 = 1√
2
(|0A0B〉+|1A1B〉). The density

operator for this state is

ρAB = |ψ+〉 〈ψ+|

=
1

2
(|0A0B〉 〈0A0B|+ |0A0B〉 〈1A1B|+ |1A1B〉 〈0A0B|+ |1A1B〉 〈1A1B|)

The matrix form of the state in the basis {|0A0B〉 , |0A1B〉 , |1A0B〉 , |1A1B〉} looks like

ρAB =



1
2

0 0 1
2

0 0 0 0

0 0 0 0

1
2

0 0 1
2


If we trace over the first subsystem A i.e. trA [ρAB] =

∑1
i=0 〈iA| ρAB |iA〉 then the

reduced density operator turns out to be

ρB =
1

2
(|0B〉 〈0B|+ |1B〉 〈1B|)

=

 1
2

0

0 1
2


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which is not a pure state density operator for the subsystem B as tr [ρ2
B] = 1

2
< 1,

hence the density operator represents an entangled state. Notice here that if a com-

posite quantum system is in an entangled state, then the best possible knowledge of

the composite system doesn’t offer us the best possible knowledge of the subsystems.

This feature is special to quantum systems. In contrast, there is no classical counter

part of this feature.

II. Pure separable states have unit Schmidt rank

A commonly used concept in the detection and quantification of entanglement is

the Schmidt decomposition. If |ΨAB〉 is a pure state of a bipartite system in HAB

then there exist orthonormal bases {|sA〉}, {|sB〉} for HA and HB respectively such

that

|ΨAB〉 =
∑
s

√
ps |sA〉 |sB〉 (1.2)

where ps are non-negative real numbers and
∑

s ps = 1. The decomposition of the

form (1.2) is known as the Schmidt decomposition and
√
ps are the Schmidt coeffi-

cients. The Schmidt rank r is defined as min{dsup.(ρA), dsup.(ρB)}, where dsup.(ρA)

represents the dimension of the support of ρA. A given state is separable[11] if and

only if r = 1, which is easy to see as, if any state has only one term in the Schmidt

decomposition then the reduced density matrix ρA = |sA〉 〈sA| or ρB = |sB〉 〈sB| will

have only one non-zero eigenvalue, which means that the subsystem is in the pure

state and hence the given state is separable.

Example:

Consider a bipartite pure state |Ψ〉 = 1
2
(|00〉+ |01〉+ |10〉+ |11〉). We find the Schmidt
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bases to be

{ 1√
2

(|0〉+ |1〉)︸ ︷︷ ︸
|0A〉

,
1√
2

(− |0〉+ |1〉)︸ ︷︷ ︸
|1A〉

} and { 1√
2

(|0〉+ |1〉)︸ ︷︷ ︸
|0B〉

,
1√
2

(|0〉 − |1〉)︸ ︷︷ ︸
|1B〉

}

forHA andHB respectively and {p1 = 1, p2 = 0}. Clearly, the Schmidt decomposition

for |Ψ〉 has only one term,

|Ψ〉 =
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)

which means it has unit Schmidt rank and hence it is a separable state.

1.2.2 Entanglement in mixed bipartite systems

It is harder to detect entanglement in mixed states. An impure bipartite quantum

system is separable, if and only if it can be written in the following form

ρ
AB

=
∑
i

piρ
i
A
⊗ ρi

B
(1.3)

where ρi
A
, ρiB are the orthogonal projectors on HA and HB respectively, otherwise the

state is an entangled state. There are several operational and non-operational ways

to detect entanglement in mixed bipartite quantum systems.

I. Entanglement Witness

The set of separable quantum states forms a convex set(See Figure 1.1). This

means that any convex combination of separable states is also a separable state.

Using a theorem in functional analysis which goes by the name Hahn-Banach theorem

Horodecki[12] proved the following theorem for separable quantum systems.
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Theorem 1 (Entanglement Witness Theorem (EWT)). A given density matrix

ρ ∈ HA ⊗HB is entangled if and only if, there exists a Hermitian operator O, such

that

tr [Oρ] ≤ 0 and tr [Oσ] ≥ 0 ∀ σ ∈ HAB
separable (1.4)

where HAB
separable denotes the separable subspace of the composite space HA ⊗HB.

Figure 1.1: Set of separable states (σ) forms a convex set. Any non separable state ρ
can be identified by a suitable witness operator O which will give tr [ρO] < 0.

The negative expectation value of O in any state ρAB “detects” entanglement and

the operator is called the entanglement witness. Horodecki et. al. have shown that

there exists an entanglement witness[13] for every entangled state.
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II. Positive Partial Transpose Test

Another very useful and a more general way to detect entanglement in bipartite

systems is the partial transpose test. It is based on the theory of completely positive

maps. Any positive but not completely positive (CP) map will detect entanglement.

A transposition is a positive map i.e. to say that this map takes a positive matrix

to another positive matrix. When we apply this map to one of the subsystems the

resulting matrix is not necessarily a positive matrix and hence detects entanglement

in the system.

1.3 Entanglement Measures

We have seen in Section 1.1 that entanglement is a vital resource which can be used

to perform tasks that are either impossible or very difficult otherwise. Also in Section

1.2 we have seen how this resource can be detected in pure and mixed bipartite

systems. In this Section we will discuss some of the measures that are commonly

used for the quantification of the entanglement. Entanglement is a “correlation”

exhibited by quantum systems. These correlations are different (non-local!) from

classical correlations in the sense that they can’t be generated using local operations

and classical communications (LOCC) alone. For example Alice and Bob can’t

generate entanglement between their qubits by performing local operations on their

subsystems and communicating classically the outcomes of their operations. In fact,

we define classical correlations as those correlations that can be generated using just

LOCC. It has been shown that an arbitrary separable state can be converted into any
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other separable state just by using LOCC[12]. However, we have seen that nonlocal

operations on two parties(teleportation, key distribution, superdense coding etc.) can

be implemented, by using only LOCC and shared entanglement. In order to quantify

entanglement let us look at some of the important properties that any good measure

of entanglement must possess[14]

I. Any measure of entanglement must be a function from the space of quantum

states to positive real numbers i.e.

E : ρ→ R+

II. For any separable state ρsep, it must vanish i.e.

E(ρsep) = 0

III. It must not increase under any LOCC protocol i.e.

∑
i

piE

 KiρK
†
i

tr
[
KiρK

†
i

]
 ≤ E(ρ)

where {Ki} represents a set of Kraus operators that describes a LOCC protocol

and pi is the probability of occurrence of the ith outcome[15].

Any measure satisfying all the three conditions is commonly known as entanglement

monotone. Let us look at some of the entanglement monotones in detail.

1.3.1 Entanglement Entropy

The simplest entanglement monotone for a bipartite pure state (say ρAB) is the

von Neumann entropy of the subsystem density matrix(ρA orρB) that we obtain after
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tracing out the other subsystem.

E(ρAB) = tr [ρA log ρA] (1.5)

It is easy to see that this measure satisfies all the properties of an entanglement

monotone[16].

Example

Consider a pure bipartite state |ΨAB〉 =
√
µ |00〉 +

√
1− µ |11〉. The density matrix

in the basis {|00〉 , |01〉 , |10〉 , |11〉} looks like

|ΨAB〉 〈ΨAB| =



µ 0 0
√
µ(1− µ)

0 0 0 0

0 0 0 0√
µ(1− µ) 0 0 1− µ


If we now compute the reduced density matrix we obtain

ρA = ρB = µ |0〉 〈0|+ (1− µ) |1〉 〈1|

and if we compute the von Neumann entropy of the subsystem we get

E(ρ) = −µ log µ− (1− µ) log(1− µ)

It is interesting to note that E(ρ) = 0 for µ = 0 and µ = 1, which corresponds to a

pure separable bipartite state and attains a maximum of log 2 for µ = 1
2

for maximally

entangled state(See Figure 1.2).

1.3.2 Concurrence

The concurrence is one of the widely used measures of entanglement which are

defined for both pure and mixed states.



Chapter 1: Introduction 14

Figure 1.2: A plot showing the variation of the entanglement entropy E(ρ) versus µ.

I. Concurrence of a pure state

Let |Ψ〉 be a pure bipartite 2-qubit state, then the concurrence C(|Ψ〉) is defined

as the magnitude of the inner product of |Ψ〉 with its spin flipped state |Ψ̃〉.

C(|Ψ〉) = | 〈Ψ|Ψ̃〉 | = 〈Ψ |σy ⊗ σy |Ψ∗〉

where |Ψ∗〉 denotes complex conjugate of |Ψ〉.

Example

If a pure bipartite state is |Ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 then concurrence of

this state turns out to be

C(|Ψ〉) = 2|αδ − βγ|

In fact, it is easy to show that a pure bipartite state is separable if and only if

|αδ − βγ| = 0.
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II. Concurrence of a mixed bipartite state

The concurrence of a mixed state is defined as the average concurrence of the

ensemble decomposition which represents the given mixed state, minimized over all

possible pure state decomposition[16].

C(ρ) = min
{pi, |Φi〉}

{∑
i

piC(Φi)

}
(1.6)

In general, this definition involves optimising over all bases and therefore not very

computable. However, an explicit formula for the concurrence exists for a 2-qubit state

which is given by[16] C(ρ) = min {0, λ − λ2 − λ3 − λ4} where λis are the square roots

of the eigenvalues of the matrix ρρ̃ in decreasing order, and ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy)

is the “spin flipped” version of the density matrix.

In this thesis, we investigate some of the geometrical aspects of entanglement

detection and quantification. We also discuss some of its application in quantum

measurement and state discrimination. The thesis is organized as follows . Chapter

2 explores the geometry of quantum state space making a correspondence between

qubits and the special relativistic Minkowski geometry. We find a separability crite-

rion for a bipartite density matrix based on the geometrical interpretation. In chapter

3 we discuss in detail how this separability criteria works and give the separable form

whenever it exists. Chapter 4 explores the role of entanglement in a coarse quantum

measurement. In particular, we study entanglement entropy of the spin and the cen-

ter of mass of a silver atom in the Stern Gerlach experiment in some detail. Chapter

5 then explores how entanglement can be used as a resource in discrimination be-

tween quantum states. In the context of the Bures-Helstrom metric n-copies don’t

give any advantage in state discrimination over a single copy of the given quantum
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state. In contrast, the BKM (Bogoliubov-Kubo-Mori) metric gives an entanglement

advantage in state discrimination when we consider n-copies of the quantum state.

In chapter 6, we study the geometry of statistical manifolds, in particular we focus on

the issue of distinguishability of probability distributions and prove a theorem related

to the emergence of the Poincaré metric on a two parameter sub-manifold. Finally,

in chapter 7 we end with some concluding remarks and future directions. There are

two appendices. Appendix A consists of the mathematica programs and Appendix B

gives a brief introduction to the energy conditions in general relativity.



Chapter 2

Detecting qubit entanglement

The state space of a two-level quantum system is the Poincare ball, where points

on the surface of the sphere correspond to pure states whereas points inside the ball

which are convex combinations of points on the sphere correspond to mixed states.

In this chapter we will look at some of the properties of pure and mixed states and

will take a geometrical look at entanglement in a bipartite system.

2.1 A Two Level System

A two level system refers to a quantum system which has only two eigenstates.

Such systems are ubiquitous in nature. For example, polarization states of a photon,

a spin-1
2

particle in a magnetic field are examples of two state systems. We will talk

about these system in a more general context which takes into account not only the

pure states but also the mixed ones. A mixed state of a quantum system can be

thought of as an ensemble of normalized pure states with a probability distribution

17
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defined on it {pi, |ψi〉}. To represent this ensemble we use a density matrix which is

written as

ρ =
∑
i

pi |ψi〉 〈ψi|

The following properties of the density matrix immediately follow from the expression

• Normalization: tr [ρ] = 1

• Hermiticity: ρ† = ρ, that it is Hermitian.

• Positivity: ρ > 0, that it is an operator with positive eigenvalues.

• Purity: tr [ρ2] ≤ 1

2.1.1 State of a Two Level System as a Point in the Bloch

Ball

Any quantum state of a two level system can be represented by a 2×2 unit trace

positive Hermitian matrix known as the density matrix. The space of density matrices

is a strictly convex space. An often convenient and useful choice of basis for this

vector space is the set of four Pauli matrices[11], 1, σx, σy, σz. Any density matrix

which represents a quantum state of a two level system can now be associated with

a point X where

ρ =
1 +X.σ

2
(2.1)

Hermiticity of ρ requires X(x1, x2, x3) to be real, and positivity requires

√
(x1)2 + (x2)2 + (x3)2 = |X| ≤ 1
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The set of points satisfying the above two conditions forms a spherical ball of unit

radius commonly known as Bloch ball(see Figure 2.1) and has a one to one corre-

spondence with the space of quantum states[17]. States with purity defines as,

Figure 2.1: A Bloch ball (Picture taken from Wikipedia). A point on the sphere can
be associated with a pure quantum state, whereas a point inside the sphere can be
thought of as representing a mixed state

γ = Tr[ρ2] (2.2)

are pure and forms the boundary of the ball whereas the interior constitutes the mixed

states with γ < 1.
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2.1.2 State of a Two Level System as a Future-Pointing 4-

Vector

Mathematically, a state (vector) of a two-level quantum system is an element s of a

two dimensional complex Hilbert space and transforms according to certain transfor-

mation laws. Such a complex vector is a rank-1 spinor. A density matrix(ρ = ss†)

which is formed by taking the outer product of rank-1 spinors —an unit trace positive

Hermitian matrix— is thus a standard contravariant rank-2 spinor [18] which can in

general be written in the form (2.1). In this section we are going to bring out the

properties of the associated vector xi(1, x1, x2, x3) .

Pure States

A pure state ρ = |ξ〉 〈ξ| in the light of equation (2.1) can be associated with a

vector X(1, x1, x2, x3) whose components are given by the following relation:

xi = tr
[
ρσi
]

= 〈ξ|σi |ξ〉 (2.3)

Such a state with purity

γ =
1 + |X|2

2
= 1 =⇒ 1− (x1)2 − (x2)2 − (x3)2 = 0

can formally be viewed as a null 4-vector with components (1, x1, x2, x3).

Mixed States

Mixed states with purity

γ =
1 + |X|2

2
< 1 =⇒ 1− (x1)2 − (x2)2 − (x3)2 > 0
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can be thought of as a timelike 4-vector.

Consider a two level quantum system. Its evolution can be described by a set of

transformations acting on the spinor s —an element of a two dimensional complex

Hilbert space— given by s′ = As. The density matrix thus in turn transforms as

ρ′ = s′s′† −→ AρA† = Ass†A†. There are two useful classes of transformations

that are commonly used to describe the dynamics of the quantum system. First

being the set of unitary transformations SU(2), which describes the evolution of

isolated quantum systems. These operations preserve the purity γ of a quantum

state (Tr[ρ2]). These transformations map a pure state to a pure and a mixed state

to a mixed state. For example, a SU(2) operation on a density matrix ρ corresponds

to a spatial rotation of the 4-vector xi associated with the state. Another interesting

class of transformations are SL(2, C) and are used to describe the dynamics of a

quantum system which is interacting with another quantum system. These set of

transformations preserve the det(ρ) = (1− |X|)/4 of a density matrix. Let us briefly

look at the determinant preserving condition:

det(ρ′) = det(AρA†) =⇒ det(A) = eiθ

Since phase acts trivially on the density matrix, we can restrict ourselves to the set

of transformations with unit determinant. Clearly the matrices A which are 2×2

matrices with determinant equal to 1 form a group SL(2, C), the Lorentz group.

As noted in section 2.2, a state ρ —a rank-2 spinor— can be associated with a 4-

vector xi and determinant preserving transformation A —a SL(2, C) matrix— can

be associated with a Lorentz transformation acting on the 4-vector. A particularity
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interesting one[19] is exp{−nσ} which corresponds to a Lorentz boost in the direction

n on the 4-vector xi.

2.2 A Bipartite System

A bipartite quantum system is one which consists of two(say A and B) interacting

subsystems. The simplest example is a pair of interacting spin-1
2

particles.

2.2.1 Entanglement in a bipartite quantum system

In this section we will be interested only in describing the entanglement between

the spin states of a bipartite composite system (for a discussion on bipartite entangle-

ment see section 1.2). However entanglement can be established between any number

of degrees of freedom of the same or different systems by turning on the coupling

between these degrees of freedom. For example we can create entanglement between

spin and positional degrees of freedom of a spin-1
2

particle by turning on a magnetic

field, which will be the topic of discussion of the next chapter.

We consider a bipartite quantum system consisting of two qubits. Let the state of

the system be ρAB. In general this can be a pure or a mixed state of the composite

system. How can we tell if there exists an entanglement between the sub-systems?

In other words we would like to see if we can assign a state—ρA and ρB— to each

of the subsystems. The state ρAB is separable if and only if it can be written in the

following form

ρAB =
∑
i

piρ
i
A ⊗ ρiB (2.4)
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We have seen that a density matrix is a positive semi-definite Hermitian matrix and

transposition preserves the spectrum of the matrix. If we transpose the matrix ρAB

we again obtain a Hermitian positive semi-definite matrix.

2.2.2 Positive Maps but not Completely Positive Maps

Let B(H) be a set of positive operators defined on the Hilbert space H. Λ is

said to be a positive map if it takes a positive operator to another positive operator.

Consider an extended map Λ⊗1 which acts on positive operators defined onHA⊗HB.

Let us consider the action of Λ ⊗ 1 on a positive operator which can be written in

the form of Equation (2.4) i.e. a separable state,

ρ̃AB = Λ⊗ 1

(∑
i

piρ
i
A ⊗ ρiB

)

=
∑
i

piΛ(ρiA)⊗ 1(ρiB)

(2.5)

It is straightforward to see that ρ̃AB is also a positive operator, since pi is a positive

number, Λ(ρiA) and 1(ρiB) are positive operators[14], hence each term of the above

sum has a positive expectation value. All extended maps of the form Λ⊗1 (where Λ

is a positive map) will yield a positive operator when applied on a separable state.

