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Quantum Measurement and Cloning of States

Synopsis

In this thesis aspects of quantum measurement and cloning of states are explored. Quantum cloning

has been a subject of interest for a long time, starting with the no-cloning theorem. The no-cloning

theorem states that it is impossible to create an identical copy of an arbitrary quantum state. While

perfect copying is not possible, one can consider imperfect copying. In such a scenario, one can copy

all quantum states at the same level of imperfection and achieve optimal quantum cloning. Optimal

cloning can be realised using atom-photon interactions, where one tries to copy photon polarisation

states. Even this corresponds to a highly idealised situation, free from sources of noise that are gen-

erally present in a laboratory. Our aim is to study atom-photon interactions with the introduction

of thermal noise in the atomic system, the photonic system and both, thereby studying to what ex-

tent the thermal noise corrupts the cloning process by comparing the initial and final states using the

concept of fidelity.

The no-cloning theorem has been extended to classical systems. There does exist a classical no-

cloning theorem. Even though in our everyday experience we do see copying of classical information

(for instance, a photocopyingmachine), notmuch is knownabout thephysics behind it. AaronFeynes

has studied classical cloning using symplecticmaps and shown that the no-cloning theorem in classical

systems occurs as a result of a too restrictive definition of the cloning process. We generate explicit

cloning maps which facilitate classical cloning. In addition, we come up with a procedure to generate

Hamiltonians pertaining to cloning maps. We also study the corruption of classical cloning in the

presence of thermal noise, which transforms a deterministic system to a statistical mechanical system.
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An issue closely related to cloning of states is quantum measurement since one needs to compare

the original state with the state obtained at the output of a measurement. We study the quantum

measurement process under coarse graining using a Stern-Gerlach setup. We calculate the exact wave

function of a Stern-Gerlach setup using the Feynman path integral approach. Coarse graining is done

by considering a lower limit on the size of a pixel on the screen, which is used to detect the silver atom.

We then look at the information extracted in a coarse quantum measurement.

Finally the issues of distinguishability and discrimination of quantum states are studied from an

operational point of view. There exist different metrics for the comparison of quantum states. We

consider the relative entropy for the construction of the metric (Bogoliubov-Kubo-Mori metric), dis-

cussing its connectionwith Likelihood theory. One problemwithmeasurements in quantum systems

is we have only probabilities to compare two states. By optimising themeasurement basis with respect

to the distinguishability of two quantum states we end up with the Bures-Hestrommetric. Using the

Cramer-Rao boundwe show that the BKMmetric is superior to the BHmetric in comparing any two

quantum states. We also come up with a measurement strategy involving measurements on multiple

qubits at a time (which gives us a practical way to realize the BKM metric) to beat the BH metric.

The thesis is structured as follows. In Chapter I we give an overview on the aspects of quantum

cloning and classical cloning. We also discuss the quantum measurement process and discuss differ-

ent approaches towards understanding the quantum measurement process. In Chapter II we study

cloning of quantum states and study how thermal noise leads to a corruption of the cloning process.

We then look at the classical limit of the quantum cloning process. We also look at the classical cloning

process with the idea of generating a Hamiltonian for realising the process operationally. Then we

study how classical cloning is affected when we replace a delta function by a function with a finite

spread. In Chapter IIIwe consider a Stern-Gerlach setup to analyse the idea of resource limitation in a

quantummeasurement. We study resource limitation in the formof the size of the pixels on the screen

used for detection of silver atoms. Then we calculate the average information extracted per event un-
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der coarse graining. In Chapter IVwe come upwith a strategy to realise the BHmetric experimentally

by optimising themeasurement directionwith respect to the states being discriminated and show that

the BKMmetric is superior in distinguishing two quantum states. We propose a strategy to realise the

BKM metric experimentally by measuring multiple qubits at a time. In Chapter V we present a way

to extract the maximum information from an unknown quantum state using a strategy similar to the

one mentioned in Chapter IV.We finally end the thesis in ChapterVIwith some concluding remarks

and future directions.
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“Colorless green ideas sleep furiously.”

Noam Chomsky

1
Introduction

“AMathematical Theory of Communication” by Claude Shannon2 has revolu-

tionised information theory and the process of communication. Prior to Shan-

non’s work, it was widely believed that error-free transmission of information

was not possible. Shannon, using his theory, has shown that it is possible to

achieve error-free transmission if the Information entropy (entropy) of the sig-
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nal is less than the channel capacity. The Channel capacity depends upon the

properties of the channel that cause noise3. He achieved this by quantifying

the information entropy, by removing the subjectivity involved4. The entropy

of a signal or any physical system, in general, is defined as the ignorance of the

observer or randomness in the system. Mathematically,

H = −
∑
i

pi log pi. (1.1)

The units for measuring entropy in base two is a bit, in base e is a nat.

This definition of information entropy has helped in many areas such as data

transmission, data compression, statisticalmechanics4, thermodynamics5,6, quan-

tum mechanics7, and many other fields. For understanding data compression,

consider a random variable with non-uniform distribution over the possible

outcomes. While encoding the data, either we can use the same description

length for all the possible outcomes; or we can use shorter description for the

high probability outcomes and longer description for the lower probability out-

comes, thus the average description length is reduced and also the entropy of the

signal. This way of assigning different lengths allows us to send the signal, error-

free, in a low capacity channel.

The definition of information entropy is related to the definition of entropy

in statistical mechanics (−kB
∑

i pi ln pi). This connection establishes that the

information entropy is physical, not just amathematical concept, usingMaxwell’s
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demon5. Landauer has even established a relation between information theory

and thermodynamics in 19615, famously known as Landauer’s principle. Lan-

dauer’s principle states that the minimum energy one has to spend in order to

erase one bit of information is kBT ln 2, where kB is the Boltzmann’s constant

and T is the temperature.

The study of information theory using quantum mechanics is quantum in-

formation. A definition of entropy exists in the case of quantum states, similar

to the one defined earlier, called the Von Neumann entropy8

S = −Tr(ρ ln ρ) = −
∑
i

λi lnλi, (1.2)

where ρ is the density matrix, λis are the eigenvalues of the density matrix.

Many aspects of classical information and computation have been subjected

to quantum mechanical treatment: for instance, quantum computation using

quantum gates, quantum circuits and algorithms. In the case of quantum in-

formation, we have a qubit, qutrit, and qudit, etc. Qubit (quantum bit) is a

fundamental concept in quantum information analogous to a bit in classical in-

formation. Aqubit is an arbitrary state of a two-level system, that can bewritten

as a linear combination or superposition of the basis states,

|ψ⟩ = α |0⟩+ β |1⟩ . (1.3)
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Similarly, a qutrit is an arbitrary state in a three-level system, and a qudit is a state

in an n-level system.

Quantum computation is a process where a qubit undergoes changes while

passing through a quantum gate (analogous to a classical gate). We have a quan-

tum NOT (X) gate similar to the classical one. Here |0⟩ and |1⟩ are flipped un-

der the operation as expected, but the operation is special because it preserves

the linearity of quantum mechanics when applied on a superposition state,

X(α |0⟩+ β |1⟩) = α |1⟩+ β |0⟩ . (1.4)

Because of the linearity of quantum mechanics, for all the finite dimensional

quantumsystems, operators and states canbe representedusingmatrices. Hence,

the above equation canbe rewritten asX

α
β

 =

β
α

, whereX =

0 1

1 0

.

This is an example of a gatewhich is present in both classical and quantum com-

putations. There are some gateswhich are present only in the quantum context,

but not in the classical context, such as ,Z gate,Hadamard(H) gate, etc. Math-

ematically,

Z =

1 0

0 −1

 =⇒ Z(α |0⟩+ β |1⟩) = α |0⟩ − β |1⟩ ,
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H =
1√
2

1 1

1 −1

 =⇒ H(α |0⟩+ β |1⟩) = α
|0⟩+ |1⟩√

2
+ β

|0⟩ − |1⟩√
2

.

To generalise, let us discuss quantum gates onmultiple qubits. One such gate

isControlled-NOT (CNOT) gate. CNOTgate is regarded as a generalisedXOR

gate (classical). But a notable difference between these two is, CNOT gate is

reversible while XOR gate is not. CNOT gate requires two input qubits. First

one is the control qubit and the second one is the target qubit. The operation

of this gate can be described as: if |0⟩ is chosen as the control qubit, then the

target qubit is unaltered. If |1⟩ is chosen as the control qubit, then the target

qubit is flipped. This can be seen as, |00⟩ → |00⟩ , |01⟩ → |01⟩ , |10⟩ →

|11⟩ , |11⟩ → |10⟩. In matrix form, it can be written as

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (1.5)

This gate is not restricted to the two qubit case; it can be generalised ton qubits.

One of the applications of the CNOT gate is the creation of theBell states. This

can be achieved by first applying the Hadamard gate on the control qubit and

5



then passing the qubit through the CNOT gate. This gives us the Bell states.

|00⟩ |00⟩+|11⟩√
2

|01⟩ |01⟩+|10⟩√
2

|10⟩ |00⟩−|11⟩√
2

|11⟩ |01⟩−|10⟩√
2

One of the applications of the Bell states is quantum teleportation. Quan-

tum teleportation9 is a process by which a state of a qubit is teleported, just by

sharing an entangled pair and a classical message. For achieving this, it is not

required to send a physical qubit through a quantum channel.

Quantum algorithms have been developed, using quantum gates, to solve

problems which require an enormous amount of classical computation facil-

ity. These algorithms can be applied in the areas such as searching, quantum

simulations, cryptography, etc. Simulating a quantum system using classical

computers becomes an exceedingly complicated task, because of the complexity

involved in quantum systems. Simulation of a quantum system using a quan-

tum computer would reduce the complexity considerably.

Quantum parallelism is the reason for quantum algorithms to perform faster

than classical ones. Loosely speaking, quantum parallelism is a feature of quan-

tum algorithms, which enables quantum computers to evaluate the value of a

function at different values simultaneously. One of the problems in classical

computation is unstructured search. If the search has to be made in a space of

6



sizeN elements, time taken using classical computers will be of the order ofN.

There are quantum algorithms, such as Grover’s algorithm 10, Deutsch’s algo-

rithm 11, etc., for which time scales are of the order
√
N.

Oneof thepowerful applicationsofquantumcomputers is Shor’s algorithm 12,

developed by Peter Shor. Shor’s algorithm is used for integer factorisation. To

understand the power of this algorithm considering factorising an n-bit integer,

a classical algorithmwould take exp{O(n1/3(log(n))2/3)} operations, whereas

Shor’s algorithm would takeO(n2 log n log log n).

One of the basic differences between classical information and quantum in-

formation is the no-cloning theorem 13,14, which provides greater security in a

communication channel. It is a key ingredient in quantum cryptography. This

also allows us to detect the presence of an eavesdropper in the communication

channel. The no-cloning theorem states that copying an arbitrary quantum

state is not possible.

The discovery of the no-cloning theorem is a story in itself. It started with a

paper entitled “FLASH-A superluminal communicator basedupon anewkind

ofmeasurement” 15 byNickHerbert. Aprocesswas discussed in thepaperwhich

would allow faster than light communication, thereby violating causality. Asher

Peres, one of the referees of the paper, suggested publication, despite knowing

it was wrong because he believed it would invoke interest in finding the error

leading to a better understanding of physics. This has led to the discovery of the

7



no-cloning theorem. Describing these events Asher Peres 16 wrote

“This is the story of my own personal contribution to the no-

cloning theorem 13,14, made public for the first time after more than

twenty years. [...] It was obvious to me that the paper could not be

correct because it violated the special theory of relativity. However,

I was sure this was also obvious to the author. Anyway, nothing in

the argument had any relation to relativity, so that the error had to

be elsewhere. [...] I recommended to the editor of Foundations of

Physics that this paper be published 15. I wrote that it was obviously

wrong, but I expected that it would elicit considerable interest and

that finding the error would lead to significant progress in our un-

derstanding of physics. Soon afterwards, Wootters and Zurek 13 and

Dieks 14 published, almost simultaneously, their versions of the no-

cloning theorem. The tantalising title “A single quantum cannot be

cloned” was contributed by John Wheeler. How the present paper

got its name is another story.

Therewas another referee,GianCarloGhirardi, who recommended

to reject Herbert’s paper. His anonymous referee’s report contained

an argumentwhichwas a special case of the theorem in references 13,14.

Perhaps Ghirardi thought that his objections were so obvious that

they did not deserve to be published in the form of an article (he did

8



publish them the following year 17). Other objections were raised by

Glauber, and then bymany other authors whom I amunable to cite,

because of space limitations.”

No-Cloning Theorem:

Let us assume there exist a unitary operator and a machine that clone:

U |ϕ⟩s |0⟩b |M⟩ = |ϕ⟩s |ϕ⟩b |M(ϕ)⟩ , (1.6)

U |ψ⟩s |0⟩b |M⟩ = |ψ⟩s |ψ⟩b |M(ψ)⟩ , (1.7)

where |ϕ⟩s, |ψ⟩s are the original states to be copied, |0⟩b is the blank state and

|M⟩ is themachine state. Now let us check the output for a superposition state,

|s⟩s = α |ϕ⟩s + β |ψ⟩s,

U |s⟩s |0⟩b |M⟩ = α |ϕ⟩s |ϕ⟩b |M(ϕ)⟩+ β |ψ⟩s |ψ⟩b |M(ψ)⟩ . (1.8)

In contrast, the expected outcome of a perfect cloning machine would be

U |s⟩s |0⟩b |M⟩ = |s⟩s |s⟩b |M(ϕ, ψ)⟩. By taking the inner product between

equations (1.6) and (1.7), we can say that |ϕ⟩ and |ψ⟩ are either the same state or

orthogonal to one another. This proves that there do not exist a unitary oper-

ator and a machine that clone an arbitrary state and if a cloning machine does

9



exist it can only copy orthogonal states.

There was no development in the area of cloning until 1996 when Buz̆ek and

Hillery 18 came up with the concept of imperfect cloning. They argued that the

cloning procedure is dependent upon the input state, i.e., it copies the states

|ϕ⟩ and |ψ⟩ perfectly, while the copies of the superposition states are imper-

fect. They came up with the concept of a universal quantum-copying machine,

which is independent of the input state. In other words, it copies all the states

imperfectly, but the degree of imperfection is independent of the input state.

They came up with the following transformations

U |ψ+⟩s |0⟩b |M⟩ = |ψ+⟩s |ψ+⟩b |M(ψ+)⟩+ (|ψ+⟩s |ψ−⟩b + |ψ−⟩s |ψ+⟩b) |N(ψ+)⟩ ,

U |ψ−⟩s |0⟩b |M⟩ = |ψ−⟩s |ψ−⟩b |M(ψ−)⟩+ (|ψ+⟩s |ψ−⟩b + |ψ−⟩s |ψ+⟩b) |N(ψ−)⟩ ,

where |ψ+⟩ and|ψ−⟩ are basis states in a qubit system. If we observe, in this

process, along with the clone we are also producing some noise, which makes

the cloning process imperfect. For calculating the imperfection, they used the

Hilbert-Schmidt distance between the actual output and the ideal output states.

TheHilbert-Schmidt distance between twodensitymatrices (ρ andσ) is defined

as

D(ρ, σ) = Tr
[
(ρ− σ)2

]
. (1.9)
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For the imperfection to be the same for all the states, this distance has to be

constant over all of state space, i.e., the distance is constant with respect to α

and β for the superposition state (|s⟩ = α |ψ+⟩+ β |ψ−⟩). Here, we calculate

the distance between the ideal output and the actual output. By making this

distance independent of α and β, we get

U |ψ+⟩s |0⟩b |M⟩ =

√
2

3
|ψ+⟩s |ψ+⟩b |↑⟩+

√
1

3
|+⟩ |↓⟩ , (1.10)

U |ψ−⟩s |0⟩b |M⟩ =

√
2

3
|ψ−⟩s |ψ−⟩b |↑⟩+

√
1

3
|+⟩ |↓⟩ , (1.11)

where, |+⟩ = 1√
2
(|10⟩+ |01⟩), |↑⟩ and |↓⟩ are the orthonormal basis states of

the machine. The distance between the ideal and the actual outputs comes out

to be 2/9. A perfect cloning machine takes one state as input and gives us two

perfect output states (identical to the input state), this machine takes one input

and two identical output states (not same as the input state), i.e., the original

state gets corrupted.

Subsequent research work on cloning has shifted to using fidelity for measur-

ing the imperfectness of the clone. Fidelity is defined as,

f = ⟨ψ| ρout |ψ⟩ (1.12)

Where, |ψ⟩ =original qubit, ρout = reduced densitymatrix of one of the clones
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after tracing out the original state and the machine state. Corresponding to the

Hilbert-Schmidt distance 2/9, the fidelity comes out to be 5/6. The cloning

procedure that produces imperfect clones has come to be known as optimal

cloning.

This process has not been restricted to the study of only one input, one out-

put systems or qubits. Gisin and Massar 19 have generalised this concept to N

identical inputqubits andM final copies (which include the inputqubits), where

fidelity is

f =
NM+M+N

M(N+ 2)
. (1.13)

The value 5/6 can be recovered by substitutingN = 1 andM = 2.

