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Abstract

Measurements of 21 cm Epoch of Reionization (EoR) structure are subject to systematics originating from both the
analysis and the observation conditions. Using 2013 data from the Murchison Widefield Array (MWA), we show
the importance of mitigating both sources of contamination. A direct comparison between results from Beardsley
et al. and our updated analysis demonstrates new precision techniques, lowering analysis systematics by a factor of
2.8 in power. We then further lower systematics by excising observations contaminated by ultra-faint RFI,
reducing by an additional factor of 3.8 in power for the zenith pointing. With this enhanced analysis precision and
newly developed RFI mitigation, we calculate a noise-dominated upper limit on the EoR structure of
Δ2�3.9×103 mK2 at k=0.20 hMpc−1 and z=7 using 21 hr of data, improving previous MWA limits by
almost an order of magnitude.
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1. Introduction

The evolution of structure in the early universe holds
significant value to our understanding of cosmology and
astrophysics. However, it remains unobserved. Of particular
interest is the Epoch of Reionization (EoR), the time period
where near-uniform neutral hydrogen coalesced into stars and
galaxies. Observations of extragalactic sources (e.g., Robertson
et al. 2010) and the cosmic microwave background (CMB; e.g.,
Planck Collaboration et al. 2016) have put some constraints on
the neutral hydrogen fraction, though not much is known
beyond an approximate timing of when the EoR occurred.

A direct detection of the structure of neutral hydrogen, and
how it evolves in time, is possible using the 21 cm hyperfine
transition. The measured frequency corresponds to a line-of-
sight distance due to the narrow emission width, and thus the
structure of the EoR can be measured as a function of time.
Many collaborations are seeking an EoR 21 cm detection,
including the Giant Metrewave Radio Telescope (Paciga et al.
2011), LOw Frequency Array (LOFAR; Yatawatta et al. 2013;
van Haarlem et al. 2013), Precision Array for Probing the
Epoch of Reionization (PAPER; Parsons et al. 2010),
Hydrogen Epoch of Reionization Array (Pober et al. 2014;
DeBoer et al. 2017), and the Murchison Widefield Array
(MWA; Bowman et al. 2013; Tingay et al. 2013; Wayth et al.
2018).

A recent sky-averaged detection of the early EoR using the
Experiment to Detect the Global EoR Signature (EDGES;
Bowman et al. 2018) revealed an absorption profile twice as
bright as predicted, thereby suggesting new physics. While this
detection does not probe structure, it sets a precedent for the
potential impact of direct measurements of the EoR. So far,
there have been no detections of the EoR structure due to the
challenges associated with analysis and spectral accuracy.
Astrophysical foregrounds are many orders of magnitude

brighter than the EoR signal. Therefore, our ability to measure
EoR structure depends on how well we can separate the
foregrounds from the signal in analysis. Power spectrum
space naturally separates spectrally smooth foregrounds from
the predicted spectral variation of the EoR signal while quickly
averaging down the thermal noise.
Recent discoveries of analysis signal loss have changed the

state of the field and reemphasized the importance of analysis
pipeline efficacy and signal loss simulations (Cheng et al. 2018).
As a result, the best published upper limits on EoR structure
have remained close to ∼104 mK2 (Paciga et al. 2013; Dillon
et al. 2015; Beardsley et al. 2016; Patil et al. 2017), with the
most recent competitive MWA limits asΔ2�2.7×104 mK2 at
k=0.27 hMpc−1 and z=7.1 published by Beardsley et al.
(2016).
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In this work, we first improve on the best MWA limits
through pure analysis techniques alone. We begin with the
identical 32 hr data set and the same code packages as
Beardsley et al. (2016), with the only difference between the
analyses being our new precision techniques. This highlights
the importance of our analysis pipeline, proving that the
dominant systematic preventing lower limits was the spectral
accuracy of our techniques. Then, we further improve upon this
limit through additional systematic mitigation using the latest
RFI-detection methodologies, reducing the data set to 21 hr.

We achieve a new EoR upper limit at k=0.20 hMpc−1 and
z=7 of Δ2�3.9×103 mK2. This limit is systematic
dominated, and would not benefit significantly from further
integration. However, the zenith-pointing subset gives a similar
limit, which is noise dominated, indicating pointing or beam-
related errors as a dominant systematic in our analysis. We do
not expect to be able to detect the EoR with less than a few
hundred hours of integration (Beardsley et al. 2013), but a
smaller integration is still capable of proving the viability of
our analysis and foreground mitigation techniques.

Descriptions of the MWA instrument and data sets used in
this work are given in Section 2. Then, we briefly summarize
the major components of the Fast Holographic Deconvolution
(FHD)/Error Propagated Power Spectrum with Interleaved
Observed Noise (εppsilon) data analysis pipeline in Section 3,
focusing on recent improvements. In Section 4, we compare
our updated analysis to Beardsley et al. (2016) by reducing the
same data set. We further improve this limit in Section 5 by
using the latest RFI-mitigation techniques to select a subset of
the data, and we provide validation of this new limit in
Section 6. Finally, we discuss potential future improvements in
Section 7.

2. Observations and the MWA

To understand the most recent improvements to the EoR
upper limit, we must first briefly describe the main instrumental
aspects of the MWA. We also summarize the data preproces-
sing, focusing on our nominal RFI flagging, as well as detail
the data sets used in this work.

2.1. The MWA

The MWA is a radio interferometer located on a designated
radio-quiet site in Western Australia. It has a dense cluster of
elements at the core, which allows for extra sensitivity on EoR
modes, and it has a pseudo-random scatter of elements at
longer baselines for imaging. Due to its design, there is an
opportunity to utilize MWA-made catalogs for instrumental
calibration and foreground subtraction in EoR analysis.
Upgrades to the MWA have separated the scientific cases into
two independent layouts (Wayth et al. 2018), however, all data
reduced in this paper uses the original Phase I layout (Tingay
et al. 2013).

The sky voltage is observed with 128 elements of 16 dual-
polarization dipoles in a 4×4 layout over a ground screen.
Analog delays are added to the signal path to point each dipole
toward the target, and then each set of 16 dipoles is
beamformed to form one element. The signal then travels to
the receiver, where it is digitized in a first-stage coarse
frequency channelizer. This introduces aliasing every
1.28MHz which must be removed via flagging in the analysis
pipeline (Prabu et al. 2015). Each 1.28MHz channel is

multiplied by a quantized gain to achieve a flatter response
and to avoid bit quantization errors. A bandwidth of
30.72MHz is then selected and transported to the correlator,
where a second-stage channelizer creates 10 kHz channels. The
signals are then correlated and averaged to a specified time and
frequency set, specifically 0.5 s and 40 kHz for a 112 s interval
per observation in this work.
We observe a few targeted fields of the sky for EoR science.

This is achieved through a “drift and shift” strategy, where the
instrument is pointed toward the target field every 30 minutes
using analog delays (Trott 2014). In between shifts, the
pointing remains constant and each new pointing results in a
different beam shape and sampling of the sky. For EoR science,
we only reduce data from pointings near zenith to minimize the
effect of beam modeling errors. We use two pointings before
zenith to two pointings after zenith in this work, targeting the
“EoR0” field at R.A.=0.00h, decl.=−27°. This field is
naturally low in sky temperature due to minimal foreground
emission, and thus a great candidate for EoR observing.