Notice that the positivity of ρ̃AB under the extended map Λ ⊗ 1 hinges on the

decomposition of ρAB in the form (2.4). Conversely if any expectation value of ρ̃AB =

(Λ ⊗ 1)(ρAB) fails to be positive for “some” positive map Λ then the assumption

that we made about ρAB is no longer true and ρAB will then be an entangled state.

A positive map Λ is said to be a completely positive map (CP-map) if the extended

map Λ⊗1 is also positive for an arbitrary operator ρAB. A suitable positive, but not
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completely positive map can thus detect a mixed entangled state.

Partial transposition in low dimensions (2 × 2 or 2 × 3) is one such suitable

map. An arbitrary positive map for 2× 2 or 2× 3 dimensions can be written as,

Λ = Λ1
CP ◦ T + Λ2

CP (2.6)

where Λ1
CP , Λ2

CP are two CP-maps, T is transposition and ‘◦’ represents composition

of maps. Let us apply this map to an arbitrary separable state,

ρ̃AB = (Λ⊗ 1)ρAB > 0

(Λ1
CP ⊗ 1) ◦ (T ⊗ 1)ρAB + (Λ2

CP ⊗ 1)ρAB > 0

(Λ1
CP ⊗ 1)[ρAB]TA + (Λ2

CP ⊗ 1)ρAB > 0

(2.7)

where [ρAB]TA represents partial transposition with respect to subsystem A. If we

demand ρ̃AB to be a positive operator then [ρAB]TA must be a positive operator.

Hence for a separable state of a bipartite system of two qubits or a qubit and a qutrit

the partially transposed density matrix must be a positive semi-definite matrix.

2.2.3 Positivity condition for associated tensor Aij

As discussed in the previous sections positivity of a density matrix plays an im-

portant role in detecting the entanglement of bipartite 2×2 and 2×3 systems. We are

going to look at these criteria in terms of the associated rank-2 tensor. We are going

to use a slightly different notation for later convenience. A two-qubit density matrix

is a rank-4 spinor with index structure ρp1 p2
q1 q2

where p1, q1 and p2, q2 correspond to

spinor index of 1st and 2nd system respectively. We relate this 4-spinor with a second
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rank tensor using σ matrices.

ρp1 p2
q1 q2

= Aijσ
ip1
q1
σjp2q2 (2.8)

Positivity of a density matrix means that any expectation value of the density operator

must be positive. Mathematically,

〈ψ| ρp1 p2
q1 q2

|ψ〉 ≥ 0 ∀ |ψ〉 ∈ H1 ⊗H2

An arbitrary state of a two qubit system(a vector in a 4-dimensional complex Hilbert

space) can be written using spinors[20] in the following form:

ψ = κA1
1 κA2

2 +DκA2
1 κA1

2 (2.9)

where κ1, κ2 are two rank-1 spinors. Using equations (2.8),(2.9) and (2.3) the posi-

tivity condition can be written as,

f(D) ≡
∑
i,j

(DD∗Aijn
ilj︸ ︷︷ ︸

a

+DAijm
imj︸ ︷︷ ︸

b

+D∗Aijm
imj︸ ︷︷ ︸

b∗

+Aijl
inj︸ ︷︷ ︸
c

≥ 0 (2.10)

where l,n are two real null vectors, m is a complex null vector and m is its complex

conjugate. This corresponds to the dominant energy condition[21] on Aij. In order

to find the minimum value of f(D) we set

∂f

∂D
= 0

and obtain D = − b∗

a∗
and D∗ = − b

a
. Substituting these values in f we obtain

fmin =
ac− b∗b

a
.

Taking

l =
t+ z√

2
; n =

t+ z√
2

; m =
x+ ιy√

2
; m =

x− ιy√
2
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we obtain

a =
1

2
[(A00 + A33) + (A03 − A30)]

c =
1

2
[(A00 + A33)− (A03 − A30)]

b =
1

2
[(A11 + A22) + ι(A12 − A21)]

Then the condition for positivity in terms of components of tensor Aij reads:

τ ≡ (A00 + A33)2 − (A03 − A30)2 − (A11 + A22)2 − (A12 − A21)2 ≥ 0 (2.11)

Werner State1

A Werner state is a mixed quantum state. We obtain a Werner state when a maxi-

mally entangled (say a singlet) state is “corrupted” by a maximally mixed state. The

degree of entanglement depends on the parameter α ∈ (0, 1). For 0 < α < 1
3

the state

is separable and for any other value of α it is entangled.

ρWerner =
1

4



1− α 0 0 0

0 α + 1 −2α 0

0 −2α α + 1 0

0 0 0 1− α


⇒
[
AWerner
ij

]
=



1 0 0 0

0 −α 0 0

0 0 −α 0

0 0 0 −α


(2.12)

In a computer program we randomly choose the null vectors n, l,m,m and contract

with AWerner
ij to obtain the scalar τ for a Werner state(α = 0.7) as in Eq.(2.10).

Figure 2.2 shows the values of 2sign(τ) obtained for 10,000 such random choices.

1ρWerner = α |singlet〉 〈singlet|+ (1− α)14

2sign(x) =


1, for x > 0

0, forx = 0

−1, forx < 0
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Figure 2.3 shows sign(τ) for the partially transposed density matrix of the Werner

state ÃWerner
ij . A negative value of sign(τ) indicates entanglement.

Partial Lorentz transformation (A completely positive map): A two-qubit

2000 4000 6000 8000 10000
i th realization

0.5

1.0

1.5

2.0

sign(τ)

Figure 2.2: A plot of sign(τ) (see Eq.(2.11)) for AWerner
ij for 10000 random choices of

null bases.

state can be represented by a 4 × 4 positive semidefinite Hermitian matrix ρ (a

rank 4-spinor) or equivalently by a rank 2-tensor (Aij)[22]. As seen in Section 2.1.2

that a Lorentz transformation of the 4-vector associated with a qubit is equivalent

to a SL(2, C) transformation on ρ. In particular a pure rotation of the 4-vector is

equivalent to a SU(2) operation on the qubit and a pure boost on the 4-vector is

equivalent to a SL(2, C) operation on the qubit. We demonstrate with a computer

program that a Lorentz transformation of the tensor associated with a two level

system is a positive map (See Appendix A). In fact, it can be shown that it is a
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2000 4000 6000 8000 10000
i th realization

-1.0

-0.5

0.5

1.0

sign(τ˜)

Figure 2.3: A plot of sign(τ) for ÃWerner
ij for 10000 random choices of null bases.

completely positive map.

An arbitrary Lorentz transformation can be written as[23]

L = R(u)Λ(η)

Where Λ is a pure boost in some direction and R represents a pure rotation about

some direction(u). We will construct a rank-2 tensor associated with a two-qubit

density matrix in the next section. In order to generate a partial Lorentz transfor-

mation we proceed as follows. On the tensor Aij we apply a Lorentz transformation

only on one of the indices i.e. only on the one of the subsystems as,

A′ij = L µ
i Aµj

We randomly choose a Lorentz matrix L and transform Aij to A′ij. This A′ij corre-

sponds to a positive semi-definite operator(see Figure 2.4).
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Figure 2.4: On the vertical axis we plot the smallest eigenvalue of the partially Lorentz
transformed density matrix for 5000 randomly chosen Lorentz matrices. Notice that
the smallest eigenvalue is positive, indicating that a partial Lorentz transformation
is a positive map.

2.3 Entanglement Test for Two Qubits

Let ρ be a density matrix of a two qubit system. If ρ can be expressed in the form

(τ 1 and τ 2 are 1-qubit density matrices)

ρ =
∑
i

wi τ
1
i ⊗ τ 2

i wi > 0 (2.13)

we say that ρ is separable, else ρ is entangled. We assume ρ is positive (ρ ≥ 0) and

Hermitian (ρ† = ρ). In our treatment, we will not need to normalize ρ. One can

expand the density matrix ρ as

ρ =
1

4
Aµνσµ ⊗ σν (2.14)
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where σµ = (I, σ1, σ2, σ3) are the identity and the Pauli matrices. Aµν can be

calculated from

Aµν = Tr(ρσµ ⊗ σν). (2.15)

Let us consider Bµ
ν = AµαgαβA

σβgσν where g = diag(1,−1,−1,−1) is the Minkowski

metric. Now,

Bµ
ν = AµαA

α
ν . (2.16)

Notice that Bµν is symmetric i.e. Bµν = Bνµ. It can be shown[24] that the eigenvalues

of B (3.9) are non-negative and so we can define µa =
√
λa to be real where a =

0, 1, 2, 3.

Our claim is that, the necessary and sufficient condition for separability is

T (µa) = µ0 − (µ1 + µ2 + µ3) ≥ 0. (2.17)

Violation of this inequality signals entanglement. This is our Partial Lorentz Trans-

formation (PLT) test for entanglement of two qubits. The PLT test is an alternative

to the PPT test which is widely known and used in this field.

2.4 Detection of entanglement: A few examples

In this section we consider some specific families of states to illustrate the use of

our criterion for detecting entanglement. We first consider the Werner state.

2.4.1 Example-I

The Werner state is a two qubit mixed state given by ρW = 1−α
4
I+α |S〉 〈S| where

|S〉 = |↑↓〉−|↓↑〉√
2

is a spin singlet state and 0 ≤ α ≤ 1. The PPT test shows that this
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state is separable for 0 ≤ α ≤ 1/3 and entangled for 1/3 < α ≤ 1. Let us first

construct Aµν = Tr
[
ρWσµ ⊗ σν

]
.

Aµν =



1 0 0 0

0 −α 0 0

0 0 −α 0

0 0 0 −α


. (2.18)

From Aµν we can construct matrix B:

Bµ
ν =



1 0 0 0

0 α2 0 0

0 0 α2 0

0 0 0 α2


(2.19)

The eigenvalues of B are λ0 = 1 and λ1, λ2, λ3 = α2. They are positive as claimed

earlier and hence we can take the positive square-root of these eigenvalues to obtain

the µs. We now apply the test by computing T (α) =
√
λ0 −

√
λ1 −

√
λ2 −

√
λ3. A

state is entangled iff T (α) < 0, which gives

1− 3α < 0 ⇒ α >
1

3

Hence, we correctly obtain the condition 1/3 < α ≤ 1 for ρ to be entangled (See

Figure 2.5).
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Figure 2.5: A figure showing the variation of T (α) with α. We see that for α > 1/3,
T (α) is negative and the state is therefore entangled.

2.4.2 Example-II

Another interesting example is the state given by[25]

ρ = 1
4

((r − s+ 1)σ3 ⊗ σ3 + r(σ3 ⊗ I) + s(I ⊗ σ3)

+ t(σ1 ⊗ σ1)− t(σ2 ⊗ σ2) + I ⊗ I). (2.20)

ρ is a two qubit density matrix for the parameter range

s− r ≥ 0

|r| ≤ 1

|s| ≤ 1

t2 ≤ (1− s)(1 + r) ≡ h2. (2.21)

Applying the partial transpose test to ρ we find that the state is entangled[25] for
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|t| 6= 0 and separable for |t| = 0. Let us apply the PLT test on ρ. Following the same

recipe as in the previous example we find,

Aµν =



1 0 0 s

0 t 0 0

0 0 −t 0

r 0 0 r − s+ 1


(2.22)

Bµ
ν =



1− s2 0 0 (s− r)(1− s)

0 t2 0 0

0 0 t2 0

−(s− r)(1− s) 0 0 −(2r − s+ 1)(s− 1)


(2.23)

and the eigenvalues of B are (h2, h2, t2, t2). The last inequality of the state condi-

tion(2.21) implies that the dominant eigenvalue of the matrix B is h2. Then the PLT

condition for separability requires,

|h| ≥ |h|+ 2|t| =⇒ |t| ≤ 0 =⇒ t = 0.

Hence, we find that the state ρ is separable for t = 0 and entangled otherwise which

is in agreement with the PPT test.

The computable cross norm (CCN) test proposed in [25] doesn’t detect entangle-

ment for all states. It only works if the reduced density matrices of the individual

systems are maximally disordered (r = 0 and s = 0 in Example II)[25]. For instance,

it does not work for the the state ρ given by (2.20) for the parameters r = 1/4 and

s = 1/2, t = 1/16. However, we notice that the PLT gives T (t) = −4
√

2/5 |t|

showing that the state is not separable for any non-zero value of t (See Figure 2.6) in

agreement with the PPT test.
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Figure 2.6: A figure showing the variation of T (t) with t. We see that for all t ∈ (0, 1]
T (t) is negative, indicating non-separability.

2.4.3 Example-III

Now, we apply this test to a set of states which are incoherent mixtures of the

singlet state and the maximally polarized state[26].

ρ = x |S〉 〈S|+ (1− x) |↑↑〉 〈↑↑| (2.24)

where |S〉 is the singlet state and 0 ≤ x ≤ 1. We compute the matrices A and B and

find

Aµν =



1 0 0 1− x

0 −x 0 0

0 0 −x 0

1− x 0 0 1− 2x


(2.25)
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Bµ
ν =



−(x− 2)x 0 0 2(x− 1)x

0 x2 0 0

0 0 x2 0

−2(x− 1)x 0 0 x(3x− 2)


. (2.26)

The eigenvalues of B are (x2, x2, x2, x2), which are all positive. These states turn

out to be entangled since T (x) = −2x < 0 for all values of the parameter x ∈ (0, 1]

in agreement with the PPT test.

2.4.4 Example-IV

Finally, we present the results of a numerical study in support of the claims made

in this chapter. A Mathematica program (see Appendix A) generates random density

matrices of a two qubit system. The states are then tested for entanglement using

the PLT test and the PPT test. In all cases, we find that the two tests agree. The

program also shows by numerical evidence that the eigenvalues of B (3.9) are positive.

2.5 Conclusion

We have presented a necessary and sufficient criterion, to detect two qubit entan-

glement. This criterion is distinct from the celebrated PPT test and thus serves as an

alternative method for detection of entanglement. We have explicitly demonstrated

that this test works for some specific cases. More generally, we numerically generate

random density matrices and show that the PLT test agrees with the PPT test in all

cases (See Appendix A).
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Expressions similar to T have appeared before in [27], which studies the entan-

glement of formation for two qubit systems. However our work goes beyond this, in

proposing an explicit test for detection of two qubit entanglement, which serves as an

alternative to the PPT test.

In Ref[25] a separability criterion called the computable cross norm (CCN) is pro-

posed. Example-II is taken from [25] and shows that the CCN test fails to detect

entanglement, while the PPT and PLT succeed. Thus the PLT test is a more discrim-

inating test for detection of entanglement compared to the CCN test and just as good

as the PPT test. It is worth noting that the use of a Lorentzian metric is the crucial

ingredient that leads to the sucess of the PLT test. We expect that this framework

for detection of entanglement can be extended to higher dimensional examples be-

yond two qubits. This test is of relevance to the area of Quantum Information where

entanglement is viewed as an important resource.



Chapter 3

Lorentzian geometry of qubit

entanglement

3.1 Introduction

Detecting entanglement is one of the outstanding problems in Quantum Informa-

tion Theory. In two qubit systems, the Positive Partial Transpose (PPT) criterion

[26, 13, 14] gives a simple, computable criterion for detecting entanglement. The

criterion gives a necessary and suficient condition for a state to be separable.

In chapter 2, we proposed a new test based on Partial Lorentz Transforma-

tion(PLT) of individual qubits. It turns out that like the PPT test, the PLT criterion

is necessary and sufficient in the two qubit case. In chapter 2, the PLT test was given

as a recipe, a form that could be directly used by those who want to apply the test.

The purpose of this chapter is to describe the theoretical framework behind the PLT

test. In addition to showing why the test works, our Lorentzian approach yields an

37
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explicit separable form of the density matrix, when such a form exists. It also permits

a complete elucidation of the state space using a Lorentzian version of the Singular

Value Decomposition. The PLT test uses ideas borrowed from the space-time physics

of Special Relativity.

The chapter is organized as follows. In Section 3.2 we discuss Partial Lorentz

Transformations (PLT). Section 3.3 describes the Lorentzian Singular Value Decom-

position which provides the theoretical basis for the PLT test. Section 3.4 gives nec-

essary and sufficient conditions on the singular values to define a state and expresses

the state in separable form, under certain conditions on the singular values. We also

show that these conditions are necessary for separability. We then discuss a simple

three dimensional representation of the two-qubit state space in Section 3.5. Section

3.6 deals with non generic states. We finally end the chapter with some concluding

remarks in Section 3.8.

We use a Lorentzian metric of signature mostly minus: g = diag(1,−1,−1,−1).

Spacetime Lorentz indices µ, ν range over 0, 1, 2, 3, as also do Frame indices a, b, ...

Both these indices are raised and lowered by the Minkowski metric and we use the

Einstein summation convention. All causal (timelike or lightlike 4-vectors) are point-

ing into the future. Throughout this chapter, by “Lorentz group”, we mean its proper,

orthochronous subgroup, which preserves time orientation as well as the spatial ori-

entation.
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3.2 Lorentz Transformations

The states of a qubit can be expressed in space-time form by using σµ = (1, σx, σy, σz),

the identity and the Pauli matrices

τ = uµσµ (3.1)

uµ is a real future pointing 4-vector and satisfies

uµuνgµν > 0 (3.2)

for impure states and

uµuνgµν = 0 (3.3)

for pure states. Impure states have time-like u and pure states have lightlike u. In

both the cases u0 > 0, the 4-vector uµ is future pointing. If we were to fix the

“normalization” by Tr(ρ) = 2, u0 = 1, the impure states can be represented in the

Bloch ball ~u.~u < 1 and the pure states on the Bloch sphere ~u.~u = 1. The Lorentzian

nature of the state space is already evident. Under Lorentz Transformations

uµ 7→ u′µ = Sµνu
ν

where SµνS
α
βgµα = gνβ . The Lorentz Transformation maps states to states. The

group action has two orbits: the pure states constitute one orbit and the impure

states another.

