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Synopsis

Aim and motivation

The status of quantum physics as the standard model for light and matter was

consolidated when it explained all physical phenomena, known at the time of its

formulation, which classical physics failed to aptly describe. Since then, its success

has been undisputed. It has, with tremendous accuracy, described all the physical

events in nature that are known to humans. This overwhelming triumph of quantum

physics has overshadowed classical physics in the microscopic world.

This thesis is a step towards studying the application of classical physics to

seemingly “quantum” effects. Such an endeavour, apart from testing the strength

of classical theories, addresses a larger question that is gaining popularity in the

physics community, that is

“Wherein lies the boundary between the classical and the quantum?”

A better answer to this question has applications beyond intellectual satiation.

The field of quantum information and computing is rapidly growing owing to the

predicted advantages it has over classical computation. However, it can’t be asserted

whether a quantum computer will have a significant advantage, partly because there

may be a classical algorithm that we haven’t found. Mostly, the confidence in a

quantum algorithm comes from the fact that it uses one or more effects that are

signatures of quantum behaviour and have no counterparts in the classical regime.

Therefore, it is necessary to refine the boundary between classical and quantum

behaviour.

xxiii
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Subjects of study

Hong-Ou-Mandel effect using classical pulses

The Hong-Ou-Mandel effect which is considered a signature of the quantum be-

haviour of light is described using the semi-classical theory of photo-detection.

Briefly, when two indistinguishable photons are inputs of a 50:50 beam-splitter,

the output is always a biphoton from one of the output ports. Such effect is consid-

ered to be a signature of the quantum behaviour of light. On the other hand, it has

been always believed that if one uses the classical description of light, the predicted

dip in the coincidence probability has an upper bound of 50%. It is demonstrated,

in theory and experiment, that with proper phase control, the classical pulses can be

setup to bring about a 100% dip in the coincidence probability. Furthermore, it is

shown that the true signature of quantum behaviour is complementarity. While the

photons show particle-like nature in one part of the experiment and behave wave-like

in another part without any change in the source settings, the classical pulse fails to

show both the behaviours. If the classical pulses are setup to show the 100% dip in

coincidence probability (particle-like), it does not show interference (wave-like) and

vice-versa.

Unitary description of diffraction

Unitary operators form the machinery of quantum information processing and com-

putation. The rich unitary description of optical interferometers has catapulted

them to become one of the most common platforms for quantum information im-

plementation. One of the first interferometers is the double-slit setup. Using this

simple setup, Young demonstrated the wave-like behaviour of light. On the other

hand the double-slit setup was also used to demonstrate the wave-like nature of mat-

ter particles. Many variations of this experiment like “delayed choice” and “quan-

tum eraser” have been used to study wave-particle duality and complementarity.

Recently, a triple slit experiment has brought forward the naive application of the
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superposition principle in quantum mechanics. Another work has demonstrated that

a triple slit can be used to make spatially encoded qutrits. Therefore, there is no

doubt that slit-diffraction is one of the simplest yet one of the most powerful exper-

iments to test boundary between classical and quantum physics. However, although

diffraction-based interferometry has been studied extensively using Maxwell’s equa-

tion and even Feynman’s path integrals, a unitary description of diffraction is not

available. In this thesis, a post-selected unitary description of slit-diffraction is de-

veloped. Post-selection is important to take into account the losses that are intrinsic

to slit-diffraction.

As a first step, it is shown that a double-slit setup can be used as a lossy beam-

splitter. The reason to focus on a beam-splitter is that any N dimensional unitary

operator can be realized in an optical experiment with the use of just beam-splitters

and phase-shifters. All the calculations and simulations have been done using clas-

sical electromagnetic theory.

Methods

Hong-Ou-Mandel effect using classical pulses

According to the semi-classical theory of photo-detection the probability of coinci-

dence is proportional to the cross-correlation of the integrated intensities falling on

the two detectors. With no control over the relative phase of the input pulses, the

phase is uniformly random over the interval [0, 2π) as a result of which the upper of

of 50% comes directly out of the semi-classical theory. However, it is noticed theo-

retically, that this upper-bound depends on the distribution over which the phase is

randomized. Specifically, if the distribution is the sum of two Dirac-Delta functions

1
2

(δ(ϕ) + δ(ϕ− π)), the upper-bound becomes 100%. For the experimental demon-

stration of this phenomenon, an electronic circuit is used instead of an optical one.

This version of the experiment enables one to generate classical pulses with com-

plete control over the relative phase hence over its distribution. A power-splitter
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that functions as a 50:50 beam-splitter for electrical signals with frequency in the

microwave range is used to create an interferometer. The cross-correlation of the

outputs is then calculated to confirm that the dip in the coincidence probability is

100%.

For the complementarity part of the experiment, the output of the first power-

splitter is passed through another 50:50 power-splitter (creating a Mach-Zehnder

interferometer(MZI)), and the cross-correlation of the outputs is calculated for two

cases. In one case, none of the arms of the MZI is blocked, and in the other, one of

the arms is blocked. The results are compared with those of the standard quantum

version of same experiment with optics using photons (with frequency in the infrared

range) as inputs.

Unitary description of diffraction

To cast diffraction optics in framework of unitary transformation, the solutions of

the time-independent wave equation, i.e., the Helmholtz equation are represented in

terms of slice modes. A slice mode is a projection of an orthogonal mode of the 3

dimensional Helmholtz equation onto a sequence of 2 dimensional slices all parallel

to each other. The propagation of these slices is captured through sequential map-

pings which depends on the Green’s function of the Helmholtz equation with the

chosen boundary conditions. Furthermore, diffraction is modelled as a transforma-

tion that a slice undergoes as it passes through slits. The transfer matrix for such a

transformation is found. The entire process is depicted by a flow-chart that follows.
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The solutions from N sources is projected onto the first slice using the Green’s

function G. This projection has an infinite dimensional vector representation. The

propagator P which maps the solution between successive slices propagates the

slice modes to the slits where they undergo diffraction. The propagator then maps

the transformed slice modes onto the second slice. G† then reverse propagates the

projection on the second slice to the detectors where they are truncated from an

infinite dimensional vector to N detector modes. The net transformation T has an

N ×N representation as a result of this truncation.

Since slit-diffraction has intrinsic losses, post-selection is employed to ignore

the lossy part of the transfer matrix T . Mathematically, this process involves a

singular-value-decomposition (SVD) which separates the unitary part of the transfer

matrix from the lossy part, resulting in a post-selected unitary representation of slit-

diffraction.
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Importance and future research

This thesis is a step towards understanding how far classical description can take us,

and where it hits a wall beyond which the quantum theory becomes indispensable.
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Chapter 1

Introduction

This work aims to develop a framework in which slit diffraction can be repre-

sented using unitary operations on a Hilbert space. Specifically, we want a finite-

dimensional discrete representation to express slit diffraction as a transfer matrix.

The motivation is to use slit diffraction as a platform for linear optics quantum

information processing. Linear optical quantum information processing (QIP) [1, 2]

has a mathematical representation in the form of finite-dimensional unitary transfer

matrices operating on a Hilbert space of vectors that represent qubits/qudits [3, 4].

The qubits are usually encoded in the polarization degree of freedom of a single

photon, and optical components like beam splitters [5, 6, 7] and phase-shifters are

used to implement the unitary transformations on them. For higher-dimensional

QIP, systems such as orbital angular momentum [7, 8, 9, 10, 11] of photons are

used. We map diffraction optics over a finite-dimensional unitary representation to

connect it to qubit or qudit processing.

It has been shown that a triple slit system can be used to encode a qutrit [12, 13].

The novel interpretation of slit-diffraction that we present here sets the stage for

extending the scope of application of diffraction interferometry to modern problems

like higher-dimensional information processing. An example of alternative platforms

that are used for higher-dimensional QIP in the optical regime is the orbital angular

momentum of light in which information is encoded in the orbital angular momentum

of light and manipulated [7]. But OAM based QIP is practically challenging and

1
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poses problems like state preparation and state readability. Slit diffraction will be

a more robust alternative to OAM based platforms as a diffraction interferometer

has less moving components and can be miniaturized to construct sophisticated

interferometers at small scales. Moreover, a finite-dimensional unitary description

of diffraction also has applications in the field of matter-wave interferometry [14, 15,

16, 17, 18, 19].

The first step towards achieving this is to get the classical treatment right, and

that is what we will do here. We have a plethora of literature on the classical

treatment of diffraction, and we will use it to our advantage. However, to connect

to the unitary representation of quantum gates, we need tools to test the diffraction-

based gates. Linear quantum interferometers are characterized using one- and two-

photon interference, i.e., single count and coincidence count [20]. We need the

classical equivalent of such characterization tools and therefore require a bridge

between the classical and the quantum.

The Hong-Ou-Mandel effect is one example of such a diagnostic [21]. We connect

the coincidence probability of photons to the correlation of classical fields and show

that a quantum phenomenon such as HOM can be simulated using classical light.

Such a bridge between the classical and quantum gives us the necessary tool to test

our slit diffraction interferometers to connect them with quantum gates.

1.1 Overview

We deal with the diffraction of classical fields and show a formalism in which slit-

diffraction is represented as a finite-dimensional unitary transfer matrix [22] (in the

postselected sense). We project the three-dimensional solutions of the Helmholtz

equation [22, 23] on two-dimensional imaginary planes and call these projections

slices. The propagation and diffraction of the fields are expressed as a slice-to-

slice map as one goes from one slice to another from the sources to the detectors

through the slits. By choosing an appropriate basis for the slices, we get an infinite-

dimensional transfer matrix representation of such a map. Postselecting a finite
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number of basis elements on the slices, reduces the transfer matrix to an effective

finite-dimensional matrix. We show that such a truncated matrix is in general not

unitary because of the losses in diffraction and that the polar decomposition [24]

of the effective transfer matrix reveals the underlying unitary transfer matrix along

with the lossy component.

Using the postselected unitary transfer matrix formalism of diffraction, we show

that a customized double-slit setup is effectively a lossy beam splitter in the classical

regime. A cubic beam splitter is a two-input-two-output optical device that has a

2×2 unitary transfer matrix that transforms the fields entering its input ports to the

fields exiting its output ports [5, 6]. This 4-port device, along with phase shifters,

serves as the building blocks of any N -channel interferometer [25, 26, 27, 28, 29].

The novelty and importance of our work lie in connecting one of the most elegant and

fundamental experiments in scientific history, i.e., double-slit-diffraction with other

types of interferometry which are used to solve some of the most critical problems

in modern physics, like QIP.

To verify the beam splitter like behaviour of the double-slit setup, we compare

the correlation of the classical outputs with that of the cubic beam splitter. We

connect the classical correlation of the classical fields with the probability of photon

coincidence counts through the semiclassical theory of photoelectric detection. As

a part of that, we also show that the Hong-Ou-Mandel effect, which is considered

to be a signature of the quantum behaviour of light, can be simulated using the

classical description of light. Moreover, we show that it is the wave-particle comple-

mentarity that is the actual boundary between the classical and quantum behaviour

of light. The connection between the classical and quantum correlations gives us

the necessary tool to test our slit diffraction interferometers to connect them with

quantum gates. We then verify the beam splitter further by concatenating two

double-slit based beam splitters and adding a phase-shifter to construct an effective

Mach-Zehnder interferometer [30].

The two-dimensional transfer matrix representation of double-slit-diffraction val-
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idates the formalism and allows us to extend to a higher-dimensional system and

find a transfer matrix representation for the same. Here we show such an applica-

tion by finding the transfer matrix for a triple-slit system, demonstrating the way

to extend the formalism from two slits to a higher number of slits.



Chapter 2

Background

We now discuss the relevant background concepts for the formalism that is presented

in this work. The key ingredients of a unitary description include

• A Hilbert space: The Helmholtz equation, is a self-adjoint linear differential

equation. Therefore, the solutions of the Helmholtz equation form a Hilbert

space. The inner product in this Hilbert space is the spatial overlap between

the two functions. In this chapter, we discuss the Helmholtz equation and

its formal solution in terms of its Green’s function [22, 23, 31]. Specifically,

we discuss the application of the far-field and small-slit approximations to the

solution of the Helmholtz equation for slit diffraction.

• A propagator that maps between different elements in the Hilbert space. Such

a propagator comes out naturally in terms of the Green’s function.

• A basis for the Hilbert space. The natural choice for a basis in this situation

seems to be the eigensolutions of the Helmholtz equation which form a com-

plete orthonormal basis for the Hilbert space of solutions of the Helmholtz

equation. However, the eigenfunctions of the Helmholtz equation do not have

compact support over finite intervals. On the other hand, detectors have finite-

sized windows. Therefore, we need a basis of functions with compact support

over the window of the detector. For this, we discuss wavelets which are func-

tions with compact support and can be translated and dilated to make an

5
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orthonormal set of functions [32, 33].

• A transfer matrix representation of the propagator in the chosen basis. In this

chapter, I discuss the transfer matrix for a beam splitter as an example. A

beam splitter is one of the fundamental components in optical interferometry.

Moreover, any unitary operator can be realized using beam splitters and phase

shifters.

2.1 The Helmholtz equation

In the classical regime, light is represented as continuous spacetime fields which

are solutions to the Maxwell’s equations. In this thesis, the electric field is always

linearly polarized and therefore, the scalar version of the wave equation is sufficient.

In free space, the four Maxwell’s equations combine to yield the wave equation

(
∇2 − 1

c2
∂2
t

)
E(r, t) = ρ(r, t) (2.1)

where E (linearly polarized and hence represented by a scalar) is the electric field

(or any field that satisfies the wave equation) and ρ is a source term [22, 23, 31].