2.2. Preprocessing

We run a pre-pipeline package to generate input data files
that are RFI-flagged and frequency/time averaged. This
simultaneously reduces data size and mitigates adverse RFI
effects. We use COTTER, which subsequently calls the flagging
package AOFLAGGER14 (Offringa et al. 2015).
We input the 0.5 s and 40 kHz sampled data into AOFLAG-

GER, which performs RFI flagging at this highest resolution.
Line-like RFI features are found via a summed frequency and
time threshold method after the sky contribution is estimated in
the visibilities (Offringa et al. 2010). Then, a time and
frequency morphological technique is used to catch broadband
and variable features (Offringa et al. 2012).
We perform further flagging based off of known MWA

instrumental effects. In particular, we flag the first two seconds
and the last four seconds of an observation to mitigate
beamformer lag and potential for dropped integration blocks
in some 2013 data, respectively. For frequency, we flag the first
two and last two frequency channels per coarse band to avoid
channelizer aliasing, as well as the center DC channel per
coarse band to avoid adverse bit rounding errors.
Averaging is then performed to output 80 kHz frequency and

2 s time resolution in a standard UVFITS format.

2.3. Data Sets

A 32 hr data set of observations was used to calculate EoR
limits for the MWA in Beardsley et al. (2016), and we will use
the same data set to verify our pipeline improvements in
Section 4. This data set measures approximately 167–197MHz
from 2013 August until November. The target field is EoR0,
and only pointings near zenith are included.
These 1029 observations were originally chosen for their

clean statistics; they passed multiple mitigation tests, including
pointing-based cuts, window power ratio cuts, polarization
difference cuts, and residual image rms cuts (see Beardsley
et al. 2016 for quality control techniques). They represent the
best data at the time for MWA EoR analysis.
In addition to our pipeline-verification data sets, we apply

improved quality assurance techniques to remove additional

14 https://sourceforge.net/p/aoflagger/wiki/Home/
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contaminated data from the original 1029 observations to
generate our best EoR upper limits in Section 5. All data with
signatures of digital TV, amounting to 311 observations, are
completely removed. A further 40 observations are removed by
cutting data with RFI occupancy fraction greater than 40%.
This creates a subset of about 21 hr, or 678 observations, from
the previous data set. A description of our improved RFI-
detection techniques is provided in Section 5.1.

As another part of our pipeline verification, we compare a
small data set analyzed with FHD/εppsilon to an analysis from
RTS/CHIPS (Mitchell et al. 2008; Trott et al. 2016) in
Section 6.1. This small data set only consists of the zenith
pointing of the 678-observation data set, amounting to
approximately 5 hr.

3. The FHD/εppsilon Pipeline

Accuracy in analysis is a crucial aspect to EoR power
spectrum measurements. Every element of our data analysis,
including calibration, foreground subtraction, observation
integration, and power spectrum estimation is highly bespoke
to the accuracy requirements necessary to detect the EoR.

There are two separate, open-source packages in our
pipeline: FHD15 and εppsilon.16 FHD is an implementation
of an efficient deconvolution algorithm (Sullivan et al. 2012),
though now we use its precision analysis capabilities to
calibrate and image each observation without deconvolution
(Barry et al. 2019). εppsilon calculates the resulting power
spectrum and noise estimates from an integration of many
observations. This general setup shares similar aspects with
other imaging pipelines (Paciga et al. 2011; Patil et al.
2014, 2017; Shaw et al. 2014, 2015; Dillon et al. 2015; Ewall-
Wice et al. 2016; Jacobs et al. 2016; Trott et al. 2016).
However, a key focus of FHD/εppsilon is end-to-end error
propagation for error estimation. This is relatively uncommon
among power spectrum estimators, but it is an integral feature
in both εppsilon and CHIPS (Trott et al. 2016).

In this section, we summarize the main computational tasks
and outputs of the FHD/εppsilon pipeline, highlighting the
significant accuracy improvements we have made since
Beardsley et al. (2016) and Jacobs et al. (2016). Specifically,
our pipeline is an image-based analysis that generates a
reconstructed power spectrum (Morales et al. 2019). The
resulting errors we aim to reduce are thus specific to this style
of analysis.

Figure 1 provides context for how our analysis packages fit
into the data flow. For a full description of the tasks and outputs
of the FHD/εppsilon pipeline, please see Barry et al. (2019).

3.1. FHD

In brief, FHD calculates calibrated images from measured
visibility data. Various transformations and assumptions must
take place to achieve these results, therefore the narrative of
our data reduction is that of accuracy and precision. We
summarize the main steps in the analysis, focusing on recent
improvements.

First, we estimate the dipole response using an image-space
beam from simulated Jones matrices for each frequency. Then,
we build the response of the beamformed element and

transform it into the {u, v, f}-domain, or the space of the
visibility measurements. However, there is an accuracy
limitation to simulations which model the Jones matrices at
low dB. To account for this, we build a mask in uv-space to cut
at this low dB level, and we renormalize the beam such that the
edge smoothly goes to zero. This recent improvement ensures a
smoother beam in Fourier space, and reduces systematics in
sensitive EoR modes.
This beam kernel, or uv-beam response, is as instrumentally

accurate and smooth as possible, and thus will be used in
calibration. However, we now also use a modified gridding
kernel in power spectrum estimation, analogous to the concept
of a Tapered Gridded Estimator (Choudhuri et al. 2014, 2016).
We apply the square of a Blackman-Harris window to the beam
image. This acts as an image-space weighting to the
observation when normalizations are properly taken into
account. However, this creates correlations between image
pixels; we investigate the importance of this effect in the power
spectrum in Section 6.3. In this work, we refer to the kernel
matched to the instrument beam as the “instrumental gridding
kernel” and the kernel incorporating the image domain window
function as the “modified gridding kernel.”
Next, we build model visibilities for calibration. We generate

a model uv-plane at half-wavelength resolution by performing a
discrete Fourier transform (DFT) of the flux and position of
over 10,000 sources to a specified set of grid points in uv-space.
At every baseline location in uv-space, we multiply the model
uv-plane by our instrumental gridding kernel and integrate the

Figure 1. Data flow from measurement to power spectrum. There are four main
blocks: (1) measurement, electronics, and raw data output from the instrument
(Section 2.1), (2) RFI detection and averaging during preprocessing
(Section 2.2), (3) calibration, gridding, and image creation during the FHD
analysis (Section 3.1), and (4) error propagation, power spectrum estimation,
and binning during the εppsilon analysis (Section 3.2).

15 https://github.com/EoRImaging/FHD
16 https://github.com/EoRImaging/eppsilon
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result. This generates model visibilities, or an estimate of what
the instrument measured.

We are reaching levels of precision that are affected by finite
sum integration errors, especially in the process of estimating
model visibilities (Kerrigan et al. 2018). Since the modified
gridding kernel is a convolution in uv-space, it smooths out
these errors as a function of frequency. This has important
consequences in power spectrum space, and thus we use the
modified gridding kernel when making power spectra and the
instrumental gridding kernel when calibrating. This results in
two sets of model visibilities: one for calibration that is
instrumentally accurate, and one for power spectra that is
frequency-smooth.

The introduction of the GaLactic and Extragalactic All-sky
Murchison Widefield Array (GLEAM) survey in recent years
has greatly increased the number of point sources in our sky
model (Hurley-Walker et al. 2017). As a result, this has
improved the accuracy of our sky-based calibration and the
dynamic range in the power spectrum. Since our absolute flux
scale has changed with GLEAM, our absolute power spectrum
normalization has changed as well. Future works that
scientifically compare EoR upper limits will need to match
absolute flux scales and incorporate flux scale uncertainties.

We then calibrate the measured visibilities using the model
visibilities in a sky-based calibration. An alternating direction
implicit method is used to minimize a χ-squared equation to
determine the gains from each element, which are assumed to
account for the difference between the data and model
(Mitchell et al. 2008; Salvini & Wijnholds 2014). This
necessitates several assumptions, including independence in
time, elements, polarization, and frequency.