Partial Lorentz Transformations: Let ρ be a density matrix of a two qubit system.

We assume ρ is non negative (ρ ≥ 0), Hermitian (ρ† = ρ). In our treatment, we will

not need to normalize ρ, but we suppose ρ does not vanish identically. One can
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expand the density matrix ρ as

ρ =
1

4
Aµνσµ ⊗ σν (3.4)

where Aµν can be calculated from

Aµν = Tr(ρσµ ⊗ σν). (3.5)

Consider doing a Lorentz Transformation on just the first subsystem

σµ 7→ σ
′

µ = σαL
α
µ. (3.6)

This results in a new state ρ′ = 1
4
LµαA

ανσµ ⊗ σν , so

A′µν = LµαA
αν . (3.7)

We refer to this as a Partial Lorentz Transformation since it acts only on the first

subsystem. Similarly one can perform a Partial Lorentz Transformation on the second

subsystem

A′′µν = AµαRν
α. (3.8)

Partial Lorentz Transformations act on A by left (L) and right (R) actions. It is

elementary to check that PLT s are completely positive[14] maps on the state space.

They also have the important property that they preserve separability of states. The

PLT of a separable state is separable. The PLT of an entangled state is entangled.

This is the key property of the Partial Lorentz Transformation group that we exploit

here.
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3.3 Lorentzian Singular Value Decomposition

Let us now consider the action of left and right PLTs [See Equation 3.7 and 3.8] on

the state space. The space of (unnormalized) density matrices is 16 dimensional. The

left and the right PLTs generate orbits which are generically 6 + 6 = 12 dimensional.

Thus the 16 dimensional state space splits into a 4 parameter family of 12 dimensional

fibers. (There are also isolated points where the isotropy subgroup is larger and the

fiber smaller). Each fiber is either entirely separable or entirely entangled. Thus we

can reduce the problem to the 4 dimensional space of orbits. In order to characterize

the orbits, consider

Bµ
ν = AµαA

α
ν . (3.9)

Bµν is symmetric i.e Bµν = Bνµ. It is easily checked that Tr(Bn) is invariant under

both left and right PLTs. Generically we would expect the four eigenvalues of Bµ
ν to

characterise the orbits.

Just as we constructed B from a state A, we can also similarly define D

Dµ
ν = AαµAαν . (3.10)

B and D have the same four eigenvalues since from the cyclicity of the trace we have

Tr(Bn) = Tr(Dn) for all integer n. These common eigenvalues determine the singular

values of A. The relation

A µ
β A

β
αA

α
ν = Dµ

αA
α
ν = A µ

β B
β
ν (3.11)

shows that A is an intertwining operator[28] relating the eigenspaces of B and D.

The eigenspaces of B and D are then used to bring A to its Lorentzian singular value
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decomposition (LSVD) form.

Dominant Energy Condition: The non-negativity of ρ implies that Trρ(τ1⊗τ2) ≥

0, where τ1 = nµσµ and τ2 = mµσµ are pure 1-qubit states of two subsystems. We

conclude that

Aµνn
µmν ≥ 0 (3.12)

for all lightlike nµ,mν . This implies that the linear transformation Aµν maps causal

vectors to causal vectors (see Figure 3.1). More explicitly, Aµνn
ν is causal if nν

is. This is also true of the transpose of A (A ν
µ n

µ is causal for nµ causal) and the

composite mapsB andD. This property of mapping the light cone into itself is usually

demanded of stress energy tensors in Relativity, where it is called (see Appendix B)

the Dominant Energy Condition (DEC)[21].

Figure 3.1: A representation depicting causal vectors getting mapped to causal vectors
(green arrow on the right). The reverse map of a timelike vector going to a space like
vector is not allowed (red arrow on the left) by the Dominant Energy Condition.

The dominant energy condition imposes restrictions on the forms that B can

take. Hawking and Ellis [21] give a classification of the canonical forms taken by a

symmetric tensor in a Lorentzian space. There are four types, of which only Type-I



Chapter 3: Lorentzian geometry of qubit entanglement 43

and Type-II are relevant for us, since the others do not satisfy the DEC. Let λ0 be

the dominant eigenvalue of B (and D).

Type-I States: These states are defined by the condition that B admits a time-

like eigenvector e0 (Bµ
νe

ν
0 = λ0e

µ
0) with λ0 > 0. From Eq. (3.11) it follows that A α

ν e
ν
0

is an eigenvector Eα
0 of D with the same eigenvalue λ0. Computing E0.E0 = λ0e0.e0

we see that E0 is timelike, since e0 is. Normalising these eigenvectors, we can write

(with µ0 > 0),

µ0E
µ
0 = Aµαe

α
0 . (3.13)

Squaring (3.13) we find that

λ0 = µ2
0. (3.14)

Let us define

bµν = Bµ
ν − λ0e

µ
0e

0
ν

b is symmetric and spatial (bµν = bνµ, bµνe
ν

0 = 0) and can therefore be diagonalized

by an SO(3) transformation. We thus have a diagonal form for B.

The orthonormal frame which diagonalises B, (eµa) gives us a Lorentz tetrad, whose

inverse is eaµ. In this frame B has the form:

Bµ
ν = eµaB

a
be
b
ν . (3.15)

where B = diag(λ0, λ1, λ2, λ3). Similarly

Dµ
ν = Eµ

aD
a
bE

b
ν . (3.16)

D = diag(λ0, λ1, λ2, λ3). Applying A to eνa we have

Aµνe
ν
a = µaδ

b
aE

µ
b = T b

a E
µ
b (3.17)
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or equivalently

Aµν = Eµ
b T

b
a e

a
ν , (3.18)

where T ab is diagonal with the form

T ab =



µ0 0 0 0

0 µ1 0 0

0 0 µ2 0

0 0 0 µ3


(3.19)

The µ s are the singular values of A and e µ
a and Eb

ν the left and right Partial Lorentz

Transformations that bring A to the LSVD (Lorentzian Singular Value Decomposi-

tion) form (3.19). Since the eigenvalues of B are the squares of the singular values of

A, it follows that λs are positive. At this stage µ1, µ2, µ3 can all have either sign. By

Partial Lorentz transformations (e.g by rotation by π in the x−y plane) it is possible

to reverse the signs of two of µ1, µ2, µ3. By such transformations it is possible to

arrange for all of µ1, µ2, µ3 to have the same sign. µ0, of course, is positive (3.14).

3.4 States and Separability

The DEC is a necessary condition for ρ to be a state (have non negative eigen-

values). From the LSVD form (3.19) it is easy to write down sufficient conditions on
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the µs to ensure that ρ is positive. The diagonal form (3.19) leads to a state,

ρ =



µ0 − µ3 0 0 µ2 − µ1

0 µ3 + µ0 −µ1 − µ2 0

0 −µ1 − µ2 µ3 + µ0 0

µ2 − µ1 0 0 µ0 − µ3


(3.20)

with eigenvalues

µ1 − µ2 − µ3 + µ0

−µ1 + µ2 − µ3 + µ0

−µ1 − µ2 + µ3 + µ0

µ1 + µ2 + µ3 + µ0

(3.21)

Requiring that the eigenvalues of ρ are positive gives us the conditions

−µ1 + µ2 + µ3 ≤ µ0

µ1 − µ2 + µ3 ≤ µ0

µ1 + µ2 − µ3 ≤ µ0

µ1 + µ2 + µ3 ≥ −µ0

(3.22)

The form of T ab gives us a way to express it in separable form, provided T ab (See

also the Appendix B) satisfies the strong energy condition [21]:

µ1 + µ2 + µ3 ≤ µ0.
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Let us define an orthonormal frame T a, Xa, Y a, Za in which T ab is diagonal. Suppose

first that µ1, µ2, µ3 are all non negative.

T ab = µ1X
aXb + µ2Y

aYb + µ3Z
aZb + µ0T

aTb (3.23)

Let us also define lightlike vectors X± = (T ±X)/
√

2 and similarly Y± and Z±. From

the identity

Xa
+X+b +Xa

−X−b = XaXb + T aTb (3.24)

we can write T ab as

T ab = µ1(Xa
+X+b +Xa

−X−b)

+ µ2(Y a
+Y+b + Y a

−Y−b)

+ µ3(Za
+Z+b + Za

−Z−b)

+ (µ0 − µ1 − µ2 − µ3)T aTb (3.25)

T is explicitly in separable form provided

µ0 ≥ µ1 + µ2 + µ3,

i.e. the Strong Energy Condition(SEC) is satisfied.

If µ1, µ2, µ3 are all non positive, they automatically satisfy (3.22) |µ1|+|µ2|+|µ3| ≤

µ0. The identity

Xa
+X−b +Xa

−X+b = −XaXb + T aTb (3.26)
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gives us

T ab = |µ1|(Xa
+X−b +Xa

−X+b)

+ |µ2|(Y a
+Y−b + Y a

−Y+b)

+ |µ3|(Za
+Z−b + Za

−Z+b)

+ (µ0 − |µ1| − |µ2| − |µ3|)T aTb, (3.27)

which is in separable form.

Conversely, if A represents a separable state, we can write

Aµν =
∑
i

wi n
i
µm

i
ν

where wi > 0 are positive weights and ni and mi are future pointing causal vectors.

Without loss of generality we can suppose n,m to be lightlike (since time-like vectors

are convex combinations of lightlike ones) and further absorb wi into the vectors n,m.

Computing

Axx + Ayy + Azz =
∑
i

~ni. ~mi ≤
∑
i

|ni||mi|

=
∑
i

ni0mi0

= A00 (3.28)

Applying this argument to the LSVD diagonal form T , we see that separable states

satisfy the SEC. Thus we have shown that the SEC is necessary and sufficient for

separability. If the SEC is satisfied we find an explicit decomposition of T ab (and

therefore of A) into separable form.
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3.5 Three dimensional representation of the two-

qubit state space

As we discussed earlier, the 16 dimensional space of un-normalized density matri-

ces undergoes a reduction to a 4 parameter family of twelve dimensional fibers under

the action of left and right Partial Lorentz Transformations. In fact, the 4 parameter

(µ0, µ1, µ2, µ3) representation can be further reduced to a 3 parameter representation

since only the ratios are relevant. Since we have assumed λ0 6= 0 we have µ0 6= 0. By

scaling let us set µ0 = 1 and plot a simple three dimensional representation of the

state space. From the DEC, it follows that 0 ≤ |µâ| ≤ 1, â = 1, 2, 3, so the states

lie within the cube of side 2 whose body diagonal connects P̃ = {−1,−1,−1} to

P = {1, 1, 1}.

As mentioned earlier, we can suppose that µ1, µ2, µ3 have the same sign. Instead

of the eight octants spanned by the cube above, we need only restrict ourselves to

two of the eight octants: the positive octant and the negative octant. This results in

the figure shown in Figure 3.2.

The region shaded blue is the set of separable states. All states in the negative

octant are separable and form the convex hull S− = H(O,−i,−j,−k) of the origin

O and the tips of the unit vectors −i,−j,−k. The plane passing through −i,−j,−k

divides µs satisfying the state conditions (3.22) from those that don’t. In the positive

octant, the separable states form the convex hull S+ = H(O, i, j,k) of the origin O

and the tips of the unit vectors i, j,k. The plane passing through i, j,k divides the

separable states from the entangled states. All states “above” this plane (Figure 3.2)
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Figure 3.2: A three dimensional representation of the state space of µ1, µ2, µ3 for
Type-I states. The red tetrahedron ({P, i, j,k}) represents the set of entangled states
and the blue tetrahedra ({O, i, j,k} and {O,−i,−j,−k}), the set of separable states.
The boundary between these two sets is defined by a plane passing through the tips
of the unit vectors i, j,k.

are entangled and shown in red.

Note also that under inversion, (reversing the sign of all of µ1, µ2, µ3), the sep-

arable states S+ and S− exchange places, but the entangled states are mapped to

regions outside the state space. In fact, inversion I in the ~µ space is identical to the

partial transpose (and to the partial inversion). As expected from the PPT test, the

entangled states (in red in Figure 3.2) are mapped outside the state space by the
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Figure 3.3: A three dimensional representation of the state space for Type-II
states.The three blue dots at {i, j,k} represent separable states and the three red
lines {i,P}, {j,P}, {k,P} represent entangled states.

partial transpose operation.

Finally we remark that the states on the boundary of S+ and S−, where one or

more µ s vanishes have to be identified with their images under inversion. With this

identification, Figure 3.2 gives a complete elucidation of the generic state space. Each

point in the state space of Figure 3.2 represents an equivalence class of states, all of

which are related by partial Lorentz transformations.

The generic state space includes most of the states of the two qubit system, in-

cluding all strictly positive density matrices. The non generic states are characterised

by the absence of a timelike eigenvector for B (D). We deal with these in the next

section titled exceptional states[29].
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3.6 Exceptional States

There are some states which do not admit a timelike eigenvector for B (D). For

this to happen, the dominant eigenvalue λ0 has to be degenerate.

Type-II States:

These states are characterised by the fact that B (D) has a repeated lightlike eigen-

vector with positive eigenvalue. The dominant eigenvector can be chosen to be = X+.

For Type-II states, the LSVD matrix T ab is not diagonal but only in Jordan form.

The basis which achieves this form is not a standard Lorentz frame {T,X, Y, Z} but

a null frame {X+, X−, Y, Z}. The Jordan form is

T ab =



µ0 0 0 0

x µ0 0 0

0 0 µ2 0

0 0 0 µ3


(3.29)

where x > 0. (DEC guarantees x ≥ 0, but if x vanishes, A is of Type-I, since

B has two distinct lightlike eigenvectors X+, X−.) We have arbitrarily selected µ1

degenerate with µ0. Since µ1 = µ0 is positive, we can arrange for µ2, µ3 also to be

positive and we have

T ab = µ0(Xa
−X+b +Xa

+X−b)

+ µ2(Y a
+Y+b + Y a

−Y−b)

+ µ3(Za
+Z+b + Za

−Z−b)

+ xXa
+X+b (3.30)
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The condition that A is defined from a state (Equation (3.22)) requires µ2 = µ3.

From the argument at the end of section 3.4, we see that these states are entangled

if µ2 = µ3 > 0.

If µ2 = µ3 = 0, then

T ab = µ0(Xa
−X+b +Xa

+X−b) + xXa
+X+b.

(3.31)

These states are clearly in separable form. The Type-II states are shown in Figure

3.3. The blue dots represent the separable states and the red lines the entangled ones.

By switching the roles of B and D, we also have states where the Jordan form is the

transpose of (3.29).

Type-II0 States:

Finally, we address the possibility that the dominant eigenvalue λ0 vanishes. As

described in the appendix, these states come in three families (t is a timelike vector

and x is positive):

1. Type-II0a: Aµν = xtµlν . B vanishes identically.

2. Type-II0b: Aµν = xlµtν . D vanishes identically.

3. Type-II0c: Aµν = xl µ1 l2ν . Both B and D vanish.

These states are separable and because they have vanishing µ0, do not find a

place in either Figure 3.2 or Figure 3.3. The form of the stress tensor for Type-II0c

is T ab = xX a
+ X+b . Such a form for the stress tensor appears in Relativity where it

is known as a null fluid or null dust[21]. It represents radiation which is all travelling

in the same direction.
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To summarise our classification (which is explained in more detail in the ap-

pendix),

1. Type-I: λ0 > 0 and B (and D) admit a timelike eigenvector.

2. Type-II: λ0 > 0 and B (and D) has a repeated lightlike eigenvector.

3. Type-II0: λ0 = 0. B or D (or both) vanish.

3.7 Classification of States

In the text, the division of states into different types is only briefly described

with a reference to Hawking and Ellis [21]. Ref.[21] gives four possible types for

the stress tensor. Of these, Type-III and Type-IV violate the weak energy condition

and therefore also the dominant energy condition. These types are irrelevant to

our present context, since all states satisfy the DEC. Here we describe briefly our

classification of states into Type-II0, Type-I and Type-II. Our Type-II0 is contained

in Hawking’s Type-II. We separate it from Type-II because it does not fit into the

graphical representation for Type-II states.

To classify the states, we look at the action of Aµν on lightlike vectors (which

corresponds to a pure state of a quantum system). Are there lightlike vectors which

are mapped to the zero vector? If the answer is yes, the state is

Type-II0: This is further divided into three classes as follows.

Type-II0a: A takes some lightlike vector lν to zero. Aµνl
ν = 0. Contracting with an

arbitrary timelike covector αµ, and noting that αµA
µ
ν is causal and orthogonal to lν
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we see that A must take the form

Aµν = xtµlν (3.32)

where x is positive, t timelike and l, t normalised by t.t = l.t = 1. This form is

Type-II0a. In this case B vanishes and Dµ
ν = x2lµlν .

Type-II0b: The transpose of A takes some lightlike vector lν to zero. A ν
µ l

µ = 0.

Contracting with an arbitrary timelike covector αν , and noting that ανA
ν
µ is causal

and orthogonal to lµ we see that A must take the form

A ν
µ = xlµt

ν (3.33)

where x is positive, t timelike and l, t normalised by t.t = l.t = 1. In this case D

vanishes and Bµ
ν = x2lµlν .

Type-II0c: Both A and the transpose of A takes some lightlike vector to zero.