Specifically, if the time-dependence of the source is like that of a simple-harmonic

motion, the time-dependence of the field is also simple-harmonic. The harmonic

time-dependence is a good approximation for many sources which produce light

by the oscillation of charges. In this case, the wave equation reduces to a time-

independent equation

(
∇2 − 1

c2
∂2
t

)
E(r) e−iωt =ρ(r) e−iωt, (2.2)

=⇒
(
∇2 +

ω2

c2

)
E(r) =ρ(r), (2.3)

where ω is the angular frequency of the oscillation. For brevity, it is customary to
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define

k2 =
ω2

c2
, (2.4)

reducing the Helmholtz equation to

(
∇2 + k2

)
E(r) =ρ(r), (2.5)

which is referred to as the Helmholtz equation.

The Helmholtz equation is a second-order partial differential equation. The

complete formal solution of the equation requires the boundary conditions to be

specified. Let us consider a volume V enclosed by a surface ∂V as shown in figure

2.1, in which I choose a connected region for simplicity. Within V , there is a source

ρ(r′), and we want the field at any point r within the volume but outside the region

occupied by the source. This is easily done by finding the Green’s function of the

Helmholtz equation.

Let G(r, r′) be the Green’s function of the Helmholtz equation. Then

(
∇′2 + k2

)
G(r, r′) =δ3(r − r′), (2.6)

where δ is Dirac-Delta function. On combining the Green’s function equation with

the Helmholtz equation we get

E(r′) δ3(r − r′) =G(r, r′) ρ(r′) + E(r′) ∇′2G(r, r′)−G(r, r′) ∇′2E(r′)

=G(r, r′) ρ(r′) +∇′ · (E(r′) ∇′G(r, r′)−G(r, r′) ∇′E(r′)) (2.7)

On integrating both sides of the above equation over the volume V , and by applying

the Gauss’s divergence theorem, we get

E(r) =
∫∫∫
V

d3r′ G(r, r′) ρ(r′) +
∫∫
∂V

d2r′ n̂(r′) · (E(r′) ∇′G(r, r′)−G(r, r′) ∇′E(r′)) (2.8)
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V

∂V

ρ(~r′)
b

E(~r)

Figure 2.1: A source ρ(r) in a volume V enclosed within the surface ∂V . The field
at point P at position r is E(r).

where n̂(r′) is the unit normal to the surface. The right-hand-side (RHS) of Eq. (2.8)

has a volume term and a surface term. The volume term is the contribution from

the source and the surface term is the contribution from the boundary of the vol-

ume. The boundary condition is therefore important for the complete solution. The

Green’s function of the Helmholtz equation in free space is given by

Gret (r) =
1

4π

ei|k|r

r
, (2.9)

which is the retarded or forward propagating Green’s function and

Gadv (r) =
1

4π

e−i|k|r

r
, (2.10)

which is the advanced or backward propagating Green’s function. The derivation of

the Green’s function of the Helmholtz equation is presented in Appendix A.
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2.2 Hilbert space

Consider the homogeneous Helmholtz equation

(
∇2 + k2

)
E(r) = 0, (2.11)

with respect to some boundary condition. If E1(r) and E2(r) are two distinct

solutions of Eq. (2.11), then E1(r) + E2(r) is also a solution owing to the linearity

of the equation. As Eq. (2.11) is a self-adjoint linear differential equation, all the

solutions of the equation, with respect to the given boundary condition, form a

Hilbert space with the inner product

〈E1, E2〉 =

∫∫∫
V

d3r E∗1(r)E2(r). (2.12)

The solutions of Eq. (2.11) are also called the eigensolutions of the Helmholtz equa-

tion, which form an orthonormal basis that spans the entire Hilbert space. Therefore,

the particular solution of Eq. (2.5) can be expanded as a linear superposition of the

eigensolutions of the Helmholtz equation.

Furthermore, consider a coordinate system in which the solution is separable in

the transverse coordinate, say r⊥, and the longitudinal coordinate, say z, then the

projections of the 3D solutions on a 2D surface z = z0 also form a Hilbert space as

they satisfy the equation

(
∇2
⊥ +

(
∂2
z

∣∣
z0

+ k2
))

E(r) = 0, (2.13)

where the double derivative with respect to z is calculated at z = z0. The inner

product of the projected solutions is defined as

〈E1(z0), E2(z0)〉 :=

∫∫
z=z0

d2r⊥ E
∗
1(r⊥; z0)E2(r⊥; z0), (2.14)

where z0 is now a parameter that denotes the surface under consideration.
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One choice of basis for the Hilbert space on each slice is the set of the eigenso-

lutions of Eq. (2.13). However, there is a practical problem with using such a basis.

As, in practice, the detectors used in an experiment have finite-sized windows, it is

suitable to choose a basis whose elements have a compact support over the window

of the detector. The eigensolutions of the Helmholtz equation, in general, do not

have this property as they have support over the entire 2D surface. This calls for

choosing a different basis, the elements of which have compact support. In the next

section, we discuss such functions, which could be used to construct a basis for the

slices.

2.3 Wavelets

In simplest terms, wavelets are square-integrable functions with compact support

over a finite interval. The concept of wavelets is much more intricate, powerful and

detailed than what the above definition suggests. It is one of the most powerful tools

in the field of signal processing. We discuss wavelets at a level that is sufficient to

understand its application to the research presented in this thesis. A detailed study

of the subject can be found in many books, examples of which are in the references

[32, 33].

A simple example of wavelet is the Haar wavelet function defined as

ψ(x) :=


1 0 ≤ x < 0.5

−1 0.5 ≤ x < 1

0 otherwise

(2.15)

and shown in the Fig. 2.2 [34]. Unlike a sine function which extends to infinity on

both sides, the above function is truncated over a finite interval. Other wavelets of

the same type can be constructed by translating (moving) and dilating (stretching)
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1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(x
)

Haar wavelet function

Figure 2.2: Haar wavelet function.

the above function. By translating and dilating ψ(x), we get

ψ(x; a, b) =
1√
a
ψ

(
x− b
a

)
(2.16)

where a is the factor by which the width of ψ(x) is changed and b is the the dis-

placement of ψ(x). The factor 1/
√
a makes sure that the area under the curve

is unchanged. Figures 2.3 and 2.4 show examples of translated and dilated Haar

wavelets respectively.

2.3.1 Dyadic dilation and translation

It is customary in signal processing to dilate the wavelet function by powers of

2, i.e., a = 2−m for some integer m. The minus sign in the exponent is just a

convention, which means that increasing the value of m shortens the extent of the

wavelet function. Moreover, it is useful (as you will see shortly) to translated the

wavelet function in steps of its width, i.e., b = w2−mn, where w is the width of

the generating wavelet function. With w = 1, the dyadically dilated and translated
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x

1.5
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0.0

0.5

1.0

1.5
(x

;0
.5

,b
)

Translated Haar wavelets
b = 0
b = 1
b = 2

Figure 2.3: Haar wavelet with a = 0.5 (see Eq. (2.16)) and varying values of b which
correspond to different amounts of translation.

1 0 1 2 3 4 5
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

(x
;a

,0
)

Dilated Haar wavelets
a = 1
a = 2
a = 3
a = 4

Figure 2.4: Haar wavelet with b = 0 (see Eq. (2.16)) and different values of a which
correspond to different amounts of dilation.
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1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x
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0.5
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m
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(x
)

Dyadic dilations of Haar wavelet function
m = 1
m = 0
m = 1
m = 2

Figure 2.5: Wavelets with dyadic dilations. The value of n is set to zero while m is
varied (see Eq. (2.17)).

wavelet function takes the form

ψm,n(x) :=
1√
2−m

ψ
( x

2−m
− n

)
∀m,n ∈ Z (2.17)

where Z is the set of integers. Figure 2.5 shows only dyadic dilation of ψ(x) and the

following Fig. 2.6 shows the dyadic translation of the wavelet function with fixed m.

An advantage of dyadic dilation and translation of the Haar wavelet is that with

respect to the inner product

〈ψm,n, ψm′,n′〉 :=

∞∫
−∞

dx ψm,n(x) ψm′,n′(x) (2.18)

it produces a set of orthonormal functions. If m = m′ and n = n′, the Haar wavelets

are identical and completely overlapping with each other and therefore

〈ψm,n, ψm,n〉 = 1, (2.19)

as |ψm,n(x)|2 is a box with width 2−m and height 2m and therefore has area 1. Now

let us consider the case in which m = m′ but n 6= n′. As discussed earlier, the
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x
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n(

x)

Dyadic translations of Haar wavelet function
n = 1
n = 0
n = 1
n = 2

Figure 2.6: Wavelets translated in steps of their widths. The value of m is set to
zero while n is varied (see Eq. (2.17)).

translation is always done in steps of the width of the Haar wavelet function, and

the compact support of the wavelet ensures that there is no overlap between Haar

wavelets translated with respect to each other (see Fig. 2.6). This implies that

〈ψm,n, ψm,n′〉 = δn,n′ , (2.20)

where δ is Kroenecker delta. Now let us consider the case in which n = n′ but

m 6= m′. First, note that the oscillatory nature of the Haar wavelet function leads

to the fact that the area under the function is zero. Consequently, the area under

a translated and/or dilated Haar wavelet is also zero. We show this formally for

completeness. The area under the Haar wavelet function ψ(x) is

∞∫
−∞

dx ψ(x) =

0.5∫
0

dx 1 +

1∫
0.5

dx (−1) = 0 (2.21)

which is easy to see from the definition of the Haar wavelet function. Now the area
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under ψm,n(x) is

∞∫
−∞

dx ψm,n(x) =

∞∫
−∞

dx
1√
2−m

ψ
( x

2−m
− n

)
, (2.22)

where by subtituting

t =
x

2−m
− n

we get

∞∫
−∞

dx ψm,n(x) =
√

2−m

∞∫
−∞

dt ψ (t) (2.23)

=0, (2.24)

as the area under the Haar wavelet function is zero.

Now getting back to the case when n = n′ and m 6= m′. The compact support of

ψm,n(x) is the interval [2−mn, 2−m(n+ 1)). Now the inner product of two wavelets

with different values of dilation parameter is

〈ψm,n, ψm′,n〉 =

∞∫
−∞

dx ψm,n(x) ψm′,n(x). (2.25)

If m′ > m, the range of the integration reduces to
[
2−m

′
n, 2−m

′
(n+ 1)

)
and yields

〈ψm,n, ψm′,n〉 =

2−m
′
(n+1)∫

2−m′n

dx ψm,n(x) ψm′,n(x). (2.26)

As we have assumed m′ > m, 2−m
′
< 2−m and 2−m

′
(n+ 1) ≤ 2−m(n+1)

2
which implies

that

[
2−m

′
n, 2−m

′
(n+ 1)

)
⊂
[
2−mn,

2−m(n+ 1)

2

)
, (2.27)

and as ψm,n(x) is constant over the interval
[
2−mn, 2−m(n+1)

2

)
, the integral in Eq. (2.26)
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becomes

〈ψm,n, ψm′,n〉 =±
2−m

′
(n+1)∫

2−m′n

dx ψm′,n(x) (2.28)

=0, (2.29)

as we have shown that the area under a wavelet is zero. Combining Eqs. (2.19),

(2.20) and (2.29), we get

〈ψm,n, ψm′,n′〉 =δm,m′ δn,n′ , (2.30)

hence proving that the dyadically translated and dilated Haar wavelets form a set of

orthonormal functions. This set of orthonormal functions can be used to construct

a basis for a function with support over a compact interval (or window). However,

in general, an infinite number of wavelets are required to construct a given function.

To circumvent this problem a bound must be set on the wavelets by using the scaling

function.

2.3.2 Haar scaling function

Haar scaling function is defined as

φ(x) :=


1 0 ≤ x < 1

0 otherwise

(2.31)

as shown in Fig. 2.7. The scaling function can also be translated and dilated to

create a set of other functions, i.e.,

φj,k(x) :=
1√
2−j

ψ
( x

2−j
− k
)

∀m,n ∈ Z. (2.32)

Now at a particular value of j, say j0, the translation of the scaling function yields a

set of orthonormal functions as shown in Fig. 2.8. It is clear that there is no overlap
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Figure 2.7: The Haar scaling function in one dimension.
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Figure 2.8: Scaling function translated in steps of its width. The value of j is set to
−2 while k is varied (see Eq. (2.32)).
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between the different translated scaling functions and therefore,

〈φj0,k, φj0,k′〉 = δk,k′ (2.33)

for any fixed value of j = j0. The Haar scaling function with a particular value of j

along with the Haar wavelets can be used to reconstruct a function defined over a

given interval.

2.3.3 Expanding a function using Haar wavelets

As an example, consider the function

f(x) = sin(x) (2.34)

defined over an interval, say [0, 1). To reconstruct this function in terms of the Haar

wavelets and scaling function, we fix j = 0, k = 0 so that the scaling function covers

the entire interval. We label the chosen scaling function as

g1(x) = φ0,0(x) (2.35)

Along with the chosen scaling function, we choose all the Haar wavelets that have

compact support within the interval [0, 1). Such wavelets are

gı(x) = ψm,n(x) ∀ m,n ∈ Z, (2.36)

where Z is the set of integers and ı is a meta-index for m and n which have the

constraints

m ≥ 0, (2.37)

0 ≤n < 2m, (2.38)
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which ensures that all the wavelets are within the chosen interval. The function

f(x) can be expanded as

f(x) = 〈φ0,0, f〉φ0,0(x) +
∑
m>0

2m−1∑
n=0

〈ψm,n, f〉ψm,n(x), (2.39)

or in terms of the meta-index

f(x) =
∞∑
i=0

〈gi, f〉 gi(x). (2.40)

The accuracy of the expansion depends on the upper bound of m (see Fig. 2.9).

2.3.4 Wavelets in two-dimensions

Two-dimensional wavelets are just the tensor product of two wavelets in orthogonal

coordinates. For example, if the orthogonal coordinates are the Cartesian x and y

coordinates, then the two-dimensional wavelet in the xy plane is

ψm,n,m′,n′(x, y) := ψm,n(x)ψm′,n′(y), (2.41)

and similarly, the two-dimensional scaling function is

φj,k,j′,k′(x, y) := φj,k(x)φj′k′(y). (2.42)

In this work, we will project the 3D solutions of the Helmholtz equation on 2D planes,

and the two-dimensional Haar wavelets will be used to make a postselected basis

for the inputs and the outputs. In the next chapter, we discuss how to use the 2D

wavelets to cast diffraction in the language of postselected unitary representations.