These assumptions have consequences in the power
spectrum. In Beardsley et al. (2016), we employed a method
to smooth the bandpass gains as a function of frequency to
reduce spectral structure. In our current implementation, we use
the auto-visibilities to calculate the resulting amplitude per
element. The auto-visibilities do not measure any structure on
the sky, and thus are not subject to the incomplete sky errors as
a function of frequency in Barry et al. (2016). However, the
noise statistics and the overall amplitude will not be the same as
the cross-visibilities. We continue to use the fit cross-phases
with a cable reflection in calibration, as the auto-visibilities do
not contain any phase information. For a full characterization of
our calibration, please see Barry et al. (2019).

Errors in the bit statistics can affect both the cross- and auto-
visibilities if there is bit over or undersaturation (Barry 2018).
We have found that in 2013 data, the upper part of the band
(∼187.5–197MHz) was adversely affected by the bit statistics.
An improperly tuned channel gain resulted in bit over-
saturation, leading to an uncorrectable bias in the data. We
now completely flag this part of the band in 2013 data, which
limits the usable redshifts in power spectrum measurements.

Once we have calibrated, we grid the data and model
visibilities onto the uv-plane. Each visibility value per frequency
is multiplied by our modified gridding kernel and pixelated onto
a regular uv-grid. In addition, we also grid beam kernels of
integrated value 1 and squared beam kernels of integrated value
1 to separate uv-planes. These two additional uv-planes are the
sampling map and variance map, respectively, and will be used
in εppsilon for power spectrum estimation and error propagation.
In order to generate noise estimates in εppsilon, we split each uv-
plane into two interleaved time steps.

Since we did not incorporate w-projection effects (Cornwell
et al. 2008), our gridded uv-planes are not in a basis that is
coherent across observations. Therefore, we choose to Fourier
transform the sampling map, the variance map, and the
unweighted data uv-planes separately into image space. We
interpolate to HEALPix projection,17 which is a fixed basis and
therefore integrable across observations.
When we use image space to integrate, we are subject to

aliasing effects due to a limited extent in the image. Our
modified gridding kernel acts as a window filter, which greatly
reduces image aliasing effects. In order to retain similar effective
area to our previous 560 deg2, we now image 8090 deg2.

3.2. εppsilon

Our power spectrum pipeline, εppsilon, calculates the data
power, model power, residual power, observed noise, expected
noise, and uncertainty estimates from integrated images. We
determine these various data and noise products to build
reliable upper limits.
First, εppsilon transforms each of the integrated images back

into the {u, v, f}-domain. This includes the separate interleaved
time samples for the data, the sampling map, and the variance
map for each polarization. Each data product is then weighted
with the sampling map, and similarly the variance map is
weighted with the square of the sampling map.
At this point, we choose to perform weighted sums and

differences of the data to build both a propagated noise spectrum
and a power spectrum simultaneously. Using our interleaved
time samples, we calculate maximum-likelihood estimates of the
mean and the noise by using the sampling-map-weighted
variances as the new weights. This weighting scheme is also
used to calculate maximum-likelihood uncertainty estimates.
These uncertainty estimates are compared to Tsys calculations
propagated directly from the time-interleaved visibility differ-
ences, and thus we have consistent uncertainty estimates for
every quantity within the full FHD/εppsilon pipeline.
To continue onto power spectra, we must transform into the

{kx, ky, kz}-domain. While u and v are easily converted into kx
and ky via cosmological parameters, the transform from f into kz
is nuanced. Our frequency sampling is irregular: baselines
move as a function of frequency and we have flagged
frequencies due to RFI and instrumental systematics. There-
fore, we perform a Lomb–Scargle periodogram (Lomb 1976;
Scargle 1982) to find an orthogonal basis. The phase is not
preserved in the Lomb–Scargle, thus restricting its use to power
spectrum calculations and destroying information useful to the
bispectrum (Bharadwaj & Pandey 2005), which may prove to
be a vital statistic in the future (Majumdar et al. 2018; Trott
et al. 2019; Watkinson et al. 2019).
Immediately before we perform the frequency transform, we

first remove the mean of the amplitude. This reduces
contamination from the bright, intrinsic foregrounds coupling
into higher kz-modes during the transform. We add this term
back in as the DC component in the {kx, ky, kz}-domain to
preserve power. This new average-removal method improves
the distribution of power in 2D and 1D power spectrum
compared to previous analyses.
We now construct our cross-power estimation from the

maximum-likelihood mean and noise of the 3D {kx, ky, kz}-cube.

17 HEALPix: the Hierarchical Equal Area isoLatitude Pixelization of a sphere
(Górski et al. 2005).

4

The Astrophysical Journal, 884:1 (16pp), 2019 October 10 Barry et al.



The power of the mean minus the power of the noise, divided by
four, gives the same power estimation as the cross power
between the interleaved time samples (Barry et al. 2019).

Since we choose to form the cross power after transformations,
we are able to easily propagate our noise throughout εppsilon.
We assume negligible cross correlation between pixels, hence the
propagation is simple sum/difference error propagation. We
compare this propagated expected noise to the observed noise
calculated from even–odd differences in Section 6.3 to test this
assumption. This is particularly important since increasing the
integrated image area increases the uv-resolution.

In order to calculate upper limits and related products from
the 3D {kx, ky, kz}-cube, we calculate maximum-likelihood
weighted averages of the bins. To form 2D power spectra as a
function of k-modes perpendicular to the line of sight, k⊥, and
k-modes parallel to the line of sight, kP, we average in
cylindrical regions. To form 1D power spectra as a function of
∣ ∣k , we average in spherical regions.

The final outputs of our FHD/εppsilon pipeline are 2D and
1D power spectra products of the calibrated data, model data,
residual data, expected noise, observed noise, and error bars.
These various products will be used to determine our upper
limits in Section 4 and Section 5 and to provide evidence of
signal preservation and proper error propagation in Section 6.

4. Direct Limit Comparison

In Beardsley et al. (2016), the FHD/εppsilon pipeline was
used to reduce 32 hr of MWA data for an EoR upper limit. The
data reduction was dominated by systematics, and thus larger
integrations would not have benefited the analysis significantly.
At the time, it was unknown whether the limiting systematics
were related to the data or to the analysis.

Many improvements have been made to the FHD/εppsilon
pipeline since then, as outlined in Section 3. By reducing the
same data set, we can determine how significant these
improvements are toward lowering the MWA EoR limit. This
will also help identify the nature of the dominating systematics
in Beardsley et al. (2016).

Our updated analysis completely flags the upper part of
the band due to an improperly tuned channel gain. To make
a direct comparison, we rebin the data in Beardsley et al.
(2016) and in our updated analysis to include the range
168.555–187.275MHz. We avoid frequency regions where the
bit statistics indicate truncation or saturation, and are thus
different between the auto-visibilities and the cross-visibilities.
This includes the first coarse band (167.115–168.235MHz)
and the upper part of the band (187.595–197.675MHz). In
addition, we avoid one extra channel each near these ranges
(168.395 and 187.435MHz) since they have flagged contribu-
tions, which can have consequences in power spectrum space
(Offringa et al. 2019). With the Blackman-Harris window
applied, we have an effective bandwidth of 9.4 MHz at
approximately redshift 7.