Aµνl
ν
1 = 0 and A ν

µ l
µ
2 = 0. Arguing similarly, we see that A must take the form

Aµν = xlµ2 l1ν (3.34)

where x is positive, l1 and l2 lightlike and l1, l2 normalised by l1.l2 = 1. This form is

Type-II0c. In this case both B and D vanish.

If no lightlike vectors are mapped to zero by A or its transpose, we ask how many

lightlike vectors mapped by A (or its transpose) to lightlike vectors. If the answer is

exactly one, the state is of

Type-II: We have

Aµνl
ν = µ0n

µ (3.35)

with µ0 > 0. It follows that the transpose of A maps n to l

A µ
ν n

ν = µ0l
µ (3.36)
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and that D and B have a single lightlike eigenvector

Dµ
ν l
ν = µ2

0l
µ (3.37)

Bµ
νn

ν = µ2
0n

µ (3.38)

In this case B and D can only be brought to Jordan form (3.29).

Type-I If A maps two (or more) distinct lightlike vectors lµ1 and lµ2 to lightlike vectors

nµ1 and nµ2 , the same argument shows that B has two (or more) distinct lightlike

eigenvectors with the same eigenvalue. If B (D) has two distinct lightlike eigenvectors

X+ and X− with the same eigenvalue λ0, B also admits a timelike eigenvector X−+X+

and thus is Type-I.

If there are no lightlike vectors mapped to lightlike vectors by A, Aµνl
ν is strictly

timelike for all lightlike l. We have a strict version of the DEC.

lµAµνn
ν > 0 (3.39)

This implies that A, its transpose and the composites B and D map lightlike vectors

to timelike vectors. To classify the remaining states, let us consider the function

f(l, n) defined on the space of distinct lightlike directions determined by the lightlike

vectors l and n. (l.l = n.n = 0)

f(l, n) :=
Bµν l

µnν

l.n
(3.40)

By construction f(l, n) depends only on the lightlike directions of l, n. By (3.39),

the numerator is positive and the function f(l, n) approaches positive infinity as l

approaches n. The global minimum of f occurs at l0, n0 with l0 and n0 linearly

independent lightlike vectors, which we can normalise by l0.n0 = 1. By considering
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the first variation of f around its minimum, we see that the l0, n0 plane is mapped to

itself by B:

Bl0 = αl0 + βn0 (3.41)

Bn0 = γl0 + αn0, (3.42)

where α = B(l0, n0), β = B(l0, l0), γ = B(n0, n0) are all strictly positive by (3.39). It

is easily seen that B has dominant eigenvalue λ0 = α+
√
βγ and dominant eigenvector

l0 + (
√
β/γ)n0, whose norm 2

√
β/γ is strictly positive. The dominant eigenvector is

timelike and the state is Type-I. This is in fact the generic case and most of the states

of the two qubit system fall in this category. In fact, all the interior states where the

eigenvalues of ρ are strictly positive fall into Type-I.

3.8 Conclusion

We have presented a necessary and sufficient criterion to detect two qubit entan-

glement. In addition our approach reveals a separable form of the density matrix if

it exists. Our approach is based on Lorentzian geometry, in particular a Lorentzian

Singular Value Decomposition. The LSVD has also been described by Avron et al

[29]. They also notice the relevance of the Dominant Energy Condition that all states

must satisfy and go on to give a three dimensional graphical representation of the

state space. However, Avron et al [29] do not propose an entanglement test, as we

have done. Neither do they comment on the relevance of the strong energy condition

to entanglement. Our graphical representation, though related to [29], is simpler,

because we reduce the picture from eight octants to two. There has also been work
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[30] which proposes an entanglement test based on a standard Singular Value Decom-

position. However, this test only works on a restricted class of states: the reduced

density matrices of each subsystem have to be maximally disordered. We go beyond

earlier work in providing an explicit construction of a separable state for the density

matrix in those cases where it exists.

Our focus in this chapter is entirely on quantum entanglement. There are other

quantum correlations like discord described for example in [31], which are not con-

sidered here. Ref.[31] studies the so-called X states, which have nonzero entries on

the diagonal and the anti-diagonal. The focus of Ref.[31] is the study of quantum

discord for two qubit X states, with a view to understanding the relation between

quantum discord, classical correlations and entanglement. They observe that these

are independent measures of correlation.

Ref. [32] also addresses X states and quantum discord. Just as we do here, Ref.

[32] also makes use of Lorentzian structures. However, the local operations considered

are local unitary transformations (six parameters in all) and the canonical forms used

are X states, which are characterised by essentially five parameters. As a result the

total dimension of the state space explored is generically eleven, which falls short

of the dimension of fifteen, for normalised states. In contrast, our use of local (or

partial) Lorentz transformations provides twelve parameters, which along with the

four eigenvalues of the canonical diagonal form provides a complete characterisation

of the sixteen dimensional unnormalised state space. It is interesting to note that

our Equation (3.20) represents an X state, but the number of parameters appearing

is only four. In our treatment, not all X states are required to produce the general
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state by local Lorentz transformations.

There appears to be a rich Lorentzian structure hidden within the theory of quan-

tum entanglement. The relation is probably best appreciated using spinors, which

have been studied by relativists like Penrose, Newman etc[33]. In this exposition, we

have deliberately avoided the use of spinor language since this is not widely used in

the general physics community. The key property of Partial Lorentz Transformations

used here is that they map states to states, separable states to separable states and

entangled states to entangled states. This allows us to decompose the total set of

states into equivalence classes. Any two elements from the same equivalence class

are related by Partial Lorentz Transformations and are either both separable or both

entangled. To decide whether a particular equivalence class is entangled or separable,

we can choose any element from the class. By choosing the canonical form given by

the LSVD decomposition, we are able to easily determine if the class is separable or

entangled.

Although the test proposed in [34] relies only on the eigenvalues of B (D), it is

important to realise that the state depends both on the eigenvalues and the eigen-

vectors of B (D). While a knowledge of the eigenvalues is enough to determine if a

state is separable, one needs also the eigenvectors to explicitly write out the separable

form.

By setting quantum states in correspondence with tensors in Minkowski space,

we were naturally led to a formalism combining Quantum Information Theory with

Relativity. While the analogy at this level is a purely formal one, it may contain the

seeds of some future amalgamation of Relativity with Quantum Information Theory.
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For instance one can consider physical realisations of PLT s by forming two qubits in

an entangled state, separating the qubits and acclerating one of them adiabatically

to a new Lorentz frame. One would expect the states to transform according to the

formulae of this chapter.

How does this theory work in higher dimensional quantum systems? It would

appear that one has to find a maximal group of transformations which takes states

to states and separable states to separable states. These would be the appropriate

generalisation of PLT s to the higher dimensional case. Once such a group of en-

tanglement preserving transformations is identified the dimensionality of the problem

can be drastically reduced. We hope to interest the quantum information community

in this new approach to the problem of detecting quantum entanglement.



Chapter 4

Role of Entanglement in a Coarse

Quantum Measurement

An observer plays an active role in a quantum measurement process. Unlike

measurements in classical systems where the act of measurement merely “reveals” the

value of the observable being measured without actually perturbing the system, the

act of observation in quantum mechanics forces the quantum system to “collapse”

into one of the possible alternative measurement outcomes. Entanglement plays a

key role in all measurement processes. In order to obtain any information about

a dynamical variable from a quantum system, an observer establishes a coupling

between the system and the measuring apparatus. This coupling entangles the state

corresponding to each alternative outcome of the system to a unique state of the

measuring apparatus. By observing the state of the measuring device one then infers

the state of the quantum system. This is the general scheme of the measurement

process in a quantum system. In this chapter, we will take a closer look at the

60
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measurement process in the context of the Stern-Gerlach experiment. In particular,

we will investigate the effect of the extent of entanglement on measurement. We will

also study the idea of a coarse-grained measurement and see its effect on the Wigner

matrix associated with the system density matrix.

4.1 The measurement process

Let us summarize the measurement process in quantum mechanics. Our system

is initially in a coherent superposition of states |S〉 =
∑

i ci|Si〉 in an orthonormal

basis which diagonalises the quantity being measured. To begin with, the system

plus apparatus is in the product state |ψ〉 = |S〉|A〉, in which the system and the

apparatus are unentangled. It is useful to logically break up the measurement process

into three steps. The first step in the measurement process entails coupling between

the quantum system and the measuring apparatus so that the total state evolves

unitarily to an entangled state U |ψ〉 =
∑

i ci|Si〉|Ai〉1. This state can be represented

as a pure density matrix

ρ = |ψ〉〈ψ| =
∑
ij

c∗jci|Si〉|Ai〉〈Sj|〈Aj| (4.1)

After the first step, the density matrix of the system takes the impure form

ρ̃ =
∑
i

|ci|2|Si〉〈Si| (4.2)

which is interpretable as a classical mixture of states. Finally, the impure diago-

nal density matrix (4.2) goes over to a pure state ci|Si〉〈Si|c∗i . The first step can

1We note that in general, the |Ai〉 s need not be orthonormal.
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be explained entirely in terms of unitary evolution and therefore is not controver-

sial. The final step, sometimes called “collapse”, has been debated extensively as

the “quantum measurement problem”. This singling out of one outcome from many

possibilities is not addressed here. Let us note that, even in classical probability

theory, there is a singling out of one from several outcomes (only one horse wins the

race). We address here the second step; the transition from quantum superpositions

to classical mixtures. This is the focus of the chapter. In this chapter, we investigate

the Stern-Gerlach experiment from the perspective of a coarse quantum measure-

ment (CQM), in which we recognize the fact that all experiments are constrained

by bounded resources. We model these constraints by using a screen whose size and

spatial resolution are fixed. The spatial resolution of the screen is given by the pixel

size and the size of the screen determines the total number of pixels. Experimen-

tally one can only say that an atom was incident on our screen somewhere within

a pixel. Fixing these resources imposes ultraviolet as well as infrared cutoffs on the

experimental probes. In this Chapter we are more concerned with the short distance

cutoff.

4.2 The Stern-Gerlach set up

Let us consider a Stern Gerlach (SG) type experiment for measuring the spin of

a silver atom. In a typical SG setup a beam of silver atoms produced in an oven

is made to pass through an inhomogeneous magnetic field and later detected on a

screen placed at a distance in the direction of the propagating beam (see Figure

4.1). We will consider the spin of the silver atom as our quantum system and the
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N

S
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Figure 4.1: Figure shows a typical Stern-Gerlach setup. A beam of silver atoms is
produced in the oven. This beam then travels through an inhomogeneous magnetic
field. Finally, they are detected on the screen.

center of mass as the measuring apparatus. Following the general scheme of the

measurement we establish a coupling between the spin(quantum system) and the

center of mass of the silver atom(measuring apparatus) by allowing it to pass through

an inhomogeneous magnetic field of the form ~B = (B0y,B0x, 0)2. The system and

the measuring apparatus evolves with the Hamiltonian:

Ĥ =
1

2m
(p2
x + p2

z)− xFσy where F = gµB
~
2
B0 (4.3)

with g the Landé g factor and µB the Bohr magneton. Let the initial state of the

spin and the center of mass of the silver atom be |Ψ(0)〉 = ψ(x, 0) ⊗ |χ(0)〉 where

2This field is both divergence and curl free i.e.

∇×B = 0 and ∇ ·B = 0
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ψ(x, 0) =
(

2
πσ2

)1/4
exp
(
−x2

σ2

)
is the initial Gaussian wave packet associated with the

position of the center of mass of the silver atom and |χ(0)〉 = 1√
2

(|+〉+ |−〉) is the spin

part3 of the silver atom. Notice that at this point of time there is no entanglement

between the system(spin) and the measuring apparatus(the position of the center

of mass), as the total wave function corresponding to the composite state (system

and measuring apparatus) is separable. We will later see that as the system and the

apparatus interact entanglement will set in. In order to time evolve this initial wave

packet |Ψ(0)〉, we first need to find the propagator for the interaction of the system

and the apparatus. The time evolved state |Ψ(t)〉 can then be obtained by “folding”

the initial Gaussian with the propagator matrix.

4.3 Propagator for the Stern-Gerlach Hamiltonian

We will use the path-integration technique for calculating the propagator of the

Hamiltonian (4.3). The propagatorK between initial and final points x(0) = xi and x(t) =

x will be given by[35],

K(x, t;xi, 0) =

∫ x

xi

exp

(
1

~
S[x(t)]

)
D[x(t)] (4.4)

The Lagrangian for the problem can be written as

L =
1

2
mẋẋ+ xF

where F is the constant force acting on the particle such that a = F/m. Since the

potential is of the form V (x) = a + bx + cx2 + dẋ + exẋ the exact propagator can

3|+〉 , |−〉 are the eigenstates of σy
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be obtained by just considering the action along the classical path[36]. Let us now

calculate the action along the classical path with the condition x(0) = xi, ẋ(0) =(
x− xi − 1

2
at2
)
/t ; x(t) = x, ẋ(t) =

(
x− xi + 1

2
at2
)
/t.

Sclassical =

∫ t

0

(
1

2
mẋẋ+ xF

)
dt =

[m
2

(xẋ)
]t

0
− m

2

∫ t

0

(ẍ− a)dt︸ ︷︷ ︸
=0

+
m

2

∫ t

0

(ax)dt

Substituting the values of x(t), ẋ(t), x(0), ẋ(0) we obtain

Sclassical =
m

2t
(x− xi)2 +

Ft

2
(x+ xi)−

F 2t3

24m

so the propagator is,

K++(x, t ; xi, 0) = A(t) exp

(
i

~

(
m

2t
(x− xi)2 +

Ft

2
(x+ xi)−

F 2t3

24m

))
where A(t) is the normalization which can be obtained by using the fact that as

t → 0, K++ → δ(x − xi). On comparison we obtain A(t) =
√

m
2iπ~t . We can obtain

K−−(x, t ; xi, 0) by replacing F −→ −F . Hence,

K++(x, t ; xi, 0) =

√
m

2iπ~t
exp

(
i

~

(
m

2t
(x− xi)2 +

Ft

2
(x+ xi)−

F 2t3

24m

))
(4.5)

K−−(x, t ; xi, 0) =

√
m

2iπ~t
exp

(
i

~

(
m

2t
(x− xi)2 − Ft

2
(x+ xi)−

F 2t3

24m

))
(4.6)

K+−(x, t ; xi, 0) = 0 (4.7)

K−+(x, t ; xi, 0) = 0 (4.8)

4.3.1 Energy eigenstates of the SG-Hamiltonian

The time independent Schrödinger Equation for the Hamiltonian (4.3) mentioned

above is: [
− ~2

2m

(
∂2

∂x2
+

∂2

∂z2

)
− xFσy

]
φ(x, z) = Eφ(x, z) (4.9)
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where φ(x, z) is a two component Pauli spinor. We assume without loss of generality,

a solution of the form φ(x, z) = θ(x, z)eikz where ~2k2
2m

= E. Then the above equation

becomes

− ~2

2m

∂2θ(x, z)

∂x2
− ~2

2m

(
∂2θ(x, z)

∂z2
+ 2ik

∂θ(x, z)

∂z
− k2θ(x, z)

)
−xFσyθ(x, z) = Eθ(x, z)

Furthermore if we assume ∂2θ(x,z)
∂z2

� ∂θ(x,z)
∂z

, ∂
2θ(x,z)
∂x2

(the paraxial approximation) then

equation (4.9) reduces to

~2

2m

∂2θ(x, z)

∂x2
+
ik~2

m

∂θ(x, z)

∂z
− xFσyθ(x, z) = 0. (4.10)

We choose to work in the σy basis so that equation (4.10) becomes a pair of uncoupled

differential equations with solutions θ+(x, z) and θ−(x, z) corresponding to eigenvalues

+1 and -1 for σy. We will first solve for θ+(x, z) and then replace F with −F to get

the other solution θ−(x, z). The equation for θ+(x, z) then reads

~2

2m

∂2θ+(x, z)

∂x2
+
ik~2

m

∂θ+(x, z)

∂z
− xFθ+(x, z) = 0 (4.11)

In order to solve Eq(4.11) we take the Fourier transform of the above equation with

respect to x and get:

ik~2

m

∂Θ+(p, z)

∂z
= i~F

∂Θ+(p, z)

∂p
− p2

2m
Θ+(p, z) (4.12)

where Θ+(p, z) is the Fourier transform of θ+(x, z). This equation can now be solved

using a separation of variables of the form Θ+(p, z) = ζ(z)ξ(p). Using this substitution

we get two ordinary differential equations (ODE)

ik

m
~2 1

ζ(p)

∂ζ(p)

∂z
=

p2

2m
− i~F
ξ(p)

∂ξ(p)

∂p
= ε .
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Figure 4.2: Plot of θ+(x, 0) against x

.

Solving the above two ODE’s we obtain

ζ(z) = e−i
mε
k~2 z ξ(p) = e

i
~F

(
p3

6m
−εp

)
(4.13)

In order to get ξ(x) we need to take the inverse Fourier transform of ξ(p).

ξ(x) =
1√
2π~

∫ ∞
−∞

e
i

~F

(
p3

6m
−(ε+xF )p

)
dp (4.14)

Using a stationary phase approximation to evaluate ξ(x) we get4

θ+(x, z) = 2

(
mF 2

2(ε+ xF )

)1/4

cos

(
2
√

2m

3~F
(ε+ xF )

3
2 − π

4

)
e−i

mε
k~2 z (4.15)

θ−(x, z) = 2

(
mF 2

2(ε− xF )

)1/4

cos

(
2
√

2m

3~F
(ε− xF )

3
2 − π

4

)
e−i

mε
k~2 z (4.16)

Figure 4.2 and 4.3 shows the variation of θ+(x, 0) and θ−(x, 0) along the direction of

the incident silver beam.