In particular, we show that in this framework, a double-slit setup is an effective

beam splitter in a postselected sense. In the following section, we briefly discuss the

classical treatment of slit diffraction.
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Figure 2.9: The accuracy of reconstruction of f(x) = sin(x) using the Haar wavelets
and scaling function according to Eq. (2.39). The reconstruction is better with
higher upper bound of m.
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2.4 Slit diffraction

The formal solution of the Helmholtz equation is one of the ways in which the

diffraction of light is explained (there are other methods like finite-difference-time-

domain). The advantage of the Green’s function method of finding the diffracted

fields is that with some reasonable assumptions like far-field, the solution of the

Helmholtz equation reduces to a straightforward expression. Specifically, for diffrac-

tion by a small slit, the far-field solution reduces to the mathematical representation

of the well-known Huygen’s principle [22].

Consider an opaque (infinite) plane with a rectangular aperture in it, placed

at z = zs (see Fig. 2.10). Let the position of the center of the slit be rs and its

extent be wx and wy along the x and y axes respectively. All the other boundaries

of the system are at infinity (for simplicity). A point-like source of electromagnetic

radiation is placed at position rf . Assuming that the time-dependence of the source

is harmonic, the field from the source will satisfy the Helmholtz equation (Eq. (2.5)).

With far-field and small-slit approximations, the diffracted field is

E(r) =− ikwxwy

(
z − zs
|r − rs|

+
zs − zf
|rs − rf |

)
G(r, rs) G(rs, rf )

× sinc

(
kwx

2

(
r − rs
|r − rs|

− rs − rf
|rs − rf |

)
· x̂
)

× sinc

(
kwy

2

(
r − rs
|r − rs|

− rs − rf
|rs − rf |

)
· ŷ
)
, (2.43)

which is the familiar sinc variation of light diffracted by a rectangular slit. The

detailed calculations are shown in Appendix B. In this thesis, we use Eq. (2.43) to

calculate the fields diffracted by slits in the far-field regime.

As we want to connect slit diffraction interferometry with the unitary description

of multi-beam optical interferometry, it is important to discuss a key optical device

called the beam splitter and its versatility in the experimental implementation of

unitary operations.
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ẑŷ

Figure 2.10: The schematic of single slit diffraction of light from a point-like source.
The dotted line represents the fact that the boundary of the system is at infinity. A
point-like source of monochromatic light is placed at rf . The light emanating from
it is diffracted by a slit whose center is at rs. The position r is where the field is
measured.

2.5 Beam splitter and its transfer matrix

A beam-splitter is a ubiquitous two-input-two-output component in interferometry.

The importance of beam splitter is a result of the fact that any N -dimensional

unitary operator can be decomposed into beam splitter operations and phase shifter

operations [28, 29]. An example schematic of such a decomposition, with N = 4

is shown in Fig. 2.11. In optics, a beam splitter is commonly in the form of a

glass cube, half-silvered mirror or fibre-based, which have two input and two output

modes corresponding to each of their ports. In a 50:50 cubic beam splitter, for

example, the modes are the k-vectors corresponding to the plane wave entering each

of its ports, forming a basis to represent the inputs and outputs as two-dimensional

column vectors in a Hilbert space. In such a representation, the beam splitter
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Figure 2.11: An example of how an N -dimensional (N = 4 here) unitary operator
can be constructed using beam splitters and phase shifters in general.

transformation has a two-dimensional transfer matrix representation [5, 6, 35],

UBS =
1√
2

1 i

i 1

 , (2.44)

where each row corresponds to the superposition of the two input modes to form

the outputs, and complex elements of the matrix denote the phase-shift introduced

in each input. The transformation in Eq. (2.44) is that for a cubic beam splitter like

that shown in Fig. 2.12. Another example of a beam splitter matrix is

UBS =
1√
2

1 1

1 −1

 , (2.45)

also known as the Hadamard gate in quantum information. A half-silvered mirror

beam splitter (see Fig. 2.13) has such a transfer matrix.

In general, if the source of light does not emit in a single mode (say, a diver-
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Figure 2.12: A cubic beam splitter. Figure 2.13: A half-silvered mirror as a
beam splitter.

b

b

Figure 2.14: A beam splitter setup with source emitting multiple modes, in this case,
infinitely many plane wave modes. In such a case the beam splitter transformation
has an infinite-dimensional transfer matrix representation. In order to truncate the
transfer matrix to a 2-dimensional matrix, two input and two output modes must be
post-selected. For example if the selected modes are those corresponding to normally
incident input and output modes, the 2× 2 transfer matrix is as in Eq. (2.44).
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gent beam), the vector representation of the inputs and outputs can be infinite-

dimensional, yielding an infinite-dimensional transfer matrix of the beam splitter.

In such a case, two suitable input and two output modes can be post-selected to

reduce the infinite-dimensional transfer matrix to a postselected 2× 2 transfer ma-

trix as in Eq. (2.44). In practice, this postselection is achieved by collimating the

input beams of the beam splitter. But as collimation is not perfect, leaving the

beam slightly divergent, the 2 × 2 matrix is only an approximate representation of

the beam splitter transformation.

A consequence of the beam splitter transformation is that the outputs of the

beam splitter are correlated. Such a correlation manifests as the Hong-Ou-Mandel

effect as a result of two-photon interference.

2.6 Hong-Ou-Mandel effect

The Hong-Ou-Mandel [21] effect is a result of two-photon interference between single

photons passing through a beam splitter, one entering each port of the beam splitter

as shown in Fig. 2.15. Let us say that the two photons are in modes k1 and k2, one

for each input port of the beam splitter. If the two input photons arrive at their

respective ports at the same time, the input state of the system can be represented

as a vector in a Hilbert space as

|ψ〉in =â†1 â
†
2 |0〉1 |0〉2 (2.46)

where â†1 is the creation operator for a photon in mode k1 and â†2 is that for mode

k2. After passing through a 50:50 beam splitter, the state transforms as

|ψ〉out =

(
â†1 + iâ†2√

2

)(
â†1 − iâ†2√

2

)
|0〉1 |0〉2 , (2.47)
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|0, 2〉 |1, 1〉|1, 1〉

|1, 1〉
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Figure 2.15: Schematic of the Hong-Ou-Mandel effect. The rectangular blocks rep-
resent 50:50 beam splitters and the arrows represent the input and output photons.
The figure shows the four possible outputs of the beam splitter when two indistin-
guishable photons enter the beam splitter. The HOM effect is the non-occurrance
of the top-left and bottom-right cases due to two-photon interference.

and as
[
â†1, â

†
2

]
= 0, the final state reduces to

|ψ〉out =

(
â†1

)2

+
(
â†2

)2

2
|0〉1 |0〉2 (2.48)

=
|2〉1 |0〉2 + |0〉1 |2〉2√

2
. (2.49)

Therefore, due to the two-photon interference both the photons exit the same output

port of the beam splitter, and the probability of one photon exiting each port is zero,

resulting in zero chance of coincident detection of photons at the two detectors placed

at the output ports. This bunching of photons is call the Hong-Ou-Mandel effect

and it is considered one of the signatures of the quantum nature of light.

If there is a time-delay between the incident input photons, the probability of

coincident photodetection is shows a 100% dip as the time-delay approaches zero,

making the two input photons indistinguishable from each other.

The accurate characterization of linear optical interferometers requires the mea-

surement of one- and two-photon interference [20]. As we cast slit diffraction in the

language of linear optical interferometers using a unitary representation, we need

these testbeds to verify the diffraction interferometers. However, as we use classical
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treatment for slit diffraction in this work, we need a bridge between the classical

description of light and photodetection. This bridge is provided by the semiclassical

theory of photoelectric detection.

2.7 Semi-classical theory of photoelectric detec-

tion

In the semiclassical theory of photoelectric detection [36, 37, 38], the process of the

photoelectric effect is explained by treating light as a classical electromagnetic field

whereas treating the surface, from which the photoelectrons eject upon illumination,

as composed of quantum systems. It is claimed that the output of the photoelectric

detector is a manifestation of the fluctuations in the light falling on it, in such a way

that the probability of photo-emission is proportional to the instantaneous intensity

of the light.

Building upon that line of reasoning, it was also shown that the correlation be-

tween the photo-detections at two detectors placed at different locations can be

explained by the “fourth-order interference” (or intensity-intensity correlation) be-

tween the classical light falling on these detectors. In particular, if I(r1, t1) and

I(r2, t2) are the intensities intercepted by two detectors at positions r1 and r2, at

times t1 and t2 respectively, the probability of coincident photoelectric detections is

given by

P (r1, t1, r2, t2) =η1η2 〈I(r1, t1)I(r2, t2)〉∆t1∆t2 (2.50)

where ∆t1 (∆t2) is centered around t1 (t2). The angled brackets denote the ensemble

average over the flucutations in the light and η1 (η2) is the efficiency of detector 1
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(detector 2). If T is the acquisition time of the detector then

P (r1, t1, r2, t2) =η1η2

〈 t1+T/2∫
t1−T/2

dt I(r1, t)

t2+T/2∫
t2−T/2

dt′ I(r2, t
′)

〉
(2.51)

therefore, relating the probability of multi-photodetections on distinct detectors to

the intensity-intensity correlation of the classical light.

However, the derived correlation formula did not explain the Hong-Ou-Mandel

effect. According to the semiclassical theory, the coincidence probability drops only

by 50%, as opposed to the 100% dip, which is observed in experiments. This led

to the widespread belief that the HOM effect is a signature of the quantum nature

of light and that no semiclassical theory can explain it. In this work, we will show

that the HOM effect can indeed be simulated using the classical description of light.

This helps us connect the classical treatment of slit diffraction with the unitary

description of quantum gates.



Chapter 3

Unitary Description of Diffraction

In this chapter, we build the framework in which slit diffraction is cast as unitary

transformations on a Hilbert space. By using double-slit diffraction as an example,

we show that a double slit is effectively a beam splitter acting on an appropriate

Hilbert space. In this scheme, the 3-dimensional solution of the Helmholtz equation

is projected on to 2-dimensional surfaces all parallel to one another. We refer to

these projections as slices of the field. Using the formal solution of the Helmholtz

equation, we find a propagator that maps one slice to another. Diffraction is then

expressed as a transformation of the slice by the slit(s) [39].

The aim is to represent the slice-to-slice map as a transformation on vectors in a

Hilbert space. As the Helmholtz equation is a self-adjoint linear partial differential

equation, its solutions are vectors in a Hilbert space, say H. As a corollary, each

slice is also a vector in a subspace of H. With an appropriate basis on each slice, the

slice-to-slice propagator has a transfer matrix representation. In general, the said

Hilbert space is infinite-dimensional yielding an infinite-dimensional transfer matrix

representation of diffraction. With the use of postselection (see the discussion of

such a postselection for a beam splitter in §2.5) the transfer matrix is truncated to

be finite-dimensional.

For double-slit setup, with which we work here, we get a postselected 2-dimensional

transfer matrix. However, in general, such a transfer matrix is not unitary because

of the losses incurred by the diffracting fields. In such cases, we carry out a polar

29
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decomposition [40] of the transfer matrix to reveal the underlying unitary transfor-

mation. The Hermitian component of the polar decomposed transfer matrix captures

the losses in the system. The unitary component of the transfer matrix comes out

close to that for a beam splitter.

To verify the beam splitter behaviour of the double-slit setup, we calculate the

intensity-intensity correlation of the outputs and compare it with that for a beam

splitter. Moreover, we also construct a Mach-Zehnder interferometer using such

double-slit setups as beam splitters to show the effectiveness of the beam splitter.

The double-slit setup, as an example, set the stage for extending the framework

to systems with a higher number of slits. As an example of that, we apply the

framework to a triple slit setup and find its postselected unitary transfer matrix.

In §3.1, we discuss how the formal solution of the Helmholtz equation is used

to get the slice-to-slice map. In §3.2, we describe the double-slit setup using which

we will describe the framework for a postselected unitary representation of slit-

diffraction. In §3.3, we discuss how to construct an appropriate basis for a slice

using Haar wavelets. From the set of infinite Haar wavelets that will span a slice, we

will postselect two as input modes and two as output modes. With the postselected

input and output modes we get an effective 2× 2 transfer matrix for slit-diffraction

in §3.4. In chapter 5, we verify the double slit as an effective beam splitter by

studying the intensity-intensity correlation of its outputs, and by concatenating two

such double-slit setups to construct an effective Mach-Zehnder interferometer. The

final section of this chapter, i.e., §5.3, we extend the framework to find the transfer

matrix for a triple slit. All the results of this work are numerically solved.

3.1 Slice-to-slice map

If one does not have any information about the source of the field but knows the

field on a surface, is it possible for the observer to get the value of the field at

other points? Consider a source ρ(r) that emits radiation with harmonic time-

dependence, as shown in the Fig. 3.1. The dotted boundary denotes boundaries
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Figure 3.1: An example of calculating the field from the field on a slice. The dotted
lines of the boundary denote that the boundary is infinitely far from the points of
interest. The observer at point P does not have any information about the source
but only knows the field on the given slice. The field on the slice is from the source
ρ, and the surface term of the formal solution of the Helmholtz equation Eq. (2.8)
can be used to calculate the field at point P.

at infinity (or very far away from the points of interest). The solid line represents

a two-dimensional infinite plane on which the field is projected. The observer at

point P does not have any information about the nature of the source term ρ but

knows the field on the two-dimensional surface. Henceforth, the projection of the

three-dimensional field on a two-dimensional surface is called a slice of the field.

The field at P can be calculated from the field at the surface alone.