Later, Werner20 has generalised this result to a d dimensional system,

f =
N

M
+

(M−N)(N+ 1)

M(d+N)
. (1.14)

This formula gives us the accuracy with which a quantum state can be copied

under ideal situation and this value cannot be surpassed.

Oneof theways to realise anUniversalQuantumCloningMachine (UQCM)

is to clone polarisation state of a photon using stimulated emissions. This pro-

cess was proposed by Kempe et al21., Simon et al22. and experimentally realised

byFasel et al23., Lamas-Linares et al24. These processes use certain types of three-
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level atomic systems (V orΛ) interactingwith photonicmodes. These photonic

modes correspond to the atomic transitions, thereby cloning the polarisation

state of the photon. A detailed description of the system and calculations are

provided in the second chapter of this thesis.

Fan et al25., have studied the higher dimensional case of a similar system. A

few other interesting papers in this direction involve “Improving the Fidelity of

Quantum Cloning by Fast Cycling away the Unwanted Transition” by Agar-

wal et al26., and “Proposal for Inverting the Quantum Cloning of Photons” by

Raeisi et al27.

Research on quantum cloning has not been restricted to only UCQM.There

have been studies on asymmetric cloning28,29,30, where the fidelities of the out-

put clones are not the same. There are studies on state-dependent cloning31,

where the idea is to simply make the best possible clones of any two arbitrary

states. People have even explored the concept of cloning entangled states32, con-

tinuous variable states33, etc.

The idea of cloninghasnotbeen restricted to thequantumcase. Daffertshofer

et al. 1 and Aaron Fenyes34 have worked on the idea of cloning a classical state.

Although thismight seem like a trivial process, the physics behind is not straight

forward. The studies on classical cloning process have been very limited and re-

stricted to a purely mathematical approach. In their paper 1, Daffertshofer et al.

have worked on classical no-cloning theorem in phase space on probability dis-

13



tributions using Liouvillian dynamics. Aaron Fenyes discussed classical cloning

from the point of view of symplectic geometry34.

Quantum cloning is associated with many problems such as quantum mea-

surements, state estimation, etc. While the no-cloning theorem may appear to

be a disadvantage, it provides security in the context of quantum cryptography.

This prevents an eavesdropper frommaking a copy of the quantum state that is

shared through a quantum channel. One of the earliest quantum cryptography

protocols was developed by Bennett and Brassard in 1984 known as the BB84

protocol35.

No problem in quantum mechanics is complete without discussing the mea-

surement problem. All measurements in quantum mechanics are associated

with measuring an observable (operator Ô), which is associated with a physi-

cal quantity like position (x̂) or momentum (−iℏ ∂
∂x). Let us assume that the

observable Ô has eigenstates |oi⟩, with eigenvalues oi, i.e., Ô |oi⟩ = oi |oi⟩,

i = 1, 2, ..d, where d is the dimension of the system. Eigenvectors of any ob-

servable form a complete set of orthonormal basis. Consider a system prepared

in the state

|ψ⟩ =
∑
i

ci |oi⟩ ,
∑
i

|ci|2 = 1, (1.15)

where cis are complex numbers. When the observable Ô of the system is mea-
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sured, it will reveal one of the eigenvalues (oi) with the probabilities given by

P(oi) = |ci|2. Subsequently the state |ψ⟩ is destroyed or collapsed and is not

available for further investigation. This is one of the early interpretations devel-

oped in quantummechanics known as theCopenhagen interpretation36, where

the wavefunction gives the complete description of the quantum system. This

theory only predicts the probabilities of the outcomes.

Subsequently, other interpretations have beendeveloped trying to explain the

collapse of thewavefunction. TheVonNeumann-Wigner interpretation8 states

that if a system in a state |ψ⟩ results in a value of the observable oi, then the state

of the system immediately after the measurement is |oi⟩. This can be rewritten

in terms of projection operators (P̂i = |oi⟩ ⟨oi|), where the state after the mea-

surement is given by P̂i|ψ⟩√
⟨ψ|P̂i|ψ⟩

. This postulate can be easily verified by making

immediate measurements on the system, which will give the same value oi after

repeated measurements.

Decoherence37 further explains that loss of coherence in the system is caused

by its interaction with the measuring apparatus. There are a few theories that

are not dependent on the presence of an observer. These include Bohmian me-

chanics38 andMany-worlds interpretation39. There aremany collapsemodels40

trying to explainwhat causes the collapse. One of the latest developments in this

area is quantum measure theory41,42 which talks about the histories and quan-

tum measure associated with them rather than the probabilities.
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The outline of the thesis is as follows:

In Chapter II we study cloning of quantum states and study how thermal

noise leads to a corruption of the cloning process. We then look at the classi-

cal limit of the quantum cloning process. We also look at the classical cloning

process with the idea of generating a Hamiltonian for realising the process op-

erationally. Then we study how classical cloning is affected when we replace a

delta function by a function with a finite spread.

In Chapter III we consider a Stern-Gerlach setup to analyse the idea of re-

source limitation in a quantum measurement. We study resource limitation

in the form of the size of the pixels on the screen used for detection of silver

atoms. Then we calculate the average information extracted per event under

coarse graining.

InChapter IVwe comeupwith a strategy to realise the BHmetric experimen-

tally by optimising the measurement direction with respect to the states being

discriminated and show that the BKM metric is superior in distinguishing two

quantum states. We propose a strategy to realise the BKM metric experimen-

tally by measuring multiple qubits at a time.

In Chapter V we present a way to extract the maximum information from

an unknown quantum state using a strategy similar to the one mentioned in

Chapter IV.

We finally end the thesis in ChapterVIwith some concluding remarks.
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“It doesn’t matter how beautiful your theory is, it doesn’t

matter how smart you are. If it doesn’t agree with experi-

ment, it’s wrong.”

Richard Feynman

2
Classical and Quantum Cloning

Copying information is a central aspect of information theory. While one can

make an exact copy of classical information, it is not the same in the case of

quantum information. In other words, we cannot make an exact replica of an

arbitrary qubit, which is a direct result of the no-cloning theorem 13,14. This is

because of linearity and unitarity of quantum mechanics.
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Here we use an atom-photon system22,24 for studying the cloning process. In

this system, achievement of a perfect clone is obstructed by the presence of spon-

taneous emission.

Initially, our systemconsists of a Fermionic oscillator (the atom) andaBosonic

oscillator (the photon). After the atom-photon interaction, we end upwith two

Bosonic oscillators (two photons). The atom is in a 3 level system (1 ground state

with energy g and 2 degenerate excited states with energy e). |e1⟩ and |e2⟩ are

coupled to polarization states (ã1 and ã2) of photon which are orthogonal to

one another (See Fig. 2.1).

|10⟩ represents a photon in ã1 polarization state.

|01⟩ represents a photon in ã2 polarization state.

So an arbitraryphoton in superposition canbe represented as (c1a†2+c2a
†
1) |0⟩ =

c1 |01⟩+ c2 |10⟩.

|0⟩ = |00⟩ and |c1|2 + |c2|2 = 1 (2.1)

a
†
1− creation operator for ã1.

a
†
2− creation operator for ã2.

Since we are dealing with interaction between an atom and photons, we can
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Figure 2.1: The configuration of the atomic system interacting with the photons.

write an interaction Hamiltonian22,

Ĥint = γ(σ1+a1 + σ2+a2 + σ1−a
†
1 + σ2−a

†
2) (2.2)

σ1+ = |e1⟩ ⟨g| , σ2+ = |e2⟩ ⟨g| (2.3)

σ1− = σ†1+, σ2− = σ†2+ (2.4)

where γ is the transition rate and γt is the scaled time.
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The Number operator is given by,

N̂ = N̂1 + N̂2 (2.5)

where,

N̂1 = σ1+σ1− + a
†
1a1 and N̂2 = σ2+σ2− + a

†
2a2 (2.6)

[N̂1, Ĥ
int] = 0 and [N̂2, Ĥ

int] = 0 (2.7)

Here N̂ is conserved and both N̂1, N̂2 are conserved separately.

The initial atomic state is

ρatom =
1

2
(|e1⟩ ⟨e1|+ |e2⟩ ⟨e2|) (2.8)

The initial photon state is c1 |01⟩+ c2 |10⟩ = (c1a
†
2 + c2a

†
1) |0⟩ = |ψ⟩.

We choose this Hamiltonian and the initial atomic state because they are in-

variantunder simultaneousunitary transformations of (a†1, a
†
2) and (|e1⟩ , |e2⟩).

Nowby listing out all possible input andoutput states of the combined atom-

photon state and by looking at the conservation of number, we can study the

evolution of all states.
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N1 N2

|e2⟩ |01⟩ 0 2

|e1⟩ |10⟩ 2 0

|g⟩ |20⟩ 2 0

|g⟩ |11⟩ 1 1

|g⟩ |02⟩ 0 2

|e1⟩ |01⟩ 1 1

|e2⟩ |10⟩ 1 1

This list consists of spontaneous and stimulated emissions. Accordingly, we di-

vide the Hamiltonian also into three different parts, which become the blocks

of the total Hamiltonian.

Spontaneous emission:

Ĥ1 =


|g11⟩ |e101⟩ |e210⟩

⟨g11| 0 γ γ

⟨e101| γ 0 0

⟨e210| γ 0 0

 (2.9)
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Stimulated emission:

Ĥ2 =


|g20⟩ |e110⟩

⟨g20| 0
√
2γ

⟨e110|
√
2γ 0

 (2.10)

Ĥ3 =


|g02⟩ |e201⟩

⟨g02| 0
√
2γ

⟨e201|
√
2γ 0

 (2.11)

Thus the total Hamiltonian is of the form

Ĥint =


Ĥ1 0 0

0 Ĥ2 0

0 0 Ĥ3

 (2.12)

Using this Hamiltonian we calculate the evolution operator U of the com-

bined system

U = e
−iHt
ℏ (2.13)

The initial state of the combined atom-photon system is given by the tensor
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product of the individual systems (the atom and the photons).

ρ(0) =
1

2
(|e1⟩ ⟨e1|+ |e2⟩ ⟨e2|)⊗ |ψ⟩ ⟨ψ| (2.14)

We time evolve the above state using the evolution operatorU.

ρ(t) = U†ρ(0)U (2.15)

After evolving,we trace out the atomic degrees of freedomfromthe total density

matrix to get the reduced density matrix of the photon.

ρred(t) = Tratom[ρ(t)] (2.16)

ρred(t) =



⟨11| ⟨01| ⟨10| ⟨20| ⟨02|

|11⟩ 1

4
sin2

(√
2γt
ℏ

)
0 0 c1c2

2
√
2
sin2

(√
2γt
ℏ

)
c1c2

2
√
2
sin2

(√
2γt
ℏ

)
|01⟩ 0 a b 0 0

|10⟩ 0 b a 0 0

|20⟩ c1c2

2
√
2
sin2

(√
2γt
ℏ

)
0 0

c22
2
sin2

(√
2γt
ℏ

)
0

|02⟩ c1c2

2
√
2
sin2

(√
2γt
ℏ

)
0 0 0

c21
2
sin2

(√
2γt
ℏ

)


(2.17)

where, a = 4c21+1

8
cos2

(√
2γt
ℏ

)
+

c21−c22
4

cos

(√
2γt
ℏ

)
+1

8
, b = c1c2

2
cos

(√
2γt
ℏ

)(
1+ cos

(√
2γt
ℏ

))
.

For the calculation of fidelity, we need an ideal output to compare with the
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output state that we obtain. The ideal output is given by |χ⟩ = |ψ⟩ ⊗ |ψ⟩.

The commonly used definition of fidelity used in the literature22,20,19,24, is

given by

f(1) =
M+1∑
k+l≥2

(
k

k+ l

)
p(k, l)

1− p(0, 1)− p(1, 0)

=
p(2, 0) + 1

2
p(1, 0)

1− p(0, 1)− p(1, 0)

f(1) =
5

6
. (2.18)

where,

p(k, l) = ⟨0, 0| b
k
1b

l
2√

k!l!
ρred(t)

b
†k
1 b

†l
2√

k!l!
|0, 0⟩ ,

b
†
1 = c1a

†
2 + c2a

†
1 and b†2 = c1a

†
2 − c2a

†
1.

We use a new definition of fidelity,

f(2) = ⟨χ| ρred(t) |χ⟩

=
1

2
sin2

(√
2γt

ℏ

)

Theoptimal value corresponds to f(2) = 1

2
, obtained at time, t = (2k+1)π

2

ℏ√
2γ

.
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The difference between the two definitions of fidelity is that while f(1) com-

pares the input state with only one of the output states, equivalent to ⟨ψ| ρ |ψ⟩

(here ρ represents one output state), f(2) compares the ideal output states i.e,

two perfect copies, with the two output states (includes both the input and the

cloned states).

2.1 Non-Ideal cloning: Role of thermal noise in the cloning process

Till this point we have considered an ideal situation where there is no noise in

the system. We now go beyond earlier work by introducing thermal noise to

the system. Thermal noise is introduced first in the atomic system, where the

atom is in a population inverted state. Next we send in a thermal photon along

with the input photon. These act as thermal noise at the machine level and the

input level respectively. This leads us to the study of effects of temperature on

the cloning process.

Effects of temperature on quantum cloning43 in an abstract system was ear-

lier studied by Baghbanzandeh and Rezakhani. In their system they dealt with

a static model where time scales do not appear i.e, they did not deal with the dy-

namics of the process. Also their process of cloning is not universal as the fidelity

is dependent on the input state. As it will be made clear later in the chapter our

approach to the problem deals with the dynamics and is universal.
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2.1.1 Atom in a Thermal State

In the previous section, we have taken the initial atomic state to be the popula-

tion inverted state. Here we consider the atom in a thermal state, which intro-

duces noise and corrupts the cloning process.

ρi =
e−β1e(|e1⟩ ⟨e2|+ |e1⟩ ⟨e2|) + e−β1g |g⟩ ⟨g|

Z
(2.19)

where,Z = 2e−β1e + e−β1g, β1 = 1/(kBT).

Along with the states mentioned earlier, we have to add four more states to

complete the set of all possible states. The states listed below pertain to absorp-

tion of the photon.

N1 N2

|g⟩ |10⟩ 1 0

|e1⟩ |00⟩ 1 0

|g⟩ |01⟩ 0 1

|e2⟩ |00⟩ 0 1

We thus write the Hamiltonian corresponding to the process of absorption in
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two blocks as follows,

Ĥ4 =


|g10⟩ |e100⟩

⟨g10| 0 γ

⟨e100| γ 0

 (2.20)

Ĥ5 =


|g01⟩ |e200⟩

⟨g01| 0 γ

⟨e200| γ 0

 (2.21)

Finally, the total Hamiltonian is

Ĥint =



Ĥ1 0 0 0 0

0 Ĥ2 0 0 0

0 0 Ĥ3 0 0

0 0 0 Ĥ4 0

0 0 0 0 Ĥ5


(2.22)

The initial state of the combined system is given by

ρ(0) =

(
e−β1e(|e1⟩ ⟨e2|+ |e1⟩ ⟨e2|) + e−β1g |g⟩ ⟨g|

Z

)
⊗ |ψ⟩ ⟨ψ| (2.23)

We evolve the above state with the evolution operator corresponding to the
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Hamiltonian from (2.22).

ρred(t) = Tratom[ρ(t)] = ⟨e1| ρ(t) |e1⟩+ ⟨e2| ρ(t) |e2⟩+ ⟨g| ρ(t) |g⟩ (2.24)

Similar to the previous section we calculate the fidelities:

f(1) =
p(2, 0) + 1

2
p(1, 0)

1− p(0, 1)− p(1, 0)− p(0, 0)
(2.25)

f(1) =
5

6
(2.26)

f(2) =
e−β1e

Z
sin2

(√
2γt

ℏ

)
(2.27)

The optimal value corresponds to f(2) = e−β1e

Z
.

We can see that f(1) does not distinguish between a population inverted and a

thermal state. This is counterintuitive since we expect a thermal state to corrupt

the cloning process. Therefore we restrict our analysis to f(2) since it indeed dis-

tinguishes between these two cases and thus captures the physics of the cloning

process better that f(1). We, therefore, restrict our analysis to f(2) in the following

sections.
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2.1.2 Photon in a Thermal State

In this section, we introduce noise at the input by sending a thermal photon

alongwith thephoton that needs tobe copied. The state for a photon in thermal

state (Fock space) can be written as

ρ =
∑
n

e−βn |n⟩ ⟨n| . (2.28)

Since in our case we work with two polarisation modes we take the tensor

product of the two modes to write the full state.

ρ = (1− x)2
∑
n1

xn1 |n1⟩ ⟨n1| ⊗
∑
n2

xn2 |n2⟩ ⟨n2| , (2.29)

where, x = e−β(e−g). This can be written as follows

ρ = (1− x)2
∞∑
n=0

(
xn

n∑
r=0

|n− r, r⟩ ⟨n− r, r|
)
, (2.30)

where, n = n1 + n2. We solve this by converting the Hamiltonian and den-

sity matrices into a block diagonal form and solve only for those blocks which

provide non-zero fidelity. We use conservation conditions onN,N1 andN2 for

forming the blocks.
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We display a few special cases. For n = 1 and n1 = 1, n2 = 0

Ĥ1 =


|e100⟩ |g10⟩

⟨e100| 0 γ

⟨g10| γ 0

. (2.31)

For n = 1 and n1 = 0, n2 = 1

Ĥ2 =


|e200⟩ |g01⟩

⟨e200| 0 γ

⟨g01| γ 0

. (2.32)

Similarly we write the Hamiltonians for n = 2 and n = 3. These values

of n provide all the blocks of the total Hamiltonian that are required for the

evaluation of fidelity.