4in this case we obtain a continuous spectrum for every value of ε in (−∞,∞)
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Figure 4.3: Plot of θ−(x, 0) against x

4.4 Evolution of the entanglement entropy

We now find the combined state of the system and the apparatus after t seconds

of interaction. This combined state will be given by,

|Ψ(x, t)〉 =
1√
2

ψ+(x, t)

ψ−(x, t)

 =
1√
2

∫ ∞

−∞


K++ K+−

K−+ K−−


ψ+(xi, 0)

ψ−(xi, 0)


 dxi (4.17)

Using Equations (4.5) to (4.8) we easily evaluate the integral (4.17) and obtain

ψ+(x, t) =

√
mσ

(mσ2 + i~t)
√
π

exp

{
−
m(12x2 + a2

~ (4imσ2 − ~t)t3 + 12axt
~ (−2imσ2 + ~t))

24(mσ2 + i~t)

}
(4.18)

ψ−(x, t) =

√
mσ

(mσ2 + i~t)
√
π

exp

{
−
m(12x2 + a2

~ (4imσ2 − ~t)t3 − 12axt
~ (−2imσ2 + ~t))

24(mσ2 + i~t)

}
(4.19)

It can now be seen that the combined state of the system and the apparatus |Ψ(x, t)〉

is an entangled state, as this state can’t be written in the form ψ(x, t)⊗ |χ(t)〉. The
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total density matrix of the system after time t is given by ρ(x, x′, α, β) = ψ∗α(x)ψβ(x′)

where α, β take the values {+,−}. The degree of entanglement can be measured

by the entanglement entropy [12], which is most easily computed by tracing over the

position and diagonalising the 2× 2 reduced density matrix ρspin for the spin. If we

trace over the position and get a reduced density matrix for the spin we have:

ρspinαβ = trposition [ρ(x, x′, α, β)] (4.20)

=

∫ ∞
−∞

ψ∗α(x)ψβ(x′)dx (4.21)

=
1

2

 1 e
− F2t2

4m2σ2

(
t2+4m

2σ4

~2

)

e
− F2t2

4m2σ2

(
t2+4m

2σ4

~2

)
1

 . (4.22)

Now the entanglement entropy E(ρ) will be given by,

E(ρ) = −trposition [ρ log ρ]

= −tr [ρspin log(ρspin)]

= log 2− (1 + A(t))

2
log (1 + A(t))− (1− A(t))

2
log (1− A(t)) (4.23)

where A(t) = exp
{
− t2(t2+τ2spread)

τ4separation

}
and 1±A(t)

2
are the eigenvalues of the spin density

matrix5. Here τspread corresponds to the time over which each of the wave-packets

spreads and τseparation is the time over which the centers of mass of the two wavepackets

separate. Clearly, the entanglement between the spin and the center of mass of the

silver atom is a function of time. In Figure 4.4 this time dependence has been shown.

The entanglement entropy can also be expressed as:

E(ρ) = −trspin [ρ log ρ] =

∫ ∞
−∞

P (x) logP (x)dx (4.24)

5for a discussion on τseparation and τspread see section 4.5
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where P (x) = P+(x) + P−(x) and P±(x) = ψ∗±(x)ψ±(x). This is the maximum infor-

mation about the spin state that can be extracted from a spatial measurement[37].

4.5 Entanglement and coarse graining

We start with an initial Gaussian wave packet of width σ for the center of mass

of the silver atom then from (4.18) and (4.19) we obtain

|ψ+(x, t)|2 =
1√

π(σ2 + ( ~
mσ

)2t2)
exp

(
− 1

σ2 + ( ~
mσ

)2t2

[
x− 1

2
at2
]2
)

|ψ−(x, t)|2 =
1√

π(σ2 + ( ~
mσ

)2t2)
exp

(
− 1

σ2 + ( ~
mσ

)2t2

[
x+

1

2
at2
]2
)

This initial Gaussian wave-packet has

i) ∆xseparation = at2

ii) σ(t) =
√
σ2 + ~2

m2σ2 t2

Clearly, the wave-packet separates(∼ t2) at a faster rate than it spreads(∼ t). We

can identify two relevant time scales: τseparation =
√

2σ
a

, the time over which the

centers of mass of the two wave packets separate and τspread = mσ2

~ , the timescale over

which each individual wave-packet spreads. We use the values m = 1.79 × 10−25kg,

F = 9.27 × 10−22N and σ = 10−6m which are experimentally reasonable. Typical

values for the two time scales are τseparation = 10−5s and τspread = 10−3s. It is worth

mentioning that at time t = 11 ms the separation of the wave-packet takes over

the spreading. We restrict our discussion to a situation where the detection screen

is placed at a location just at the point where the atom exits the magnetic field.
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Figure 4.4: Figure shows the entanglement entropy as a function of time in seconds.

However, in general one can have a further free evolution of the separated wave-

packets beyond this region in the field free space.

The entanglement entropy is plotted in Figure 4.4, which shows that E(ρ), starts

from zero at t = 0, then increases and finally settles down to an asymptotic value of

log 2 over a time scale of the order of 10−7s. This entanglement timescale is given

by τentanglement = τ 2
separation/τspread and is shorter than the separation or spreading

timescales. For τseparation ∼ t >> τentanglement, the entanglement is high even though

the wavepackets have not cleanly separated in real space.

4.6 Visibility of the interference fringes

In order to observe the interference pattern on the screen in our setup we must

have the size of the pixel of the screen smaller than the size of the successive maxima
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of the interference pattern. To estimate the separation of successive maxima (say ∆x)

we compute the density matrix as shown in the next section. A brief calculation shows

that for ψ+(x, t) = N exp(A+ iB) and ψ−(x, t) = N exp(C + iD), the density matrix

(4.26) has the off diagonal oscillatory term cos(D−B). The separation between two

maxima can thus be obtained by invoking the following condition

(D −B) = 2π and hence we get ∆x =
2π~
Ft

(
1 + ~2t2

m2σ4

2 + ~2t2
m2σ4

)
(4.25)

Setting m = 1.79× 10−25kg, σ = 10−6m and t = 10−5s we get:

∆x ≤ 3.55× 10−8m.

Any pixel size larger than ∆x will wash out the interference fringes by averaging the

|ψ(x, t)|2 to zero due to the presence of the oscillatory term cos(D −B).

4.6.1 Loss of coherence

The density matrix that corresponds to the state of the silver atom after passing

through the magnetic field is given by

ρ(x, t) =

 |ψ+(x, t)|2 ψ+(x, t)ψ∗−(x, t)

ψ∗+(x, t)ψ−(x, t) |ψ−(x, t)|2

 (4.26)

In order to see the time dependence of the off-diagonal term(which captures the

coherence) in the above case we integrate over the position variable and get:∫ ∞
−∞

ψ+(x, t)ψ∗−(x, t)dx =
1

2
e
− F2t2

4m2σ2

(
t2+4m

2σ4

~2

)
(4.27)
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and also ∫ ∞
−∞
|ψ+(x, t)|2 dx =

1

2
(4.28a)∫ ∞

−∞
|ψ−(x, t)|2 dx =

1

2
(4.28b)

Hence the density matrix corresponding to the spin variable in our case becomes

ρ(t) =
1

2

 1 e
− F2t2

4m2σ2

(
t2+4m

2σ4

~2

)

e
− F2t2

4m2σ2

(
t2+4m

2σ4

~2

)
1

 (4.29)

Clearly, the off diagonal terms get exponentially suppressed with time.

4.7 Wigner function

The Wigner function corresponding to a density operator ρ = |ψ〉 〈ψ| is defined

as,

W(x, p) :=
1

2π~

∫ ∞
−∞

dye−i
py
~ ψ
(
x+

y

2

)
ψ∗
(
x− y

2

)
It is straightforward to see that the expectation value of an observable O in the state

ρ can be obtained as,

〈O〉 = tr [ρO] :=

∫ ∞
−∞

∫ ∞
−∞

W(x, p)Õ(x, p)dxdp

where Õ(x, p) is the Weyl transform6 of the operator O. The Wigner function in

quantum mechanics plays a role analogous to that of a probability distribution defined

6Weyl transform Ã(x, p) of an operator A is defined as

Ã(x, p) :=
1

2π~

∫ ∞
−∞

dye−i
py
~ 〈x+ y/2|A|x− y/2〉



Chapter 4: Role of Entanglement in a Coarse Quantum Measurement 74

on the classical phase space. However, it is strictly not a probability distribution as

it can take negative values unlike a probability distribution, which is always positive.

We will now show in the next section the effect of coarse-graining on the Wigner

function of the full density matrix associated with the system and the apparatus.

4.8 Coarse graining in the quantum phase space

From the density matrix ραβ(x, x′) we construct the Wigner matrix W(q, p) [38].

The matrix elements of W(q, p) are:

Wαβ(q, p) =
1

2π~

∫ +∞

−∞
ραβ(q + y/2, q − y/2)e

ipy
~ dy (4.30)

with α, β = ±. W(q, p) is a 2 × 2 Hermitean matrix (not necessarily positive). All

components of W(q, p) can in principle be measured by having a Stern-Gerlach setup

at the screen to measure Tr[W(q, p)(1 + n̂.~σ)/2]. In Figures 4.5 and 4.6, we display

the function W (q, p) = Tr[W(q, p)(1 + σx)/2], which shows the diagonal as well as

the off diagonal terms in the |+〉 , |−〉 basis.

We now use the fact that the detection is done coarsely: the phase space resolution

is poor and so we integrate the Wigner matrix over volumes of phase space which are

large compared to h. The coarse grained Wigner matrix W(q, p) (See Section 3.6.1)

has elements:

Wαβ(q, p) =
1

∆δ

∫ ∆/2

−∆/2

du

∫ δ/2

−δ/2
dvWαβ(q + u, p+ v), (4.31)

with ∆ and δ, the pixel size in position and momentum respectively. The off diagonal

term W+−(q, p) is oscillatory due to a term eiq2π/d, which oscillates on a length scale
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Figure 4.5: Figure shows a plot of the function W (q, p) as a function of q and p at
t = 1µ sec. The central hump showing oscillations is the real part of the off-diagonal
element of the Wigner matrix and the others are diagonal elements. We have used
typical values m = 1.79× 10−25kg, F = 9.27× 10−22N , σ = 10−6m. The W (q, p) axis
has been rescaled by multiplying by a factor of 10−33. q is displayed in m and p in
kgm/s.

d = ~
2Ft

(See Section 3.9), which is about 10−8m. On a coarse scale these off-diagonal

elements average to zero and we have a diagonal matrix of the form(See Appendix

B): 
W++(q, p) 0

0 W−−(q, p)


After the wave packets have separated, the coherence between the two wavepackets

is still perceptible in the Wigner function. As is well known, the Wigner function is
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Figure 4.6: Figure shows a plot of the function W (q, p, t) as a function of q and p at
t=30 µ sec. The remaining parameters are as mentioned in the caption of Figure 4.5.
The W (q, p) axis has been rescaled by multiplying by a factor of 10−33. q is displayed
in m and p in kgm/s.
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only a quasiprobability distribution. On coarse graining it becomes positive[39] and

can be viewed as a probability distribution in the phase space of the atomic position.

This constitutes a coarse measurement.

4.8.1 Suppression of off diagonal elements of the Wigner ma-

trix due to coarse graining

The Wigner matrix is of the form:

W(q, p) =

 W++(q, p) W+−(q, p)

W−+(q, p) W−−(q, p)

 (4.32)

Explicitly, for instance, we have:

W++(q, p) = 1
2π~ exp

(
−

4p2t2

m2 −
4pt(at2+2q)

m
+(at2+2q)2+ 4p2σ4

~2 − 8amptσ4

~2 + 4a2m2t2σ4

~2
4σ2

)
(4.33)

W+−(q, p) =
1

2π~
exp

(
−
{

(pt−mq)2

m2σ2
+
p2σ2

~2
+
iat(pt− 2mq)

~

})
(4.34)

Notice that W+−(q, p) oscillates on a spatial scale d = ~
2mat

= ~
2Ft

. The coarse

grained Wigner matrix W(q, p) has elements

Wαβ(q, p) =
1

∆δ

∫ ∆/2

−∆/2

du

∫ δ/2

−δ/2
dvWαβ(q + u, p+ v), (4.35)

with ∆ and δ, the pixel size in position and momentum respectively. The numerically

generated plots show how the offdiagonal terms W+−(q, p) and W−+(q, p) on coarse

graining average to zero due to the presence of the oscillatory term eiq
2π
d , where d

is the spatial scale of oscillation. We finally get the following diagonal form for the

coarse grained Wigner matrix:
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
W++(q, p) 0

0 W−−(q, p)


For instance, for q = 10−6m and p = 0 kgm/s and t = 3× 10−5s we get the following

form for the coarse grained Wigner matrix, for the realistic experimental parameter

values for a typical Stern Gerlach setup.

W(q, p) =

 5.7× 10−2 0

0 1.6× 10−5

 (4.36)

4.9 Conclusion

This chapter analyses the classic experiment of spin measurement, the Stern-

Gerlach experiment, using the idea of coarse measurement. A coarse measurement is

one performed with limited resources of resolution. In the present chapter, we have

explicitly demonstrated the effect of coarse graining on the Wigner function(Section

4.8) associated with the spin and the center of mass of the silver atom by integrating

the Wigner function over the volume of the phase space of size large compared to h.

This leads to a diagonal Wigner matrix. We conclude that the apparent non-unitarity

of the measurement process is a consequence of a coarse measurement.

The entanglement between the system and the measuring apparatus is a key con-

cept in any measuring process. This quantum correlation allows us to infer the state

of the system by reading the state of the measuring device. In this analysis, we

have shown that the observer can learn about the state of the spin of a silver atom

only when the entanglement between the spin and the center of mass of the silver
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atom is saturated, which happens over a time scale(10−7s) much smaller than the

separation(10−5s) and spreading(10−3s) time scales.

The point of view that is highlighted here is very much similar in spirit to reference

[40, 41], where the author argues that the notion of entropy is a subjective one.

Depending on the resolution of the available resources a measurement process may

appear unitary or non-unitary. When the interference between the wave packet is

detectable, we must conclude that the spin is both up and down simultaneously. In a

low-resolution experiment, the interference apparently gets washed out, and we can

obtain the information about the spin.

The idea of measurement presented here is very different from the idea of deco-

herence. In the decoherence paradigm, the information about the off-diagonal terms

of the system density matrix is lost due to uncontrollable interaction of the system

with the environment degrees of freedom. In contrast, in a coarse measurement the

measurement process is perceived as non-unitary due to the limitation in resolving

the eigenstate of the system.



Chapter 5

Geometry and Thermodynamics of

Quantum States

5.1 Introduction

Given two quantum states, how easily can we tell them apart? Consider for

instance, gravitational wave detection which is of considerable interest in recent times

[42, 43]. Typically, we expect a weak signal which produces a small change in the

quantum state of the detector. The sensitivity of our instrument is determined by

our ability to detect small changes in a quantum state. This leads to the issue of

distinguishability measures on the space of quantum states [44, 45, 46, 47, 48]. In

general, quantum states are represented by density matrices. In this chapter, we

address this question and arrive at a natural Riemannian metric on the space of

density matrices.

In fact, even in the classical domain, one encounters similar questions while con-

80
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sidering drug trials, electoral predictions or when we compare a biased coin to a

fair one. As the number of trials (or equivalently, the size of the sample) increases,

our ability to distinguish between candidate probability distributions improves. Such

considerations give rise in a natural and operational manner, to a metric on the space

of probability distributions [49]. This metric is known as the Fisher-Rao metric and

plays an important part in the theory of parameter estimation. This metric leads to

the Cramer-Rao bound which limits the variance of any unbiased estimator.

Another example of the use of a Riemannian metric to measure distinguishability

occurs in the theory of colours [14, 50]. The space of colours is two dimensional

(assuming normal vision) and one can see this on a computer screen in several graphics

softwares. The sensation of colour is determined by the relative proportion of the

RGB values, which gives us two parameters. The extent to which one can distinguish

neighbouring colours is usually represented by MacAdam ellipses [14, 51, 50], which

are contours on the chromaticity diagram which are just barely distinguishable from

the centre. These ellipses give us a graphical representation of an operationally defined

Riemannian metric on the space of colours. The flat metric on the Euclidean plane

would be represented by circles, whose radii are everywhere the same. As it turns

out, the metric on the space of colours is not flat and the MacAdam ellipses vary in

size, orientation and eccentricity over the space of colours. This analogy is good to

bear in mind, for we provide a similar visualisation of the geometry of state space

based on entropic considerations.

In this chapter we use Umegaki’s quantum relative entropy [52] as a measure of

distinguishability between quantum states. We will show that this entropy defines
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a metric on state space which is the true quantum counterpart of the Fisher-Rao

metric. We demonstrate that this metric suggests improved experimental strategies

for discriminating between two quantum states.

5.2 KL Divergence as maximum likelihood

Let us consider a biased coin for which the probability of getting a head is pH = 1/3

and that of getting a tail is pT = 2/3. Suppose we incorrectly assume that the coin

is fair and assign probabilities qH = 1/2 and qT = 1/2 for getting a head and a

tail respectively. The question of interest is the number of trials needed to be able to

distinguish (at a given confidence level) between our assumed probability distribution

and the measured probability distribution. A popular measure for distinguishing

between the expected distribution and the measured distribution is given by the

relative entropy or the Kullback-Leibler divergence (KLD) which is widely used in

the context of distinguishing classical probability distributions [53]. Let us consider n

independent tosses of a coin leading to a string S = {HTHHTHTHHTTTTT......}.