The calibration catalog, and thus the absolute flux scale, has
changed between the two analyses. The previous catalog, KGS
18(Carroll et al. 2016), was matched to the flux density of the
MWA Commissioning Survey (MWACS; Hurley-Walker et al.
2014). Their absolute flux scale is significantly higher due to

residual flux and primary beam errors compared to our current
catalog, GLEAM (Hurley-Walker et al. 2017). In order to have
a fair comparison, we need to apply a scale factor to the
Beardsley et al. (2016) analysis. We compare the mean
calibration amplitudes for the frequency range of interest, and
find that the previous analysis was 28% brighter in power for
the E–W polarization and 23% brighter in power for the N–S
polarization. We scale down both the Beardsley et al. (2016)
upper limits and thermal noise by this correction factor for our
comparison.
In Beardsley et al. (2016), the integrated HEALPix image

was limited to a square ∼20° across, both to select the clean
center of the antenna beam and to reduce computational costs.
This hard image cut was found to cause aliasing in the uv-
plane, and was replaced by the modified gridding kernel
discussed in Section 3.1. This modified kernel performs the
same task of selecting data from the center of the antenna
beam, without the hard edge, but requires using an integrated
HEALPix map that is over 10× larger in area. This change in
integration scheme results in different levels of contamination
in the thermal noise, simulated in Section 6.3. Therefore, our
noise is about a factor of 3 lower than Beardsley et al. (2016)
for the same data set.

4.1. 2D Power Spectrum Comparison

The 2D power spectrum is a useful diagnostic due to the
characteristic contamination regions, and thus we can draw
useful conclusions via their comparison. We create 2D power
spectra for three data products: the calibrated data, the
subtraction model, and the residual data after foreground
removal.
We apply the frequency mask to both data sets, and then

perform cylindrical averaging in kx and ky to generate k⊥, or k-
modes perpendicular to the line of sight. In addition, the
kz-component is relabeled kP, or k-modes parallel to the line of
sight.
Power contamination in the { ∣∣k̂ k, }-space occurs in

distinctive regions. Foreground contamination is present at
low kP since it does not vary quickly as a function of
frequency. Instrument chromaticity also couples the fore-
grounds into higher kP-modes along a constant slope called
the “foreground wedge” (Datta et al. 2010; Morales et al.
2012; Parsons et al. 2012; Trott et al. 2012; Vedantham et al.
2012; Hazelton et al. 2013; Pober et al. 2013; Thyagarajan
et al. 2013; Liu et al. 2014). Above this region is the “EoR
window,” and this is where we expect to be able to make our
measurements. Horizontal contamination lines constant in kP
are caused from regular flagging of channelizer aliasing
(described in Section 2). For a full description of the 2D
power spectrum from εppsilon, please see Barry et al.
(2019).
Figure 2 shows the diagnostic 2D power spectra of the

calibrated data, the model, and the residual for the N–S
polarization for both the Beardsley et al. (2016) data reduction
and our updated data analysis. There are several key
differences.

1. The power in the foreground wedge is less contained in
the 2016 analysis; spectrally smooth foregrounds should
contaminate the lowest kP-mode by orders of magnitude
more than other modes. This is an indication that
foreground power was coupled to higher kP-modes more

18 KATALOGSS, the KDD (Knowledge Discovery in Databases) Astrometry,
Trueness, and Apparent Luminosity of Galaxies in Snapshot Surveys,
abbreviated as KGS.
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than expected. We mitigate this in our updated analysis
with improved calibration and the average-removal
technique in power spectrum estimation.

2. The model power in the updated analysis is much lower
in the EoR window. This is a strong indication that our
analysis is more precise, and couples less foreground
power into the sensitive measurement modes than
before. Many improved techniques described in
Section 3 contribute to this, including the modified
gridding kernel.

3. Contamination in the EoR window for both the
calibrated data and residual is reduced in the updated
analysis, especially between the horizontal flagging
harmonics. This is most likely due to higher precision in
the model and updated calibration techniques using
auto-visibilities.

The 2D comparison in Figure 2 demonstrates significant
improvement in sensitive measurement regions and in the
expected distribution of foreground power. Considerable

Figure 2. 2D power spectra comparison between the Beardsley et al. (2016) analysis (top row) and our updated analysis (bottom row) with the same observation data
set and binning scheme. The calibrated data (left column), the subtraction model (middle column), and the residual (right column) 2D power spectra are shown for the
N–S polarization. Our updated precision techniques and improved calibration reduce foreground coupling into the EoR window (above the dashed line).
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advances have been made for the calibrated data and the model,
resulting in an improved residual 2D power spectrum.

4.2. 1D Upper Limit Comparison

In order to show quantitative improvement, we calculate the
1D EoR upper limit between the two analyses. We use a similar
mask and binning scheme to that presented in Beardsley et al.
(2016) to have a direct comparison of the contamination levels
in sensitive regions.

First, we exclude wavelengths in k⊥, which are (1)greater
than 70 λ due to low uv-coverage and (2)less than 10 λ due to
increased contamination from coarse band harmonics. Then,
we apply a kP-mask to all bins lower than 0.15 hMpc−1 to
avoid a systematic floor from foreground leakage. Finally, we
remove the foreground wedge with a small buffer; we exclude
along the horizon line with an increased slope of 14% (Dillon
et al. 2015). We also exclude k⊥-bins associated with the coarse
band harmonics, however, our analysis cannot exactly match
Beardsley et al. (2016) due to a difference in resolution.

Figure 3 shows the comparison of the 1D EoR upper limits
between the Beardsley et al. (2016) analysis and our updated
analysis for the E–W and N–S polarizations at redshift 7. The
limits are described as Δ2(k)=k3P21(k)/(2π

2) in units of mK2.
Again, the only difference between the two approaches is the
analysis; the raw data and the k-space binning scheme have
remained the same. The updated analysis from this work has a
lower EoR upper limit for most k-modes.

In particular, the most sensitive measurement modes at
small k have lower EoR upper limits. The best mode in the
N–S polarization from the rebinning of the Beardsley et al.
(2016) analysis isΔ2�2.37×104 mK2 at k=0.25 hMpc−1,
while the best mode in the updated analysis is Δ2�
8.59×103 mK2. We have improved by a factor of 2.8.
Likewise, for the best modes in the E–W polarization, we have
improved by a factor of 2.1.

This is an indication that a major systematic in the Beardsley
et al. (2016) analysis is related to the precision of the data
reduction. There is a consistent improvement for most k-modes,
suggesting that a contamination floor in the EoR window
caused by foreground-coupled power has been mitigated by our
new techniques. Figure 2 supports this conclusion; major

power reduction in the model 2D power spectra, especially in
the EoR window, indicates a significant improvement in
analysis precision.
By analyzing the same data set in Beardsley et al. (2016)

with our updated pipeline, we directly compared how our new
precision techniques affected the 2D and the 1D power
spectrum. Now, we have a consistent narrative that the FHD/
εppsilon pipeline has improved significantly, and that analysis
systematics have been greatly reduced.

5. Updated Limit

Our improvements to the FHD/εppsilon pipeline (Section 3)
lowered the previous MWA EoR upper limits significantly
(Section 4). However, we can further lower these limits using
new techniques to remove faint-RFI-contaminated observa-
tions. To calculate the best possible limits from 2013 data, we
will choose a subset of the Beardsley et al. (2016) data
set along with a new binning scheme. Using these 678
observations, we report an updated MWA EoR upper limit.

5.1. Data Selection

We use AOFLAGGER for primary RFI flagging in the FHD/
εppsilon pipeline (Section 2.2). However, we are able to
identify a substantial number of observations with leftover
ultra-faint RFI contamination using SSINS19 (Wilensky et al.
2019).