Since a thermal state acts as a noise source, the total state can be written as a

convex combination of the input state and the thermal state.

ρ(0) =
ρth + ρin

2
(2.33)

We can do the calculations separately for ρth and ρin and add the results for

obtaining the total fidelity. The fidelity for cloning a photon state with thermal

noise at the input level is given by
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f(2) =
f
(2)
(th) + f

(2)
(in)

2
(2.34)

=
(1− x)2

2

(
x2

3

(
1+ 2 cos2

√
3γt

ℏ

)
+
x

2
sin2

√
2γt

ℏ

)
+

1

4
sin2

√
2γt

ℏ
.

2.1.3 Both Atom and Photon in Thermal States

Here we introduce thermal noise at both the input and the machine level i.e, a

thermal photon and an atom in a thermal state. We calculate the fidelity of the

cloning process as done in previous cases.

f(2) = ⟨χ| ρred(t) |χ⟩ , (2.35)

where |χ⟩ = |ψ⟩ ⊗ |ψ⟩.

The total density matrix before interaction is written as

ρ = ρat ⊗
(
ρth + ρin

2

)
(2.36)

where, ρat is the densitymatrix for an atom in a thermal state, ρth is the density

matrix for a photon in a thermal state and ρin is the density matrix for the input

photon. Like in the earlier case we calculate fidelity for a thermal photon and

the input photon separately. The total fidelity is given by
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f(2) =
e−β1e

Z
(1− x)2

(
x2

3

(
1+ 2 cos2

√
3γt

ℏ

)
+
x

2
sin2

√
2γt

ℏ

)

+
e−β1g

2Z
(1− x)2x2

(
cos2

√
2γt

ℏ
+

4x

3
sin2

√
3γt

ℏ

)

+
e−β1e

2Z
sin2

(√
2γt

ℏ

)
(2.37)

Figure 2.2 shows a comparison between fidelities for all the four cases calcu-

lated. This is just a qualitative comparison between fidelities, whereγ = 1, ℏ =

1.

2.2 Classical Limit of the Quantum Cloning Process

Till this point we have studied how temperature corrupts the quantum cloning

process. Here we look at the classical limit of the process by taking both the

number of input states (N) and the number of copies (M) to infinity.

So far we have restricted to a system for which N = 1 and M = 2. Let us

calculate the fidelity for N = 2 and M = 3 i.e, two input photons and one

atom in the excited state. The fidelities (f(1) and f(2)) for this system are given by
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Figure 2.2: Comparison of fidelities after corruption with the ideal case as a function of time.

f(1) =
p(3, 0) + 2

3
p(2, 1) + 1

3
p(1, 2)

1− p(2, 0)− p(0, 2)− p(1, 1)
, (2.38)

f(2) = ⟨χ| ρred(t) |χ⟩ . (2.39)

By taking the input state of two photons as ρin = 1√
2
(c1 |01⟩ + c2 |10⟩) ⊗
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(c1 |01⟩+ c2 |10⟩), we evolve the system unitarily. This gives us the fidelities

f(1) =
11

12
and f(2) =

1

2
sin2

(√
3γt

ℏ

)
(2.40)

The fidelity f(1) for the atom-photon system agrees with the formula f =

NM+N+M
M(N+2) , which is defined for any arbitrary quantum system. In contrast, the

maximum of f(2) is 1

2
, which is the same as the case ofN = 1 andM = 2, im-

plying f(2) does not capture the roles ofN andM effectively. Hence we restrict

ourselves to calculating f(1) for analysing the classical limit.

For taking the limit of N → ∞ and M → ∞, we consider M = rN,

where r is a finite number and greater than one. The reason behind choosing

this condition is that the number of additional copies produced also does reach

the limit of infinity.

lim
N→∞,M→∞

f(1) = lim
N→∞,M→∞

NM+N+M

M(N+ 2)
,

= lim
N→∞

rN+ r+ 1

rN+ 2r
,

= lim
N→∞

N+ r+1

r

N+ 2
,

= 1. (2.41)

This tells us that perfect cloning of a state is possible in the classical limit. One
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more way of approaching the classical limit is by first takingM → ∞ and then

N → ∞.

lim
M→∞

f(1) = lim
M→∞

NM+N+M

M(N+ 2)
,

= lim
M→∞

N+ 1

N+ 2
(2.42)

This approaches one asN goes to infinity.

2.3 Classical Cloning

Wootters and Zurek’s 13 work on the no-cloning theorem has led to extensive

research on the quantum cloning process and its physical implications. While

the studies in the quantum regime are both abstract 18,30,19,20,44 and application-

based21,22,23,24,26, work on the classical cloningprocess has been extremely limited

and restricted to a purely mathematical approach 1,34,45,46. There appears to be a

belief that the classical cloning process is trivial, perhaps because it is so familiar.

Computers routinely copy files, photocopyingmachines arewidespread and the

genetic information contained in DNA is replicated every time a cell divides.

However, there are subtleties related to classical cloning34 and even a classical

no-cloning theorem 1 proved under certain, general assumptions. A good un-

derstanding ofthe copying of classical information is essential to appreciate the
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quantum case and the relation between the two.

The discussion of cloning involves three coupled systems: a source, a target

and amachine. The source contains the state to be cloned. The target is initially

in a standard blank state and the machine is initially in a standard ready state,

both independent of the source. The objective of cloning is to copy the state

of the source into the target, without destroying the original. In the copying

process, the machine state may be altered and has to be reset before the next

copy can be made. Here, we consider the cloning process from a physical point

of view, clarifying the conditions under which classical cloning is possible and

explicitly constructing Hamiltonians which implement the cloning process.

Before going any further we need to define more precisely what we mean by

a “state”. A “state” in classical mechanics is defined as a point in phase space. A

system in classical mechanics has a configuration spaceQwith local coordinates

qr and the phase space has twice the dimension (qr, pr) including coordinates

as well as conjugate momenta. Phase spaces are even dimensional and allow

us to define Poisson brackets between functions. In statistical physics, a state

would be defined as a probability distribution on phase space. Daffertshofer

et al. 1 have proved a classical no-cloning theorem when states are regarded as

probability distributions. This proof is based on the invariance of the relative

entropy (Kullback-Leibler divergence) under arbitrary diffeomorphisms of the

phase space. It follows from their work that cloning of classical states is forbid-
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den whenever the relative entropy of the total system is well defined. However,

there are situations where the relative entropy of the system is ill defined, for ex-

ample when the phase space distributions have delta function support and this

permits a discussion of classical cloning.

Aaron Fenyes34 studied the cloning process from the viewpoint of symplectic

geometry. In his treatment, classical states are points in a symplectic manifold

and the cloning process is a symplectomorphism. This provides a very general

setting for the cloning process in classical mechanics. In the physics commu-

nity, symplectic manifolds and symplectomorphisms are more usually referred

to as phase spaces and canonical transformations. Here, we use the framework

provided by Fenyes to study the classical cloning process in more detail.

Definition of the classical cloning process: Following34, letM andN be sym-

plectic manifolds. (A symplectic manifold is a manifold with a closed, non de-

generate two-form ω0. Diffeomorphisms that preserve the two form ω0 are

called symplectomorphisms.) Let (N,N,M) represent the source, target and

machine respectively. Initially, we suppose that the target and machine are in

standard states b and r. Given an arbitrary state s ∈ N of the source, a cloning

map is a symplectomorphism ψ : N × N × M → N × N × M such that

ψ(s, b, r) = (s, s, f(s, b, r)) for all s ∈ N, where b, r are independent of s34.

Here the manifoldM acts as the copying machine, while the source and the tar-

get states are on the manifoldN. The source state is s, the material to be copied
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(for instance a birth certificate!); b the target state, which is initially blank, as

are the A4 sheets in the tray of the copying machine; and the machine state is

r (r for ready) before cloning. We would like to know whether there exists a

cloning map for a given classical system (N, ω0). What choice of the machine

M is needed to achieve this? It is also of interest to determine how these maps

can be generated in the laboratory by physical processes.

Let us suppose that that there is a cloningmapψ as above. Let us now fix s =

s0 and consider the linearised map ϕ that maps the tangent space of (s0, b, r)

to the tangent space of (s0, s0, f(s0, b, r)). These tangent spaces are symplectic

vector spaces and ϕ is a linear symplectic cloning map. Thus, the existence of

ψ would imply the existence of linear symplectic cloning maps. Let us begin by

addressing the simpler problemof linear symplectic cloning. Linearity results in

a considerable simplification of the problem and permits explicit construction

of cloning maps. As we will see later, this simple case illuminates the more gen-

eral problem of classical cloning. It also covers the physically important case of

harmonic oscillators, which are easily realised in an optics laboratory as modes

of the electromagnetic field.

Let us start with the simplest example and chooseM andN to be two dimen-

sional symplectic vector spaces (R2, ω0), so that we can viewM andN as phase

spaces, with each point in these spaces being labelled by a position and a mo-
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mentum. Let b = r =

0

0

, and x =

q
p

. A linear symplectic cloningmap

onR6 is given by

ϕ(s, b, r) =



1 0 1 1 −1 1

0 1 1 2 0 1

1 0 0 1 0 1

0 1 −1 −1 1 0

1 0 1 2 −1 2

0 −1 0 −1 −1 −1





s

b

r


. (2.43)

It is a cloning map because it satisfies ϕ(s, b, r) = (s, s, Fs), where F =1 0

0 −1

. ϕ is a symplectic map as it satisfies the conditionϕTΩϕ = Ω, where

Ω is the symplectic form onR6. Cloning by a machine is only possible if the di-

mension ofM is greater than or equal to the dimension ofN. Aminimal choice

isM = N. As emphasised by34, cloning is impossible without the presence of

the machine.

2.3.1 Cloning as a Canonical Transformation

In this section, we discuss a systematic procedure for the generation of cloning

maps on the symplectic vector spaceR2 ×R2 ×R2. By definition, the cloning

map ϕ : R6 → R6 must send (s, b, r) → (s, s, Fs) (where, b = 0 and r = 0
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are at the origin). The two dimensional vector subspace V of R6 spanned by

vectors of the form {s, 0, 0} is mapped to the two dimensional subspaceW of

R6 spanned by vectors of the form {s, s, Fs}. In order for the map from V to

W to be symplectic, Fmust be antisymplectic, i.e, it must reverse the symplectic

structure. A simple choice for F is F =

1 0

0 −1

. We need to now extend this

map to all ofR6. ClearlyVc, the symplectic complement ofVmustmap toWc,

the symplectic complement ofW. A systematic procedure for constructing the

map is the Gram-Schmidt procedure47. Following is the procedure to generate

the cloning map above (2.43).

The cloning map is described by (x, b, r) → (x, x, Fx) (where, b and r are at

the origin).

Let (ei, fj) and (Ei, Fj) be two bases. The symplectic cloning map is a map (a

symplectomorphism) connecting these two basis sets. The symplectic form Ω

is defined as follows:

Ω(ei, ej) = 0, Ω(ei, fj) = δij,

Ω(fi, fj) = 0, Ω(fi, ej) = −δij. (2.44)
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Let us set {x, y} ≡ Ω(x, y). Let us consider

E1 = e1 + e2 + e3, (2.45)

F1 = f1 + f2 − f3. (2.46)

We now follow a method similar to the Gram-Schmidt Orthonormalization

procedure and construct the following:

e′2 = e2 − {e2, F1}E1 + {e2,E1}F1 = −e1 − e3, (2.47)

e′3 = e3 − {e3, F1}E1 + {e3,E1}F1 = e1 + e2 + 2e3, (2.48)

f′2 = f2 − {f2, F1}E1 + {f2,E1}F1 = −f1 + f3, (2.49)

f′3 = f3 − {f3, F1}E1 + {f3,E1}F1 = 2f3 − f1 − f2. (2.50)

We now construct

E2 = −e′2 − 2f′2 + f′3 = e1 + e3 + f1 − f2, (2.51)

F2 = e′3 − 3F′2 + f′3,

= e1 + e2 + 2e3 + 2f1 − f2 − f3. (2.52)
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We then construct

e′′3 = e′2 − {e′2, F2}E2 + {e′2,E2}F2

= −e1 − e2 − 2e3 − f1 + f3, (2.53)

f′′3 = f′2 − {f′2, F2}E2 + {f′2,E2}F2,

= e1 + e3 − f2 + f3. (2.54)

We continue further to generate

E3 = −f′′3 = −e1 − e3 + f2 − f3, (2.55)

F3 = −e′′3 = e1 + e2 + 2e3 + f1 − f3. (2.56)

Our cloning map is given by Eq. (2.43).

Since theGram-Schmidt procedure involves choices there is clearly ambiguity

in the extensionof the cloningmap. What is the extent of this ambiguity? There

is clearly Sp(4)worth of ambiguity in mappingVc toWc. In addition, we also

have the freedom to composeFwith any other symplectic transformation inR2

of themachine. Thus there is a total ofSp(4)×Sp(2)worth of cloningmaps in

R2. Fenyes’ construction extends easily to the case ofR2n. The total ambiguity

here is larger, Sp(4n)× Sp(2n).
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2.3.2 Hamiltonian Corresponding to the Symplectic Matrix

Having found a linear cloning map, we would like to implement this transfor-

mation by a Hamiltonian, so that cloning can be realised in a laboratory. A

symplectic map ϕ and its corresponding HamiltonianH are related by

ϕ = eHt. (2.57)

Since we are working with linear spaces, it is natural to consider quadratic

Hamiltonian functions. If x is a vector inR6, (xi, i = 1, 6), our Hamiltonian

is a quadratic function

H(x) = 1/2xihijx
j (2.58)

with hij a real symmetric matrix hij = hji. Using Hamilton’s equations we get

an evolution

ẋi = Ωijhjkx
k (2.59)

which is a linear transformation generated by hik = Ωijhjk. Under time evolu-

tion for a time t, the vector xwould be mapped to the vector [exp ht]xwhere h

is the matrix hik.

We will now explicitly construct Hamiltonians to implement the map (ϕ)

43



mentioned earlier and for the map discussed by Aaron Fenyes.

ϕ =



1 0 1 0 0 0

0 1 0 0 0 −1

1 0 −1 0 1 0

0 1 0 −1 0 −1

1 0 0 0 1 0

0 −1 0 1 0 2


. (2.60)

The map ϕ cannot be realised via a single time independent Hamiltonian
*. Using the polar decomposition of symplectic matrices48, we can write ϕ =

expX expYwhereX,Y are in the Lie algebra of the symplectic group. Writing

h1 = X/τ and h2 = Y/τ , we can express the cloning map as

ϕ = eh1τ eh2τ , (2.61)

where τ will be chosen later to suit our convenience. TheHamiltonianmatrices
*Mathematically, this is because the exponential map from the Lie algebra of the symplectic group to the

group is not surjective48.
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in explicit numerical form (rounded to three decimal places) are ,

h1τ =



−0.209 −0.003 −0.206 −0.332 0.206 −0.128

0.418 0.209 −0.120 −0.120 −0.006 0.006

0.120 −0.332 −0.738 −0.254 0.284 −0.583

−0.120 0.206 1.066 0.738 −0.535 0.738

−0.006 −0.128 −0.738 −0.583 0.409 −0.505

−0.006 −0.206 −0.535 −0.284 0.254 −0.409


(2.62)

h2τ =



0.779 −0.203 −0.796 0.834 0.117 0.329

0.101 −0.779 −1.438 −0.412 1.107 −1.741

0.412 0.834 −2.509 −0.722 2.479 0.563

−1.438 0.796 4.039 2.509 −1.512 3.013

1.741 0.329 −3.013 0.563 1.534 0.958

1.107 −0.117 −1.512 −2.479 −0.774 −1.534


(2.63)

h1 represents a pure shear transformation and h2 a pure rotation in phase space.

The Hamiltonian functions are given by (2.58).
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H1 = pm(0.200135ps − 0.454122pt − 0.251032qm − 0.134379qs − 1.11724qt)

−0.208998p2s + ps(−0.0864358pt − 0.134379qm + 0.415041qs − 0.451168qt)

−0.737739p2t − 1.11724ptqm − 0.451168ptqs + 0.812358ptqt

−0.409133q2m − 0.200135qmqs + 0.454122qmqt

+0.409133p2m + 0.208998q2s + 0.0864358qsqt + 0.737739q2t

H2 = pm(1.8583ps − 0.53366pt + 0.18342qm + 1.43587qs − 0.948606qt)

+0.779159p2s + ps(−0.384108pt + 1.43587qm − 0.101619qs − 0.604052qt)

−2.50948p2t − 0.948606ptqm − 0.604052ptqs + 3.31716ptqt

+1.53428p2m − 1.53428q2m − 1.8583qmqs + 0.53366qmqt

−0.779159q2s + 0.384108qsqt + 2.50948q2t

where (ps, qs), (pt, qt) and (pm, qm) pertain to the phase space variables cor-

responding to the source, the target and the machine respectively.