The field on any point on the chosen plane can be calculated using the volume

term of the formal solution of Helmholtz equation. The surface term does not any
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point r on the plane is

Es(r) =

∫∫∫
V

d3r′ G(r, r′) ρ(r′) (3.1)

the field at point P is from the slice, i.e.,

E(r) =

∫∫
s

d2r′ n̂(r′) · (E(r′) ∇′G(r, r′)−G(r, r′) ∇′E(r′)) (3.2)

3.2 The double-slit setup

We elaborate on the slice modes concept using a customized double-slit setup with

two sources and two detectors as shown in Fig. 3.2, where ŷ extends into the plane

of the paper. The slits are parallel to the xy plane, and so are the sources and the

detectors at different values of z. The width of the apertures and other distances

are chosen such that far-field approximations can be applied to solutions of the

Helmholtz equation. A perfectly absorbing barrier is added that runs along the z

direction and separates a slit from the detector across the barrier. The purpose of

the barrier is to prevent the high diffraction orders [22] from reaching the detectors

and also to isolate one detector from another to avoid an overlap of fields between

the two.

3.2.1 Sources

The sources S1 and S2 are monochromatic point-like sources (practically a spherical

source with diameter ∼ λ) emanating linearly polarized light as spherical waves

(Y 0
0 (θ, φ) spherical harmonic [23]) with wavelength λ. They are placed at

rS1 = (d/2, 0,−L) , (3.3)

rS2 = (−d/2, 0,−L) , (3.4)
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Figure 3.2: Schematic of the double-slit setup considered in this paper. Two point-
like sources S1 and S2 emanate monochromatic linearly polarized light with harmonic
time-dependence. The imaginary plane at z = z1 (represented by a dotted line) is
for the input slice. Two slits A1 and A2 are placed at z = 0 where each slit is
aligned centre-to-centre with one of the sources. The second pair of slits D1 and
D2 are placed at z = z2 where each port is aligned centre-to-centre with one of the
sources. Behind each of these slits is a square-faced detector which measures the
integrated intensity of the light falling on it. The plane z = z2 is also for projecting
the output slice. A perfectly absorbing barrier runs between z = 0 and z = z2 that
prevents the field from slit A1 (A2) from reaching port D2 (D1). The dashed arrows
represent the ray approximations of the fields from the sources to the detectors.
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respectively, where

d = 20λ (3.5)

is the distance between the two sources and

L = 800λ (3.6)

is the distance between the sources and the slit plane along the z direction. Without

loss of generality, we choose λ = 1.

In the far-field regime [22], these sources can be approximated by Dirac-delta

functions δ3(r − rS1) and δ3(r − rS2). We multiply the source-term with a factor

of 105 so that the simulation results do not suffer precision errors. As the sources

are linearly polarized, the field from source Si at points far from the slits, before

diffraction, can be found by solving the Helmholtz equation for scalar fields and can

be approximated by

E(i)(r) ≈G(r, rSi), (3.7)

where the use of the scalar equation is justified because the polarizations of field

from both the sources are collinear. Note that the approximation in Eq. (3.7) is

valid only because the slit plane is far enough from the plane at z1, so that the

surface-effects are negligible.

3.2.2 Slits

Two square-shaped slits A1 and A2, each with side-length

w = 4λ (3.8)
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are placed at z = 0 with the positions of their centers

rA1 = (d/2, 0, 0) , (3.9)

rA2 = (−d/2, 0, 0) , (3.10)

respectively, and therefore aligned with the respective sources. In the Fraunhofer

regime, the diffracted field E
(i)
j (r) from source Si through slit Aj, is calculated by

simplifying the surface term in Eq. (2.8) by applying the appropriate approximations

(see appendix B). Note that, due to the opaque barrier between the two detectors,

detector port Dk is blocked from the field E
(i)
j (r) if k 6= j.

3.2.3 Detectors and slices

Another pair of square-shaped slits D1 and D2, aligned with A1 and A2 respectively,

are placed at z = L, behind each of which is a square-law detector (that measures

the integrated squared magnitude of fields) whose window is of the same shape and

size as those of the slits. The detector is 100% efficient for the light of wavelength

λ. The detectors could have been placed without the second pair of slits which

play a role only when two such double-slit setups are concatenated to construct

interferometers.

Two imaginary planes are at

z1 =− 0.9L, (3.11)

z2 =L, (3.12)

on which the input and output slices are considered respectively, for the double-slit.

The input slice is not placed at −L where the sources are, as the solution of the

Helmholtz equation diverges at the sources.

The Fraunhofer approximation can be applied to the fields in the double-slit

described above if the Fresnel number of the system is much less than 0.1. For the
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dimensions chosen, the Fresnel number is

F =
w2

Lλ
= 0.02 (3.13)

which justifies the use of Fraunhofer approximation. Moreover, as we seek a beam

splitter matrix in Eq. (2.44), we have chosen the dimensions such that

√
L2 + d2 − L = (2q + 1)

π

2
, ∀ q ∈ Z, (3.14)

such that the field from source S1 (S2) acquires a phase of an odd multiple of π/2

with respect to the field from S2 (S1) as it reaches the slit A2 (A1). The transfer

matrix of the double-slit diffraction is sensitive to the geometry and dimensions of

the system. Here we have chosen the dimensions motivated by the form of the 50:50

beam splitter matrix as in Eq. (2.44), but other transfer matrices can be realized by

choosing different geometries and dimensions.

Now we discuss how to choose a basis for the two slices, that we have placed

in the system, using two-dimensional Haar wavelets. We will also discuss how to

postselect wavelets for the two input and two output modes of the double-slit beam

splitter.

3.3 The slice modes

The non-compact eigenfunctions of the Helmholtz equation do not make suitable

modes for detectors with finite-sized windows. Haar functions (§2.3) on the other

hand, have compact support over a given interval and therefore two-dimensional

Haar functions make suitable modes for the square-shaped detector windows. The

Haar wavelets and the Haar scaling functions, however, form an overcomplete set of

orthonormal functions [32, 33].

To remove the redundancy, we divide each slice into non-overlapping square

patches, each with side-length equal w, as shown in Fig. 3.3. The square patches
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Figure 3.3: An example of how a plane at some z can be segmented into non-
overlapping square patches indexed by two integers k and k′. The width of each
patch is equal to the width of the available detector. All the patches must be
considered to know the entire slice at z. But usually, there are a finite number of
detectors so that only a few patches can be covered. In that case, only those Haar
wavelets and scaling functions are considered which have a compact support on the
considered patches.

are labelled using two indices k and k′ which take integer values. Each square

patch supports a countably infinite set of Haar wavelets that fall entirely within the

patch. Together with the Haar scaling function that covers the square patch, all the

supported Haar wavelets form a basis for any function that has compact support

over the patch. The first element of this basis is the Haar scaling function that

covers the entire patch, i.e.,

g1(x, y; z1, j0, k, k
′) := φj0,k(x) φj0,k′(y − j0), (3.15)

where the dilation parameter of the scaling function, i.e., j0 is set so that g1(x, y; z1, j0, k, k
′)

covers the entire patch (see Eq. (2.32)), and z = z1 is the plane on which the slice

is considered. Note that we have chosen y− j0 as the argument of the y component

of the two-dimensional scaling function in Eq. (3.15), so the the scaling function

is symmetrical about the x axis just like the window of the detector. The other

elements of the basis are all Haar wavelets with compact support over the square
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patch, i.e.,

gı(x, y; z1, j0, k, k
′) := ψm,n(x)ψm′n′(y − j0) ∀ ı > 1 ∈ Z+, (3.16)

where Z+ is the set of positive integers. The subscript ı is a meta-index for m, n,

m′ and n′, and

m ≥ j0, (3.17)

2m−j0k ≤n < 2m−j0(k + 1), (3.18)

m′ ≥ j0, (3.19)

2m
′−j′0k′ ≤n′ < 2m

′−j′0(k′ + 1), (3.20)

where the ranges ensure that all the wavelets have compact support over the square

patch chosen. If such Haar functions for all the square patches are combined, the

slice can be resolved in terms of these functions (see §2.3.3 for example).

The 2D wavelets are used as basis functions on each of these slices so that

each slice can be represented as a column vector. By choosing the input and the

output slices on either side of the slits, a transfer matrix mapping the input slice

to the output slice can be calculated. However, the slice-to-slice map can also

be done in a continuous manner where a propagator sequentially maps one slice

to another very close to it, gradually moving forward in the z direction. Such a

map is constructed using the surface term of the formal solution of the Helmholtz

equation (see Eq. (3.2)), which is discussed in appendix C. However, for the purpose

of showing that a double-slit is effectively a beam splitter, a direct transfer matrix

between the input and output slices suffices.

The two detector-windows in the double-slit setup cover only two of the square

patches. Consequently, they do not intercept the entire slice, but only a portion

of it. Nevertheless, each detector window supports a countably infinite number of

Haar functions. We justify the postselection of two input and two output modes.
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3.3.1 Output modes

As the width of the detector is w = 4, we set j0 = −2 so that the Haar scaling

function covers the entire patch. According to the positions of the detectors in

Fig. 3.2, the square patch occupied by the detector at port D1 is the one with

indices k = 2, k′ = 0. Similarly, the patch covered by the detector at port D2 is the

one with k = −3, k′ = 0. From the infinite set of Haar functions supported by the

square patches, two have to be postselected. There are two ways to achieve that.

One way is to design a detector that responds to the projection of light on a

particular Haar wavelet or scaling function. Although possible in principle, making

such a detector is practically challenging because of the jump discontinuities in the

Haar wavelet functions. Another and more tractable approach is to construct the

double-slit setup in such a way that most of the light intercepted by the detectors

has a projection on a single Haar wavelet or the scaling function, which becomes

a detector mode. Consequently, even if the detector is multimode, the detection is

in single mode. The latter is the case with the double-slit setup considered in this

work.

To find such modes, the diffracted fields intercepted by the detector windows

(ports D1 and D2) are resolved in terms of the corresponding Haar functions. For

example, the field E
(1)
1 (x, y; z2) can be expanded as

E
(1)
1 (x, y; z2) =

∞∑
ı=1

Aı(z2) gı(x, y; z2,−2, 2, 0), (3.21)

where Aı(z2) are the projections of the field on the corresponding Haar function. For

convenient visualization, the field at y = 0, i.e., E
(1)
1 (x, 0; z2) is shown in Figs. 3.4

and 3.5.
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Figure 3.4: Reconstruction of the real part of E
(1)
1 (x, 0, z2) using the wavelets sup-

ported over the patch k = 2, k′ = 0, using Eq. (3.21). The values of dilation
parameter m for the Haar wavelets (as in Eq. (2.17)) is taken from −2 to 2 so that
the Haar wavelets are visible. A finer reconstruction can be done by taking m upto
higher values. For m upto 6, the reconstruction is almost perfect.
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Figure 3.5: Reconstruction of the imaginary part of E
(1)
1 (x, 0, z2) using the wavelets

supported over the patch k = 2, k′ = 0, using Eq. (3.21). The values of dilation
parameter m for the Haar wavelets (as in Eq. (2.17)) is taken from −2 to 2 so that
the Haar wavelets are visible. A finer reconstruction can be done by taking m upto
higher values. For m upto 6, the reconstruction is almost perfect.

Although it takes more than one basis function to capture the fine features of the

field, most of the power of the light resides in just one mode, i.e., g1(x, y; z2,−2, 2, 0).

The proof of this fact is in Table 3.1, where the total power intercepted by port D1
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is compared with the total power in the projection on g1(x, y; z2,−2, 2, 0). The cal-

culation shows that about 99.9956% of the total power is in the said projection. The

field E
(2)
1 (x, y; z2) also has most of the power in this mode. Therefore, we ignore

all the other Haar functions which have negligible contribution to the field. Simi-

larly, for detector port D2, the dominant contribution is from g1(x, y; z2,−2,−3, 0).

Henceforth, two post-selected output modes are

e1(x, y; z2) :=g1(x, y; z2,−2, 2, 0), (3.22)

e2(x, y; z2) :=g1(x, y; z2,−2,−3, 0), (3.23)

which reduce the infinite-dimensional representation of the slice at z = z2 to a

two-dimensional column vector

Y (i)(z2) =


〈
e1(z2), E

(i)
1 (z2)

〉
〈
e2(z2), E

(i)
2 (z2)

〉
 , (3.24)

where E
(i)
j (x, y; z2) is the field from source Si diffracted by slit Aj and therefore

intercepted by the detector port Dj, and

〈
e1(z2), E

(i)
1 (z2)

〉
=

∞∫
−∞

dx

∞∫
−∞

dy e∗1(x, y; z2) E
(i)
1 (x, y; z2) (3.25)

and similarly for the second entry in the column vector.
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Integrated intensity intercepted Integrated projections on chosen modes Ratio

∫∫
D1

dx dy
∣∣∣Ē(1)

1 (x, y; z2)
∣∣∣2 = 0.633115

∫∫
D1

dx dy
∣∣∣〈e1(z2), Ē

(1)
1 (z2)

〉∣∣∣2 = 0.633087 99.9956%

∫∫
D2

dx dy
∣∣∣Ē(1)

2 (x, y; z2)
∣∣∣2 = 0.61200

∫∫
D2

dx dy
∣∣∣〈e2(z2), Ē

(1)
2 (z2)

〉∣∣∣2 = 0.611971 99.9952%

∫∫
D1

dx dy
∣∣∣Ē(2)

1 (x, y; z2)
∣∣∣2 = 0.61200

∫∫
D1

dx dy
∣∣∣〈e1(z2), Ē

(2)
1 (z2)

〉∣∣∣2 = 0.611971 99.9952%

∫∫
D2

dx dy
∣∣∣Ē(2)

2 (x, y; z2)
∣∣∣2 = 0.633115

∫∫
D2

dx dy
∣∣∣〈e2(z2), Ē

(2)
2 (z2)

〉∣∣∣2 = 0.633087 99.9956%

Table 3.1: A comparison of the total integrated intensity detected by the detectors
and the square of the magnitudes of the projections of the fields on the chosen
modes. The ratios show that most of the light intercepted by the detectors are in
the chosen modes as in Eqs. (3.22) and (3.23). Therefore the choice of modes is
justified.