SSINS operates by time-differencing visibilities to subtract
out the slowly varying sky, and then averaging the amplitudes
of these visibility differences over the set of baselines in the
array. This leaves a single dynamic spectrum per polarization in
which flagging can be performed. This is called the sky-
subtracted incoherent noise spectrum (SSINS) of the observa-
tion. At the expense of more finely grained baseline-to-baseline
information, this gives a dramatic sensitivity boost that allows
identification of RFI well below the thermal noise levels of a
single baseline. In addition, a match-shape filter is implemented
within the SSINS framework to further boost sensitivity to
known RFI contaminants such as digital television (DTV).

Figure 3. 1D EoR upper limit comparison between Beardsley et al. (2016) (purple) and our updated analysis (green) for the E–W and N–S polarizations at a band
centered on redshift 7 for the same 1029-observation data set. The dashed lines are the thermal noise levels of each analysis. Our updated analysis has less power
contamination on most k-modes.

19 https://github.com/mwilensky768/SSINS
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While SSINS can be used to flag time/frequency regions, we
opted instead only to use it to catalog particular types and
levels of contamination. This information was then used to cut
out entire 112 s observations with residual faint RFI, rather than
try to recover the observations. Two main RFI cuts were made:
(1) any observations containing DTV signals identified by the
SSINS match filter were removed, and (2) any observations
where over 40% of the SSINS samples20 were identified as
contaminated by the SSINS flagging procedures were removed.
These procedures identified 311 observations with DTV and a
further 40 observations with high levels of RFI occupancy.

Figure 4 shows the residual 2D power spectra for the
remaining 678 observations. We analyze the frequency band
range 168.555–187.275MHz (approximately redshift 7) to
avoid known instrumental effects (Section 4). The general
features of the 2D power spectrum from Figure 2 are still
present: foregrounds are most prevalent in the lowest kP-mode
and couple into the foreground wedge, channelizer flagging
harmonics cause horizontal contamination lines, and there is
lower power in the EoR window.

However, there are some key differences when comparing to
the full 1029-observation integration in Figure 2. The EoR
window power is generally lower between the channelizer
flagging harmonics, especially in the N–S polarization. A
notable exception is the power at the lower left-hand corner of
the EoR window; it remains fairly contaminated in the N–S
polarization. The systematic that causes this contamination is
unknown.

There is also noteworthy differences between the polariza-
tions in Figure 4. The E–W polarization tends to have higher
power than the N–S polarization in the EoR window, which
will have significant consequences in 1D EoR upper limits. The
cause for this is not yet known.

By understanding the regions affected by contamination, we
can make logical cuts in { ∣∣k̂ k, }-space. This will allow us to
calculate 1D EoR upper limits that are free of known
contaminated k-modes.

5.2. EoR Upper Limit

We can now perform informed { ∣∣k̂ k, }-cuts on the data to
generate EoR upper limits. We avoid contaminated regions in
Figure 4 by making the following selections:

• Spatial modes outside of 18–80 λ are masked. This avoids
low k⊥-modes that are contaminated in the EoR window,
and it removes any potential effects from poor uv-coverage
at high k⊥-modes.

• We restrict line-of-sight modes to be greater than or equal
to 0.15 hMpc−1. While the foreground wedge is mostly
contained within the horizon line, there is some leakage at
small k⊥ into the EoR window, which is avoided with
this mask.

• We add a small buffer to the horizon slope to avoid sub-
horizon leakage, which is especially prevalent in the E–W
polarization. Our slope is 15% larger than the horizon,
similar to the slopes used in Beardsley et al. (2016) and
Dillon et al. (2015).

Contours in Figure 4 highlight the 2D region we use to
generate 1D power spectra with these conditions.

By choosing regions to integrate, we are potentially
introducing a selection bias. This is unavoidable in a
foreground-avoidance analysis; we must excise regions that
we know are dominated by foregrounds in order to produce
meaningful limits. To reduce the potential for selection bias, we
only produce masks and cuts via foreground information from
the 2D power spectrum. This lowers the degrees of freedom in
our choice, and thus the potential bias.
Using these binning selections, we compare EoR upper

limits from the full 1029-observation data set and the 678-
observation subset selected with SSINS in the top panel of
Figure 5. There is little to no change in the E–W polarization
and a small improvement in the N–S polarization. However,

Figure 4. Residual 2D power spectra for the E–W and N–S polarizations for
678 observations selected with SSINS. Contours show the region where we
make { }∣∣ ^k k, selections to avoid known regions of contamination for 1D
power spectra.

20 Given instrumental effects in the MWA, we did not include coarse band
edges in this classification.
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the improvement via data selection from SSINS is highly
dependent on pointing.

The bottom panel of Figure 5 shows the zenith pointing of
both the 1029-observation data set and the 678-observation
subset. In this case, removing additional RFI using SSINS
improves the upper limit by a factor of 3.8 in the N–S

polarization. Other pointings do not benefit from further RFI
flagging despite similar RFI-detection levels, which indicates
dominating systematics due to beam errors.
We present the 1D measured power spectra, the 2σ error

bars, the 2σ EoR upper limits, and the 1σ thermal noise levels
in Figure 6, along with an example EoR fiducial theory and its

Figure 5. 1D EoR upper limit comparison between our updated analysis for the 1029-observation data set (green) and our updated analysis for the RFI-removed 678-
observation data set (blue) for the E–W and N–S polarizations at a band centered on redshift 7. There is marginal improvement over the full integration (top panel),
however, there is significant improvement over the zenith-pointing subset (bottom panel). The dashed lines are the thermal noise levels of each analysis.

Figure 6. 1D measured power spectra (black), the 2σ error bars (gray), the 2σ EoR upper limits (solid blue), and the 1σ thermal noise levels (dashed blue) for the E–W
and N–S polarizations using 678 observations selected with SSINS. We also present an example fiducial EoR theory power spectrum (solid brown) along with the
theoretical 2σ upper limits on the 21 cm power spectrum amplitude (brown dashed) obtained using existing observational constraints (see Appendix A for further
details). These constitute our best EoR upper limits in this work. We are noise dominated for many k-modes, including our lowest EoR upper limit.
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associated 2σ upper limits (see Appendix A for further
details).

The measured power is the cross-power spectrum between
the interleaved time samples (Section 3.2), and can fluctuate to
be negative if below the thermal noise. The 1σ noise level is the
estimated noise from the integration using the fully propagated
uncertainty estimates. The corresponding 2σ error bars are
shown for each power estimate, and can reach zero if the signal
is consistent with a non-detection. The 2σ EoR upper limit is
calculated from the measured power and the variances, where a
prior of being greater than the thermal noise is enforced. We
omit bins that are severely affected by the channelizer-aliasing
flagging.

Our aim with this new integration is to be dominated by
noise, not systematics. Since this is not enough data to
theoretically detect the EoR, any detection is most likely that of
a systematic in our data or analysis. Therefore, having a signal
consistent with zero is ideal. We have many power estimates
consistent with a non-detection, the majority of which are at
higher k-modes. However, our lowest limits are systematic
dominated. We can produce a similar, noise-dominated limit
(Δ2� 3.8× 103 mK2 at k= 0.23 hMpc−1) using just the
zenith pointing. Given the observing approach of the MWA, it
is not practical to use just zenith-pointing measurements of a
designated field to detect the EoR in a timely fashion, therefore
future efforts will need to reduce this systematic.