In a real physical process, the three systems (source, target and machine) will

have their own Hamiltonian evolution. However, if we choose τ to be small

(compared to any time scale present in the source, target and machine) we can
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Figure 2.3: Evolution of states (in phase space) for the Hamiltoniansmentioned in (2.62) (red) and (2.63) (blue).
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ensure that the cloningHamiltonians h1 and h2 dominate over the other terms.

We can essentially assume that the evolution of the systems is “frozen” while

cloning takes place.

Figure 2.3 shows the evolution of the source, the target, and the machine (in

phase space) using the Hamiltonians in (2.62) and (2.63), for a time, t = 2τ .

From these figures we observe that, while the source returns to its original state

after evolution i.e.

q
p

, the target starts at the origin and goes to the stateq
p

 making a perfect copy. The machine state also starts at the origin and

it reaches

 q

−p

. If one considers the phase space area A(γ) =
∮
γ pdq con-

tained in an arbitrary loopγ in the source space, under cloning this loop is dupli-

cated in the target space and itwould seem that the phase space area has doubled.

However, the machine is also affected and the image of γ in the machine phase

space is such as to cancel out the duplication therebypreserving total phase space

area. Thus we retain the original, and we have created a perfect clone and an

anti-clone. The anti-clone contribution to the phase space area cancels the one

from the clone, thus preserving the total phase space area.

Given three oscillators, one can, in principle create a perfect clone and anti-

clone along the lines described above by tuning the coupling strengths read off
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from (2.62,2.63). This would be a minimal cloning machine, since the machine

has the same phase space as the source. In practice, this may need a large de-

gree of control over the oscillators and their couplings. Wewill describe below a

more practical (albeit non-minimal) scheme for realising the cloning process in

the laboratory using non linear optics.

Similarly, Fig. 2.4 shows the evolution of the states under the Hamiltonian

for the map by Aaron Fenyes (2.60)

2.3.3 More General Cloning maps

Fenyes’ construction34 provides cloningmaps forR2n. What about other phase

spaces that appear in classical mechanics for example, the phase space of the

rigid rotor? We show that all such phase spaces also admit cloning maps and

that the machine need be no larger than the system itself. Let Q be an n di-

mensional manifold and let q0 ∈ Q be a marked point. It is known that we

can always embed Q in RN for sufficiently large N. By a translation, let us ar-

range for the embedding to place q0 at the origin ofRN. Let us denote byΓ the

phase space corresponding to Q. (Mathematically, Γ = T∗Q, the cotangent

bundle overQ.) It now follows that Γ is symplectically embedded inR2N and

we know from the linear cloning theory thatR2N admits a cloning map which

sends {(q, p), (q0, 0), (q0, 0)} to {(q, p), (q, p), (q,−p)}. Restrict this map

to points of Γ to find a cloning map for any classical phase space. Note that the
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machine is also a copy of Γ: it is thus a minimal cloning scheme.

2.3.4 Proposed Experiment

As mentioned earlier, classical cloning can be realised by using techniques of

non-linear optics49. In particular, one can use a four-wave mixing process like

the Kerr effect to generate a clone and an anticlone, leaving the original unal-

tered. The basic physics49 is that some materials have a nonlinear response to

light waves incident on them. The “machine” here is considerably more com-

plex than in the minimal cloning models of section II, since it includes two

pump beams and a nonlinear material apart from the anticlone. We are con-

cerned here with a third order nonlinear optics effect: the polarisation response

of the material is cubic in the incident electric field: P⃗ = ϵ0χ
3E⃗(E⃗.E⃗), where ϵ0

is the dielectric permittivity and χ(3) the third order susceptibility. (It follows

from symmetry arguments that the second order susceptibilityχ(2) vanishes for

centrosymmetric materials.) The cloning machine consists of a non-linear sam-

ple illuminated by two strong“ pump”beams. These serve to bring the response

of the sample into the non-linear regime, acting rather like the bias voltage of a

transistor. When this sample is further illuminated by a weak “signal” beam,

we find that in addition to the signal beam (the source) the system generates

two more beams, a clone beam and an anti-clone beam. We will describe the

scheme more fully below.
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Let us note first that a mode of the electromagnetic field is characterised by

a wave vector k⃗ and a polarisation δ⃗. We will keep the polarisation vector fixed

along ẑ in the discussion below. All our wave vectors will lie in the x− y plane.

A wave in the k̂ direction can be described by the z component of its electric

field E = ẑ.E⃗

E(⃗r, t) = Au(⃗r, t) + Au(⃗r, t) (2.64)

where u(⃗r, t) = exp i(ωt− k⃗.⃗r) and A is a complex number which describes

the amplitude and phase of the beam.

Each mode of the field is an oscillator with frequency ω = c̃|⃗k|, where c̃ =

c/n(ω) is the speed of light in the medium (which is assumed isotropic). The

phase space of the oscillator is described by the real and imaginary parts ofA (the

two quadrature components of the wave), which are canonically conjugate to

each other. The symplectic form can bewritten dA∧dA/(2i). This symplectic

form is clearly reversed by the mapA → A takingA toA.

We have supposed the medium to be isotropic, so that χ(3) and n(ω), the

refractive index are scalar. We suppose all beams in the experiment to have the

same frequency ω. This has the practical advantage that it makes it easier to

satisfy the phase matching conditions49. Let us consider three incident waves

represented as follows:

Ej(⃗r, t) = Ajuj(⃗r, t) + Ajuj(⃗r, t) (2.65)
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where uj(⃗r, t) = exp i(ωt− k⃗j.⃗r)with j = 1, 2, 3 and ω = c̃⃗kj. Here we con-

sider the beam1 to be the signal beam (corresponding to the source). Thebeams

2 and 3 are the pump beams and the emergent beams contain the clone and the

anticlone. Third order nonlinear processes are based on the term ϵ0χ
(3)E3 in

the expression for the polarisation. We are interested in the beams emerging at

frequency ω. Expanding the cubic term E3, the relevant terms in the polarisa-

tion are of the following form:

Pa =
[
ϵ0χ

(3)A2A3

]
A1 exp i(ωt− (⃗k2 + k⃗3 − k⃗1).⃗r)

Pc =
[
ϵ0χ

(3)A2A3

]
A1 exp i(ωt− (⃗k1 + k⃗3 − k⃗2).⃗r).

Below we drop the constant terms in square brackets. These just indicate an

overall change of amplitude and can be set to 1 by judicious choice of pump

power.

We now have to choose the k⃗i’s so as to satisfy the phase matching conditions,

in both these beams. We choose the wave vectors such that k⃗2 + k⃗3 = 0 and

k⃗1 = k⃗2. For this choice the two terms mentioned above reduce to

Ea ∝ A1 exp i(ωt+ k⃗1.⃗r)), (2.66)
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which corresponds to an anticlone and

Ec ∝ A1 exp i(ωt− k⃗3.⃗r), (2.67)

which corresponds to a clone. These two emergent beams satisfy the phase

matching conditions, since in each case ω = c̃|⃗k| holds.

In the above arrangement, the directions of all the beams are collinear, which

makes it awkward in a laboratory situation. For experimental ease, one can

slightly perturb the direction of the k1 beam by setting k⃗1 = k⃗2 + δ⃗, such that

δ⃗.⃗k2 = 0. Then |k⃗1 + δ⃗| ≈ |k⃗1| to first order in |δ| and thus we still satisfy

the phase matching conditions, albeit approximately. With this new scheme,

the anticlone beam emerges in the k⃗a = −k⃗1 direction, while the clone beam

emerges in the k⃗c = k⃗3 + δ⃗ direction, while the original source beam continues

in the k⃗1 direction from the linear part of the response. Regardingω as a carrier

frequency we can use an Acousto-optic modulator (AOM) to impress a modu-

lation on the signal A1 so that A1 depends on t on a slow timescale compared

to the inverse carrier frequency. This results in an output in the clone channel

(in the direction k⃗c) proportional toA1(t) and in the anticlone channel (in the

direction k⃗a) proportional toA1(t).
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2.4 A review of the “Classical No-Cloning Theorem 1”

Daffertshofer et al. 1 haveworked on classical no-cloning theoremonprobability

distributions using Liouvillian dynamics. They have considered the following

evolution equation

∂P

∂t
+∇.(v̄P) = 0. (2.68)

Then they show that dK

dt
= 0, where K is the Kullback-Leibler (K.L) diver-

gence given by K(P1,P2) =
∫
dx P1 log

P1

P2
. This is the basis for the “no-

cloning theorem” they go on to prove.

Now let us consider the following case in phase space:

P1 = N1e
−β1[(p−p0)2+(q−q0)2],

P2 = N2e
−β2[(p−p0)2+(q−q0)2], (2.69)

and the evolution equation is given by ∂p
∂t = −αp and ∂q

∂t = −αq. This

does not violate eq. (2.68). One can easily see that the K.L divergence for this

evolution goes to 0 as t → ∞ (because any distribution under this kind of

evolution leads to a delta function at origin at very large times), meaning K.L

divergence is not time independent.

The whole proof of the no-cloning theorem in 1 is based on the invariance of
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the K.L divergence. Even the example they have considered in their paper in eq.

(25) violates their theorem.

This problem arises because of two reasons

1. The equation considered is not the Liouville equation but the probability

conservation equation. Equation (2.68) can be rewritten as

∂P

∂t
+ (∇.v̄)P+ v̄.(∇P) = 0. (2.70)

For the Hamiltonian systems (∇.v̄) = 0, which gives

∂P

∂t
= {P,H}. (2.71)

where H is the Hamiltonian of the system. This is indeed the Liouville

equation.

2. While showing dK

dt
= 0, they have just assumed d (dpdq)

dt
= 0, without

proving it anywhere. Even for this we need to have a divergence free field

i.e, (∇.v̄) = 0 =⇒ d (dpdq)
dt

= 0.

Once we have a divergence free field the invariance of the K.L divergence fol-

lows directly. The rest of the proof in the paper 1 is all dependent upon just this

condition. So, once we consider a non-divergent flow and Liouville equation

we have a no-cloning theorem in classical statistical mechanics.
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2.5 Corruption of Classical Cloning

Till now we have assumed an ideal, noise free situation in which the state of a

system is describedby a point in phase space. Tounderstand the classical cloning

process in amore realistic context, we introduce thermal noise to the system and

study how this affects the cloning process. In the ideal case, we had taken the

states of the source, the target and the machine to be Dirac delta functions in

the phase space. We now replace the delta functions with functions of finite

width which are statistical mechanical probability distributions. For the sake

of convenience, we consider the distributions to be Gaussian. We suppose the

source to be a Gaussian peaked about (q0, p0). The source and machine are

chosen to be Gaussians peaked around the origin.

The initial state of the total system (source, target, machine) is taken to be

Pin(x) = N exp
[
− (x− µ)TA(x− µ)

]
(2.72)

wherex = {qs, ps, qt, pt, qm, pm} is a six dimensional vector,µ = {q0, p0, 0, 0, 0, 0}

represents the means of the initial distributions andA a 6× 6 diagonal matrix

with diagonal entries {αs, αs, αt, αt, αm, αm} and here and below,N is a nor-

malisation constant. Under the cloning map x → Λx, the distribution of the
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total system changes as Pfin(x) = Pin(Λ
−1x) =

N exp
[
− (Λ−1x− µ)TA(Λ−1x− µ)

]
(2.73)

which can be rewritten as

Pfin(x) = N exp
[
− (x− Λµ)TB(x− Λµ)

]
(2.74)

where B = (Λ−1)TAΛ−1. It is evident that the means of the distributions

are succesfully cloned µ′ = Λµ. As we will see below, the variances are not

faithfully cloned, in keeping with the classical no cloning theorem 1.

We can find the marginal distribution of the source by integrating over the

target and machine. To do this we writeB in block form

B =


a ct

c b


(2.75)

where a is a non-singular 2 × 2 matrix b a non-singular 4 × 4 matrix and c a

rectangular 4 × 2matrix and ct its transpose. It is straightforward to compute

the marginal for the source.
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This yields for the source distribution after cloning:

Psf(qs, ps) = Ns exp
[
− (xs − µs)

TCs(xs − µs)
]

(2.76)

where xs = {qs, ps} is a 2 dimensional vector, and

Cs = a− ctbc (2.77)

a 2× 2 covariance matrix and µs = {q0, p0}.

As an example, let us consider the target and the machine to be in a thermal

state with temperature T with an oscillator Hamiltonian. In fact, let us set k =

m = 1 in the oscillator HamiltonianH = p2

2m
+ 1

2
kq2 so that the frequency is

1. The target Hamiltonian isHt = (q2t + p2t )/2 and the machine Hamiltonian

isHm = (q2m + p2m)/2. The Gibbs state of the target and machine is

P =
1

Z
e−β(Ht+Hm), (2.78)

where β = 1

kBT
and Z a normalisation. We also set αs = 1 and since the state

of the machine and target are thermal, we have αt = αm = α = β/2
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The explicit form of the covariance matrix Cs is

Cs =
1

∆s(α)



α2 + 6α −4α

−4α α2 + 4α


(2.79)

where∆s(α) = α2 + 10α + 8.

Avery similar calculation,marginalisingover the source and themachine gives

the target state as

Ptf(qt, pt) = Nt exp−
[
(xt − µs)

TCt(xt − µs)
]

(2.80)

where xt = {qt, pt} is a 2 dimensional vector, Ct a 2× 2 covariance matrix and

µt = µs = {q0, p0}. The explicit form of the covariance matrix Ct is

Ct =
1

∆t(α)



α2 + 3α α

α α2 + 2α


(2.81)

where∆t(α) = α2 + 5α + 5.
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As the general formulae make clear, in the limit of zero temperature (β →

∞), α goes to infinity and the covariance matrices of both the source and the

target go to the initial distribution: the cloning is perfect. However, at finite

temperature, there is corruption of the source as well as the target. There is

also a spurious correlation betweenmomentum and position introduced by the

cloning process. Thus, the cloning is imperfect, as expected from the classical

no-cloning theorem for classical systems with statistical distributions.

Similar conclusions emerge from our numerical analysis, which also shows

how presence of statistical mechanical noise affects the cloning process (see A.1).

When noise is introduced either in the machine or the target state, the original

gets corrupted and the copy (which is distinct from the corrupted original) is

not perfect. For illustration, we describe only three cases. The means of the

initial state to be copied are µp = 8 and µq = 5.

When the noise is introduced either in the machine or the target state, the

original gets corrupted and the copy (which is distinct from the corrupted orig-

inal) is not perfect. But when the noise is introduced only at the source, we are

still able to generate a perfect copy without destroying the original, in the sense

that we are able to make a perfect copy of a statistical mechanical distribution

(see fig 2.5) when the target and the machine are ideal.

Figure 2.6 shows the distributions of the states after cloning when the ma-

chine is at a temperature T = 1023K and the source and the target are delta
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functions. Here it can be observed that all the three distributions are different

from the original and from each other. These are binormal distributions and

the most general form can be written as

P(p, q) =
e
−
(

(p−µp)2

2σ2p(1−ρ2)
−ρ(p−µp)(q−µq)

σpσq(1−ρ2)
+

(q−µq)2

2σ2q (1−ρ2)

)

2π
√
1− ρ2σpσq

, (2.82)

where, µp, µq are the means and σp, σq are the standard deviations along p and

q and ρ is the correlation between p and q.

Nowwe see how the process gets corruptedwhen the noise is present inmore

than one subsystem. One thing to be observed here is not only the original gets

corrupted, but it is different from the imperfect copy we have made. Figure 2.7

shows the distributions of the states after cloning when both the source and the

target are at a temperature T = 1023K. One can notice that in both the cases

(Figures 2.6 and 2.7), while the clones are imperfect, the means of the cloned

states and the machine state are (µp, µq), (µp, µq)(µp,−µq) i.e, the means are

exactly where the perfect copies would be if the temperatures are 0.

To calculate the imperfectness of the cloning process we use fidelity. The fi-

delity7 for classical probability distributions is given by
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(a) Source with themeans (5, 8), the standard deviations
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(b) Target with themeans (5, 8), the standard deviations
(1.17473, 1.17473), and the Correlation 0.
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(c)Machine with themeans (5,−8), the standard devia-
tions (1.17473, 1.17473), and the Correlation 0.

Figure 2.5: Histograms showing the distributions of the states in phase space after cloning, when noise is present only

in the source.
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(a) Source with themeans (5, 8), the standard devia-
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0.708061.
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(b) Target with themeans (5, 8), the standard devia-
tions (0.0371259, 0.0369647), and the Correlation
0.00165714.

4.8

5.0

5.2
-8.2

-8.1

-8.0

-7.9

-7.8

0

20

40

(c)Machine with themeans (5,−8), the standard devi-
ations (0.0828892, 0.0524335), and the Correlation
−0.320408.

Figure 2.6: Histograms showing the distributions of the states in phase space after cloning, when noise is present only

in themachine.
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(a) Source before cloning, with themeans (5, 8), the
standard deviations (1.17473, 1.17473), and the Cor-
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(d)Machine with themeans (5,−8), the standard de-
viations (2.87228, 1.64867), and the Correlation
−0.582384.

Figure 2.7: Histograms showing the distributions of the states in phase space before cloning (a) and after cloning (b, c,

d), when noise is present in both the source and the target.
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f =
∑
x

√
pxqx, for discrete distributions,

=

∫ ∞

−∞

√
p(x)q(x)dx, for continuous distributions. (2.83)

This can be generalised to any number of variables.