What is the probability that the string is generated by the model distribution Q =

{q, 1 − q}? The observed frequency distribution is P = {p, 1 − p}. If there are

nH heads and nT tails in a string then the probability of getting such a string is

n!
nH !nT !

qnH (1 − q)nT which we call the likelihood function L(n|Q). If we take the

average of the logarithm of this likelihood function and use Stirling’s approximation

for large n we get the following expression:

1

n
logL(n|Q) = −DKL(P‖Q) +

1

n
log

1√
2πnp(1− p)

, (5.1)



Chapter 5: Geometry and Thermodynamics of Quantum States 83

where p = nH
n

and DKL(P‖Q) = p log p
q

+ (1− p) log 1−p
1−q . The second term in (5.1) is

due to the sub-leading term 1
2

log 2πn of Stirling’s approximation. If DKL(P‖Q) 6= 0

then the likelihood of the string S being produced by the Q distribution decreases

exponentially with n.

L(n|Q) =
1√

2πnp(1− p)
exp{−{nDKL(P‖Q)}}.

Thus DKL(P‖Q) gives us the divergence of the measured distribution from the model

distribution. The KL divergence is positive and vanishes if and only if the two distri-

butions P and Q are equal. In this limit, we find that the exponential divergence gives

way to a power law divergence, due to the subleading term in (5.1). The arguments

above generalize appropriately to an arbitrary number of outcomes (instead of two)

and also to continuous random variables.

5.3 Relative entropy as a metric

As we saw above, the relative entropy (or KLD) gives an operational measure of

how distinguishable two distributions are, quantified by the number of trials needed

to distinguish two distributions at a given confidence level. However, the KLD is

not a distance function on the space of probability distributions: it is not symmetric

between the distributions P and Q. One may try to symmetrize this function, but

then, the result does not satisfy the triangle inequality. However, when P and Q

approach one another, the relative entropy can be Taylor expanded to second order

about P . The Hessian matrix does define a positive definite quadratic form at P

and thus a Riemannian metric on the space of probability distributions. In classical
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probability theory, this is known as the Fisher-Rao metric [49, 54] and this forms the

basis of classical statistical inference and the famous χ-squared test.

5.3.1 The Fisher-Rao metric

Let us consider two distributions p(x|λi) and q(x|λi) close to each other such that,

q(x|λi) = p(x|λi) +
∂p(x|λi)
∂λi

dλi = p(x|λi)
(

1 +
1

p(x|λi)
∂p(x|λi)
∂λi

dλi
)

(5.2)

where λis are the parameters of the distribution. We can also think of these λs as

coordinates on the probability simplex. DKL(p‖q) would then be given by,

DKL(p‖q) =

∫ ∞
−∞

p(x|λi) log

(
p(x|λi)
q(x|λi)

)
dx

if we substitute for q(x|λi) from the Eq.(5.2) into the above expression and expand

the logarithm up to the second order we obtain,

DKL(p‖q) = −
(∫ ∞
−∞

∂p(x|λi)
∂λi

dx

)
dλi

+

(∫ ∞
−∞

p(x|λi)∂ log p(x|λi)
∂λi

∂ log p(x|λj)
∂λj

dx

)
dλidλj. (5.3)

The first of the two terms on the right hand side of the above equation vanishes

since the derivative and integral are with respect to different variables so can be

interchanged and
∫∞
−∞ p(x|λ

i) = 1 . The second term defines what we call the Fisher-

Rao metric. Commonly the partial derivatives of the logarithm of the likelihood

function are called score vectors(li). Then the Fisher-Rao metric in terms of the

score vectors are written as,

gFR =

〈
∂ log p(x|λi)

∂λi
∂ log p(x|λj)

∂λj

〉
=
〈
lilj
〉

(5.4)
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The Riemannian metric then defines a distance function, based on the lengths of

the shortest curves connecting any two states P and Q. Our strategy below is to

apply the same idea to Umegaki’s quantum relative entropy defined on the space of

quantum states [55, 56, 57, 58, 59].

Consider a density matrix ρ of an N state system, satisfying ρ† = ρ, tr [ρ] = 1 and

ρ > 0, where we assume ρ to be strictly positive, so that we are not at the boundary

of state space. The quantum relative entropy of any two states parametrized by a

set of parameters λ(λ1, λ2, . . . , λN) is represented in terms of density matrices ρ1(λ1)

and ρ2(λ) and is given by:

S(ρ1(λ1)‖ρ2(λ)) = tr [ρ1 log ρ1 − ρ1 log ρ2] . (5.5)

S is positive and vanishes if and only if ρ2 = ρ1 [11]. Let us consider S(ρ1(λ1)‖ρ2(λ))

as a function of its second argument. If the states ρ1 and ρ2 are infinitesimally close

to each other, we can Taylor expand the relative entropy function.

S(ρ1‖ρ2) = S(ρ1‖ρ1) +
∂S

∂λi
∆λi +

1

2

∂2S

∂λj∂λi
∆λi∆λj + .. (5.6)

Notice that S(ρ1‖ρ1) is zero and the second term is zero because we are doing a Taylor

expansion about the minimum of the relative entropy function. The third term, which

is second order in ∆λ, gives us the metric and is positive definite for ∆λ 6= 0.

gij =
∂2S

∂λj∂λi
. (5.7)

As is made clear below, the Hessian actually defines a metric tensor.
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5.3.2 Hessian as a rank-2 tensor

If we consider the relative entropy S(λi) as a function of the parameters of the

density matrix then the first derivative in (5.6) transforms like a tensor of rank-1

under a change of co-ordinates. To see this let us consider Ai = ∂S
∂λi

. When we make

a change of coordinates from λi → λ̄i, Ai transforms as follows:

Āi =
∂λj

∂λ̄i
∂S

∂λj
= T ji Aj. (5.8)

Consider the second derivative term gij = ∂2S
∂λj∂λi

= ∂
∂λj
Ai. In order to see its trans-

formation property consider,

ḡij =
∂

∂λ̄j

(
∂S

∂λ̄i

)
=

∂

∂λ̄j
(Āi) =

∂

∂λ̄j
(T ki Ak). (5.9)

∂

∂λ̄j
(T ki Ak) = T ki

(
∂Ak
∂λ̄j

)
+

(
∂T ki
∂λ̄j

)
Ak

= T ki T
l
jgkl +

(
∂T ki
∂λ̄j

)
�
�
��7

0
∂S

∂λk
. (5.10)

The last term in (5.10) vanishes identically as we are Taylor expanding the relative

entropy function about a stationary point and we obtain ḡij = T ki T
l
jgkl. Positivity of

the Hessian is guaranteed as the stationary point is the absolute minimum.

5.3.3 Metric for a two-level system

Consider two mixed states ρ1 and ρ2 of a two level quantum system commonly

referred to as a qubit. These can be written as ρ1 = 1+X.σ
2

and ρ2 = 1+Y.σ
2

where

|X| and |Y | < 1. X and Y are three dimensional vectors with components xi and
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yi. The relative entropy function can be written as follows:

S(ρ1‖ρ2) = tr

[(
1 +X.σ

2

)
log

(
1 +X.σ

2

)]
−tr

[(
1 +X.σ

2

)
log

(
1 + Y.σ

2

)]
. (5.11)

We can use the power series expansion of log(1 + Y.σ) to evaluate the trace of the

above expression.

log(1 + Y.σ) =

(
∞∑
m=0

|Y |2m+1

2m+ 1

)
︸ ︷︷ ︸

fo(|Y |)

Y.σ

|Y |
+

(
∞∑
n=0

|Y |2n

2n

)
︸ ︷︷ ︸

fe(|Y |)

1, (5.12)

where fo(|Y |) and fe(|Y |) are respectively the odd and even parts of the function

f(r) = log (1 + r) . Notice that the odd part of the expansion is traceless. Making

use of the above expansion we can express S(ρ1‖ρ2) as follows

S(ρ1‖ρ2) = S(X‖Y ) = fe(|Y |)−
fo(|Y |)
|Y |

(X.Y ). (5.13)

In order to compute the Hessian of S(ρ1‖ρ2) we compute the second derivative ∂2S
∂yi∂yj

with respect to yj and then set yi = xi and obtain the following metric [14]:

gij =
∂2S

∂xi∂xj
= C(r)

xixj

r2
+D(r){δij −

xixj

r2
} , (5.14)

where C(r) = 1
1−r2 , D(r) = 1

2r
log
(

1+r
1−r

)
and r = |Y |.

The corresponding line element is given in polar coordinates by:

ds2 =
dr2

1− r2
+

[
r

2
log

(
1 + r

1− r

)]
(dθ2 + sin2 θdφ2). (5.15)

This metric has been discussed earlier by Bogoliubov, Kubo and Mori (BKM) in the

context of statistical mechanical fluctuations [60, 61]. We refer to it as the BKM

metric.
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5.4 Non commuting limits of the Fisher-Rao met-

ric

We notice that there are two limits involved in state discrimination namely,

1) The thermodynamic limit: N – the number of copies of a state available for

each of the N measurements – goes to infinity.

2) The infinitesimal limit: The separation between the states is infinitesimal

i.e. dρ = (ρ1 − ρ2)→ 0.

However, these two limits do not commute in the quantum case. If we take the ther-

modynamic limit followed by the infinitesimal limit we get the Bures-Helstrom(BH)

metric and taking the limits in the reverse order will give us the BKM-metric.

Generally, the BH-metric is defined as follows[62, 63, 64]. Let dρ be a tangent

vector at ρ. Consider the equation for the unknown L:

dρ =
1

2
{ρ, L} (5.16)

This linear equation defines the symmetric logarithmic derivative L uniquely. Opti-

mising the Fisher-Rao metric (5.4), gFR(ρ, dρ) =
∑

i 〈i| ρ |i〉
−1〈i| dρ |i〉2 over all choices

of orthonormal bases b = {|i〉 , i = 1, 2, 3....d} we find that [62]

i) the optimal choice is given by the basis b∗ which diagonalizes L and

ii) that the optimal value is given by gBH(ρ, dρ) = tr [ρLL] which is defined as the

Bures metric.
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The discussion above is general and applicable to a d state system. For a qubit we

get,

ds2 =
dr2

1− r2
+ r2dΩ2 (5.17)

We now take the thermodynamic limit. Consider N qubits with the state ρ⊗N .

We will show that

1

N
gBH(ρ⊗N , dρ⊗N) = gBH(ρ, dρ) (5.18)

The proof is by induction. For N = 1 (5.18) is an identity. Assuming (5.18) for N−1,

we note that

dρ⊗N = d(ρ⊗N−1⊗ρ) = dρ⊗N−1 ⊗ ρ+ ρ⊗N−1 ⊗ dρ,

and that

LN = LN−1 ⊗ 1 + 1⊗ L

uniquely solves (5.16). Computing gBH(ρ⊗N , dρ⊗N) = tr
[
ρ⊗NLNLN

]
and using the

fact that (5.16) implies tr [ρL] = 0 we arrive at (5.18). The optimized Fisher-Rao

metric has the same discriminating power (per qubit) forN qubits as for a single qubit.

This is exactly as in the classical case. This holds true in the limit N → ∞. There

is no quantum advantage. Note that in the above, we have taken the infinitesimal

limit first. We will see that taking the thermodynamic limit first leads to an entirely

different picture.

Let us now take the “thermodynamic” limit of large N first. Given N qubits,

which may be a state ρ⊗N1 or ρ⊗N2 we can choose a measurement basis in the Hilbert

space H⊗N . The optimization over measurement bases is now over an enlarged set.

Earlier we were restricted to bases of the form b⊗N which are separable in the Hilbert

space H⊗N . We now have the freedom to include entangled bases and this implies
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Figure 5.1: The figure represents the geometry of the qubit state space as given by
the BKM metric (red ellipses in the lower half) and the BH metric (blue ellipses in the
upper half). The figure shows a two dimensional slice of the three dimensional qubit
state space. The geometry is invariant under rotations due to the unitary symmetry
of the state space. Note that the ellipticity increases near the boundary of state space.
The ellipse on the right shows both BH and BKM metrics superposed. Note that the
red BKM ellipse is inside the blue BH ellipse.
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S∗(ρ⊗N1 ‖ρ⊗N2 )

N
≥ S∗(ρ1‖ρ2). (5.19)

In fact[65], no matter how small the separation between the distinct states ρ1 and

ρ2, as N → ∞, 1
N
S∗(ρ⊗N1 ‖ρ⊗N2 ) → S(ρ1‖ρ2), where S(ρ1‖ρ2) is Umegaki’s quantum

relative entropy. The appropriate relative entropy to use in the thermodynamic limit

is Umegaki’s relative entropy.

If we now take the infinitesimal limit as ρ2 → ρ1, we effectively pass from the quan-

tum relative entropy to a Riemannian metric defined as the Hessian of the quantum

relative entropy. The form of this metric in the case of a qubit is (see Sec. 4.3.3)

gij =
∂2S

∂xi∂xj
= C(r)

xixj

r2
+D(r){δij −

xixj

r2
} , (5.20)

where C(r) = 1
1−r2 , D(r) = 1

2r
log
(

1+r
1−r

)
and r = |Y |.

To summarize, we find that if we consider the infinitesimal limit first and then

take the thermodynamic limit we can’t make use of entanglement. In contrast, if

we take the thermodynamic limit first and then take the infinitesimal limit then we

can make use of entanglement as a resource in distinguishing quantum states. This

particular non-commutative feature is present in the quantum domain but it doesn’t

have a classical counterpart.

5.5 Geodesics and the scalar curvature

The scalar curvature R of the BKM metric is given by:

R =
4r2 − 4r(1 + r2) log

(
1+r
1−r

)
+ (1 + 2r2 − 3r4)[log

(
1+r
1−r

)
]2

2r2(1− r2)[log
(

1+r
1−r

)
]2

. (5.21)
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Figure 5.2: The scalar curvature (5.21) for the metric displayed in (5.34) as a function
of r, the distance from the centre of the Bloch sphere.

As we can see from Figure 5.2, the metric has a negative scalar curvature and there-

fore the geodesics Figure 5.3 cannot cross more than once. It follows therefore that

any two states, are connected by an unique geodesic. The length of this geodesic gives

us a distance on the space of states. This has all the properties expected of a distance

function: it is symmetric, strictly positive between distinct points and satisfies the

triangle inequality. The scalar curvature is zero near the origin and diverges logarith-

mically to minus infinity as r goes to unity. The geodesics of this metric are easily

worked out from classical mechanics. The metric has spherical symmetry, because
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the quantum state space is invariant under unitary transformations.

Setting r = sinα, we rewrite the metric as

ds2 = dα2 + F (α)
(
dθ2 + sin2(θ)dφ2

)
, (5.22)

where F (α) = sinα
2

log
[

1+sinα
1−sinα

]
. Because of the spherical symmetry, there is a con-

served angular momentum vector ~J and thus the geodesics lie on the plane perpen-

dicular to ~J . Thus we can confine our calculations to a plane, reducing the form of

the metric to

ds2 = dα2 + F (α)
(
dφ2
)
, (5.23)

where we have set θ = π
2
. The Lagrangian of the classical mechanical system is

L =
1

2

(
α̇2 + F (α)φ̇2

)
. (5.24)

The constants of motion for this problem are the energy and the angular momentum,

which are given by

E =
1

2

(
α̇2 + F (α)φ̇2

)
, Pφ = J =

∂L

∂φ̇
= F (α)φ̇. (5.25)

Using the above equations we solve for α̇ and φ̇. Our numerical solution gives us

the geodesics of interest. A typical geodesic is displayed in Figure 5.3. Given any

two points in the state space (for example the red dots of Figure 5.3), the length of

the unique geodesic [66] connecting them gives us a distance function. This is very

similar in spirit to a construction of Wootters [27], who introduced a metric based

on distinguishability for pure states and used this to define a metric on pure states,

which ultimately yielded the Fubini-Study metric. This work can be viewed as an

application of this idea to mixed states.
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Figure 5.3: The figure shows a geodesic connecting two typical quantum states, indi-
cated by two red dots on the Bloch ball. Two more geodesics are shown with different
values of J = | ~J |. We also show geodesics crossing each other once. As explained in
the text, the metric on quantum state space has negative curvature and so geodesics
cannot cross more than once.

5.6 Relation between the metric and fluctuations

in the free energy

Any quantum state ρ can be formally viewed as a Gibbs state for the Hamiltonian

H = −(1/β) log ρ. We will see below that the relative entropy of two quantum states
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ρ1 and ρ2 is related to the change in the free energy between the two states. If these

two states are infinitesimally close together, the second order correction to the free

energy is related to the metric defined on the space of quantum states. Thus, the

metric (5.7) has a physical interpretation in terms of susceptibility.

Consider a thermal state ρ2 = e−βH2

Z2
= e−β(H2−F2) in the neighborhood of ρ1 =

e−βH1

Z1
= e−β(H1−F1) such that H2 = H1 + εV [67]. Here ε is a small parameter

and F1 and F2 are the free energies corresponding to states ρ1 and ρ2 respectively.

Z1 = tr
[
e−βH1

]
and Z2 = tr

[
e−βH2

]
. Then the relative entropy of the two states is

given by:

S(ρ1‖ρ2) = tr [ρ1 log ρ1 − ρ1 log ρ2]

= −β[tr [ρ1(H1 − F1)]]

+β[tr [ρ1(H2 − F2)]]. (5.26)

Setting tr [ρH] = U , the energy and tr [ρF ] = F , the free energy (5.26) can be

simplified as:

−TS(ρ1‖ρ2) = [(U1 − F1)− (U2 − F2)]. (5.27)

Since H2 = H1+εV , taking the ensemble average on both sides we get U2 = U1+ε〈V 〉.