3.3.2 Input modes

Each source in the double-slit setup (Fig. 3.2) emits light in a particular mode, for

example spherical mode (approximately). The projection of the source modes on the

slice at z = z1 are projected on the Haar functions on that plane. The input modes

chosen are square patches on the plane at z1 centered at the same positions on the

plane as the output ports are placed on plane at z2. Moreover, the post-selected

input modes are similar to those chosen for the output, i.e.,

e1(x, y; z1) :=g1(x, y; z1,−2, 2, 0), (3.26)

e2(x, y; z1) :=g1(x, y; z1,−2,−3, 0), (3.27)

with z1 denoting that the modes are for a slice on plane z = z1. Note that the input

and output modes are distinguished using the parameter that denotes the plane

on which the slice is, i.e., z. Therefore, the post-selected two-dimensional vector
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representation of the input, i.e., slice at z = z1

X(i)(z1) =


〈
e1(z1), E

(i)
1 (z1)

〉
〈
e2(z1), E

(i)
2 (z1)

〉
 , (3.28)

where the superscript denotes that source Si is turned on. With the input and

output slice modes postselected, we need a transfer matrix that maps the input

modes to the output modes.

3.4 The effective 2× 2 transfer matrix

The transfer matrix T (z2, z1) must map the input vector X(i)(z1) to the output

vector Y (i)(z2), i.e.,

T (z2, z1) X(i)(z1) = Y (i)(z2), (3.29)

for i ∈ {1, 2}, which gives a set of four simultaneous equations for the four elements of

T (z2, z1). To solve the equations, the double-slit setup is characterized numerically,

by calculating X(i)(z1) and Y (i)(z2) for each source turned on at a time. The

transformation equation for both sources are combined into one matrix equation

T (z2, z1)

(
X(1)(z1) X(2)(z1)

)
=

(
Y (1)(z2) Y (2)(z2)

)
, (3.30)

where

(
X(1)(z1) X(2)(z1)

)
is a 2×2 matrix with X(1)(z1) and X(2)(z1) as columns,

and similar for the right-hand side. Inverting Eq. (3.30) yields

T (z2, z1) =

(
Y (1)(z2) Y (2)(z2)

) (
X(1)(z1) X(2)(z1)

)−1

, (3.31)

provided that

(
X(1)(z1) X(2)(z1)

)
is invertible. In general,

(
X(1)(z1) X(2)(z1)

)
is a symmetric matrix because of the symmetry in the setup, and the diagonal

elements are slightly different from the off-diagonal elements as the projections of
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field from one source is not equal on both the post-selected modes. Such a matrix

is always invertible.

However, the effective transfer matrix is not unitary because diffraction is intrin-

sically a lossy process in which most of the light incident on the slits are blocked

by the opaque areas and also the fact that the finite-sized detectors only intercept

a portion of the slice. Moreover, the wavelets, chosen as bases of the Hilbert space

of each slice, are not eigenfunctions of the Helmholtz equation. Therefore, there is

cross-talk between different modes as one moves from one slice to another. Polar

decomposition of the transfer matrix reveals the underlying unitary transformation.

Such a decomposition factorizes the non-unitary transfer matrix into a unitary ma-

trix and a Hermitian matrix.

3.5 Numerical results

Numerical calculations of the solutions of the Helmholtz equation (with Fraunhofer

approximations, see §2.4) gives the resultant transfer matrices for the double and

triple-slit setups. The effective 2× 2 transfer matrix is calculated by characterizing

the double-slit setup by turning one source on at a time. For each source the input

and output slices have a post-selected vector representation. For the double-slit

setup under consideration, the input and output vectors when source S1 is on are

X(1)(z1) ≈

−394.761− 41.473 i

10.284− 13.398 i

 , (3.32)

Y (1)(z2) ≈

0.008− 0.796 i

0.782 + 0.008 i

 , (3.33)
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with respect to the post-selected modes (see §3.3). Similarly, the post-selected vector

representations of the input and output slice when source S2 is on are

X(2)(z1) ≈

 10.284− 13.398 i

−394.761− 41.473 i

 , (3.34)

Y (2)(z2) ≈

0.782 + 0.008 i

0.008− 0.796 i

 . (3.35)

We use the above results in Eq. (3.31) to calculate the effective transfer matrix.

With respect to the post-selected input and output vectors, the effective transfer

matrix is

T (z2, z1) ≈ e0.476πi

 2.07 1.90 e0.486πi

1.90 e0.486πi 2.07

× 10−3, (3.36)

which is a symmetric matrix as expected from the symmetry of the double-slit setup

(Fig. 3.2). Note that apart from a factor of about e0.476πi × 2
√

2× 10−3, the matrix

T (z2, z1) is approximately (but not exactly) a 50:50 beam splitter matrix. The

deviation from the ideal 50:50 beam splitter is due to the non-unitary nature of the

transfer matrix. To reveal the exact unitary transformation the polar decomposition

of the transfer matrix is performed.

As expected, the transfer matrix T (z2, z1) is not unitary as can be seen from

T (z2, z1)T †(z2, z1) ≈

7.90 0.35

0.35 7.90

× 10−6 6=

1 0

0 1

 , (3.37)

because of the reasons discussed in §3.4. To reveal the underlying unitary transfor-

mation a polar decomposition of T (z2, z1) is carried out which yields,

T (z2, z1) = U(z2, z1)P (z2, z1), (3.38)

where the result for the double-slit system considered in this paper, i.e. the polar



46 CHAPTER 3. UNITARY DESCRIPTION OF DIFFRACTION

decompostion of the transfer matrix in Eq. (3.36) is

U(z2, z1) ≈ e0.47πi × 1√
2

 1.04 0.95 i

0.95 i 1.04

 , (3.39)

P (z2, z1) ≈

2.81 0.06

0.06 2.81

× 10−3, (3.40)

where U is the transformation of a 54:46 beam splitter upto a global phase (which

is irrelevant as the detectors are square-law type) [39]. The Hermitian component

P (z2, z1) captures the non-unitarity of the transfer matrix. Its diagonal elements

show the fraction of the input that is detected by the detectors after post-selection.

The off-diagonal terms show cross-talk between the two modes. Note that the near-

diagonal form of the matrix P (z2, z1) means that there is negligible cross-talk be-

tween the two modes and the nature of the non-unitarity is only attenuation in

individual channels. Therefore, the double-slit setup in Fig. 3.2 is effectively a lossy

beam splitter with respect to the post-selected input and output modes.

For verification, the cross-correlation of the postselected outputs is calculated,

and the result is compared with what is expected from an ideal beam splitter. In the

next chapter, we discuss the classical equivalent of two-photon interference, which

is a tool to characterize a linear interferometer. This helps connect the classical

description of slit diffraction and the unitary framework that we have presented

here with the unitary description of quantum interferometry.



Chapter 4

Hong-Ou-Mandel Dip with

Classical Light

When two identical photons enter the two ports, one photon in each port, of a 50:50

beam splitter, they undergo two-photon interference (see Fig. 2.15). The outcome

of such an interference manifests as bunching of photons at the output. If the

probability of coincident photodetection at the two output ports, is observed as

a function of the time-delay between the two incident photons, a dip is observed.

Specifically, as the time-delay between the incident photons approaches zero, the

probability of coincident detection also drops to zero, i.e., both the photons exit the

same port. This phenomenon is called the Hong-Ou-Mandel effect (HOM effect)[21].

However, it is popular folklore that no semi-classical theory can explain the 100%

HOM dip. Here, we show that the HOM effect is not an undisputed signature of

the quantum nature of light. We show that the HOM effect can be mimicked using

classical light in such a way that it cannot be distinguished from the HOM effect

with photons [41]. Further, we show that to distinguish the classical version of the

experiment from the quantum version, one must exploit the wave-particle duality

of the photons, by setting up a complementarity experiment along with the HOM

setup.

A brief outline of the semi-classical theory of photoelectric detection, as pro-

47
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posed by Mandel, Sudarshan and Wolf [36, 37], and that is relevant to this work,

is discussed in §2.7. We now describe how the HOM effect can be mimicked with

classical pulses and conceptualize the experimental setup used to achieve this task.

4.1 Simulating HOM effect with classical pulses

In this section, we discuss the schematic of the experiment to demonstrate the

simulation of the HOM effect with classical pulses. Consider two Gaussian pulses

travelling perpendicular with respect to each other, each entering one port of a 50:50

beam splitter, as shown in figure 4.1. In classical electrodynamics, the two pulses

will be represented by analytic functions of spacetime (or fields), i.e.,

E1(r, t;k1, ω, 0, 0) =E(k1 · r − ωt) ei(k1·r−ωt), (4.1)

E2(r, t;k2, ω, τ, ϕ) =E(k2 · r − ωt− ωτ) ei(k2·r−ωt+ϕ), (4.2)

where Ei is the electric field of the ith pulse. In general, the field is vectorial, but if

both signals have the same polarization, the vector notation can be dropped. E is

the amplitude-modulation of the signals (such as Gaussian), ki is the propagation

vector, ω is the angular frequency, ϕ is the relative phase between the two signals and

τ is the time delay between the two pulses. The perpendicularity of the travelling

directions of the two pulses necessarily and sufficiently implies that k1 · k2 = 0.

Furthermore, if the setup is such that the path lengths of both beams are equal,

then we ignore the r dependence as well. Figures 4.2 and 4.3 show an example of

the pulses. Note that the time delay τ appears only in the envelope and not in the

carrier oscillating wave. A time delay introduced in the oscillating wave is equivalent

to introduction of a phase shift and hence can be absorbed in ϕ.

In simplified notation, if the two perpendicular pulses serve as inputs to a bal-

anced cubic beam splitter, the outputs are

E±(t;ω, τ, ϕ) =
1√
2

(E1(t;ω, 0, 0)± E2(t;ω, τ, ϕ)) . (4.3)
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Figure 4.1: A cubic beam splitter with two input pulses entering its ports. Each
pulse is sinusoidal pulse with Gaussian.

Figure 4.2: Example of a pulse with sinusoidal carrier and a Gaussian amplitude
envelope.
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Figure 4.3: Two Gaussian pulses with a time delay of τ between them

We now introduce fluctuation in the signals by making the phase ϕ a random variable

with a fixed probability distribution P (ϕ) such that

∫
dϕ P (ϕ) cosϕ = 0, (4.4)

which yields

|E±|2 =
1

2

(
|E1|2 + |E2|2

)
(4.5)

thereby revealing that second-order interference between the pulses is not observable

if the time-scale of the fluctuation is much less than the time-scale of the measure-

ment.

In the semi-classical theory of photodetection [36, 37], the coincidence proba-

bility at the two detectors is proportional to the cross-correlation of the integrated

intensities at the detectors. The normalized correlation function is

C(τ) :=

∫
dϕP (ϕ)

∫ Toff

Ton
dt |E+(t;ω, τ, ϕ)|2

∫ Toff

Ton
dt′ |E−(t′;ω, τ, ϕ)|2[∫

dϕP (ϕ)
∫ Toff

Ton
dt |E+(t;ω, τ, ϕ)|2

] [∫
dϕ′P (ϕ′)

∫ Toff

Ton
dt |E−(t;ω, τ, ϕ′)|2

] ,
(4.6)

where E+(t;ω, τ, ϕ), E−(t;ω, τ, ϕ) are the output fields from the transmitted and

reflected ports of the 50:50 beam splitter respectively, when the input pulses have
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carrier frequency ω, a time delay τ between them, and relative phase ϕ which fluctu-

ates with probability P (ϕ). Time T = Toff −Ton over which each signal is measured

is much larger than input-pulse width. We have normalized the correlation function

so that it is independent of the amplitudes of the input pulses and the detector

efficiencies. However, the correlation is still sensitive to the difference between the

amplitudes of the individual pulses. Without loss of generality, setting Ton = 0 and

using Eqs. (4.1), (4.2) and (4.3), with the simplified notation, we obtain

T∫
0

dt |E±(t;ω, τ, ϕ)|2 =
1

2

T∫
0

dt
[
E2(t;ω) + E2(t− τ ;ω)

±2E(t;ω)E(t− τ ;ω) cosϕ] . (4.7)

If T is large compared to input-pulse width, the first two terms are equal. The third

term, which captures the temporal overlap of the two pulses, is a function of time

delay and phase. From the definition of cross-correlation in Eq. (4.6) and (4.7), we

obtain

C(τ) = 1− I
2(τ ;ω)

I2(0;ω)

∫
dϕ P (ϕ) cos2 ϕ, (4.8)

where

I(τ ;ω) =

T∫
0

dt E(t;ω) E(t− τ ;ω), (4.9)

Therefore, the correlation function depends on the ensemble of phases as well as the

time-delay between the input pulse. The visibility of the correlation vs time-delay

curve is

V = 1− C(0)

C(τ)
=

∫
dϕ P (ϕ) cos2 ϕ, (4.10)

which depends on P (ϕ).

The folklore that semi-classical theory cannot explain the HOM effect of a 100%

dip in the coincidence probability, comes from the fact that, the probability distri-

bution of the phases, i.e., P (ϕ) is always chosen to be a uniform distribution over
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the continuous interval [0, 2π) as that is what happens when there is no control over

the relative phase, i.e.,

P (ϕ) =
1

2π
(4.11)

which when put in Eq. (4.10), yields

V =
1

2
, (4.12)

as is claimed. However, there are other probability distributions that satisfy Eq. (4.4)

so that the field-field interference is washed out. An example of which is the prob-

ability distribution

P (ϕ) =
1

2
δ(ϕ) +

1

2
δ(ϕ− π), (4.13)

which means that the phases are picked uniformly from the discrete set {0, π}. Such

a probability distribution gives a 100% dip in the cross-correlation function, i.e.,

V = 1, (4.14)

thereby proving that the HOM effect can be simulated using classical pulses provided

the ensemble of input signals are pre-selected appropriately. The point of emphasis

here is that the chosen probability distribution still washes out the second-order

interference, thereby revealing the higher-order interference. This fourth-order in-

terference captured by the correlation function is a measure of the probability of

coincident photoelectric detections at the two detectors. In the following section,

we describe an example scenario in which this result can be used to simulate the

HOM effect, such that it is indistinguishable from the quantum version of the ex-

periment.
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4.2 A thought experiment

HOM effect is considered one of the signatures of the quantum nature of light. How-

ever, the simulation of this effect with classical pulses implies otherwise. Consider

a game with two participants, Alice and Bob. Alice has a source of classical light,

and Bob has two photoelectric detectors. The game is for Bob to identify whether

Alice’s source generates classical light or quantum light (photons). As Bob considers

the HOM effect as a signature of the quantum light, he brings a 50:50 beam splitter

along with his detectors and places the two detectors at the two output ports as

shown in Fig. 4.4. Bob’s hypothesis is that Alice’s source generates single photons.