In the case where there is no noise in the source but is present in the target or

the machine, we get the fidelity to be zero. This is because there is no overlap

between a delta distribution and a Gaussian. We get fidelity, f = 1, when there

is noise only at the source.

The calculation of fidelity is not straight forward when the noise is present in

more than one sub system. In this case we not only have to see how good the

copy is, but also calculate howmuch the original got corrupted. So we calculate

two fidelities, one between the original and the corrupted states and another be-

tween the original and the copy states. The total fidelity is given by the product

of these fidelities. We calculated the fidelity in the case of fig. 2.7, where there is

noise in both the source and the target states, to be f = 0.714.

Needless to say, that we recover the limit of perfect cloning when we set the

widths of the target and the machine distributions to zero i.e, when the source,

the target and the machine all correspond to delta distributions.

To have a noise that affects the cloning process and fidelity, we need to have
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β−1 of the same order of magnitude as the energy of the harmonic oscillator.

To achieve this, the temperature of the system has to be higher than 1020K. The

temperature of a typical physical process is usually of the order of 103K to 104K,

which generates too small a noise to affect the classical cloning process. This tells

us that the classical cloning processes are not affected significantly by thermal

noise. This is the reason why we are able to copy classical information without

much problem in our daily experience.

2.6 Conclusion

The study of quantum cloning process has led to a better understanding of

quantum mechanics. But the systems considered are highly idealised. In this

chapter, we studied how the cloning process gets affected when the systems is

not ideal. To achieve this we introduce thermal noise in the system and see how

the fidelity gets affected. In the process we find that the traditionally used fi-

delity does not show the effects of temperature. Hence, we use a slightly differ-

ent form of fidelity to analyse the effects of temperature.

Thenwe look at the classical limit of the the quantum cloning process by tak-

ing both the number of input photons and the number of copies generated, to

infinity. Here the fidelity definition used traditionally brings a better under-

standing. We find that in the classical limit the fidelity reaches one, implying

that perfect cloning is possible.
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This leads us to the question of the classical cloning process. Here, we have

presented a discussion of classical cloning and its subtleties. We have given a

systematic method for generating all possible linear cloning maps for R2 and

illustrated this method with an explicit example. We have gone beyond earlier

literature34,1 in constructing explicit Hamiltonians generating a cloning map.

We then propose a realisable experiment to demonstrate a classical cloning pro-

cess in the laboratory, using non-linear optics. We have studied the effect of

statistical noise on the cloning process. An important off shoot from this work

is a proof that any phase space emerging from a configuration manifoldQ (as a

cotangent bundle T∗Q) admits a cloning map, in fact with a minimal machine

size.

It is not presently clear whether all symplecticmanifolds admit cloningmaps.

For example S2 can be given a symplectic structure, with the area on the stan-

dard sphere being the symplectic two-form. But it is obviously not the cotan-

gent bundle of any manifold, since it is compact. We leave it for future work to

determine whether general symplectic manifolds admit cloning maps and what

size of machine would be required for this.

Howdoes the cloning of states differ between quantum and classicalmechan-

ics? Intuition would suggest that our inability to clone is an essentially quan-

tum phenomenon. Classical states, viewed as points in phase space, can bemea-

sured to any desired accuracy and therefore reproduced; unlike quantum states

68



which are disturbed by measurement. However, some expositions (the current

Wikipedia version for example) of the quantum no cloning theorem do not in-

clude a “machine” or any ancillary degrees of freedom. They seek to copy the

source state by a Unitary transformation of the source-target system. This is a

misleading argument, since under the same conditions, classical cloning is also

forbidden34 underHamiltonian evolution. Duplication of an arbitrary classical

state also implies duplication of the phase space area of an arbitrary loopA(γ)

(A(γ) → 2A(γ)). Themachine is needed to cancel the excess phase space area.

As we have seen, the presence of themachine renders cloning possible. Thema-

chinemust at least be as large as the system to the cloned, but could be larger. In

contrast, even with a machine present, quantum cloning is impossible by Uni-

tary transformations, in accord with our intuition.

It is interesting to note that a clone state is always accompanied by an “anti-

clone” state. In theminimal cloningmodel, the anticlone is the final state of the

machine, which is a time reversed version of the original state (q, p) → (q,−p).

In our proposed experiment, we have taken care to ensure that the anticlone is

also manifestly present in one of the emergent beams. From the optics point

of view, this is a “phase conjugate beam”. In fact, our proposed experiment is

modeled very closely on the setup used in phase conjugation. A discussion of

anticlone states also appears in Ref.44 which treats quantum cloning.

In our discussion of a “state” in classical mechanics, we first introduced a state
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as a point in phase space or as a statistical distribution with delta function con-

centration at a phase point. More general states in the statistical mechanical

sense emerged from convex combinations of these “states”. It is illuminating to

compare this situation with quantum mechanics, where “pure states” are rays

in Hilbert space, or equivalently one dimensional projections. Convex combi-

nations of “pure states” yield all possible quantum states or densitymatrices. In

quantum mechanics, the no-cloning theorem applies even to “pure states”. In

the classical case, “pure states” can be cloned, but statistical mixtures of “pure

states” cannot. This seems to be an essential difference between the classical and

quantum cases.

Another pointworth stressing is that both thermal andquantum fluctuations

spoil our ability to clone. This can be seen operationally in the proposed exper-

iment. Any thermal noise occuring in the pump beams will automatically leave

its mark in both the clone beam and the source beam. A similar effect happens

with quantum fluctuations. Zero point fluctuations in the electromagnetic field

will cause spontaneous emission in the emergent beams and so spoil the cloning

process. We expect our study to generate interest in experimentally testing these

ideas.
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“There is no royal road to science, and only those who

do not dread the fatiguing climb of its steep paths have

a chance of gaining its luminous summits.”

Karl Marx

3
Role of resource limitation in quantum

measurements

Quantum mechanics is a very successful theory for describing the microscopic

world of atoms. However, ever since its inception there are certain fundamen-

tal aspects of quantum theory that have remained obscure. This has to do with
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the relation between unitary evolution which is central to the theory, and the

measurement process, which gives us information about the quantum system.

The challenge that remains is a self-consistent formulation of quantum theory

which explains unitary evolution and outcomes of a measurement within a sin-

gle framework.

Bohr had taken a semiclassical approach in which he viewed the apparatus

classically and treated the system (spin) quantum mechanically. Such a point

of view is unsatisfactory since at a fundamental level the world is governed by

quantummechanics. Here, we present a completely quantummechanical anal-

ysis of the Stern-Gerlach experiment. Our purpose is to explore, in a simple

solvable context, the idea that coarseness of the experimental probes is respon-

sible for apparent non-unitarity in the measurement process.

We focus on the Stern-Gerlach experiment as a context for understanding the

measurement process in quantum mechanics without invoking any ad hoc as-

sumption beyond pure unitary evolution. Let us begin by summarising the

Stern-Gerlach experiment. The set up consists of a beam of silver atoms (spin-
1

2
particles) moving along the z direction passing through an inhomogeneous

magnetic field along the y direction. Two spots appear on the screen corre-

sponding to the y component of the spin, Sy = 1

2
and Sy = −1

2
. There have

been a fewanalytical studies of this experiment in thepast couple of decades50,51,52,53,54,55,56,57.

Some studies56 invoke Ehrenfest’s Theorem to address the issue of measure-
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ment in a Stern-Gerlach setup. There have also been detailed analyses of the

Stern-Gerlach experiment from the point of view of environment induced de-

coherence50,51,55,58. Here we invoke the new idea that there is an inherent coarse-

ness in the detection process. The role of coarseness of the measurement pro-

cess in the quantum to classical transition has been explored in the past59,60,61.

In59,60 coarseness of themeasurement process has been investigated by using the

Leggett-Garg inequality as a way of probing the quantum to classical transition.

We present an analysis which offers a new perspective on the Stern-Gerlach ex-

periment from the point of view of the coarseness of the measurement process.

3.1 The Measurement Process

Let us summarise themeasurement process in quantummechanics. Our system

is initially in a coherent superposition of states |S⟩ =
∑

i ci|Si⟩ in an orthonor-

mal basis which diagonalises the quantity being measured. To begin with, the

systemplus apparatus is in the product state |ψ⟩ = |S⟩|A⟩, inwhich the system

and apparatus are unentangled. It is useful to logically break up the measure-

ment process into three steps. The first step in the measurement process entails

coupling between the quantum system and themeasuring apparatus so that the

total state evolves unitarily to an entangled stateU|ψ⟩ =
∑

i ci|Si⟩|Ai⟩*. This
*We note that in general, the |Ai⟩ s need not be orthonormal.
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state can be represented as a pure density matrix

ρ = |ψ⟩⟨ψ| =
∑
ij

c∗j ci|Si⟩|Ai⟩⟨Sj|⟨Aj| (3.1)

After the second step, the density matrix of the system takes the impure form

ρ̃ =
∑
i

|ci|2|Si⟩⟨Si| (3.2)

which is interpretable as a classical mixture of states. Finally, the impure diago-

nal densitymatrix (3.2) goes over to apure state ci|Si⟩⟨Si|c∗i . The first step canbe

explained entirely in terms of unitary evolution and therefore is not controver-

sial. The final step sometimes called “collapse”, has been debated extensively as

the “quantummeasurement problem”. This singling out of one outcome from

many possibilities is not addressed here. Let us note that, even in classical prob-

ability theory, there is a singling out of one from several outcomes. We address

here the second step; the transition from quantum superpositions to classical

mixtures. Here, we investigate the Stern-Gerlach experiment from the perspec-

tive of coarse quantum measurement (CQM), in which we recognise the fact

that all experiments are constrained by bounded resources. Wemodel these con-

straints by using a screen whose size and spatial resolution are fixed. The spatial

resolution of the screen is given by the pixel size and the size of the screen deter-

mines the total number of pixels. Experimentally one can only say that an atom
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was incident on our screen somewhere within a pixel. Fixing these resources im-

poses ultraviolet as well as infrared cutoffs on the experimental probes. Here we

are more concerned with the short distance cutoff.

3.2 Analysis of the Stern-Gerlach setup

Consider silver atoms with spin-1
2
at rest in the laboratory, in a magnetic field

given by

B = (B0y,B0x, 0).

Notice that this field is both divergence and curl free. We confine the atoms to

the x-z plane and thus set y = 0. Figure 3.1 shows a schematic diagram of the

Stern-Gerlach setup we are discussing here.

The Hamiltonian for the system is

H =
p2

2m
− µ.B (3.3)

whereµ = gµB
ℏ
2
σ,with g the Landé g factor andµB the Bohrmagneton. The

stationary solution satisfies:

Hψ = Eψ

(
ψ = ψ(x, z), ψ(x, 0) = e

− x
2

2σ2

)
(3.4)

Restricting to the x-z plane by setting y = 0, the Hamiltonian can be written
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Figure 3.1: The Stern-Gerlach setup.

more explicitly as

H =
p2x + p2z

2m
+ xFσy (3.5)

where, F = −gµB ℏ
2
B0 and if we assume a solution of the form ψ(x, z) =
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ϕ(x, z) eikz (since this is a propagating wave along the z-direction), Eq.(3.4) in

the paraxial approximation reduces to the following:

iℏ
(
kℏ
m

)
∂ϕ

∂z
= − ℏ2

2m

∂2ϕ

∂x2
+ xFσyϕ (3.6)

if we set E = k2ℏ2
2m

.

This equation can be identified with the time dependent Schrödinger equa-

tion, by setting t = zm

kℏ :

iℏ
∂ϕ

∂t
= − ℏ2

2m

∂2ϕ

∂x2
+ xFσyϕ (3.7)

Since the eigenvalues of σy are +1 and −1 we get the corresponding compo-

nents of the spinor ϕ as ϕ+ and ϕ−, respectively. Thus Eq.(3.7) reduces to:

iℏ
∂ϕ+
∂t

= − ℏ2

2m

∂2ϕ+
∂x2

+ xFϕ+ (3.8)

iℏ
∂ϕ−
∂t

= − ℏ2

2m

∂2ϕ−
∂x2

− xFϕ− (3.9)

To solve these equations wemove to an accelerated frame along the x-axis and

employ the following transformations in x, t and ϕ, which reduce the above

equations to a free particle equation for ϕ̃±(ξ,T) where ξ is related to x as fol-
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lows:

x = ξ ± 1

2
aT2 (3.10)

and

t = T (3.11)

Thus we have:

ϕ±(x, t) = ϕ̃±(ξ,T) e
if(ξ,T) (3.12)

We outline the solution to Eq.(3.8).Substituting Eqs. (3.10), (3.11) and (3.12) in

Eq.(3.8) we reduce Eq(3.8) to a free particle equation and find f and a :

f =
maT

ℏ
(ξ +

1

3
aT2), a = − F

m
(3.13)

The kernel (propagator) for the free particle problem corresponding to Eq.(3.8)

can be obtained using path integral approach62:

K̃(x, xi; t) =

√
m

2πiℏt
e
i
m(x− xi)

2

2ℏt (3.14)

where x is the position at time t and xi is position at ti = 0. We can find the

propagator for theHamiltonian under consideration by applying the following

transformation.

K(x, xi; t) = eif(x,t)K̃(x, xi; t) (3.15)
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which gives the required propagator63,62:

K++(x, xi; t) =

√
m

2πiℏt
exp
{
i

(
m

2ℏt
(x− xi)

2 − Ft

2ℏ
(x+ xi)−

F2t3

24mℏ

)}
(3.16)

The solution to Eq.(3.8) can be cast as follows:

ϕ+(x, t) =

∫ ∞

−∞
K++(x, xi, t)ϕ+(xi, 0) dxi (3.17)

After solving Eq.(3.17) we get the final solution for ϕ+. We employ the same

procedure to find ϕ−. The solutions are:

ϕ+(x, t) =

√
mσ

(mσ2 + iℏt)
√
π

(3.18)

×exp

{
−
m(x2 + a2

12ℏ(4imσ
2 − ℏt)t3 + axt

ℏ (−2imσ2 + ℏt))
2(mσ2 + iℏt)

}

ϕ−(x, t) =

√
mσ

(mσ2 + iℏt)
√
π

(3.19)

×exp

{
−
m(x2 + a2

12ℏ(4imσ
2 − ℏt)t3 − axt

ℏ (−2imσ2 + ℏt))
2(mσ2 + iℏt)

}

In general, one can consider a further evolution beyond the region where the

magnetic field is present and consider free evolution which leads to solutions of
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the form given below:

|ϕ+(x, t)|2 =

√
m2σ2

(m2σ4 + ℏ2t2)π
exp

{
−
m2[x− 1

2
at1

2 − at1(t− t1)]
2

(m2σ4 + ℏ2t2)

}
(3.20)

|ϕ−(x, t)|2 =

√
m2σ2

(m2σ4 + ℏ2t2)π
exp

{
−
m2[x+ 1

2
at1

2 + at1(t− t1)]
2

(m2σ4 + ℏ2t2)

}
(3.21)

where t1 is the amount of time spent by the atom in the magnetic field and

t is the total time of evolution. We view the spin as a quantum system and the

position of the silver atom as the apparatus or pointer. The above formulation

results in a separation in time of the two spin states. This can be mapped to the

formulation, of a typical experiment, where the separation of the spins happens

in space and we will sometimes use the spatial notation and language with the

understanding that t = zm/kℏ, where ℏk =
√
2mE. Here the symbols+ and

− refer to the two componentsϕ+ andϕ− of the Pauli spinorϕ. The final wave

function is got by “folding” the initial Gaussian with the propagator matrix. It

has the form

ϕ(x, t) = c+ϕ+(x, t)|+⟩+ c−ϕ−(x, t)|−⟩,
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where |+⟩ and |−⟩, are eigenstates ofσy andϕ+(x, t) andϕ−(x, t) areGaussian

wave packets. We can identify two relevant time scales: τ1 =
√

2σ
a
, the time

over which the centers of mass of the two wave packets separate and τ2 = mσ2

ℏ ,

the timescale over which the individual wavepackets spread. We use the values

m = 1.79 × 10−25kg, F = 9.27 × 10−22N and σ = 10−6m which are

experimentally reasonable. Typical values for the two time scales are τ1 = 10−5s

and τ2 = 10−3s.

Figure 3.2 shows the evolution of the wave packet from t = 0 sec to t = 30µ

sec, for the values mentioned above. At t = 0 sec the two components of the

wave packet (pertaining to the two spin components) are overlapping and at

t = 30µ sec the two components of the wave packet are well separated.

We restrict our discussion to a situation where the detection screen is placed

at a location just at the point where the atom exits themagnetic field. However,

in general, one can have a further free evolution of the separated wave packets

beyond this region in the field free space.