Substituting this into (5.27) we get:

−TS(ρ1‖ρ2) = (F2 − F1)− ε〈V 〉. (5.28)

Since ρ1 and ρ2 are infinitesimally close together we can use thermodynamic pertur-

bation theory [68] to show:

F2 = F1 + εF ′1 +
ε2

2
F ′′1 +O(ε3), (5.29)
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where,

F ′1 =
d

dε

(
1

β
logZ2

)
= 〈V 〉. (5.30)

From (5.6) we find

S(ρ1‖ρ2) =
1

2

∂2S

∂λi∂λj
∆λi∆λj. (5.31)

Substituting (5.29) and (5.30) in (5.28) we get:

gij∆λ
i∆λj =

∂2S

∂λi∂λj
∆λi∆λj = −βε2F ′′1 . (5.32)

From the statistical physics perspective, the metric (5.7) is related to the suscepti-

bility of the quantum state to perturbations [60, 61, 69]. The Gibbs state is the state

that maximizes its entropy subject to an energy constraint. However, in statistical

physics a system makes spontaneous excursions to neighbouring lower entropy states.

The size of these fluctuations is determined by the Hessian of the entropy function

and thus related to the susceptibility.

5.7 Quantum Cramér Rao bounds

As we have seen, the quantum relative entropy leads us to a metric (the BKM

metric) on the tangent space. We notice that the quantum relative entropy dom-

inates over the classically optimized relative entropy in section 4.4 : S(ρ1‖ρ2) ≥

S∗(ρ1‖ρ2)[65]. This implies that gBKM(v, v) ≥ gBH(v, v) for all tangent vectors v.

This can be explicitly seen by comparing Eq. (5.15) with Eq. (5.17) and noting that

r/2 log [(1 + r)/(1− r)] ≥ r2. This means that the BKM metric is more discrimi-

nating than the BH metric in the sense that distances are larger. Figure 5.1 shows

a graphical representation of the geometry of state space as given by the BH metric
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(in blue) and the BKM metric (in red). Geometrically the unit sphere of the BKM

metric is contained within the unit sphere of the BH metric.

The higher discrimination of the BKM metric over the BH metric translates into

a less stringent Cramér-Rao bound, since the bound is based on the inverse of the

metric. Let X be an unbiased estimator for a parameter θ. Then the variance

V = tr [ρXX]− (tr [ρX])2 has to satisfy V ≥ 1
g(v,v)

. This is the well known Cramér-

Rao bound.

5.8 Non-uniqueness of the Riemannian metric on

the quantum state space

We can construct many more Riemannian metrics on a quantum state space. In

fact a theorem due to Morozova-Cencov-Petz[14] states that every function f(t) which

satisfies the following conditions

• f(t) is a operator monotone1

• f(1/t) = f(t)
t

• f(1) = 1

define a Riemannian metric on the quantum state space.

Interestingly replacing ρ(λi) for the p(x|λi) in Eq.(5.4) gives another metric which

is different form the BKM-metric. For example, on a space of qubit parametrized by

1A function f : [0,∞) → [0,∞) is an operator monotone if for any self adjoint matrices A and
B, A ≥ B ≥ 0 implies f(A) ≥ f(B) ≥ 0
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vector λ we get, 〈
∂ log ρ

∂λi
∂ log ρ

∂λj

〉
= tr

[
ρ
∂ log ρ

∂λi
∂ log ρ

∂λj

]
(5.33)

Making use of logarithmic expansion as in section 4.3.3 we find

gij =

〈
∂ log ρ

∂λi
∂ log ρ

∂λj

〉
= C(r)

xixj

r2
+D(r){δij −

xixj

r2
} , (5.34)

where C(r) = 1
1−r2 , D(r) = r2

4
log
(

1+r
1−r

)
log
(

1+r
1−r

)
and r = |λ|.

5.9 Conclusion

The main goal of this chapter is to draw attention to a non-commutativity of limits

in the context of quantum state discrimination. In particular, there are two limits

— one which we call the “thermodynamic” limit (of N, the number of copies of state

available for each of the N measurements) and the infinitesimal limit (of the separation

of states tending to zero) — which do not commute in the quantum case. We show

that taking the infinitesimal limit first leads to the BH metric. In contrast, taking

the “thermodynamic” limit first leads to the BKM metric. The lack of commutation

of limits is a purely quantum phenomenon with no classical counterpart. We have

explicitly shown, that one can make use of this lack of commutation of limits to make

use of quantum entanglement to get an advantage in state discrimination.

In this Chapter we have tried to answer the question raised by Peres and Woot-

ters [26] regarding the existence of a multi-qubit strategy, better than the single qubit

strategy for state discrimination. Later however, it was shown by Hiai and Petz[70, 65]

that the multi-qubit strategy is better than the best single-qubit strategy in discrim-

inating two quantum states using C∗ algebras. As N– the number of states for each
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of the N measurements– increases we approach the bound set by the BKM metric.

Thus the quantum Cramér-Rao bound set by the BKM metric can be approached

but not surpassed. In contrast, the BHCR bound can be surpassed.

We have worked out the geodesics of the BKM metric and plotted them numeri-

cally. We have noticed that any two points are connected by a unique geodesic. The

BKM metric leads to a distance function on the state space that emerges naturally

from entropic and geometric considerations. In working out the geodesics, it is easily

seen analytically that the geodesics approach the boundary of the state space at right

angles. However, this approach is logarithmically slow and is not apparent in Figure

5.3. The form of the geodesics on state space is reminiscent of the geodesics of the

Poincaré metric which also meet the boundary at right angles. However, there are

serious differences. While both metrics have negative curvature, the Poincaré metric

has constant negative curvature, unlike the BKM metric that has a varying curvature,

which diverges logarithmically at the boundary. It is natural to ask if this is a gen-

uine singularity or one caused by our choice of coordinates. It is easily seen that the

singularity is genuine. Consider a radial geodesic starting from r = r0 and reaching

the boundary at r = 1. Its length is given by
∫ 1

r0
dr/
√

1− r2 = π/2− arcsin r0, which

is finite. So the geodesic reaches the singularity of R in a finite distance. Since the

length of the geodesic and the scalar curvature are independent of coordinates, it

follows that the singularity is genuine and not an artifact of the coordinate system.

The divergence of the metric as one approaches r = 1 has a physical interpretation.

It means that pure states offer a much larger quantum advantage than mixed states.

Conversely, even a small corruption of the purity of quantum states will seriously
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undermine our ability to distinguish between them.

From the statistical physics perspective, the BKM metric can be interpreted as

a thermodynamic susceptibility of a quantum state ρ (viewed as a Gibbs state for

the Hamiltonian H = −(1/β) log ρ where 1
β

= 1
kBT

and T is the temperature of the

corresponding system), to perturbations. The Gibbs state is the state that maximizes

its entropy subject to an energy constraint. However, in statistical physics, a system

makes spontaneous excursions to neighbouring lower entropy states. The size of these

fluctuations is determined by the Hessian of the entropy function and thus related to

the susceptibility.

In the existing literature[55, 56, 57, 58, 59] researchers have discussed the BKM

and other Riemannian metrics on the quantum state space but have mainly focussed

on the geometrical and mathematical aspects of the metric. In the context of quantum

metrology[71, 72] the idea that a quantum procedure leads to an improved sensitivity

in parameter estimation compared to its classical counterpart has been explored.

We go beyond earlier studies in suggesting physical and statistical mechanical

interpretations of the geometry.



Chapter 6

Poincaré metric on Statistical

Manifolds

As we noticed in the last chapter, the quantum Fisher Rao metric plays a crucial

role in quantum state distinguishability. Here we explore a particular aspect of the

Fisher Rao metric pertaining to two parameter classical distributions. We show below

that for all distributions with two parameters namely location µ and scaling σ the

Fisher information metric corresponds to the Poincaré metric on the half plane.

6.1 Poincaré Metric

It is a quadratic form defined on the upper half plane H {(x, y)|y > 0} which

defines a distance function on the plane.

ds2 =
dx2 + dy2

y2
(6.1)

101
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where s measures the distance along the curve. Geodesics for this distance function

can be obtained by minimizing the distance function of a parametrized curve.

6.1.1 Geodesics

Let’s parametrize the curve given by (6.1) in H with a parameter t:

ds2

dt2
=
ẋ2 + ẏ2

y2
(6.2)

By looking at the symmetries of the above equation we can construct constants of

integration, and integrate the above expression in terms of these constants. The RHS

of (6.2) can be viewed as the Lagrangian L(x, ẋ, y, ẏ) of an equivalent classical system.

We observe that L is independent of x and t which suggests two constants of motion

P (momentum conjugate to x) and E(energy)

∂L
∂ẋ

= P and
ẋ2 + ẏ2

y2
= E

which gives dx = y2Pdt and dt = dy/(y
√
E − P 2y2). If P 6= 0, substituting for dt

we can perform the integration to obtain the geodesic(see Figure6.1) equation which

turns out to be of the form:

(x+ c)2

E/P 2
+

y2

E/P 2
= 1 (6.3)

6.2 Fisher-Rao Metric

The Fisher-Rao metric is a Riemannian metric defined on the space of probability

distributions(a statistical manifold) which defines a distance function on the manifold.
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Figure 6.1: Geodesics on the Poincaré Half-Plane

Let pθ(X) denote a set of distributions parametrized by a parameter θ ∈ Rd then the

Fisher-Rao information metric is given by:

gij =

∫ ∞
−∞

∂pθ
∂θi

∂pθ
∂θj

dX (6.4)

We would now like to see the explicit form of the Fisher-Rao metric for a set

of distributions parametrized by two parameters; µ pertains to translation and σ

pertains to dilation.

6.2.1 Gaussian Distribution

Gaussian(see Figure 6.2) distributions are the most ubiquitous distributions that

come up naturally in a variety of mathematical and physical situations. A Gaussian

distribution has the following form:

p(x|µ, σ) =
e−

(x−µ)2

2σ2

√
2πσ

(6.5)
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Figure 6.2: A Gaussian distribution with µ = 1, σ = 2

where µ is the mean and σ is the standard deviation. The partial derivatives of

Equation(6.5) with respect to the parameters are given by

∂ log p(x|µ, σ)

∂µ
=

(x− µ)e−
(x−µ)2

2σ2

√
2πσ3

and
∂ log p(x|µ, σ)

∂σ
=

(x− µ)2e−
(x−µ)2

2σ2

√
2πσ4

−e
− (x−µ)2

2σ2

√
2πσ2

Using the two partial derivatives we calculate the Fisher-Rao metric from the formula

(6.4) for this distribution and obtain:

g =

 1
6
√

3πσ4 0

0 1
3
√

3πσ4

 (6.6)

6.2.2 Cauchy Distribution

It is a two parameter distribution(see Figure 6.3) given by:

p(x|µ, σ) =
σ2

πσ[(x− µ)2 + σ2]
(6.7)

such that
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Figure 6.3: A Cauchy distribution with µ = −2, σ = 2

∂ log p(x|µ, σ)

∂µ
= − 2(x− µ)

[(x− µ)2 + σ2]
and

∂ log p(x|µ, σ)

∂σ
=

(x− µ)2 − σ2

σ[(x− µ)2 + σ2]

Using the two partial derivatives we calculate the Fisher-Rao metric from the formula

(6.4) for this distribution and obtain:

g =

 1
2σ2 0

0 1
2σ2

 (6.8)

6.2.3 Laplace Distribution

The Laplace distribution(shown in Figure 6.4) function is given by:

p(x|µ, σ) =
exp
{
− |x−µ|

σ

}
2σ

(6.9)

and

∂ log p(x|µ, σ)

∂µ
= −


1
σ

for x < µ

− 1
σ

for x > µ

and
∂ log p(x|µ, σ)

∂σ
= − 1

σ
+
|x− µ|
σ

Using the same procedure again we obtain,

g =

 1
σ2 0

0 1
2σ2

 (6.10)
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Figure 6.4: A Laplace distribution with µ = −1, σ = 2

These examples suggest a general theorem which we state and prove below:

6.3 A General (µ-σ) Distribution

A general µ− σ distribution is of the form:

P (x|µ, σ) =
1

σ
f

(
x− µ
σ

)
(6.11)

Theorem. The Fisher-Rao metric on the µ − σ sub-manifold is the Poincaré Half-

Plane metric.

Proof. By making a change of variable y = x−µ
σ

and taking partial derivatives with

respect to µ and σ of Eq.(6.11) we obtain,

∂ logP (x|µ, σ)

∂µ
= − 1

σf(y)
and

∂ logP (x|µ, σ)

∂σ
= −

(
y

σf(y)
+

1

σ

)
(6.12)

Using these partial derivatives we evaluate all the components of the Fisher-Rao

metric (6.4),

gµµ =
1

σ2

∫ ∞
−∞

dy

f(y)
=
A

σ2
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gσσ =
1

σ2

∫ ∞
−∞

f(y)

(
y

f(y)
+ 1

)
dy =

B

σ2

gµσ = gσµ =
1

σ2

∫ ∞
−∞

(
y

f(y)
+ 1

)
dy =

C

σ2

and hence obtain the following form for the metric

g =
1

σ2

 A C

C B

 (6.13)

We can diagonalize the metric by a suitable choice of basis.

6.4 Conclusion

In this chapter we investigated the Fisher-Rao metric on the two dimensional

subspace of the probability simplex with location and scaling as the parameters.

Each point on the subspace represents a probability distribution with its parameters

as the coordinates. This metric defines a distance function which quantifies how

distinguishable two distributions are in a given number of trials. We have seen with

some specific distributions that the Fisher information metric induces a hyperbolic

geometry on the subspace as in the case of Poincaré metric on the half plane[73]. We

then state and prove a general theorem for all distributions on this subspace. This

metric has a constant negative curvature all over the subspace. We also generate and

plot the geodesics on this subspace.

We would like to explore in future the possibility of extending this theorem to

a quantum manifold. One of the hurdles in extending this theorem to quantum

manifolds is non commutativity.



Chapter 7

Conclusion and future directions

In this chapter, we will conclude the work that formed the basis of this thesis and

will give a perspective on future work. The central theme of the thesis has been to

study the mathematical and geometrical aspects of entanglement. We also looked

at various physical situations where it can be used as a resource. For example, in a

coarse measurement the extent of entanglement between the spin and the center of

mass of the silver atom directly determines the amount of information we can obtain

about the spin of the silver atom by making a position measurement of its center of

mass. We have also seen that entanglement can be useful in discriminating between

two quantum states. An explicit example using projective measurement on multiple

qubits demonstrates how entanglement between the qubits can give rise to greater

distinguishability between nearby states.

In chapter 2, we looked at the entanglement criteria for a two qubit system

density matrix, geometrically. A two qubit density matrix can be associated with

a second rank tensor(Aµν) which is like the energy-momentum tensor of relativity.

108
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We have also demonstrated that the positivity of the density matrix is equivalent

to the dominant energy condition(DEC) on Aµν . If the tensor associated with the

density operator fails to satisfy the strong energy condition (SEC) for any two timelike

vectors, then the density matrix represents an entangled state. Using a Werner state,

we have explicitly shown that Aµν associated with the density matrix fails to satisfy

the SEC for the parameter range 1/3 ≤ α ≤ 1 implying that the state is entangled

for this range of the parameter α.

For a Werner state, we were able to show the violation of the SEC by just opti-

mizing with respect to D (see Section 2.2.3). However, to show the violation for an

arbitrary state it would require an optimization over the spinors κ1 and κ2 as well.

We would like to investigate in future the DEC for an arbitrary state of a two qubit

bipartite system. We would also like to explore the transformation of Aµν under

positive but not completely positive maps which detect entanglement in a bipartite

system.

Chapter 3 presents a Lorentzian geometric framework which has been used to

come up with a test for detection of entanglement discussed in 2. We study the rela-

tion between qubit entanglement and Lorentzian geometry. In the chapter 2, we had

given a recipe for detecting two qubit entanglement. The entanglement criterion is

based on Partial Lorentz Transformations (PLT) on individual qubits. Chapter 3 gives

the theoretical framework underlying the PLT test. The treatment is based physically,

on the causal structure of Minkowski spacetime, and mathematically, on a Lorentzian

Singular Value Decomposition. A surprising feature is the natural emergence of ”En-

ergy conditions” used in Relativity. All states satisfy a ”Dominant Energy Condition”
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(DEC) and separable states satisfy the Strong Energy Condition(SEC), while entan-

gled states violate the SEC. Apart from testing for entanglement, this approach also

enables us to construct a separable form for the density matrix in those cases where

it exists. This approach leads to a simple graphical three dimensional representation

of the state space which shows the entangled states within the set of all states (See

figure 3.2).

In chapter 4 we discussed the role of entanglement in a coarse measurement.

We looked at the Stern-Gerlach measurement process in the light of the idea that

every measurement is performed with a limited resource of resolution and concluded

that the apparent loss of unitarity in a measurement process is due to the coarseness

of the measurement probe which is unable to discriminate between the successive

eigenstates of the system. The main motivation behind this point of view comes from

a somewhat familiar concept that entropy is subjective[40, 41] depending upon the

amount of resource an experimenter has to distinguish between statistical states. We

investigated the effect of coarse-graining on the Wigner function associated with the

position of the silver atom. We have seen that the Wigner matrix goes to a diagonal

form on coarse-graining over the volume of phase space cell of the order of a few ~.