Therefore, he asks Alice to send two photons, one in each input port of the beam

splitter, with different time-delays between them and repeat them several times to

have a large statistical sample from which meaningful inference can be drawn. Bob’s

strategy is to plot the probability of coincidence detections and infer the nature of

the light source from the visibility of the curve. If the dip in the curve is below

or equal to 50%, he identifies the source as classical; otherwise, he identifies it as a

quantum source.

Coincidence logicAlice Bob

Detector

Detector

Beam splitter

Figure 4.4: In this setup, Bob uses the HOM effect as a test to verify the two
photons that Alice is supposed to send. The two signals generated by Alice are
passed through a 50:50 beam splitter and the output is recorded by two photoelectric
detectors by Bob. The two detectors are connected to a coincidence logic that counts
the coincident photoelectric detections at the two detectors.
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Alice, on the other hand, has a classical source. As the semi-classical theory

relates the photon number to the intensity of classical light, Alice sends in a very

low-intensity signal, when Bob asks for single photons in each port of the beam

splitter. The intensity of the input signals is low enough that at most a single

photoelectric emission will take place when the light falls on a detector. However,

Alice plans to misguide Bob into thinking that her source generates single-photons.

She does this by controlling the relative phase between the classical input pulses so

that Bob’s coincidence probability vs time-delay graph shows a 100% dip. This way,

Bob is fooled into thinking that Alice’s source generates single-photons.

However, Bob is cleverer than Alice thinks, and he announces that even though

his observation of HOM effect suggests that Alice’s source generates single photons,

he wants to extend the setup to construct a Mach-Zehnder interferometer(MZI)

and check for interference effects. Bob’s extended setup is shown in figure 4.5. He

closes an MZI and puts a phase-shifter in one of the arms. If Alice’s source indeed

generates single photons, Bob should see an interference effect as he rotates the

phase-shifter as the superposition of biphoton state in the two arms of the MZI will

show interference. Let us assume that the time-delay between the two inputs is set

to zero. Then, in the two-photon case, the input to the beam splitter can be written

in Fock basis as |1, 1〉. On passing the first beam splitter, the output is the N00N

state

1√
2

(|2, 0〉 − |0, 2〉). (4.15)

The phase-shifter imparts a phase, say θ, in one of the arms and therefore, the input

to the second beam splitter in the MZI becomes

1√
2

(
|2, 0〉 − eiθ |0, 2〉

)
.
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The output of the second beam splitter is then

1− eiθ

2
√

2
(|2, 0〉+ |0, 2〉) +

1 + eiθ

2
|1, 1〉

and therefore, an interference pattern is observed as the phase-shifter is rotated. For

the trivial case of θ = 0 (no phase-shift), the output is |1, 1〉 as expected.

Alice Bob

Mirror

Mirror
Phase shifter

Detector

Detector

or Blocker

Figure 4.5: Having checked for the HOM effect with the setup in Fig. 4.4, Bob
checks for interference at the outputs of a Mach-Zehnder interferometer (MZI). A
phase shifter or blocker is placed in one of the arms of the MZI.

On the other hand, in the case with classical pulses, the phase-shifter doesn’t

give rise to such interference at the output, as the output of the first beam splitter

always travels entirely through one of the arms of the MZI. The outputs fields of

the second beam splitter are

η± =
1√
2

[
E+ ± eiθE−

]
, (4.16)

where θ is the phase introduced in one arm. Note that when ϕ ∈ {0, π} one of

E± is always zero and consequently, the terms involving θ always vanish, making

|η±|2 independent of the phase that is introduced by the phase-shifter. In terms of

coincidence probability, the phase-shifter affects the coincidence rate in the quantum
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case but leaves it untouched in the classical case.

But since Bob has announced that he wants to check for interference, Alice

changes the settings of her source such that the relative phase of the input pulses

is uniformly randomized over the continuous interval [0, 2π). Therefore, the pulses

will no longer simulate the HOM effect but will show interference at the outputs

of the MZI. Therefore, Bob is fooled again. Note that, Bob cannot do both types

of measurements, i.e., HOM effect and interference in MZI, simultaneously. Alice

takes advantage of this situation and changes the source settings appropriately to

always convince Bob that her source generates single photons.

Bob is unable to identify the classical nature of Alice’s source because Alice

adjusts the source setting based on what experiment or test Bob is going to perform.

However, if Bob does not announce in advance which test he is going to perform,

Alice will not know which setting to apply and will get caught. In case of a single-

photon source, no such adjustment is required to pass either of the tests that Bob

performs. This is because photons exhibit wave-particle duality without any change

in the source settings, whereas the classical pulses fail that test. Therefore the

wave-particle complementarity is the undisputed signature of the quantumness of

light.

Now we will discuss the experiment to mimic HOM effect followed by another

experiment to test for the wave-particle complementarity showing that the classical

version will fail the complementarity test.

4.3 The experimental setup

In this section, we describe the experiment used to simulate the HOM effect using

classical pulses and the MZI setup used to distinguish between the classical and

quantum case by exploiting the wave-particle complementarity nature of photons.

The key to demonstrating HOM effect with classical pulses is controlling ϕ, which is

achieved in an optics experiment using electro-optic modulators (EOM) [42, 43, 44].

However, the accuracy of the correlation function depends on the input pulses being
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identical. Pulse distortion caused by EOMs can increase distinguishability, thereby

reducing the visibility of the correlation curve. Moreover, maintaining identical po-

larization, perfect alignment of the beams as well as active phase control in such an

experiment that requires many iterations, is cumbersome. This challenge motivated

our use of a novel, carefully designed electrical version of the beam splitter experi-

ment shown in Fig. 4.6. As electrical signals with accurate phase control are directly

generated, an extra apparatus for phase control is not needed. This innovation also

eliminates polarization and alignment issues leading to a clean, precise experiment

beyond the capability of optical systems, which enabled tremendous accuracy and

precision in demonstrating the HOM effect with classical fields.

Figure 4.6: Schematic for the HOM experiment using classical microwave pulses.
Detailed description of the setup is in the main text.

An arbitrary waveform generator (AWG) (Keysight Technologies-33622A) with

dual-channel is programmed using LabVIEW to generate two sine signals with Gaus-

sian amplitude modulation with 100 mV peak-to-peak and 1 kHz carrier frequency.

The programmability of AWG facilitates the control of the relative phase ϕ and

the time delay τ between the two pulses. The input-pulses are injected into a 180◦

power splitter PS1.

The two power splitters PS1 (and PS2 to be used in the MZI setup) are broad-

band (ET industries model: J-076-180) with operating frequency from 770 MHz to

6 GHz. Both power splitters are characterized, and from S-parameter analysis [45],
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the operational frequency is chosen to be 1162 MHz, for which the power splitting

ratios are closest to the ideal expectation of 50:50 (49.3:50.7 for PS1 and 50.3:49.7

for PS2) and phase error is around 2◦-3◦.

An oscilloscope (Agilent Technologies DSO60 14A), denoted by DSO in Fig. 4.6,

is used as a detector with frequency sensitivity up to 100 MHz. As the desired

operation frequency for the power splitters is 1162 MHz, signals from AWG are

up-converted at the transmitter end and down-converted at the receiver end which

requires mixers and a local oscillator. The local oscillator (SG) (Keysight Analog

Signal generator N5173B), is tuned at 1161.999 MHz and connected to a one-input-

four-output power divider (Mini circuits part number: ZA4PD-2). Mixers M1, M2,

M3 and M4 (Mini circuits: FM-2000, level 7 mixer), which operate in the range of

100-2000 MHz, are driven by four output ports of a power divider PD. The power

level from SG is set to +14 dBm to take care of power loss in the cable and power

divider. The output shown on the oscilloscope screen is saved as a MATLABR© data

file for post-processing. Detailed calculations of the signal processing are shown in

§4.3.1 and §4.3.2.

Using LabVIEW we vary τ between −7 ms and 7 ms in steps of 1 ms to calculate

the cross-correlation of the output signals for different time delays. The output sig-

nals recorded at the two channels of the oscilloscope are post-processed to calculate

the cross-correlation using Eq. (4.6) and produce the plots of the cross-correlation

as a function τ . The number of samples of pairs of input signal produced for good

statistics is explained in §4.3.3.

4.3.1 Signal processing in the classical experiment

In the experiment, sinusoidal voltages play the role of the EM radiation. The time

delay between input signals τ and relative phase ϕ are variable parameters. For each

value of τ , an ensemble of output signals is generated with values of ϕ chosen from a

chosen probability distribution. The ensemble is used to calculate cross-correlation.
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Mathematical expressions of the signals generated using the AWG are

E1(t;ω, τ, ϕ) = A1 Exp

(
−1

2

t2

σ2

)
sin (ωt) , (4.17)

E2(t;ω, τ, ϕ) = A2 Exp

(
−1

2

(t− τ)2

σ2

)
sin (ωt+ ϕ) , (4.18)

where A1 = A2 = 0.05 V are the peaks of the Gaussian envelopes of the two signals.

Both signals have Gaussian envelopes with σ = 0.001 s, and the sinusoidal wave has

a frequency f = 1 KHz (ω = 2πf).

The frequency range in which the power splitter has a splitting ratio of 50:50 is

well beyond the maximum frequency that the AWG can produce. So, the effective

input is generated by up-converting the frequency of the input signal by using a

frequency mixer. The frequency of the local oscillator (SG) signal used for the

mixing is fL = 1161.999 MHz. A 4-port power-divider PD is used to branch the

SG signal into four channels, two of which are used to up-convert the input signals,

and the other two are used to down-convert the output of the power splitter. After

the power splitter splits the inputs, the outputs need to be down-converted for

measurement.

The measurement device used is an oscilloscope, two of whose channels are used

to measure the two outputs of the power splitter. As the oscilloscope has an upper

limit to the frequencies that it can measure, the high frequency output of the power

splitter is down-converted using the LO. The result of down-conversion is a mixture

of low and high frequencies. The oscilloscope acts as a low-pass filter and measures

only the low frequency components, making the effective output (see Appendix D)

E±(t;ω, τ, ϕ) =
A2
L

2

E1(t;ω, τ, ϕ)± E2(t;ω, τ, ϕ)√
2

. (4.19)

Although the output depends on AL, the cross-correlation function does not depend

on it because of normalization.
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4.3.2 Data acquisition and post-processing in the classical

experiment

The digital oscilloscope samples the voltage signal at a sampling rate of 2 Giga-

samples per second and consequently the recorded signal is a time-series of voltages

E
(n)
+ (τ, ϕ) and E

(n)
− (τ, ϕ). Each time-series contains a thousand points which im-

plies that the time interval between successive points is ∆t = 1
2×109 s and the total

acquisition time is T = 1000
2×109 s.

To calculate C(τ) we take the ensemble average over the fluctuating ϕ. We

focus our attention to fluctuation that is ergodic, described by a time-independent

probability distribution P (ϕ). The fluctuation can then be simulated by a discrete

random process in which a pair of signals is generated with phase-difference ϕ,

chosen from the said distribution.

4.3.3 Minimum N for good statistics

The relative phase ϕ of the input signals is averaged over so that there is no second-

order interference as we are interested in studying only the fourth-order interference

between the inputs. Consequently, the average integrated intensities of the output

in both arms of the beam splitter (the normalization factor for the cross-correlation)

are independent of τ . Therefore, to ensure the absence of the second-order inter-

ference, we determine the minimum number of samples (of ϕ) required to estimate

the constant average-integrated-intensity within 5% error with a confidence level of

95% using the two-tailed test[46].

Let

µ(ω, τ) =

∫
dϕ P (ϕ)

T∫
0

dt |E±(t;ω, τ, ϕ)|2 (4.20)

be the true average-integrated-intensity of the output signals and

µ∗(ω, τ) =
1

N

N∑
i=1

T∫
0

dt |E±(t;ω, τ, ϕi)|2 (4.21)
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Figure 4.7: Plot of normal distribution. The dotted lines demarcate the boundaries
of the confidence intervals. Between −1.96σ and 1.96σ the area under the curve is
about 0.95.

be the average calculated from the sample outputs, whereN is the number of samples

recorded. Let

t =
√
N
µ∗(ω, τ)− µ(ω, τ)

σ(ω, τ)
(4.22)

where σ(ω, τ) is the true standard deviation of the integrated intensities for each τ .

From the central limit theorem we know that for large enough N , the distribution

of t will be closely approximated by the Normal distribution. As the 95% confidence

interval for a normal distribution is (−1.96, 1.96), the 95% confidence interval (C.I.)

for µ∗(ω, τ) is

C.I. =

(
µ(ω, τ)− 1.96 σ(ω, τ)√

N
,µ(ω, τ) +

1.96 σ(ω, τ)√
N

)
(4.23)

If we want the error in the estimation of µ to be ±5% with 95% confidence, the

width of the C.I. must be 10% of µ; i.e.,

2× 1.96 σ(ω, τ)√
N

= 0.1 µ(ω, τ). (4.24)
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Equation (4.24) is then solved to get the minimum number of samples N required,

N(ω, τ) =

(
1.96 σ(ω, τ)

0.05 µ(ω, τ)

)2

. (4.25)

In the 100% correlation dip case, the phase between the input signals is chosen

uniformly from the set {0, π}, so the probability distribution of ϕ is

P (ϕ) =
1

2
(δ(ϕ) + δ(ϕ− π)) , (4.26)

and Fig. 4.8 shows Nmin as a function of τ .
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Figure 4.8: Plot of minimum number of samples (of ϕ) Nmin versus the time delay τ
between the input signals, for the experiment demonstrating 100% correlation dip.