The full density matrix is of the form:

ραβ(x, x
′) = cαϕα(x)c

∗
βϕ

∗
β(x

′), (3.22)

where α and β take values+ and−. In Eq.(3.22) we have suppressed the time

dependence in the notation.
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Figure 3.2: Evolution of the wave packet with respect to time.
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3.3 Coarse Graining

We now use the fact that the detection is done coarsely i.e., any screen placed for

the detection of an atom is pixelated. We take the width of the pixel ∆ to be

10−6m (same order as the smallest pixel available). For the sake of simplicity we

set c+ = c− = 1/
√
2. The full density matrix can be written as

ρ(x, x′) =
1

2

ϕ+(x)ϕ∗+(x′) ϕ+(x)ϕ
∗
−(x

′)

ϕ−(x)ϕ
∗
+(x

′) ϕ−(x)ϕ
∗
−(x

′)

 . (3.23)

The coarse-grained density matrix, ρ̄(x, x′) can be written as

ρ̄(x, x′)αβ =
1

∆

∫ ∆/2

−∆/2
ραβ(x+ u, x′ + u)du, (3.24)

where α, β = ±. The off diagonal terms ρ+−(x+ u, x′ + u) and ρ−+(x+

u, x′ + u) are oscillatory due to a term eix2π/d, which oscillates on a length scale

d = ℏ
2Ft

, which is about 10−8m. Since the oscillation length scale is smaller

than the size of the pixel (10−6m), on coarse graining the off-diagonal elements

average to zero (see A.2), resulting in a diagonal density matrix

ρ̄(x, x′) =
1

2

ϕ+(x)ϕ∗+(x′) 0

0 ϕ−(x)ϕ
∗
−(x

′)

 . (3.25)
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Figure 3.3: The spatial distribution of the wave packet at t = 22.5µ sec, before and after the coarse graining.

Setting x = x′, we can write the coarse grained density matrix as

ρ̄ =

P+(X) 0

0 P−(X)

 =
1

2L
√
π

e
−
(

x− at
2

2
L

)2

0

0 e
−
(

x+ at
2

2
L

)2

 . (3.26)

where, L = mσ√
(m2σ4+t2ℏ2)

. In Fig 3.3 we have plotted both the exact wave packet

and the coarse-grained one for comparison.
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3.4 Information extracted in a coarse measurement

What can one learn from a coarse measurement? Let us suppose as is usual in

experiments that we only detect the position of the silver atomwith low resolu-

tion and do not measure the momentum at all. We assign relative probabilities

P±(X) = 1/2
∫ ∆/2
−∆/2 |ϕ±(X + u)|2du corresponding to an atom of spin ±

detected at X, by integrating over a pixel of width ∆ around X. By detecting

an atom at pixel X we do gain information about the spin. If we set, P(X) =

P+(X)+P−(X) and define q±(X) = P±(X)/P(X) (conditional probabilities

for the silver atom being detected at the pixelX), the entropy of the spin prob-

ability distribution is S(X) = −q−(X) log q−(X) − q+(X) log q+(X). The

information we gain (See Fig 3.4) is thus given by

I(X) = log 2− S(X) (3.27)

= log(2)−

(
x+ at

2

2

L

)2

1+ e
2at2x

L2

−

(
x− at

2

2

L

)2

1+ e
− 2at2x

L2

− log

e−
(

x+ at
2

2
L

)2

+ e
−
(

x− at
2

2
L

)2


per event at X. Note that the arrivals at X values away from 0 give us more

information.

The mean information per event is given by3:
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Figure 3.4: Information extracted I(X) (in red) and entropyS(X) (in blue) versusX (position of the detection of

atom).
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H =

∫
P(X)I(X)dX (3.28)

= log 2−
∫

P(x) logP(x)dx+

∫
P+(x) logP+(x)dx+

∫
P−(x) logP−(x)dx.

It follows from Eq.(3.28) that H starts out from zero at t = 0 and approaches

log 2 (see A.3) over a timescale of τ1 = 10−5s (See Fig. 3.5). The fact thatH is

positive means that we do gain some information about the spin of the atoms

by detecting their positions, even before the two wave packets have separated

cleanly.

87



3.5 Conclusion

Here we have addressed the Quantum Measurement Process in the context of

the Stern-Gerlach experiment. An exact solution of the Schrödinger equation

permits us to analyse unitary evolution in an idealised mathematical model of

the experiment. Coarse Quantum Measurement (CQM) is based on the idea

that every measurement is done with limited resources of resolution. The key

conclusion of our analysis is that the apparent loss of unitarity in a quantum

measurement is a consequence of the coarseness of the experimental probes.

Previous literature on coarse measurements59,60,61 has not applied the idea to

understand the classic Stern-Gerlach experiment which is of great interest as a

paradigm for quantum measurement.

In the context of statistical mechanics, the authors of Ref.4,64 note that en-

tropy is a subjective notion depending upon the resources available to the exper-

imenter, to distinguish between statistical states. This follows the Bayesian ap-

proach to probability theory. The viewwe advocate is very similar in the context

of quantummechanics. The idea of “coarsemeasurement” is clearly a subjective

one. Depending on the resources available to the experimenter, the evolution

may appear unitary or otherwise. Thus, with a high enough resolution, one can

always detect interference effects. When the interference between the two wave

packets is detectable, we must conclude that the spin is both up and down si-
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multaneously. This does not constitute a measurement of the spin component

σy. In a low-resolution experiment, the interference apparently gets washed out

and we can obtain information about the spin. This is the regime of interest

here.

Some of the quantum measurement literature concerns itself with von Neu-

man measurements, which can be regarded as instantaneous. One talks about

“before” and “after”, but not during the measurement. Exceptions are weak65

and nonideal measurements66. In weak measurements one tries to continu-

ously extract information from a quantum system causingminimal disturbance

using a weak probe, that does not destroy the interference pattern. In coarse

measurements, one explicitly loses the interference pattern. Regarding non-

idealmeasurements Ref.66 discusses the subtleties in the notion of distinguisha-

bility of apparatus states: even states which are orthogonal in the Hilbert space

sense can have considerable spatial overlap. In contrast, our focus is on how a

coarsemeasurement results in the apparent loss of coherenceof the finalwavepacket

in a Stern-Gerlach setup. As has been emphasised byRef.59, the coarsemeasure-

ment approach is conceptually different from the decoherence paradigm. Deco-

herence involves interaction with environmental degrees of freedom. Informa-

tion is lost from the system by tracing over the environment. The coarse mea-

surement approach does not invoke new degrees of freedom or new dynamics.

It is essentially kinematical, dealing with the experimenter’s inability tomeasure
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or control fine details.

There have been other parallel developments67,68 which address the issue of

imperfect measurements. In67 the authors model the detector as a phase ran-

domizer or dephaser, which leads to a mixed state density matrix starting from

a pure state density matrix. In68, the formalism of coarse-graining has been

framed in a formal mathematical language. We go beyond this discussion by

providing a physical basis in terms of resource limitation. Ref.68 also touches

upon the issue of non-idealness as inRef.66. There has even been a suggestion69

that the “reduction of the wavepacket” happens just when the atom enters the

magnetic field.

In the actual experimental setup for the Stern-Gerlach experiment, the atoms

are heated in an oven to about 450K. At this temperature, the two spin states

of the silver atom are in an incoherent or classical superposition of the two spin

states. As a result, the interference effects dealt with here will not be visible.

To see the quantum interference effects discussed here, the internal state of the

atommust be in a coherent superposition of spin states. An optical analogue of

the Stern-Gerlach experiment70 may be a more practical candidate for realising

this experiment.
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“The important thing is not to stop questioning. Curiosity

has its own reason for existing.”

Albert Einstein

4
Quantum advantage in measurements

The state of a quantum system is never completely revealed through the mea-

surement process. However, if the observer has the information that the system

is prepared in any of two given states, the task at hand becomes that of distin-

guishing the two given quantum states71,72,73,74,75 using the measurement pro-

cess. In this chapter we explore the issue of distinguishability of quantum states
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in the context of quantum measurement.

In general, quantumstates are representedbydensitymatrices. To tellwhether

a given system is in state ρ1 or ρ2, we have to perform a measurement. By mak-

ing a single measurement, the states cannot be distinguished with certainty un-

less the states are both pure and orthogonal to one another (See section 2.2.4 in

Ref7). There have been studies76,77,78 onminimising the error in distinguishing

the states. People have worked on the idea of using a large number of quan-

tum states in order to achieve greater distinguishability . Here we useUmegaki’s

quantum relative entropy79 as a measure of distinguishability between quan-

tum states.

One encounters a similar situation in the classical domain, in the cases of

checking whether a coin is fair or not, estimating the parameters of a distri-

bution, drug trials, etc. Our ability to distinguish probability distributions in-

creases with the number of trials. Kullback-Leibler (KL) divergence provides an

operational manner to distinguish between probability distributions3,80,81.

Another example of the use of a distinguishability measure occurs in the the-

ory of colours82,83. The space of colours is two-dimensional (assuming normal

vision) and one can see this on a computer screen in several graphics softwares.

The sensation of colour is determined by the relative proportion of the RGB

values, which gives us two parameters. The extent to which one can distinguish

neighbouring colours is usually represented byMacAdam ellipses82,84,83, which
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are contours on the chromaticity diagram which are just barely distinguishable

from the centre. These ellipses give us a graphical representation of an oper-

ationally defined Riemannian metric on the space of colours. The flat metric

on the Euclidean plane would be represented by circles, whose radii are every-

where the same. As it turns out, themetric on the space of colours is not flat and

theMacAdam ellipses vary in size, orientation and eccentricity over the space of

colours. This analogy is good to bear in mind, for we provide a similar visuali-

sation of the geometry of state space based on entropic considerations.

Here we demonstrate an improved experimental strategy for discriminating

between two quantum states using relative entropy. This is a new direction

hitherto unexplored in the existing literature85,86,87,88,89.

4.1 Statistical Inference using Kullback-Leibler (KL) divergence

Consider a randomvariableX = {x1, x2, . . . , xn}, withP = {p1, p2, . . . , pn}

as the empirical probability distributionobtained fromrepeatedmeasurements.

LetQ = {q1, q2, . . . , qn} be the statistical model we consider for the Random

variableX. The question of interest is the number of trials needed to be able to

distinguish (at a given confidence level) between our assumed probability distri-

bution and the measured probability distribution. A popular measure for dis-

tinguishing between the expected distribution and themeasured distribution is

given by the relative entropy or the KL divergence (KLD) which is widely used
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in the context of distinguishing classical probability distributions80.

Let us consider the case where we perform N measurements to obtain the

empirical distribution. What is the probability that the observed distribution

P is obtained by the model distributionQ? This is what we call the likelihood

function,

L(N|Q) = N!∏
Ni!

∏
q
Ni

i , (4.1)

where,Ni is the number of times the experiment returns the value xi and pi =

Ni/N. If we take the average of the logarithm of this likelihood function and

use Stirling’s approximation for largeNwe get the following expression:

1

N
log L(N|Q) = −DKL(P∥Q), (4.2)

where,DKL(P∥Q) =
∑

pi log
pi

qi
. ThusDKL(P∥Q) gives us the divergence of

the measured distribution from the model distribution. The KL divergence is

positive and vanishes if and only if the two distributions P andQ are equal.

The relative entropy (or KLD) gives an operational measure of how distin-

guishable two distributions are, quantified by the number of trials needed to

distinguish two distributions at a given confidence level. However, the KLD

is not a distance function on the space of probability distributions: it is not

symmetric between the distributions P andQ. One may try to symmetrize this
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function, but then, the result does not satisfy the triangle inequality. How-

ever, in the infinitesimal limit, when Q approaches P, the relative entropy can

be Taylor expanded to second order about P. The Hessian matrix does de-

fine a positive definite quadratic form, at P and thus a Riemannian metric on

the space of probability distributions. For a classical probability distribution

P = {pi, i = 1, 2, . . . , d}, the Fisher-Rao metric3,90 is given by

ds2 =
∑
i

dpi
2

pi
(4.3)

and this forms thebasis of classical statistical inference and the famousχ-squared

test. The Riemannian metric then defines a distance function, based on the

lengths of the shortest curves connecting any two states P andQ.

4.2 Measurements on single qubits: Emergence of the Bures metric

Let us now consider the quantumproblemof distinguishing between two states

ρ1 and ρ2. Take the case of an n-dimensional quantum system and a collection

of measurement operators
{
M̂i

}
.

M̂i = |mi⟩⟨mi|, i = 1, . . . , n

where, |mi⟩s form a complete basis, implying
∑

i |mi⟩⟨mi| = I.
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The probability pi of density matrix ρ collapsing on to |mi⟩ is given by

pi = Tr [ρ|mi⟩⟨mi|] (4.4)

Here we consider the case of a qubit on the Bloch sphere, where

ρ =
I+ n⃗.σ⃗

2
, M̂± =

I± m⃗.σ⃗

2
(4.5)

p+ =
1+ n⃗.m̂

2
, p− =

1− n⃗.m̂

2
(4.6)

where, m̂ is the unit vector along the measurement direction, n⃗ corresponds to

the state ρ on the Bloch sphere, and σ⃗ =
(
σx, σy, σz

)
represent Pauli matrices.

Here ρ1 = I+X.σ
2

plays the role of P above and ρ2 = I+Y.σ
2

that of Q. A

new ingredient in the quantum problem is that we can choose our measure-

ment basis. Suppose that we are given a string ofN qubits all in the same state,

whichmay be either ρ1 or ρ2. A possible strategy is to make projective measure-

ments on individual qubits, in the basis of M̂i, analogous tomeasuring the spin

component in the direction m̂. For each choice of m̂ we find p± = 1±X.m̂
2

and

q± = 1±Y.m̂
2

and we can compute the KL-Divergence or the classical relative

entropy of the two distributions as :

Sm(ρ1∥ρ2) = p+ log
p+

q+
+ p− log

p−

q−
. (4.7)
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We will now choose m̂ in such a way as to maximize our discriminating power

i.e Sm(ρ1∥ρ2). This gives us,

δSm =
∂S

∂m̂
δm̂ = λδm̂, (4.8)

which can be rewritten as

∂Sm
∂a1

X+
∂Sm
∂a2

Y = λδm̂, (4.9)

where a1 = m̂.X and a2 = m̂.Y. Since δSm is a linear combination of X and

Ywe find that m̂must lie in the plane containingX andY, as shown in Fig 4.1.

Without loss of generality, we can suppose this to be the x − z plane, so that

X2 = Y2 = m̂2 = 0. We can replace m̂ = (cos β, 0, sin β) by the angle β. ρ1

and ρ2 can be expressed, in the measurement basis as

ρ1 =
1

2

1+ r1 cos β r1 sin β

r1 sin β 1− r1 cos β

 , (4.10)

ρ2 =
1

2

1+ r2 cos (θ + β) r2 sin (θ + β)

r2 sin (θ + β) 1− r2 cos (θ + β)

 , (4.11)

which gives us p± = 1

2
(1± r1 cos β) and q± = 1

2
(1± r2 cos (θ + β)). Thus,

the classical relative entropy between ρ1 and ρ2 can be written as
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Sm(r1, r2, θ, β) =

(
1+ r1 cos β

2

)
log

(
1+ r1 cos β

1+ r2 cos (θ + β)

)
(4.12)

+

(
1− r1 cos β

2

)
log

(
1− r1 cos β

1− r2 cos (θ + β)

)
.

m

Ρ1HXL

Ρ2HYL

Β

Θ

Figure 4.1: The plane of the Bloch sphere containing the vectors corresponding to the statesρ1 and ρ2.

The relative entropy between two density matrices is a function of the mea-

surement basis parametrised by β. Plotting S(β) (Fig 4.2), we find that the
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Figure 4.2: The classicalSm(ρ1∥ρ2) and the quantumS(ρ1∥ρ2) relative entropies between ρ1 and ρ2 plotted against
β .

maximum distinguishability is attained at β = β∗. This is clearly the most

advantageous choice of β. The value of Sm at the maximum is denoted by

S∗(r1, r2, θ) = Sm(r1, r2, θ, β
∗(r1, r2, θ)). S∗(r1, r2, θ) gives us the optimal

choice for state discrimination whenwemeasure qubits, one at a time. Here for

the analysis we chose r1 = 0.9, r2 = 0.5 and θ = π

2
. The maximum occurs at

β∗ = 0.41. As we can see in Fig 4.2, S∗(r1, r2, θ) is never more than Umegaki’s

quantum relative entropy79.

S(ρ1∥ρ2) = Tr[ρ1 log ρ1 − ρ1 log ρ2] (4.13)

S(r1, r2, θ) =
1

2
log

(
1− r1

2

1− r2
2

)
+
r1

2

(
log

(
1− r1

1+ r1

)
+ cos θ log

(
1− r2

1+ r2

))
.
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Figure 4.3: Contours of constant quantum relative entropy.

Figure 4.3 shows the contours of constant relative entropy, i.e., for the chosen

state of r1 = 0.9, Fig 4.3 shows all the states that are equally distinguishable

using quantum relative entropy in one colour. The outer boundary in black

represents the set of pure states, where the quantum relative entropy diverges.

Figure 4.4 shows a comparisonbetween thequantumrelative entropyS(r1, r2, θ)

and the optimised classical relative entropyS∗(r1, r2, θ), for the values r1 = 0.9

and r2 = 0.9. Note that the quantum relative entropy in general exceeds the
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Figure 4.4: The quantum relative entropyS(r1, r2, θ) and the optimised classical relative entropyS∗(r1, r2, θ) as a
function of θ.

classical one. Equality between S∗(ρ1∥ρ2) and S(ρ1∥ρ2) happens if and only if

[ρ1, ρ2] = 0 (θ = 0, π, 2π ≈ 0) i.e, when the two density matrices commute

with each other. This difference is what we call the Quantum Advantage:

Ω(ρ1∥ρ2) = S(ρ1∥ρ2)− S∗(ρ1∥ρ2). (4.14)

We now take the infinitesimal limit and replace (ρ1, ρ2) by (ρ, dρ) and rep-
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resent ρ by (r, θ) and dρ by (dr, dθ). dp+ and dp− are:

dp+ =
cos βdr− r sin βdθ

2
,

dp− =
r sin βdθ − cos βdr

2
.