There are features in Figure 6 that indicate other sources of
contamination via systematics. First, the flagging from the
channelizer aliasing causes foreground coupling on nearby k-
modes. This indicates that a systematic floor might be present
on all k-modes at a lower level than this analysis can achieve,
and thus will need to be addressed in the future. We know that
only five modes in Figure 6 could theoretically be below the
95% confidence limit of the fiducial EoR by analyzing the
power in the model, most likely due to this systematic. In
addition, known cable reflections contaminate certain modes:
0.4 hMpc−1 (90 m), 0.7 hMpc−1 (150 m), 1.0 hMpc−1

(230 m), 1.4 hMpc−1 (320 m), 1.7 hMpc−1 (400 m), and
2.3 hMpc−1 (524 m). These modes cannot be used for EoR
detection (Barry et al. 2016), and may contaminate surrounding
modes at a low level (Ewall-Wice et al. 2016).

The features present in the EoR upper limit, along with the
features we cut via our mask and binning scheme, can help us
determine future areas of improvement in our analysis and RFI-
mitigation techniques (Section 7).

6. Data Analysis Validation

Now that we have a new EoR power spectrum upper limit,
we present various procedures to prove its validity. Specifi-
cally, we compare results with another pipeline, perform a
signal loss simulation, and present error propagation results
from εppsilon.

6.1. Pipeline Comparison

We cross-validate our FHD/εppsilon pipeline results
with a different set of packages: the Real Time System (RTS;
Mitchell et al. 2008; Ord et al. 2010) and CHIPS (Cosmolo-
gical H I Power Spectrum, Trott et al. 2016) pipeline. We have
extensively used this verification approach in both Jacobs et al.
(2016) and Beardsley et al. (2016) to indicate proper treatment
of normalization, polarization, and signal preservation. By

comparing power spectra from the same data set, we can
demonstrate the continued robustness of our analysis pipelines.
The RTS calibrates raw data and produces visibilities,

therefore it plays a similar role to FHD. However, the
methodology is quite different. Specifically, the RTS can
perform direction-dependent calibration via a peeling method.
Approximately 1000 sources are used for a preliminary
direction-independent calibration, and then five bright sources
are used to estimate the specific calibration in the local region.
Separate calibration values are calculated per 1.28MHz (per
coarse band). This constitutes the largest philosophical
difference, but a variety of processes are distinct, including
other calibration parameters, beam calculations, and techniques
to enforce spectral smoothness. Given the importance of these
features in the power spectrum space (Section 3.1), compar-
isons with the RTS are relevant for validation.
The RTS-calibrated visibilities are then processed by CHIPS,

which starts by gridding the visibilities onto the {u, v, w}-
plane. By choosing discrete w-projection planes, CHIPS avoids
the need to use image space for integrating observations.
Therefore, many of the required aliasing mitigation techniques
discussed in Section 3.1 are not necessary with this package.
CHIPS also uses advanced systematic mitigation techniques,
including an inverse-covariance weighting scheme during
power estimation (Kay 1993). The noise calculation used for
this comparison is a propagated noise from the even–odd
difference, similar to the approach in εppsilon.
We compare the zenith-pointing subset for our cross-

validation in Figure 7. To remain consistent, we apply the
same binning scheme in Section 5.2 to each data reduction.
This foreground/systematic avoidance scheme was chosen
with the FHD/εppsilon analysis in mind; they may not be the
best cuts for RTS/CHIPS. Nevertheless, the EoR upper limits
are roughly consistent with each analysis, and follow a general
trend within the same order of magnitude for all k.
Since CHIPS uses an inverse-covariance weighting, the

RTS/CHIPS analysis recovers more k-modes in the channeli-
zer-aliasing harmonics. This technique also allows the RTS/
CHIPS analysis to probe further within the foreground wedge,
and thus their lowest limit is at their lowest k-mode. In contrast,
the FHD/εppsilon analysis has lower systematics between the
flagging harmonics.
In general, the two analyses produce similar EoR upper

limits from the same data set. While 5 hr is not enough to create
a competitive limit, we show continued consistency between
two unique pipelines.

6.2. Pipeline Simulation

In addition to our analysis cross-validation with RTS/
CHIPS, we simulate our pipeline end-to-end to test for signal
loss. This demonstrates self-consistency and signal preserva-
tion throughout the analysis.
In order to validate FHD specifically, we run an in situ

simulation. FHD is naturally an instrument simulator; we
produce model visibilities that represent the response of the
instrument to tens of thousands of point sources on the sky.
These model visibilities, plus a theoretical EoR response, can
be input into FHD as simulation data.
We run two pipeline-verification tests: (1) theoretical EoR

signal through the entire pipeline with no calibration or
subtraction and (2) theoretical EoR in a point-source sky where
only a subset of the brightest point sources are subtracted with
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no calibration effects. These two tests investigate whether we
recover the input EoR signal and if we can theoretically detect
the EoR with realistic foregrounds disregarding calibration
effects, respectively.

Figure 8 shows the measured power from these two
simulations in 1D power spectrum space. We include the
foreground wedge and the full bandwidth in this binning
scheme. Our calculated power from the input EoR visibilities
indicates that we do not suffer from signal loss or normalization
errors; we recover the input power across all k-modes. When
there are residual foregrounds in the simulation, we still recover
the input EoR simulation in the EoR window for a large range
of k-modes. Large k-modes (above ∼1.0 hMpc−1) are coupled
to foreground contamination via our gridding kernel resolution
(Beardsley et al. 2016).

Therefore, we have verified the ability of FHD to detect the
EoR in ideal conditions without calibration effects for a wide
range of k-modes. We report the results of these types of
simulations whenever we reanalyze data with updated software,
therefore similar simulations were performed in Barry et al.
(2016, 2019) on the FHD/εppsilon pipeline.

6.3. Uncertainty Estimation Verification

We also conduct verification experiments within εppsilon to
test the validity of our noise assumptions. Given that our best
EoR upper limit is noise dominated, it is crucial to investigate
our uncertainty measurements.

First, we can determine the level of contamination in the
noise due to choosing image space as our integration basis.
While noiseless pipeline simulations have demonstrated that
our measured power estimation recovers the EoR in
Section 6.2, the noise can still be adversely affected by
image-space aliasing.

We can calculate the noise contamination level by compar-
ing the analysis of one observation using various integration
schemes. By only analyzing one observation, it is not necessary
to go to image space because integration is not required.
Therefore, we have the capability to compare to noise that is
not affected by the transform to image space.

In this work, we have two varieties of HEALPix integration
schemes. Beardsley et al. (2016) used a square ∼20° region,

while our updated analysis uses a region that includes more
than 10× the area and includes a modified gridding kernel.
These two tests, along with the noise level calculated without
an image-space transform, are shown in Figure 9.
The excess contamination from the image-space transform is

flat across all k-modes. The integration scheme from Beardsley
et al. (2016) is high by about a factor of 6, whereas our updated
integration scheme is high by about a factor of 2. While this is
an improvement, we need to mitigate this contamination in the
future. We do not apply a correction factor in this work,
therefore our EoR upper limit is higher than it could
theoretically be for our analysis.
We also analytically calculate the error propagation

throughout εppsilon, thereby avoiding the ambiguity of
bootstrapped errors. However, in order to make this manage-
able, we assume there are no cross-correlations between pixels
in {u, v, f}-space even though there are various stages in the
analysis that could cause correlations. Increasing the integrated
image size creates smaller uv-pixels, which are more likely to
be correlated. Applying the modified gridding kernel and the
frequency window will also correlate pixels.
To investigate the assumption of independent pixels in our

analytic calculation, we also measure the standard deviation of
the noise power created from the even–odd difference. These

Figure 7. Cross-validation analysis of the EoR upper limits and associated noise levels on the zenith-pointing subset from the FHD/εppsilon pipeline (green) and the
RTS/CHIPS pipeline (purple). RTS/CHIPS recovers more k-modes in known systematic-dominated regions via advanced techniques, while FHD/εppsilon produces
lower systematics at some low k-modes. In general, their consistency with each other demonstrates robustness in our analysis techniques.