In future, we would like to explore the same idea –coarse measurement– in another

case commonly known as the static Stern-Gerlach setup. In this setup, a spin half

particle is placed in a harmonic trap. The coupling between the spin and the magnetic

field shifts the energy of the oscillator by an amount depending upon the orientation

of the spin. We would like to explore the outcome of a coarse measurement on the

energy of the system.
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The central observation made in chapter 5 is that the two limits involved in state

discrimination namely the thermodynamic limit and the infinitesimal limit do not

commute. Taking the thermodynamic limit followed by the infinitesimal limit leads us

to the BH metric. However, taking the limits in the opposite order gives us the BKM

metric. An improvement in the distinguishability for the BKM metric stems from

entanglement. We have shown explicitly that by making use of entanglement between

the copies of quantum states, we can improve the distinguishability between states

beyond the BH distance. We explored the geometry of the space of quantum states as

induced by this metric, and developed a visual representation of the distinguishability

measure similar to that of the Mc Adam ellipses on the space of colors. We saw that

the metric has a diverging negative curvature towards the boundary of the space,

implying that the states on the boundary(pure) are very far apart and can be better

distinguished from each other than any other two points in the hull(mixed). We also

looked at the thermodynamic connection of the metric with the fluctuation in free

energy in a thermal system. We were led to the conclusion that this metric sets a less

stringent Crarmér-Rao bound on the variance of the unbiased parameter estimator

resulting in a greater distinguishability than the BH metric.

Apart from the BH and the BKM metrics there is an entire family of monotone

metrics[14] that can be defined on the state space which gives an improvement over

the BKM-metric. In future we wish to investigate these and explore possible strategies

for experimentally realizing these.

In chapter 6, we stated and proved a theorem on µ− σ subspace of the classical

probability simplex. This theorem concerns the distinguishability of two distributions
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which are represented as points on the subspace. We argued that this subspace is

isomorphic to the Poincaré half plane as the Fisher-Rao information metric defined

on the µ− σ plane is the same as the Poincaré metric on the half plane.

We would like to extend this theorem to a quantum manifold, in particular, the

space of density matrices with the two parameters as location and scaling.



Appendix A

Used Programs

A.1 PLT : A positive map
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In[56]:= ClearAll[Li, R]
Li = {};
m[i_, j_] := KroneckerProduct[PauliMatrix[i], PauliMatrix[j]]

Fori = 0, i ≤ 5000, i++,

X = Table[RandomReal[], {i, 0, 3}, {j, 0, 3}];

S =
1

2
(X + X); (* Produces a real symmetric matrix. *)

ρ = (1 / Tr[MatrixExp[S]]) MatrixExp[S]; (* Creates a random density matrix. *)

AA[i_, j_] := Tr[ρ.m[i, j]];
AAij = Table[Simplify[AA[i, j]], {i, 0, 3}, {j, 0, 3}];

η = RandomReal[5];
ϕ = RandomReal[2 π];
θ = RandomReal[π];
ψ = RandomReal[2 π];

α = 0.7;
R1z = {{1, 0, 0, 0}, {0, Cos[ϕ], Sin[ϕ], 0}, {0, -Sin[ϕ], Cos[ϕ], 0}, {0, 0, 0, 1}};
Ry = {{1, 0, 0, 0}, {0, Cos[θ], 0, Sin[θ]}, {0, 0, 1, 0}, {0, -Sin[θ], 0, Cos[θ]}};
R2z = {{1, 0, 0, 0}, {0, Cos[ψ], Sin[ψ], 0}, {0, -Sin[ψ], Cos[ψ], 0}, {0, 0, 0, 1}};
R = R2z.Ry.R1z; (* Euler Rotations*)
Λ = {{Cosh[η], Sinh[η], 0, 0}, {Sinh[η], Cosh[η], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};
pLtAAij = R.Λ.R.AAij;
pLtAA[i_, j_] := pLtAAij[[(i + 1), (j + 1)]];

rhopLt =
1

4
Sum[Simplify[pLtAA[i, j] * m[i, j]], {i, 0, 3}, {j, 0, 3}];

ρpLt =
rhopLt

Tr[rhopLt]
;

X = Min[Chop[Eigenvalues[ρpLt]]];
(* Smallest eigenvalue of the partially Lorentz transformed density matrix*)
Li = Append[Li, {i, X}]



plot1 =

LabeledListPlot[Li, PlotMarkers → {Automatic, 3}, BaseStyle -> {FontSize -> 12},

ImageSize -> Full], Style["smallest eigenvalue", FontSize -> 15],

Style"ith realization", FontSize -> 15, {Left, Bottom}, RotateLabel → True
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In[63]:= Export["PLTasCPmap.pdf", plot1]

Out[63]= PLTasCPmap.pdf

In[62]:= SystemOpen[DirectoryName[AbsoluteFileName["PLTasCPmap.jpg"]]]

In[27]:= Chop[Tr[ρpLt]]
PositiveSemidefiniteMatrixQ[ρpLt]
Min[Li[[2]]]

Out[27]= 1.

Out[28]= True

Out[29]= 0.0000328789

2    PLTasCpmap.nb
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A.2 Positivity of AWerner
ij



In[77]:= α = 0.7;(* α ∈ [0,1],
0 for maximally mixed state and 1 for a Bell state. *)

ρ = 1 / 4 * {{1 - α, 0, 0, 0}, {0, 1 + α, -2 * α, 0},
{0, -2 * α, 1 + α, 0}, {0, 0, 0, 1 - α}};(* Werner State *)

ρ


= {{ρ[[1, 1]], ρ[[2, 1]], ρ[[1, 3]], ρ[[2, 3]]},
{ρ[[1, 2]], ρ[[2, 2]], ρ[[1, 4]], ρ[[2, 4]]},
{ρ[[3, 1]], ρ[[4, 1]], ρ[[3, 3]], ρ[[4, 3]]},
{ρ[[3, 2]], ρ[[4, 2]], ρ[[3, 4]], ρ[[4, 4]]}};

(* Partial Transpose of ρ *)

σ0 = IdentityMatrix[2];
σ1 = PauliMatrix[1];
σ2 = PauliMatrix[2];
σ3 = PauliMatrix[3];
mi_,j_ := KroneckerProduct[σi, σj]

A = Table[Tr[ρ.mi,j], {i, 0, 3}, {j, 0, 3}]; (* Computes Aij for the ρ *)

At = TableTrρ.mi,j, {i, 0, 3}, {j, 0, 3};

(* Computes Aij for the ρ


*)

X = {};
Xt = {};

Forq = 0, q < 10000, q++, ψ = {Normalize[

{RandomComplex[], RandomComplex[], RandomComplex[], RandomComplex[]}]};
a = {{ψ[[1, 1]], ψ[[1, 2]]}, {ψ[[1, 3]], ψ[[1, 4]]}};
(* Random state of a two qubit system *)

S = SingularValueDecomposition[a];
u = S[[1]];
d = S[[2]];
c1 = d[[1, 1]];
c2 = d[[2, 2]];
v = S[[3]];
i1 = {{u[[1, 1]], u[[2, 1]]}};
i2 = {{u[[1, 2]], u[[2, 2]]}};
j1 = {{v[[1, 1]], v[[1, 2]]}};
j2 = {{v[[2, 1]], v[[2, 2]]}};
l0 = (i1.PauliMatrix[0].i1)[[1, 1]];
l1 = (i1.PauliMatrix[1].i1)[[1, 1]];
l2 = (i1.PauliMatrix[2].i1)[[1, 1]];
l3 = (i1.PauliMatrix[3].i1)[[1, 1]];
l = {{l0, l1, l2, l3}};
ll0 = (i2.PauliMatrix[0].i2)[[1, 1]];
ll1 = (i2.PauliMatrix[1].i2)[[1, 1]];
ll2 = (i2.PauliMatrix[2].i2)[[1, 1]];
ll3 = (i2.PauliMatrix[3].i2)[[1, 1]];
ll = {{ll0, ll1, ll2, ll3}};
n0 = (j1.PauliMatrix[0].j1)[[1, 1]];
n1 = (j1.PauliMatrix[1].j1)[[1, 1]];
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n2 = (j1.PauliMatrix[2].j1)[[1, 1]];
n3 = (j1.PauliMatrix[3].j1)[[1, 1]];
n = {{n0, n1, n2, n3}};
nn0 = (j2.PauliMatrix[0].j2)[[1, 1]];
nn1 = (j2.PauliMatrix[1].j2)[[1, 1]];
nn2 = (j2.PauliMatrix[2].j2)[[1, 1]];
nn3 = (j2.PauliMatrix[3].j2)[[1, 1]];
nn = {{nn0, nn1, nn2, nn3}};
mA = {{(i1.PauliMatrix[0].i2)[[1, 1]], (i1.PauliMatrix[1].i2)[[1, 1]],

(i1.PauliMatrix[2].i2)[[1, 1]], (i1.PauliMatrix[3].i2)[[1, 1]]}};
mAc = {{(mA[[1, 1]]), (mA[[1, 2]]), (mA[[1, 3]]), (mA[[1, 4]])}};
mB = {{(j1.PauliMatrix[0].j2)[[1, 1]], (j1.PauliMatrix[1].j2)[[1, 1]],

(j1.PauliMatrix[2].j2)[[1, 1]], (j1.PauliMatrix[3].j2)[[1, 1]]}};
mBc = {{(mB[[1, 1]]), (mB[[1, 2]]), (mB[[1, 3]]), (mB[[1, 4]])}};
(* This part produces four null vector n,
l, m, m as describded in Chapter-1. *)

τ =

Rec12 l.A.n + c22 ll.A.nn + c1 * c2 * mA.A.mB + c1 * c2 * mAc.A.mBc[[1, 1]];

τ

= Rec12 l.At.n + c22 ll.At.nn + c1 * c2 * mA.At.mB + c1 * c2 * mAc.At.mBc[[

1, 1]];

X = Append[X, Sign[τ]];

Xt = AppendXt, Sign[τ]

plot1 = ListPlotX, AxesLabel →

Style"ith realization", FontSize → 15, Style["τ", FontSize → 15],

BaseStyle → {(*FontWeight→"Bold",*)FontSize → 12}, ImageSize → Large

plot2 = ListPlotXt, AxesLabel →

Style"ith realization", FontSize → 15, Style"τ", FontSize → 15,

BaseStyle → {(*FontWeight→"Bold",*)FontSize → 12}, ImageSize → Large

(*ListPlot[Xt,AxesLabel→τ,BaseStyle→{FontWeight→"Bold",FontSize→12}]
Lmin={Min[X],Min[Xt]}*)

2    DECwithSmith.nb
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Out[87]=

2000 4000 6000 8000 10000
i th realization

0.5

1.0

1.5

2.0

τ

Out[88]=

2000 4000 6000 8000 10000
i th realization

-1.0

-0.5

0.5

1.0

τ
˜

DECwithSmith.nb    3
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A.3 PPT Vs PLT

Here we give the Mathematica program used in Chapter 2 which numerically gen-

erates 2 qubit density matrix randomly and check for entanglement using both PPT

and PLT. Here we see that the PLT always agrees with PPT as the sign(PPT×PLT)

is always positive.



(*This program generates a numerical,
Random density matrix, computes the matrices
A and its ``square'' B. Then computes the eigenvalues of B,

forms the function T described in the paper. *)

Lplt = {};
Lppt = {};
LBev = {};
(*Initialising the strings Lplt,Lppt, which store the outcomes of the test:

1=separable,-1=entangled*)
Nmax = 100;
(*Nmax is the number of random density matrices to be tested. try 1000 or higher

depending on your patience. Nmax=100 takes about 10 seconds to run.*)

Fori = 1, i < Nmax + 1, i++,

λ1 = RandomReal[];
λ2 = RandomReal[];
λ3 = RandomReal[];
λ4 = RandomReal[];
(*Eigenvalues chosen at random between 0 and 1*)
ρ0 = DiagonalMatrix[{λ1, λ2, λ3, λ4}];
S = Table[RandomComplex[], {i, 1, 4}, {j, 1, 4}];
H = (S + S);
(*H is a Random Hermitean Matrix*)
ρ = MatrixExp[I * H].ρ0.MatrixExp[-I * H];
tr = Tr[ρ];
ρ = ρ / tr;
(*Normalising ρ, really not necessary for either test*)
σ0 = IdentityMatrix[2];
σ1 = PauliMatrix[1];
σ2 = PauliMatrix[2];
σ3 = PauliMatrix[3];

mi_,j_ := KroneckerProduct[σi, σj];

Ai_,j_ := Tr[ρ.mi,j];

A = Table[Ai,j, {i, 0, 3}, {j, 0, 3}];

A1 = Chop[A];
g = DiagonalMatrix[{1, -1, -1, -1}];
(*Lorentzian Metric is Crucial for test to work*)
AT = Transpose[A1];
B = A1.g.AT.g;
evb = Eigenvalues[B];
minb = Min[evb];
LBev = Append[LBev, minb];
(*Collecing the smallest eigenvalue of B to show that these are positive*)
(*Eigenvalues are arranged by mathematica
in decreasing order evb[[1]] is the dominant eigenvalue*)

mu = Sqrt[evb];
mu0 = mu[[1]];
mu1 = mu[[2]];
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mu2 = mu[[3]];
mu3 = mu[[4]];
If[mu0 - (mu1 + mu2 + mu3) ≥ 0, plttest = 1, plttest = -1];
(*If ρ passes the partial Lorentz transformation test,
it is separable and assigned plttest=1, else -1,
these values are stored in the string Lplt*)
Lplt = Append[Lplt, plttest];
rhoAB = ρ;
Eigenvalues[rhoAB];
rhoABt = {{rhoAB[[1, 1]], rhoAB[[2, 1]], rhoAB[[1, 3]], rhoAB[[2, 3]]},

{rhoAB[[1, 2]], rhoAB[[2, 2]], rhoAB[[1, 4]], rhoAB[[2, 4]]},
{rhoAB[[3, 1]], rhoAB[[4, 1]], rhoAB[[3, 3]], rhoAB[[4, 3]]},
{rhoAB[[3, 2]], rhoAB[[4, 2]], rhoAB[[3, 4]], rhoAB[[4, 4]]}};

evrho = Chop[Eigenvalues[rhoABt]];
min = Chop[Min[evrho]];
If[min ≥ 0, ppttest = 1, ppttest = -1];
Lppt = Append[Lppt, ppttest];
(*If ρ passes the Positive partial transpose test,
it is separable and assigned ppttest=1,
else -1. These values are stored in Lppt*)

;

(*These are the outputs of the program. Lplt is a string of 1s and -1s, the 1 s
represent those passing the plt test. Lppt is a similar string,

with 1 s passing the ppt test. Note
that both strings have both 1 s and -1s in general.
However, their product Lplt*Lpptis always 1, which means that the two tests

always agree. A simple diagnostic is Min[Lplt*Lppt],
which would be -1 if they disagreed in even one case. They never do, proving that
PLT agrees with PPT in every case *)

Lplt

Lppt
Lplt * Lppt
Min[%]
LBev;
Min[LBev]
(*The smallest the entries of LBev is positive,
showing that they all are. To see LBev,
remove the semicolon appearing after LBev; *)

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1,
1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1}

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1,
1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1}

2    PLTvsPPT.nb
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{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

1

1.26855 × 10-7

PLTvsPPT.nb     3
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Appendix B

Energy Conditions

In this appendix we discuss the energy conditions that come into play in our

analysis. Given a stress energy tensor Tab one requires it to satisfy some “reasonable”

positivity conditions. If T ab has a timelike eigenvector, it can be diagonalised ([21])

and brought to the form T ab = diag(ε,−p1,−p2,−p3) = diag(µ0, µ1, µ2, µ3), where

ε is the energy density of matter and p1, p2, p3 the principal pressures of the matter

fluid. Note that in our context, the pressures are negative when the µs are positive.

The exceptional case, where T has a repeated lightlike eigenvector represents a null

fluid and this corresponds to the Type-II density matrices mentioned above. Below

is a short primer on energy conditions, giving the formal definition and a physical

interpretation. Below we will suppose for illustration that T is Type-I and can be
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diagonalised, which is the generic and most interesting case.

Tab =



ε 0 0 0

0 p1 0 0

0 0 p2 0

0 0 0 p3


(B.1)

B.1 Weak Energy Condition:

The weak energy condition (WEC) states that given any timelike vector ξa T must

satisfy:

Tab ξ
aξb ≥ 0 (B.2)

This yields

ε+ pâ ≥ 0 for â = 1, 2, 3 (B.3)

The weak energy condition physically represents the idea that all observers must see

a postive energy density. There is no negative mass!

B.2 Dominant Energy Condition:

The Dominant Energy Condition(DEC) states that: given any two lightlike vectors

ξa1 and ξb2

Tab ξ
a
1ξ

b
2 ≥ 0 (B.4)

Notice that for ξ1 = ξ2 we recover the weak energy condition. So, the DEC implies

the WEC. It is enough to demand (B.4) for lightlike n,m. Since timelike vectors
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are convex combinations of lightlike ones, it follows that (B.4) holds for timelike

n,m. For a suitable choice of ξ1, ξ2 the DEC gives us: ε ≥ |pâ| for â = 1, 2, 3. The

Dominant energy condition requires that all observers see a non spacelike matter

current ja = Tabξ
b. Matter cannot travel faster than light!

B.3 Strong Energy Condition:

The strong energy condition(SEC) reads:

(Tab −
1

2
Tgab)ξ

aξb ≥ 0, ∀ time-like ξ (B.5)

We find that the SEC gives us ε+ pâ ≥ 0 and ε+ p1 + p2 + p3 ≥ 0. The strong energy

condition emerges from the focussing property of timelike geodesics with tangent

vector ξa as described by Raychaudhuri’s equation[74]. The focussing of timelike

geodesics is determined by the sign of Rabξ
aξb, where Rab is the Ricci tensor. The

positivity of Rabξ
aξb is essentially the SEC via Einstein’s equations. These “Energy

conditions” are imposed in Relativity as “reasonable”. They are obeyed by the known

classical forms of matter. However, they are violated by quantum matter and Dark

Energy violates the SEC. The point P in Fig.2 has a stress energy tensor of the same

form as Dark Energy.
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Peres, and William K. Wootters. Teleporting an unknown quantum state via

dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895–

1899, Mar 1993.

[2] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher
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