 (4.15)

Considering the classical relative entropy (4.7) between infinitesimally sepa-

rated states and doing a Taylor expansion, gives us the Fisher-Rao metric (4.3),

which is given by

ds2 =
dp2+

p+
+
dp2−
p−

. (4.16)

Substituting dp+, dp−, p+ and p−, from (4.15), we get

ds2 =
(dr− r tan βdθ)2

1− r2 + tan2 β
. (4.17)

Keeping r, dr, dθ fixed and optimising with respect to β we find

tan β∗ = −
r
(
1− r2

)
dr/dθ

. (4.18)

Substituting tan β∗ in (4.17) we get the expression for the metric

ds2 =
dr2

1− r2
+ r2dθ2. (4.19)

Returning to three dimensions using spherical symmetry we get an expression
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for the metric

ds2 =
dr2

1− r2
+ r2(dθ2 + sin2 θdϕ2). (4.20)

In the above derivation, we have defined the distinguishabilitymetric in the tan-

gent space by optimising over all measurement bases. The metric we arrive at is

the Bures-Helstrom (BH) metric (91,92,93, Ref.94 and references therein), which

was introduced by Bures91 from a purely mathematical point of view. Its rele-

vance to quantum state discrimination was elucidated by Helstrom92. It plays

the role of the Fisher-Rao metric in quantum physics, if one restricts oneself to

measuring one qubit at a time.

Let the quantum relative entropy, S(ρ1(λ1)∥ρ2(λ)) be a function on the

space of density matrices which is positive and vanishes if and only if ρ2 = ρ1
7.

Let us consider S(ρ1(λ1)∥ρ2(λ)) as a function of its second argument. If we

now take the infinitesimal limit as ρ2 → ρ1 (similar to the case of classical rela-

tive entropy), we can Taylor expand the relative entropy function. TheHessian

(the third term of the Taylor expansion), which is second order in∆λ, gives us

the metric gij = ∂2S
∂λj∂λi

. The form of this metric95 in the case of a qubit is

ds2 =
dr2

1− r2
+

[
r

2
log

(
1+ r

1− r

)]
(dθ2 + sin2 θdϕ2). (4.21)

This metric has been discussed earlier by Bogoliubov, Kubo and Mori (BKM)

in the context of statistical mechanical fluctuations96,97. Using the BKM and
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the BH metrics, the quantum advantage can be defined as

Ω(ρ, ρ+dρ) = ds2BKM−ds2BH =

[
r

2
log

(
1+ r

1− r

)
− r2

]
(dθ2 + sin2 θdϕ2).

(4.22)

Taking spherical symmetry into account, this canbewritten as
[
r

2
log

(
1+r
1−r

)
− r2

]
dθ2.

4.3 Quantum advantage : Measurements on Multiple Qubits

Let us now take the “thermodynamic” limit of largeN. GivenN qubits, which

may be a state ρ⊗N1 or ρ⊗N2 we can choose a measurement basis in the Hilbert

spaceH⊗N. The optimisation over measurement bases is now over an enlarged

set. Earlier we were restricted to bases of the form b⊗N which are separable in

the Hilbert space H⊗N. We now have the freedom to include entangled bases

and this implies

S∗(ρ⊗N1 ∥ρ⊗N2 )

N
≥ S∗(ρ1∥ρ2). (4.23)

In fact98, no matter how small the separation between the distinct states ρ1 and

ρ2, asN → ∞, 1

N
S∗(ρ⊗N1 ∥ρ⊗N2 ) → S(ρ1∥ρ2), where S(ρ1∥ρ2) is Umegaki’s

quantum relative entropy. As we see in Fig 4.4, this is greater than or equal to

the classical relative entropy, so the appropriate relative entropy to use in the

thermodynamic limit is Umegaki’s relative entropy.
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To illustrate the quantum advantage that comes from grouping qubits before

measuring them, we numerically study an example forN = 2 and ρ1, ρ2 dis-

tinct and well separated. The quantum state of the combined system is now

given by ρ̃ = ρ ⊗ ρ, where ρ can refer to either ρ1 or ρ2. In choosing a

measurement basis to distinguish ρ̃1 from ρ̃2, we now have the additional ad-

vantage that we can choose bases which are not separable. This extra freedom

gives us the quantum advantage which comes from entanglement. For exam-

ple, let us choose (r1, r2, θ) = (0.9, 0.5, π/2) so that X = {r1, 0, 0}, Y =

{r2/
√
2, 0, r2/

√
2} and thedirection m̂ in thex-zplane m̂ = {cos β, 0, sin β}.

Let the corresponding 1-qubit basis which diagonalizes m̂.σ be |+⟩ , |−⟩. We

now construct the non separable basis |b1⟩ = |+−⟩+|−+⟩√
2

, |b2⟩ = |+−⟩−|−+⟩√
2

,

|b3⟩ = |++⟩ and |b4⟩ = |−−⟩. Note that two of these basis states are maxi-

mally entangled Bell states and two are completely separable. (Curiously, using

all basis states as Bell states leads to no improvement over the separable states.)

We numerically compute the relative entropy and optimise overβ. This leads to

an improvement overmeasurements conducted on one qubit at a time. The im-

provement is seen in the value of the relative entropy per qubit, which increases

from 0.5839 in the one qubit strategy to 0.5856 in the two-qubit strategy.

In fact, this number can be further improved. By numerical Monte-Carlo

searching (seeA.4),wehave foundbases (whichdon’t have the clean formabove)

which yield a relative entropy of 0.5863 per qubit. Our Monte-Carlo search is
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simplified by the observation that one can by a unitary transformation bring

any two states described by X and Y to the x-z plane of the Bloch ball so that

we are working over the real numbers rather than complex numbers. Over the

reals, unitary matrices are orthogonal matrices. We start with an initial basis in

the four-dimensional realHilbert space of the composite system and then rotate

the basis by a randomorthogonalmatrix close to the identity. We then compute

the relative entropy using the new basis and accept themove if the new basis has

larger relative entropy and reject it otherwise. This gives us a monotonic rise in

the relative entropy and drives us towards the optimal basis in the two-qubit

Hilbert space.

The method extends easily to three qubits and more, although the searches

are more time-consuming. We have numerically observed that measuring three

qubits at a time results in a further improvement over the two-qubit measure-

ment strategy. However, this number (0.5880) still falls short of the quantum

relative entropy which is 0.6385. The classically optimised relative entropy S∗N
forN qubits considered as a single system satisfies the inequality 1

N
S∗N ≤ SQ

98

where SQ is the quantum relative entropy. AsN → ∞ the inequality is satu-

rated. Thus the gap between the classically optimised relative entropy and the

quantum relative entropy (Figures 4.2 and 4.4) progressively reduces as one in-

creases the number of qubits measured at a time.

Figure 4.5 represents the geometry of the qubit state space. Here we draw and
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Figure 4.5: The qubit state space with contours (analogous toMacAdam ellipses) for the relative entropy,S = 0.005.

compare optimised classical relative entropy (blue contours, see A.5) and quan-

tum relative entropy (red contours, seeA.6). This is analogous to theMacAdam

ellipses in the space of colours. These contours indicate that all states that fall
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inside the region are indistinguishable from the reference state. To draw the

contours, we set the the value of the relative entropy to 0.005, belowwhich the

states are indistinguishable. The contour on the right shows both classical and

quantum relative entropies superposed (same reference state). Note that the red

contour is inside the blue contour and the region that falls only on blue contour

represents the quantum advantage. For superposed contours the states falling

in the blue region but not red region are distinguishable using quantum relative

entropy but not classical relative entropy. This tells us that, for a given relative

entropy (belowwhich the states are indistinguishable), we can distinguishmore

states using quantum relative entropy than classical relative entropy. Thus there

is an advantage in using the quantum relative entropy instead of classical relative

entropy in distinguishing quantum states.

4.4 Proposed Experimental Realisation

The strategy described above can be experimentally realised with current tech-

nology using cold atoms in traps. Experimental realisations of the quantum ad-

vantage are within reach. There have been studies involving measurements for

quantum state discrimination73,74,75, where the upper limit of the state distin-

guishability is set by the classical relative entropy. In order to exploit the quan-

tum advantage discussed here, we need to measure in an entangled basis of the

two-qubit system. The entangled basis |bi⟩ mentioned here, is related to the
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separable basis |++⟩, |+−⟩, | −+⟩, | −−⟩ by a unitary transformationU

in the four dimensionalHilbert space. One can equivalently applyU to the sep-

arable state ρ̃ = ρ ⊗ ρ. This creates an entangled stateU†ρ̃U, which can then

be measured in the separable basis using a projective measurement. Consider a

pair of qubits subject to the Hamiltonian

H = σ⃗1.B⃗1 + σ⃗2.B⃗2 + J(t)σ⃗1.σ⃗2, (4.24)

which is a standard Heisenberg Hamiltonian for spins. This Hamiltonian evo-

lution produces the unitary transformationU for suitable choice of J(t).

This entangling unitary transformationU is the square root of the SWAPop-

erationU =
√
SWAP. U has already been experimentally realised in99 by cre-

ating a system in the laboratory subject to theHamiltonian (4.24). Themethod

used in99 is to load 87Rb atoms in pairs into an array of double-well potentials.

The experimenters have control over all the parameters in the Hamiltonian.

They can generate the transformation U at will by using a π/4 pulse for J(t)

by using radio frequency, site selective pulses to address the qubits in pairs (See

Table 1 of99), thus effecting the entangling unitary transformationU.

4.5 Conclusion

We have used the quantum relative entropy as a starting point which measures

our ability to distinguish two quantum states. Our use of the quantum relative
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entropy is motivated by the fact that it has both physical and operational signif-

icance. Other measures of entropy do exist, like for example, the α-divergence.

Hasegawa 100 has derived a Riemannian metric using the α-divergence as the

starting point. As discussed here, relative entropy has an operational signifi-

cance in the context of quantummeasurementwhichmakes it an attractive can-

didate for deriving a metric on the space of quantum states. Umegaki’s relative

entropy is additive for independent systems, (unlike the α-divergence) and also

has a well defined physical interpretation in terms of statistical physics.

Questions addressed herewere raised but not fully answered in an early paper

of Peres andWootters 101. At that time it was not fully clear whether there was a

one qubit strategy which could compete with the multi-qubit strategy. Subse-

quent works have made it clear 102,98 that the best one qubit strategy is inferior

to the multi-qubit strategy. As N goes to infinity, we approach the bound set

by the quantum relative entropy in distinguishing the states, which is superior

to the one set by the optimised classical relative entropy. We propose an experi-

mental strategy for realising the quantum relative entropy using entanglement.

There is a divergence in relative entropy that occurs as one approaches the

limit of pure states. It is natural to ask if this is a genuine singularity or one

caused by our choice of coordinates. It is easily seen that the singularity is gen-

uine. The divergence of relative entropy as one approaches r = 1 (pure states)

has a physical interpretation. It means that pure states are much easier to dis-
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criminate between, than mixed states. Conversely, even a small corruption of

the purity of quantum states will seriously undermine our ability to distinguish

between them.

The quantum advantage described here is strongly connected to the commu-

tation properties of the density matrices ρ1 and ρ2. For commuting matrices,

it is evident that the optimal basis should simultaneously diagonalize both the

states and then the quantum advantage disappears. In fact, there is a correla-

tion between the quantum advantage and the quantumness defined in 103,104 as

Q(ρ1, ρ2) = 2Tr([ρ1, ρ2]2) in terms of the commutator of two density matri-

ces ρ1 and ρ2, using the Hilbert-Schmidt norm as a distinguishability measure

on the space of density matrices. In particular, in the case analysed here, consid-

ering ρ2 in the neighbourhood of ρ1, we find thatQ(ρ1, ρ2) = r4dθ2.

In the context of quantum metrology 105,106 the idea that a quantum proce-

dure leads to an improved sensitivity in parameter estimation compared to its

classical counterpart has been explored. The central limit theorem dictates that

the average error propagates as ∆/
√
N, where N is the number of samples or

probes and∆2 is the variance associated with each probe.

While this is true in a classical probe of a quantum system, this can be im-

proved by using, what we call a quantum probe. A quantum probe can be

present either during themeasurement process or at the input itself. They argue

that thepresence of aquantumprobe at themeasurement enddoesnot yield any
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different result, but a quantum probe at the input betters the precision to 1/N,

which is called the Heisenberg limit. They go on to show that this is the true

limit in case of estimating a quantum parameter using certain protocols.

In the context of quantum metrology 105,106, researchers are interested in esti-

mating only one parameter, which cannot be used in the comparison of states.

We need at least three parameters for distinguishing two qubits. In our work,

we are interested in distinguishability of quantum states. In quantum metrol-

ogy,N (the number of measurements on the qubits) is advantageous in scaling

the error with the factor 1/N. In contrast, here we are interested in the mea-

surement or realisation of∆which stems from the relative entropy.
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“The noblest pleasure is the joy of understanding.”

Leonardo da Vinci

5
Optimal Information Extraction from a

Quantum State

In classical probability theory a natural question that comes up is the following:

Howaccurately canone estimate theparameters of a probability distribution 107.

This arises in drug testing, predicting election results etc. For example, a shoe
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manufacturer needs the distribution of shoe sizes of his customers for effective

control over the manufacturing process. In estimating the probability distri-

bution one need not study the entire dataset. Instead one can consider a small

sample such that it is as randomaspossible. Ourwork explores relatedquestions

in quantum states. How does one infer a quantum state by random sampling?

Here we are interested in estimating the parameters of a quantum state through

the measurement process and address questions related to the entropy of the

state after measurement.

The result of a quantummeasurement is dependent on themeasurement ba-

sis. Projective measurements give us only the probabilities associated with the

measured state8,36. So, in order to achieve the optimal result, we need to choose

the basis in which the state is diagonalised. If we do not have any prior infor-

mation regarding the state we are measuring, the process of choosing the basis

gets to be completely random. This raises the question of the extent to which

we deviate from the true state when we choose an arbitrary basis. The question

we like to pose is the following: in the case of an unknown quantum state how

can we maximise the information that we can extract regarding the state.

To address this question we choose to compare the Von Neumann entropy8

of the state before and after measurement with respect to the basis of measure-

ment. The entropy of the state gives us the uncertainty (or the lack of knowl-

edge) regarding the state in question, which decreases after the measurement.
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In contrast, the information gain (knowledge regarding the state) increases af-

ter the measurement.

5.1 Information Gain

Given anyquantumstateρ, theVonNeumannentropy is defined asS = −Tr[ρ log ρ].

Prior to making any measurement the observer has no knowledge of the state.

This leaves us with maximum uncertainty in guessing the state. This corre-

sponds to the maximally mixed state. In the case of a d dimensional system,

the entropy of a maximally mixed state is given by log d. Using this we define a

new term called Information Gain (I) 108, whichmeasures whatwe learned from

the measurements.

Now let us consider the relative entropy between two states ρ and σ

S(ρ∥σ) = Tr[ρ log ρ− ρ log σ] (5.1)

where, ρ represents the state to be estimated and σ is our guess for what the

state is. We define Information gain (I) as the relative entropy between ρ and

σ, where σ is the maximally mixed state. This gives us

I = log d+ Trρ log ρ. (5.2)

This formula can also be achieved by directly subtracting the Von Neumann
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entropy of the state from that of the maximally mixed state.

Let us consider the case of a qubit on the Bloch sphere7.

ρ =
I+ n⃗.σ⃗

2
, M̂± =

I± m̂.σ⃗

2
(5.3)

p+ =
1+ n⃗.m̂

2
, p− =

1− n⃗.m̂

2
(5.4)

Where, m̂ is theunit vector along themeasurementdirection and σ⃗ =
(
σx, σy, σz

)
represent Pauli matrices. The density matrix ρ can be expressed in the measure-

ment basis as

ρ =
1

2

1+ r cos θ r sin θ

r sin θ 1− r cos θ

 (5.5)

where r = |⃗n| and cos θ = n⃗.m̂.

The entropy (−Tr[ρ log ρ]) calculated from these probabilities will be the

least when m̂ and n⃗ are parallel. Information gain after measurement is given by

I = log 2− S = log 2+ p+ log p+ + p− log p−. (5.6)

This will always be less than the maximum unless one makes a measurement

in the basis where m̂ and n⃗ are parallel. Here we wish to compute the average

information gain, where n⃗ is fixed and m̂ can be any unit vector on the Bloch
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sphere.

I = log 2+

(
1+ r cos θ

2

)
log

(
1+ r cos θ

2

)
+

(
1− r cos θ

2

)
log

(
1− r cos θ

2

)
(5.7)

⟨I⟩ =

∫ π
0

∫ 2π

0
I sin θdθdϕ∫ π

0

∫ 2π

0
sin θdθdϕ

= log 2+
1

2

∫ π

0

(p+ log p+ + p− log p−) sin θdθ

=
1

2r

[
(1+ r)2 log(1+ r)− (1− r)2 log(1− r)

]
− 1

2
(5.8)

This gives us the average information gain, where a state ismeasured in a com-

pletely arbitrary basis.