Figure 8.Measured 1D power for two in situ simulations on the FHD/εppsilon
pipeline. We input simulated EoR visibilities (purple) into the pipeline and
recover the expected power (orange). If we add foregrounds and only subtract a
subset (green), we still recover the underlying EoR signal for most all k-modes.
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uncertainties are noisy; they will be subject to random noise
variations per pixel. This gives us two different noise estimates:
(1) an observed noise calculated from the power, and (2) an
expected noise calculated from error propagation of the input
cubes. The observed noise and expected noise should be the
same magnitude if our error propagation and correlation
assumptions are well-founded.

Figure 10 shows the noise and error 2D power spectra
calculated from the 678-observation data set in Section 5.2. The
observed noise (top right) and the expected noise (top left) are
very similar, and their ratio (bottom right) is very close to 1.
There is some deviation from 1 in poor uv-coverage regions,
however these will not contribute to the 1D power spectrum
given our binning schemes. The error bars (bottom left) are
related to the expected noise.

By comparing the observed noise to the expected noise, we
have investigated whether cross-correlations caused by our
analysis techniques have a significant effect. A ratio close to
unity indicates no excessive cross-correlations.

7. Discussion

Our new EoR upper limit with the open-source FHD/
εppsilon pipeline is almost an order of magnitude better than
previous data reductions, and there have been many contribut-
ing factors to this improvement. These developments can be
classified under four main modifications: (1) change in flux
density scale, (2) change in analysis that reduced the measured
power spectrum value, (3) change in analysis that reduced the
contamination in the noise, and (4) change in RFI mitigation.

Adopting a new catalog for better calibration and subtraction
accuracy lowered our power spectrum normalization by
approximately 1.3. Improving our analysis through the
modified gridding kernel and other various techniques reduced
contamination in both the measured power and the noise for a
combined reduction of 2.8 in power. Finally, excising
observations contaminated with faint RFI lowered our limit
by a factor of 3.8, but only for the zenith pointing. This has
highlighted the critical aspects of precision data analysis on the
EoR, and indicates areas that we can continue to develop.

Future data reductions with FHD/εppsilon can further
improve the EoR upper limit by enforcing spectral smoothness
in systematic errors. This encompasses a large breadth of error
types, including those from the theoretical beam kernel, sky

calibration, and HEALPix interpolation. However, some
frequency-dependent errors are inherent to the analysis, like
the discreteness of the uv-plane during the estimation of the
model visibilities and the gridding process (Kerrigan et al.
2018).
This has culminated in a new general approach in our

analysis. We sacrifice modes not within the EoR window in
order to keep modes in sensitive measurement regions as
spectrally precise as possible. For example, the tapered gridded
estimator that we apply to the beam kernel when we calculate
power spectra is not an accurate representation of the sky. Our
subtraction model visibilities will be dominated from sources in
the center of the beam, and sources near the horizon will be
significantly down-weighted. In order to recover modes in the
foreground wedge, sidelobe sources must be included and be
precise (Pober et al. 2016). However, the modified gridding
kernel reduces the spectral dependence of the discrete-based
errors in the EoR window. Thus, we knowingly do not recover
modes within the foreground wedge in order to reduce errors in
the EoR window.
In the future, we plan to investigate other methods to reduce

spectral errors which affect the sensitive measurement modes,
specifically those based on the instrument (e.g., the beam and
calibration). However, this is difficult if the actual response is
spectrally complicated. It is easier for the errors we make to be
spectrally smooth if the response is also spectrally smooth.
This will advise upgrades to the MWA and the design of the
Square Kilometre Array (SKA).
Comparisons with other data pipelines have also demon-

strated potential ways to remove systematics from more k-
modes. The RTS/CHIPS pipeline uses inverse-covariance
weighting and other methods to help remove systematics
caused from flagging channelizer aliasing. We are dominated
on some k-modes from this effect in the FHD/εppsilon
pipeline, with potential for it to affect all k-modes at a low
power level. Incorporating these advanced techniques into
power spectrum estimation will be an important aspect of
lowering the EoR upper limit in our data reductions.
One of the major improvements to our EoR upper limit has

come from using the package SSINS to remove RFI-
contaminated observations from our integrations. We are
beginning to enter an analysis regime where low-level
contamination can dominate the power in the EoR window.
In the future, we plan to use the SSINS package to its fullest
potential in order to recover observations with faint DTV,
while still maintaining a high degree of RFI-clean observations.
Nevertheless, we have only gained significant improvements
from further RFI flagging in the zenith pointing of the N–S
polarization. This indicates that there is significant beam errors
in non-zenith pointings and some residual systematic in the E–
W polarization. Mitigating these contaminations will be
investigated in the future.
To conclude our work, we put our results in the context of

the wider EoR community. Previous publications from the
MWA report Δ2�2.7×104 mK2 at k=0.27 hMpc−1 and
z=7.1 (Beardsley et al. 2016). The PAPER Collaboration,
who previously had the lowest EoR upper limits (Ali et al.
2015), has recently reanalyzed these calculations due to signal
loss (Cheng et al. 2018; Kolopanis et al. 2019). The next lowest
current limits come from the LOFAR Collaboration, with
Δ2�6.3×103 mK2 at k=0.053 hMpc−1 and z=10.1
(Patil et al. 2017).

Figure 9. Calculated thermal noise levels for one observation using various
integration schemes. Avoiding image space results in the lowest noise level
(purple). Using a small image to match Beardsley et al. (2016) results in a
factor of 6 contamination (green), and using our updated method results in a
factor of 2 contamination (orange). Mitigating this effect is left for future work.
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Figure 10. Observed noise from the resulting power (top right), the expected noise from the analytic uncertainty estimate (top left), the resulting analytic error bars
(bottom left), and the ratio between the expected and observed noise (bottom right). We validate our analytic error propagation and assumptions in εppsilon via the
noise ratio, which is very close to 1.
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Our best limit from this work is Δ2�3.9×103 mK2 at
k=0.20 hMpc−1 and z=7 in the N–S polarization on 21 hr.
This is currently the lowest upper limit on EoR structure in the
literature. We note that all detections in this work are those of
systematics, and longer integrations are needed to reduce
thermal noise to the level of the EoR.

We report all k-modes and associated limit calculations from
this work in Appendix B for ease of comparison. In addition,
both the data21 and the software22 is publicly available. The full
list of observations, software versions, and settings files
necessary to recreate this analysis are available upon request.

By incorporating pipeline improvements to reduce analysis
systematics and by removing RFI contamination to reduce
observational systematics, we are now in the regime where we
are noise dominated in our lowest limit. This puts emphasis on
both fronts: lowering the EoR upper limit will require
development in analysis precision and observational contam-
ination mitigation. We have proven that both are crucial for
detecting the structure of the EoR in the power spectrum.
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Appendix A
Theoretical Upper Limits on the 21 cm Power Spectrum

To construct the fiducial theory 21 cm power spectrum used
in Figure 6 (brown-solid curve) we use 21CMFAST (Mesinger
et al. 2011), adopting the latest astrophysical model para-
meterization from Park et al. (2019) and assume that we are in
the saturated limit (the 21 cm spin temperature is considerably
larger than the CMB temperature).