The 50% correlation dip experiment is done in two versions. First the phase is

chosen uniformly from the continuous interval [0, 2π) for which

P (ϕ) =
1

2π
. (4.27)

In the other version, the phase is chosen uniformly from the set
{

0, π
2
, π, 3π

2

}
with

probability distribution

P (ϕ) =
1

4

(
δ(ϕ) + δ

(
ϕ− π

2

)
+ δ(ϕ− π) + δ

(
ϕ− 3π

2

))
. (4.28)
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In either case, the means and standard deviations for all values of τ are identical

and hence Nmin is given by the graph in Fig. 4.9.
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Figure 4.9: Plot of minimum number of samples (of ϕ) Nmin versus the time delay
τ between the input signals, for the experiment demonstrating 50% correlation dip.

The number of samples to be generated in the experiment is guided by the graphs

in figures 4.8 and 4.9.

4.4 The result of classical experiment

To recreate the 50% dip in the cross-correlation, we run the experiment with a

uniform probability distribution of phase over the continuous interval [0, 2π). The

result of calculated cross-correlation is shown in figure 4.10. The visibility of the

correlation curve is

V = 0.481± 0.025 (4.29)

Figure 4.10 has two curves. The dotted curve is the theoretical estimate from Eq. 4.6,

which shows a dip of exactly 50%. However, the experimental result does not show a

dip of exactly 50%. The reason for that is the systematic error due to the mismatch

of amplitudes of the input pulses. The amplitude mismatch is a result of different
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attenuations in the different channels through which the signals travel. To account

for the amplitude mismatch, we fit Eq. 4.6 with amplitude mismatch as the fit

parameter. As is evident from Fig. 4.10, the fitted curve matches the result well.
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Figure 4.10: The normalized cross-correlation of the output pulses, as a function of
the time delay τ between the input signals when the phase between them is uniformly
random over the continuous interval [0, 2π). The dots represent the experimental
result. The green dashed “Theory” curve is the result of the theoretical calculation
and shows a 50% dip. The attenuation of the signals causes an amplitude mismatch,
which results in a dip slightly less than 50%. The cross-correlation is fitted to the
experimental data to get the orange solid “Fit” curve by taking the amplitude
mismatch as a fit parameter.

The remaining sources of error have a negligible contribution. However, for com-

pleteness, they must be discussed. Every instrument used in the circuit has an

uncertainty in the measurement of the respective quantity. The maximum instru-

mental error was calculated using the specifications from the data-sheets of each

instrument. The error in the beam-splitting ratio of the power splitters was found

from their characterization. The relative error is plotted in Fig. 4.11. Other sources

of errors include finite sampling rates of the AWG and the oscilloscope. However,

the rates are sufficiently high for a near-perfect sampling of the signals.

Another way of achieving the 50% dip is to consider the following probability
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Figure 4.11: The relative error in the cross-correlation of the output signals due
to various instrumental errors, as a function of the time delay τ between the input
signals.

distribution,

P (ϕ) =
1

4
(δ(ϕ) + δ(ϕ− π/2) + δ(ϕ− 3π/2) + δ(ϕ− π)) (4.30)

which also yields a 50% dip in the correlation function as shown in figure 4.12. The

visibility achieved in this case is

V = 0.480± 0.035. (4.31)
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Figure 4.12: The plot shows the normalized cross-correlation as a function of time
delay τ when the phase ϕ between the two input pulses is averaged over the set
{0, π/2, π, 3π/2} with all four values of phase difference being equally likely. The
dots represent the experimental result, the green dashed line is the theoretical ex-
pectation, and the solid orange line is the result of fitting the theoretical expression
for the cross-correlation to the experimental result, with amplitude mismatch be-
tween the input pulses as the fitting parameter. We obtain a TPCVD of 48.03%
with the error bars representing 95% confidence interval of the mean value at each
time delay.

Now we present the result of the experiment with phase been chosen uniformly

from the set {0, π}. As figure 4.13 shows, the dip in the correlation is 100% as the

time-delay approaches zero. We achieve visibility of

V = (99.635± 0.002)%, (4.32)

which shows that a near 100% dip can be achieved with classical pulses as well if we

can control and choose the fluctuations of the relative phase ϕ [41].

To compare the result of the classical version of the experiment, we show the

result from the quantum version in the following section.
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Figure 4.13: The plot shows the normalized cross-correlation as a function of time
delay τ when the phase ϕ between the two input pulses to the beam splitter is
averaged over the set {0, π} with choice of 0 and π being equally likely. The dots
represent the experimental result, the green dashed line is the theoretical expecta-
tion, and the solid orange line is the result of fitting the theoretical expression for the
cross-correlation to the experimental result, with amplitude mismatch between the
input pulses as the fitting parameter. The fitted curve overlaps almost completely
with the theoretically expected curve. We obtain a TPCVD of 99.635% with the
error bars representing 95% confidence interval of the mean value at each time delay.
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4.5 Reproducing the HOM experiment

In the quantum version (see Fig. 4.14 for setup), we employ a Type II heralded pho-

ton source [47] in collinear configuration. A diode laser (Toptica-iwave) at 405 nm

with 50 mW power pumps a 5 mm×5 mm×10 mm Type II BBO crystal. A pair of

lenses of focal lengths 22.5 cm and 25 cm focus the pump beam at the crystal and

collimate the down-converted photons, respectively. Pairs of orthogonally polarized

frequency degenerate photons with a central wavelength of 810 nm are split in two

directions by a polarizing beam splitter (PBS). A half-wave plate in one of the arms

of the PBS makes the two photons have identical polarization. An arrangement

of long-pass filters transmits wavelengths above 405 nm. A band-pass filter with

a 3.1 nm bandwidth centred at 810 nm restricts the bandwidth of the transmitted

photons also blocking any residual pump. Two fibre couplers collect photons from

the same pair and inject them in a 2×2 polarization-maintaining fused fibre beam

splitter (FBS).

Figure 4.14: Schematic for the HOM experiment using IR photons. Detailed de-
scription of the setup is in the main text.

One of the couplers is mounted on a motorized stage to vary the delay between

the two photons. We measure the coincidence count as a function of relative beam

displacement between the signal and idler photons. A 10 µm step size for the stage

provides necessary precision to resolve the HOM-dip width. The data acquisition

time is 5 s at each position, and we measure at 160 positions. We repeat the mea-
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Figure 4.15: The dots represent the average coincidence-counts measured as a
function of the time delay between the two input photons. The green dashed line is
the theoretical expectation (see appendix E.1). The solid orange line is the result of
fitting the theoretical result to the data (see appendix E.2) resulting in a correlation
dip of 96.06%. The fitted line overlaps almost completely with the green dashed
line (theoretical expectation). The R-squared value of the fit is 0.9998. The error
bars represent 95% confidence intervals for the mean coincidence count at each time
delay.

surement 100 times for better averaging and to estimate an error bar (see appendix

F for details).

Figure 4.15 shows two-photon coincidence counts as a function of time delay τ

between the two input photons. We obtain a correlation dip of (96.06± 0.16) %. De-

tails concerning choice of parameters for both experimental setups are in Appendix

E.

4.6 The complementarity test

Classical pulses indeed demonstrate a high degree of anticorrelation indicated by

“HOM-like” dip, by applying appropriate relative-phase control between the two

inputs. As the question of classical-vs-quantum nature is established by trying

to realize particle-wave complementarity, we recombine outputs from the power

splitter on a second power splitter PS2 to make a Mach-Zehnder interferometer
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Figure 4.16: The schematic for the Complementarity experiment using classical
pulses. A detailed description of the setup is in the main text.

Figure 4.17: Schematic for the Complementarity experiment using IR photons. De-
tailed description of the setup is in the main text.

(MZI) to observe interference. Whether particle-like or wave-like behaviour can be

observed in the classical case, depends crucially on the relative-phase choice for

the inputs. Figures 4.16 and 4.17 show the schematics for the classical pulse and

photonic versions of this experiment.

Instead of checking for complementarity through presence/absence of interfer-

ence, we compare the classical and quantum cases using relevant ratios which only

involve measurement at the central maximum of the interference pattern. This is

a much simpler test for complementarity as it avoids phase stabilization of the in-

terferometer in the IR domain and changing path lengths in the classical domain,

which can be non-trivial.



4.6. THE COMPLEMENTARITY TEST 71

We compare the case with both arms of the MZI unblocked (case A) with that

in which one of the arms of the MZI is blocked (case B). In case A, the second power

splitter/beam splitter recombines the arms to form the original inputs resulting in

the probability of coincidence being 1 in both the classical and the quantum versions.

But in case B, the results of the classical and quantum versions differ.

With classical pulses, the output of PS1 is in either one of the arms of the MZI,

and the blocker blocks half of the signals to PS2. The unblocked arm simply splits

into two resulting in a cross-correlation of 50% compared to that in case A. If the

arm with field E− is blocked

η± =
1√
2
E+ =⇒ |η±|2 =

1

2
|E+|2 . (4.33)

On the other hand, if E+ is blocked,

η± = ± 1√
2
E− =⇒ |η±|2 =

1

2
|E−|2 . (4.34)

In either case, the un-normalized cross-correlation function is

C̃(τ) =
I2 +O(τ)

4
(4.35)

where

O(τ) =

∞∫
−∞

dt E(t)E(t− τ) (4.36)

and I = O(0). Specifically, C(0) = I2

2
compared to I2 when none of the arms is

blocked. However, in either case |η+|2 = |η−|2 and hence perfectly correlated, which

implies that classical theory predicts that there will never be a click in only one

detector.

In the quantum version, the blocker collapses the superposition state to either

|2, 0〉 or |0, 2〉 with equal probability, which blocks half of the states, say |0, 2〉,

from reaching the second beam splitter. |2, 0〉 after going through the beam splitter
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transforms to

|2, 0〉 7→ 1√
2
|1, 1〉+

1

2
|2, 0〉+

1

2
|0, 2〉 (4.37)

yielding a coincidence probability of half. The drop in coincidence probability com-

bined with the fact that half of the superposition states were blocked, results in a

25% coincidence rate compared to that in case A.

If one of the arms is blocked, the coincidence count drops. Say |0, 2〉 is blocked,

then a projection operator on the state yields

I ⊗
∑
n

|0〉 〈n|
( |2, 0〉 − |0, 2〉√

2

)
=

1√
2

(|2, 0〉 − |0, 0〉) . (4.38)

Further, applying the second beam splitter B̂ on this state makes the output

B̂
1√
2

(|2, 0〉 − |0, 0〉) =
1

2
√

2

(
|2, 0〉+ |0, 2〉+

√
2 |1, 1〉

)
− 1√

2
|0, 0〉 . (4.39)

This means that the coincidence probability drops from one down to a quarter. This

drop in probability is a combined effect of the loss of half of the biphotons due to

blocking and the absence of interference between the two arms.

Therefore the classical description predicts that the coincidence probability drops

down by a factor of 2, which is different from the prediction of the quantum theory

according to which this factor is 4. This result is equivalent to the complementarity

test and separates the classical theory from quantum theory.

In experiment, we complete the MZI after PS1 with another power splitter PS2.

The time delay between the two input pulses to PS1 is fixed at τ = 0. The two

outputs of PS1 are fed to PS2 (case A). The cross-correlation of outputs of PS2 is

calculated.

Next, we block one arm of the MZI (case B). The connection between the Σ

port of PS1 and 180◦ port of PS2 is removed, and both ends are terminated with
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50 Ω terminators. The ratio between the cross-correlation values in cases A and B

is computed and found to be 0.4919 ± 0.0242. The sources of error are discussed

in appendix E.

To demonstrate complementarity in the quantum case, we make the two input

photons indistinguishable, i.e., τ = 0 so that the output of the first beam splitter is

the superposition of |2, 0〉 and |0, 2〉. The two outputs of the FBS are incident on

a 50:50 beam splitter BS through two collimators. One of the collimators is placed

on a motorized translational stage to vary the path difference (∆l) between the two

arms of the MZI. The output ports of BS are coupled to single-mode fibres that are

connected to two single-photon counting modules (τ -SPAD from Pico Quant) for

coincidence measurement using a universal quantum device time-tagging unit.

We measure coincidence counts as a function of ∆l and observe interference.

However, to compare with the classical version, we fix ∆l = 0, i.e., at the interference

maximum. We then compare the coincidence count in case A with that in B.

To determine the position of the translational stage such that ∆l=0, we make

the time delay between the input photons large so that there is no two-photon state

in the MZI arms. Then we use the interference pattern between the two arms of MZI

to set the stage position for which ∆l = 0. We then make the time delay between

input photons zero again. The result of our experiment is a ratio of 0.25 ± 0.009.

This confirms that in the quantum case, we observe complementarity between

100% correlation dip (particle-nature) and interference (wave-nature) with the same

setting of the sources. The classical signal was not in a superposition state thereby

not exhibiting wave-nature.

Our theory and experiment elucidate the quantumness of one of the most famous,

ubiquitous and useful quantum optics experiments. In summary, we have shown

that the semi-classical theory of photodetection can be applied to calculate the

coincidence probability in a HOM experiment, provided the ensemble of inputs is

chosen appropriately. The 50% threshold for the dip in coincidence probability is not

the boundary between classical and quantum behaviours of light, but rather a result
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of the lack of control over the phases of the input pulses. Although classical pulses

can be made to switch between exhibiting particle-like and wave-like behaviours

by controlling the phase, both cannot manifest with the same choice of phase. A

two-photon state, on the other hand, shows wave-particle complementarity, by being

indivisible in an anticorrelation experiment vs taking a superposition of two paths

when interference is measured in an MZI, without any change in the source setting.