Let us now consider the case where measurements are made on two qubits at

a time i.e. we make measurements on ρ ⊗ ρ. Calculating probabilities in the

separable basis gives us the probabilities

p|++⟩ =
(1+ r cos θ)2

4
, p|+−⟩ =

1− r2 cos2 θ

4

p|−−⟩ =
(1− r cos θ)2

4
, p|−+⟩ =

1− r2 cos2 θ

4

Similarly, measuring in the Bell basis gives us the probabilities
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p |++⟩+|−−⟩√
2

=
1+ r2

4
, p |++⟩−|−−⟩√

2

=
1+ r2 cos 2θ

4

p |+−⟩−|−+⟩√
2

=
1− r2

4
, p |+−⟩+|−+⟩√

2

=
1− r2 cos 2θ

4

Measuring in a separable basis doesn’t change the information extracted. Mea-

suring in the Bell basis does not always reveal more information, in fact it does

worse than the separable basis in general. To gain an improvement we choose

a basis which is a combination of both the Bell and separable states, given by

|++⟩ , |−−⟩ , |++⟩+|−−⟩√
2

, |+−⟩−|−+⟩√
2

95. The Information gain after measure-

ment in this basis is

I =
1− r2 cos 2θ

8
log

(
1− r2 cos 2θ

4

)
+

1− r2

8
log

(
1− r2

4

)
+

(
1+ r cos θ

2

)2

log

(
1+ r cos θ

2

)
+

(
1− r cos θ

2

)2

log

(
1− r cos θ

2

)
+ log 2 (5.9)

The average information gain is given by
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Figure 5.1: Comparison betweenmaximum information extractable (red) and information extracted after measure-

ment using a two qubit strategy (blue) and a one qubit strategy (green), for fixed θ = π/3, as a function of r.

⟨I⟩ =
3

2
(r− 1)3 log(1− r) + 3

2
(r+ 1)3 log(r+ 1)− 4r

(
r2 + 3

)
(1+ log 8)

76r

+
r
√
r2 + 1

(
3
(
r2 + 3

)
log(1− r)− 2

(
r2(4+ log 8) + 6+ log 512

))
76r

√
r2 + 1

+
3r
√
r2 + 1

(
r2 + 3

)
log(r+ 1) + 3

√
2
(
r2 + 1

)2
log

(
1+3r2+2

√
2r
√
r2+1

2
√
2r
√
r2+1−1−3r2

)
76r

√
r2 + 1

+ log 2+

(
1− r2

)
2

log

(
1− r2

4

)
(5.10)
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Figure 5.2: Comparison betweenmaximum information extractable (red) and average information extracted after

measurement using a two qubit strategy (blue) and a one qubit strategy (green), as a function of r.

In Fig 5.1 we have plotted the information extracted as a function of r for a

fixed θ. Here we have compared themaximum information available (5.2) (red)

with the information extracted after measurement in a one qubit strategy (5.7)

(green) and a twoqubit strategy (5.9) (blue). Similarly, in Fig 5.2we have plotted

and compared the maximum information available (5.2) (red) with the average

information extracted after measurement in a one qubit strategy (5.8) (green)

and a two qubit strategy (5.10) (blue).

In Figures 5.3 and 5.4wehave shownhow the information extracted aftermea-
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Figure 5.3: Information extracted using a one qubit strategy for the angles, θ = π/2, π/3, π/4, π/6, 0(red).

surement in a one qubit strategy (5.8) and a two qubit strategy (5.10) changes

with the change in the angle θ, respectively.

5.2 Conclusion

In this chapter we start with the notion of information gain and relate it to the

quantum measurement process.

In particular we consider the case of a qubit and concretise our ideas in this

context. We compare the actual information gained in a measurement process
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Figure 5.4: Information extracted using a two qubit strategy for the angles, θ = π/2, π/3, π/4, π/6, 0(red).

with the amount of information extractable.

Furthermore, wemove fromaone qubitmeasurement strategy to a twoqubit

measurement strategy to improve the information gain. Finally we compare the

average information gain in a one qubit strategy and a two qubit strategy.

We find that we definitely gain by invoking a two qubit strategy. So, we can

extrapolate this idea to a multi qubit strategy involving more than two qubits

to optimise the information gain in a measurement.
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“If I have seen further than others, it is by standing upon

the shoulders of giants.”

Isaac Newton

6
Conclusion

The central goal of this thesis has been to investigate aspects of classical and

quantum cloning and issues related to the measurement process.

The thesis is organised in six chapters as follows:

1. Introduction.
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2. Classical and Quantum Cloning.

3. Role of resource limitation in quantum measurements.

4. Quantum advantage in measurements.

5. Optimal Information Extraction from a Quantum State.

6. Conclusion.

In Chapter II, we studied quantum cloning using atom-photon interactions.

Thenwe introduced thermal noise in the system at the atomic level and the pho-

ton level to see the effects on the fidelity of the cloning process. We find that

the fidelity definition used traditionally in the literature does not distinguish

between the processes with and without the thermal noise. Hence, we use a

slightly different form of fidelity that brings out the effects of temperature.

Then we study the classical limit of the cloning process by taking both the

number of photons and atoms to infinity. This gives us, as expected a perfect

cloning process with fidelity one.

In future we would like to replace the photon with classical light and study

its interaction with the atomic system.

This leads us to the study of the cloning process in the classical regime. Al-

though perfect cloning is possible in the classical regime, the physics behind the

process is not trivial. We study the classical cloning process using symplectic

maps. We demonstrate a procedure which generates symplectic maps required
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for the cloning process. We also generate aHamiltonian to realise the symplectic

map for conjugate variables p, q and study the process in phase space. Later we

replaced the delta functions with probability distributions and how this cor-

rupts the cloning process. We use fidelity to check to what extent the process

corrupts the original and the copy.

The measurement process is a fundamental aspect of quantum mechanics.

In Chapter III, we study the effects of coarse graining on the measurement pro-

cess and study how it affects the information obtained from the measurement

process. For this we use a Stern-Gerlach setup. Here we treat the system (spin)

quantum mechanically and the apparatus ( magnetic field and the position of

the silver atom) classically. We do a coarse graining on the screen (where we de-

tect the silver atom) i.e, the screen is pixelated. We show that this coarse graining

process leads to an apparent loss of unitarity in the quantummeasurement pro-

cess.

After the wave packet is passed through the magnetic field, we show how

coarse graining using a pixelated screen washes away the coherent terms.

In Chapter IV, we study distinguishability of quantum states using measure-

ments. Here we use relative entropy as the distinguishability measure because

of its connection to the likelihood theory. We study this in the case of qubits

on the Bloch sphere. We study how well we can distinguish two qubits after

measurement. This depends upon the basis in which we choose to measure the
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state. We choose the basis in which the relative entropy between the states is

maximum after the measurement. We found that this is less than the quantum

relative entropy between the states (except when the states commute with each

other), which provides higher distinguishability. So, we came up with a strat-

egy of measuring multiple qubits at a time that improves upon the optimised

classical relative entropy. We propose an experiment using cold atoms to re-

alise how amulti-qubit strategy provides a better distinguishability that a single

qubit strategy.

In Chapter V, we study how to extract maximum information from a given

state, when no information regarding the state is available. The probabilities

measured depend upon the basis in which we choose to measure. But when

we don’t have any information regarding the state which we are measuring, the

choice of the basis becomes completely arbitrary. This leads to a reduction of the

information extracted from the state available. We define information extracted

as I = log 2 − S, in the case of qubits, where S is the entropy of the state. We

use a similar strategy used in95 to increase the information extracted. We also

calculated the average information extracted for a given qubit, averaged over

the entire Bloch sphere. Here we compare and show how measuring multiple

qubits at a time enables us to extract more information compared to measuring

one qubit at a time.
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Programs

A.1 Mathematica program for numerical analysis to see howthe presence

of statistical mechanical noise affects the cloning process.

p = 5;

q = 8;

m = 1;

k = 1;

T1 = 1023; (∗Temperature of the source.∗)

T2 = 1023; (∗Temperature of the target.∗)

T3 = 1023; (∗Temperature of the machine.∗)

L1 = {};

R = {};

M = {};

H = {};

For[i = 1, i < 2× 104, i++,

p1 = RandomVariate
[
NormalDistribution

[
0,
√
mT1kB

]
, 1
]
[[1]];
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q1 = RandomVariate

[
NormalDistribution

[
0,

√
T1kB
k

]
, 1

]
[[1]];

p2 = RandomVariate
[
NormalDistribution

[
0,
√
mT2kB

]
, 1
]
[[1]];

q2 = RandomVariate

[
NormalDistribution

[
0,

√
T2kB
k

]
, 1

]
[[1]];

p3 = RandomVariate
[
NormalDistribution

[
0,
√
mT3kB

]
, 1
]
[[1]];

q3 = RandomVariate

[
NormalDistribution

[
0,

√
T3kB
k

]
, 1

]
[[1]];

Λ = {{1, 0, 1., 1,−1, 1}, {0, 1, 1, 2, 0, 1}, {1, 0, 0, 1, 0, 1},

{0, 1,−1,−1, 1, 0}, {1, 0, 1, 2,−1, 2}, {0,−1, 0,−1,−1,−1}};

S = {p+ p1, q+ q1, p2, q2, p3, q3};

f = Λ.S;

L1 = Append[L1, {p+ p1, q+ q1}];

R = Append[R, {f[[1, 1]], f[[1, 2]]}];

M = Append[M, {f[[1, 3]], f[[1, 4]]}];

H = Append[H, {f[[1, 5]], f[[1, 6]]}]; ]
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A.2 Mathematica program for calculating the density matrix for pixe-

lated screen.

m = 1.79× 10−25;

a = 5178.77;

ℏ = 1.054× 10−34;

σ = 10−6;

t = 2.25× 10−5;

x = 2× 10−6; (∗Position of the pixel.∗)∫ −106

0

(∫ −106

0

√
m2σ2

π (m2σ4 + t2ℏ2)
exp

(
−
m2σ2

(
x− 1

2
at2
)2

(m2σ4 + t2ℏ2)

)
du

)
dv;

This programgives us gives the value registered by the pixel. Expression inside

the integral can be changed to calculate all the density matrix elements.

130



A.3 Mathematicaprogramforcalculatingthemeaninformationperevent.

m = 1.79× 10−25;

a = 5178.77;

ℏ = 1.054× 10−34;

σ = 10−6;

P+(x) =

mσ × exp

(
−

m2σ2
(
x− at

2

2

)2
m2σ4+t2ℏ2

)
2
√
π (m2σ4 + t2ℏ2)

;

P−(x) =

mσ × exp

(
−

m2σ2
(
at
2

2
+x
)2

m2σ4+t2ℏ2

)
2
√
π (m2σ4 + t2ℏ2)

;

r = N[Table[{106t,NIntegrate[P− logP− + P+ logP+ − (P− + P+) log(P− + P+),

{x,−10−5, 10−5}] + log(2)}, {t, 0, 5× 10−5, 10−8}]]

This program numerically calculates the mean information per event,H.
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A.4 Mathematica program for numerical Monte-Carlo searching for op-

timised basis while measuring two qubits at a time.

r1 = .9; r2 = .5; the =
π

2
;

rho1 = {{(1+ r1)/2, 0}, {0, (1− r1)/2}};

rho2 = {{(1+ r2Cos[the])/2, r2Sin[the]/2}, {r2Sin[the]/2, (1− r2Cos[the])/2}};

A = Table[RandomReal[], {i, 1, 4}, {j, 1, 4}];

Banti = A− AT;O1 = MatrixExp[Banti];

Rho1 = KroneckerProduct[rho1, rho1];

Rho2 = KroneckerProduct[rho2, rho2];

B1 = O1.{1, 0, 0, 0};B2 = O1.{0, 1, 0, 0};

B3 = O1.{0, 0, 1, 0};B4 = O1.{0, 0, 0, 1};

eps = 0.001;L1 = {Stw};

For[j = 1, j < 20000, j++,

A1 = Table[RandomReal[], {i, 1, 4}, {j, 1, 4}];

Banti1 = A1 − A1T;O2 = MatrixExp[Banti1 × eps];

B1p = O2.B1;B2p = O2.B2;B3p = O2.B3;B4p = O2.B4;

P1 = B1.Rho1.B1; P2 = B2.Rho1.B2; P3 = B3.Rho1.B3; P4 = B4.Rho1.B4;

Q1 = B1.Rho2.B1;Q2 = B2.Rho2.B2;Q3 = B3.Rho2.B3;Q4 = B4.Rho2.B4;
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Stw = P1 log
(

P1
Q1

)
+ P2 log

(
P2
Q2

)
+ P3 log

(
P3
Q3

)
+ P4 log

(
P4
Q4

)
;

P1p = B1p.Rho1.B1p;

P2p = B2p.Rho1.B2p;

P3p = B3p.Rho1.B3p;

P4p = B4p.Rho1.B4p;

Q1p = B1p.Rho2.B1p;

Q2p = B2p.Rho2.B2p;

Q3p = B3p.Rho2.B3p;

Q4p = B4p.Rho2.B4p;

Stwp = P1p log
(

P1p
Q1p

)
+ P2p log

(
P2p
Q2p

)
+ P3p log

(
P3p
Q3p

)
+ P4p log

(
P4p
Q4p

)
;

If[Stwp > L1[[−1]],B1 = B1p;B2 = B2p;B3 = B3p;B4 = B4p; , ];

L1 = Append[L1, Stwp]; ]

This program can be extended to the case ofmeasuring three qubits at a time.

A.5 FortranprogramfornumericallycalculatingMacadamellipsesofclas-

sical relative entropy.

c MacadamC.F

c Macadam Ellipses for Classical Relative Entropy

c
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c Created by Anirudh reddy on 14/04/17.

c C1(r1=0.9,x=0.84,0.95)

c C2(r1=0.8,x=0.72,0.87)

c C3(r1=0.6,x=0.5,0.7)

c C4(r1=0.4,x=0.3,0.5)

c C5(r1=0.0,x=-0.1,0.1)

implicit none

integer i, j, K

real S, Sopt, r1, x, y, phi, p1, p2, q1, q2

real, parameter :: pi = 4.*atan(1.)

real, dimension(2,2) :: rho1, rho2

real, dimension(2,1) :: b1, b2

real, dimension(1,1) :: junk

character*100 filename

write(filename,“(A6)”) “C4.txt”

open(111, file=filename)

r1 = 0.4

rho1 = reshape((/ (1.+r1)/2., 0., 0., (1.-r1)/2. /), shape(rho1))

do i = 0, 200
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x = 0.3 + i*2*0.0005

do j = 0, 200

y = -0.15 + j*3*0.0005

S = 0.

do k = 0, 36000

phi = 0. + k*2.*pi/36000

rho2 = reshape((/ (1.+x)/2., y/2.,

y/2., (1.-x)/2. /), shape(rho2))

b1 = reshape((/ cos(phi), sin(phi) /), shape(b1))

b2 = reshape((/ -sin(phi), cos(phi) /), shape(b2))

junk = matmul(matmul(transpose(b1), rho1), b1)

p1 = junk(1,1)

junk = matmul(matmul(transpose(b2), rho1), b2)

p2 = junk(1,1)

junk = matmul(matmul(transpose(b1), rho2), b1)

q1 = junk(1,1)

junk = matmul(matmul(transpose(b2), rho2), b2)

q2 = junk(1,1)

Sopt = p1*log(p1/q1) + p2*log(p2/q2)

if (Sopt .gt. S) then

S = Sopt
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endif

enddo

if (S .lt. 0.005) then

write(111,*) y,x

endif

enddo

enddo

close(111)

write(*,*) “Yay! The code is complete. :P”

end

A.6 Fortran program for numerically calculating Macadam ellipses of

Quantum relative entropy.

c MacadamQ.F

c Macadam Ellipses for Quantum Relative Entropy

c

c Created by Anirudh reddy on 14/04/17.

c M1(r1=0.9,x=0.84,0.95)

c M2(r1=0.8,x=0.72,0.87)

c M3(r1=0.6,x=0.5,0.7)
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c M4(r1=0.4,x=0.3,0.5)

c M5(r1=0.0,x=-0.1,0.1)

implicit none

integer i, j

real*8 S, r1, x, y

character*100 filename

write(filename,“(A6)”) “M5.txt”

open(111, file=filename)

r1 = 0.0

do i = 0, 200

x = - 0.1 + i*2*0.0005

do j = 0, 200

y = -0.1 + j*2*0.0005

S=(-((1.+r1*x/Sqrt(x**2+y**2))/2.)*Log((1.+Sqrt(x**2+y**2))/2.)

-(1.-r1*x/Sqrt(x**2+y**2))/2.*Log((1.-Sqrt(x**2+y**2))/2.)

+(1.+r1)/2.*Log((1.+r1)/2.)+(1.-r1)/2.*Log((1.-r1)/2.))

if (S .lt. 0.005) then

write(111,*) y,x

endif
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enddo

enddo

close(111)

end
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