Rather than using just a single fiducial model, we can also
explore the allowed variation in the amplitude of the theoretical
21 cm power spectrum owing to the uncertainties in the
underlying reionization astrophysics. We achieve this by
calculating theoretical 2σ upper limits on the 21 cm power
spectrum model (brown-dashed curve in Figure 6) following a
similar approach to that of Pober et al. (2016). That is, we use
21CMMC (Greig & Mesinger 2015), a Monte Carlo Markov
chain (MCMC) sampler of 3D reionization simulations, and
use existing observational constraints on the reionization epoch
to constrain the theoretical astrophysical models. Specifically,
we only consider the six astrophysical parameters governing
the ionizing sources from Park et al. (2019) and assume the
spin temperature is saturated. These six astrophysical para-
meters include both a mass-dependent escape fraction and
fraction of gas in stars, a minimum turnover mass for haloes
hosting star-forming galaxies, and a star formation timescale.
Additionally, we ignore recombinations, and thus include a
mean photon horizon, Rmfp parameter.
For our observational constraints, we use the limits on the

intergalactic medium neutral fraction at the tail end of
reionization (at z= 5.9; ( )s< +x 0.06 0.05 1HI ) from the
dark pixel statistics from quasar spectroscopy (McGreer et al.
2015), the latest estimate for the electron scattering optical
depth from Planck (τ= 0.054± 0.007, Planck Collaboration
et al. 2018) and the ultraviolet galaxy luminosity functions at
z=6, 7, 8, and10 (Bouwens et al. 2015, 2017; Oesch et al.
2018). Post-processing the output 21 cm power spectrum data
from each sampled astrophysical model from the MCMC, we
can construct marginalized probability distribution functions
(PDFs) for the power spectrum amplitude as a function of
Fourier mode, k. Our theoretical limit on the 21 cm power
spectrum is then obtained from sampling these PDFs.

Appendix B
All Calculated EoR Upper Limits

We report all EoR upper limits from this work in Table 1 to
aid the community in creating comparisons. This data set
consists of 678 observations, whose selection from the full
1029-observation data set is discussed in Section 5.1. The
various masks in our binning scheme are presented in
Section 5.2, and we choose to analyze the frequency range
∼168.5–187.3MHz to avoid known instrumental effects.
The E–W values (left) and N–S values (right) are reported in

Table 1. We include the k (hMpc−1), the upper limit DU
2

(mK2), the lower uncertainty bound DL
2 (mK2), the measured

power Δ2 (mK2), and the 1σ thermal noise (mK2). If the k-
mode is consistent with a non-detection (e.g., the measured
power or the calculated lower uncertainty bound is negative)
we report a lower uncertainty bound of zero.
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Table 1
The Calculated EoR Upper Limits and Related Values for Each Polarization

E–W N–S

k DU
2 DL

2 Δ2 Thermal k DU
2 DL

2 Δ2 Thermal

0.174 1.13×104 9.75×103 1.05×104 3.98×102 0.174 9.22×103 7.67×103 8.45×103 3.87×102

0.203 1.03×104 8.14×103 9.21×103 5.35×102 0.203 3.89×103 1.81×103 2.85×103 5.21×102

0.232 1.31×104 1.02×104 1.16×104 7.46×102 0.232 6.32×103 3.42×103 4.87×103 7.25×102

0.261 2.58×104 2.17×104 2.38×104 1.03×103 0.261 9.61×103 5.61×103 7.61×103 9.99×102

0.290 5.19×104 4.64×104 4.92×104 1.37×103 0.290 1.56×104 1.03×104 1.29×104 1.33×103

0.319 5.47×104 4.75×104 5.11×104 1.79×103 0.319 2.07×104 1.37×104 1.72×104 1.74×103

0.349 8.99×104 8.07×104 8.53×104 2.30×103 0.349 8.32×104 7.42×104 7.87×104 2.23×103

0.523 9.11×104 6.06×104 7.58×104 7.63×103 0.523 7.09×104 4.13×104 5.61×104 7.40×103

0.552 4.81×104 1.22×104 3.02×104 8.97×103 0.552 3.20×104 0 1.44×104 8.71×103

0.581 3.25×104 0 1.09×104 1.05×104 0.581 4.43×104 3.60×103 2.39×104 1.02×104

0.610 2.26×104 0 −8.02×103 1.21×104 0.610 6.38×104 1.69×104 4.04×104 1.17×104

0.639 9.88×104 4.35×104 7.12×104 1.38×104 0.639 1.11×105 5.70×104 8.38×104 1.34×104

0.668 4.94×105 4.31×105 4.63×105 1.59×104 0.668 2.62×105 2.00×105 2.31×105 1.54×104

0.697 6.36×105 5.64×105 6.00×105 1.81×104 0.697 2.28×105 1.58×105 1.93×105 1.75×104

0.726 3.20×105 2.38×105 2.79×105 2.04×104 0.726 4.25×104 0 −3.93×103 1.98×104

0.755 2.49×105 1.57×105 2.03×105 2.30×104 0.755 1.22×105 3.29×104 7.75×104 2.23×104

0.929 1.50×106 1.33×106 1.41×106 4.29×104 0.929 1.35×106 1.19×106 1.27×106 4.16×104

0.958 3.52×105 1.64×105 2.58×105 4.70×104 0.958 7.01×104 0 −6.04×104 4.56×104

0.987 1.77×105 0 7.25×104 5.14×104 0.987 5.91×104 0 −1.15×105 4.99×104

1.017 2.88×105 6.33×104 1.75×105 5.61×104 1.017 3.24×105 1.06×105 2.15×105 5.44×104

1.046 3.24×105 8.01×104 2.02×105 6.09×104 1.046 5.32×105 2.96×105 4.14×105 5.91×104

1.075 2.78×105 1.48×104 1.46×105 6.57×104 1.075 2.42×105 0 1.13×105 6.38×104

1.104 1.35×105 8.92×104 −4.46×104 7.17×104 1.104 7.41×104 0 −1.92×105 6.96×104

1.133 3.16×105 4.87×103 1.60×105 7.76×104 1.133 8.57×104 0 −1.86×105 7.53×104

1.162 6.94×105 3.59×105 5.27×105 8.37×104 1.162 1.13×105 0 −1.36×105 8.12×104

1.191 1.13×106 7.65×105 9.46×105 9.02×104 1.191 4.65×105 1.15×105 2.90×105 8.75×104

1.365 2.63×106 2.08×106 2.36×106 1.36×105 1.365 2.32×106 1.80×106 2.06×106 1.32×105

1.394 1.50×106 9.16×105 1.21×106 1.45×105 1.394 7.22×105 1.60×105 4.41×105 1.40×105

1.423 7.45×105 1.29×105 4.37×105 1.54×105 1.423 5.48×105 0 2.46×105 1.49×105

1.452 2.20×105 0 −2.95×105 1.63×105 1.452 6.58×105 2.24×104 3.40×105 1.59×105

1.481 2.18×105 0 −3.40×105 1.70×105 1.481 4.67×105 0 1.19×105 1.65×105

1.510 4.90×105 0 1.10×105 1.78×105 1.510 6.16×105 0 2.64×105 1.73×105

1.539 1.02×106 2.46×105 6.35×105 1.94×105 1.539 1.48×106 7.24×105 1.10×106 1.89×105

1.568 1.54×106 7.12×105 1.12×106 2.06×105 1.568 2.05×106 1.25×106 1.65×106 2.00×105

1.597 2.32×106 1.45×106 1.88×106 2.18×105 1.597 1.73×106 8.90×105 1.31×106 2.11×105

Note.We include the k (hMpc−1), the upper limit ΔU
2 (mK2), the lower uncertainty boundDL

2 (mK2), the measured powerΔ2 (mK2), and the 1σ thermal noise (mK2).
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