This wave-particle complementarity is the boundary between the classical and the

quantum.

The nature of the correlation of the outputs of a beam-splitter is a signature

of that beam splitter. We use this signature to verify the double-slit based beam

splitter that we discuss in the following chapter.



Chapter 5

Verifying the double-slit beam

splitter

To check the efficacy of the double-slit beam splitter that we constructed in chapter

3, we study the cross-correlation of the outputs. As the solutions of the Helmholtz

equation are time-independent, the cross-correlation is modified such that the dis-

tinguishability parameter between the inputs is the angle of polarization [48] instead

of the time-delay. Further, we concatenate two such double-slit beam splitters to

construct a Mach-Zehnder interferometer.

5.1 Cross-correlation of the post-selected output

fields

5.1.1 Modified correlation function

Let the field from source S2 have a phase ϕ with respect to that from source S1.

Also, we rotate the polarization of source S2 so that θ is the angle between the

directions of polarizations of the fields from the two sources. When both the sources

are turned on, port D1 intercepts the vector superposition of fields from sources

S1 and S2 through slit A1. The integrated intensity in the post-selected mode on

port D1, i.e., e1(x, y; z2) (see §3.3), is the projection of the vector sum of the fields
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intercepted by the port, i.e.,

‖E+(z2, θ, ϕ)‖2 :=

∫∫
z2

dx dy |E+(x, y, z2, θ, ϕ)|2

=
∣∣∣〈e1(z2), E

(1)
1 (z2)

〉∣∣∣2 +
∣∣∣〈e1(z2), E

(2)
1 (z2)

〉∣∣∣2
+ 2Re

{〈
e1(z2), E

(1)
1 (z2)

〉∗ 〈
e1(z2), E

(2)
1 (z2)

〉}
cosϕ cos θ, (5.1)

where θ is the distinguishability parameter between the two sources. Similarly, the

integrated intensity in the post-selected mode on port D2 is calculated by projecting

E−(x, y; z2, θ, ϕ) on to e2(x, y; z2).

The cross-correlation between the two outputs as a function of θ is modified for

time-independent fields as

C(θ; z2) :=

∫
dϕ p(ϕ) ‖E+(z2, θ, ϕ)‖2 ‖E−(z2, θ, ϕ)‖2∫

dϕ p(ϕ) ‖E+(z2, θ, ϕ)‖2 ∫ dϕ p(ϕ) ‖E−(z2, θ, ϕ)‖2 (5.2)

which is the intensity-intensity correlation of the two output modes of the slice at

z = z2.

5.1.2 Numerical result

Now we show the result of the numerically calculated intensity-intensity cross-

correlation of the post-selected outputs using Eq. (5.2) with

p(ϕ) =
1

2π
, (5.3)

i.e., the relative phase between the two sources is uniformly random. Figure 5.1

shows the values of the correlation as a function of the distinguishability parameter,

which in this case is the relative polarization angle θ between the two sources. The

function that fits the result is

C50(θ) = 0.75− 0.25 cos 2θ, (5.4)
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Figure 5.1: The intensity-intensity correlation of the output in the double-slit setup
is calculated using Eq. (5.2) with ϕ chosen from the probability distribution in
Eq. (G.2). As is the case with a regular cubic 50:50 beam splitter, the correlation
shows a 50% dip. The minimum is for θ = 0 when both the inputs are indistin-
guishable, and maximum for θ = π/2 when they are completely distinguishable.
Compare this with Fig. 5.2.

the visibility of which is 0.5.

On the other hand, for a 50:50 cubic beam splitter (with transfer matrix as in

Eq. (2.44)), if the relative phase ϕ between the two sources is distributed uniformly

over the interval [0, 2π), the cross-correlation function shows a visibility of 0.5 as

shown in Fig. 5.2 (see appendix G for more details on the correlation of the outputs

of a cubic beam splitter). On comparing the variation of the correlation of the

outputs of the double-slit setup with that of the cubic beam splitter, we confirm the

beam splitter like behaviour of the double-slit setup [39].

For completeness, we discuss the 100% dip in the correlation by using a suitable

probability distribution of phase. The visibility of the correlation is dependent on

the probability distribution p(ϕ). In particular, if

p(ϕ) =
1

2
δ
(
θ − π

2

)
+

1

2
δ
(
θ +

π

2

)
, (5.5)

the correlation function shows a visibility of 1.0, as shown in Fig. 5.3. The function
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Figure 5.2: The cross-correlation function plotted as a function of the relative polar-
ization angle θ between the input pulses, for a cubic beam splitter. The correlation
is minimum when both the sources are indistinguishable, i.e., θ = 0, and maximum
when they are completely distinguishable, i.e., θ = π/2. The detailed calculations
are presented in appendix G
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Figure 5.3: The intensity-intensity correlation of the output in the double-slit setup
is calculated using Eq. (5.2) with ϕ chosen from the probability distribution is
Eq. (5.5). In this case the correlation shows a dip of 100%. Although the fields are
classical, a 100% dip or a Hong-Ou-Mandel like dip is achieved if the probability
distribution of the relative phase between the inputs are chosen carefully.
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that fits the result is

C100(θ) = 0.5− 0.5 cos 2θ, (5.6)

which shows that although the fields are classical, a 100% dip or a Hong-Ou-Mandel

like dip is achieved if the probability distribution of the relative phase between the

inputs are chosen carefully [41].

5.2 Effective Mach-Zehnder interferometer

The double-slit beam splitters, discussed in this work, can be concatenated to

construct more sophisticated interferometers. As an example, Fig. 5.4 shows the

schematic of an effective Mach-Zehnder interferometer (MZI) [30] made by concate-

nating two such double-slit modules.

The detectors behind ports D1 and D2 as in Fig. 3.2 are removed, and these

ports now serve as inputs to the second double-slit module. The fields from these

ports get diffracted by slits A′1 and A′2 and reach the output ports D′1 and D′2, of the

second double-slit module behind each of which is a detector.

A phase shifter (see appendix H on how the phase-shifter is implemented numer-

ically) causes an interference pattern at the output ports D′1 and D′2 as the phase,

say α is changed in one of the arms of the MZI. The interference pattern obtained

is used as a signature to verify the double-slit based MZI.

The MZI is essentially a concatenation of two beam splitters. If both the beam

splitters are identical 50:50 splitters with transfer matrix in Eq. (2.44) and the phase

in one arm, say α is set to zero (the arm lengths are considered equal), the transfer

matrix for the MZI is [30]

1

2

1 i

i 1


1 i

i 1

 =

0 i

i 0

 , (5.7)

and therefore the transfer matrix for the double-slit MZI should be close to this.
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ŷ

z = 0

Figure 5.4: Using two double-slit setups a Mach-Zehnder interferometer is con-
structed by concatenating them such that both are aligned centre-to-centre and
parallel to each other. The output ports D1 and D2 of the first double-slit beam
splitter serve as the inputs for the second one. The two detectors are placed behind
the output ports D′1 and D′2 of the second double-slit setup. A phase shifter is placed
at the output port D2 which changes the phase of the field from that port by α.

We use a similar approach as that used for the double-slit setup, to find the transfer

matrix for the effective MZI, with the output slice at z4 (as shown in Fig. 5.4).

5.2.1 The interference pattern of MZI

Here we show the interference pattern at the output of the double-slit based MZI, as

shown in Fig. 5.4. Similar to the case of one double-slit setup, adopting the Fraun-

hofer approximation and calculating the integrated intensities at the two detectors

for different values of α yields an interference pattern as shown in Fig. 5.5. Such

an interference pattern is the signature of an MZI. The curves that fit the resultant

integrated intensities at ports D′1 and D′2 are approximately

I1(α) = 2.41× 10−8
(
1− sin

(
x− 2.45× 10−4

))
, (5.8)

I2(α) = 2.41× 10−8
(
1 + sin

(
x+ 2.45× 10−4

))
, (5.9)
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Figure 5.5: Interference pattern at the output of the MZI made of concatenated
double-slit beam splitters.

respectively. The visibility VMZI of both the curves is

V = 99.94%, (5.10)

which means that the effective MZI using double-slit modules closely emulates an

MZI with cubic beam splitters. Therefore, the transfer matrix formalism applied to

the setup in Fig. 5.4 should yield the transformation in Eq. (5.7).

5.2.2 Transfer matrix for the double-slit MZI

Using the method outlined in §3, the transfer matrix for the double-slit Mach-

Zehnder in Fig. 5.4 is

TMZ ≈ e0.08πi

 0.255 3.903 e0.39πi

3.903 e0.39πi 0.255

× 10−7, (5.11)
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which after polar decomposition yields

UMZ ≈

 0.061 0.998 i

0.998 i 0.061

× e−0.03πi, (5.12)

PMZ ≈

3.910 0.088

0.088 3.910

× 10−7. (5.13)

Up to a global phase the transfer matrix method successfully reveals the under-

lying unitary operator for the double-slit Mach-Zehnder which can be checked by

comparing Eqs. (5.7) and (5.12).

5.3 Extending to three dimensions

A beam splitter is a two-input-two-output device which, as discussed above, can

be effectively constructed using double-slit diffraction. However, one of the key

potential uses of slit-diffraction and the framework outlined in this work is extension

to higher dimensions. As an example, Fig. 5.6 shows a triple-slit setup in which a

third source S3 is placed at (−3d/2, 0,−L), a slit A3 centered at (−3d/2, 0, 0) and

a detector D3 centered at (−3d/2, 0, L). Similar to the double-slit case, the transfer

matrix approach can be applied to this system.

5.3.1 The input and output modes for triple-slit

For the triple-slit setup, three Haar scaling functions are chosen as post-selected in-

put modes and three for the post-selected output modes. According to the positions

of the detectors (and slits) these modes are

e1(x, y; z1) :=g1(x, y; z1,−2, 2, 0), (5.14)

e2(x, y; z1) :=g1(x, y; z1,−2,−3, 0), (5.15)

e3(x, y; z1) :=g1(x, y; z1,−2,−8, 0), (5.16)
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Figure 5.6: Schematic of a triple-slit setup constructed in a similar way as the
double-slit setup in Fig. 3.2, by adding a source, slit and detector to the latter.

and similarly for slice at z2.

Like in the case of two slits, the post-selected input and output will have a 3-

dimensional column representation similar to those in Eqs. (3.24) and (3.28). The

equation for the effective transfer matrix is

T (z2, z1)

(
X(1)(z1) X(2)(z1) X(3)(z1)

)
=

(
Y (1)(z2) Y (2)(z2) Y (3)(z2)

)
,

(5.17)

where the superscripts denote the source that is turned on.
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5.3.2 Transfer matrix for the triple-slit setup

We have verified our formalism using a double-slit setup and by comparing it to

a well-known optical device, the cubic beam splitter. Here, we apply the trans-

fer matrix formalism to get the post-selected transfer matrix of a triple-slit setup,

demonstrating the extensibility of the framework to higher-dimensional systems.

The effective 3×3 transfer matrix for the triple-slit setup in Fig. 5.6, with respect

to the post-selected modes discussed in §?? is

T3(z2, z1) ≈ e−i0.16π


0.636 0.629 i 0.594

0.626 i 0.637 0.626 i

0.594 0.629 i 0.636

× 10−3, (5.18)

where subscript 3 denotes that the transfer matrix is for a triple-slit setup. The

polar decomposition of the 3× 3 transfer matrix results in

U3(z2, z1) ≈e−i0.15π

√
3


1.493 0.844 i −0.242

0.844 i 1.255 0.844 i

−0.242 0.844 i 1.493

 , (5.19)

P3(z2, z1) ≈


0.772 0.146 i 0.730

−0.146 i 1.075 −0.146 i

0.730 0.146 i 0.772

× 10−3, (5.20)

which reveals the underlying unitary transformation along with the losses captured

by the Hermitian component.

By further similarly increasing the number of slits, even higher-dimensional

transfer matrices can be realized using slit-diffraction. Therefore, unlike with four-

port devices like beam splitters, which have to be concatenated to implement higher-

dimensional transformations, a single N -slit setup can be used for an N -dimensional

transformation. This way of implementing higher-dimensional transfer matrices

should prove to be easier than that using orbital angular momentum of light, be-
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cause of the practical limits on obtaining high OAM states [7].
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Chapter 6

Conclusion and discussion

6.1 Summary

A postselected unitary representation of slit-diffraction is achieved by projecting the

solutions of the Helmholtz equation on a two-dimensional plane and finding a trans-

fer matrix that maps one slice to another. The Haar wavelets and scaling functions

are used as orthonormal modes that span the slice on each plane. From the infinite

set of modes, two input and two output modes are postselected depending on the

area and position of the detectors. The non-unitary transfer matrix is polar decom-

posed to reveal the underlying unitary transformation and a Hermitian component

that captures the losses. Using this approach, a double-slit setup, with appropriate

modification, is effectively a 54:46 beam splitter. To verify the beam splitter, we

study the correlation between the postselected outputs.

As a complete characterization of a linear interferometer can be done by measur-

ing the one- and two-photon interference of its outputs, we find a bridge between the

latter and the classical correlation of classical fields by using the semiclassical theory

of photoelectric detection. As a part of this process, we also show that the Hong-

Ou-Mandel effect, which is considered a signature of the quantum behaviour of light,

can be simulated using classical pulses. Moreover, we show that wave-particle com-

plementarity is the authentic signature of photons. The classical equivalent of one-

and two-photon interference helps connect the classical description of slit diffraction
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with the unitary description of quantum interferometry and quantum gates.

The beam splitter behaviour of the double-slit setup is verified by calculating the

intensity-intensity cross-correlation of the outputs and getting a Hong-Ou-Mandel

like variation. Two such double-slit beam splitters are concatenated to construct

a Mach-Zehnder interferometer showing that sophisticated interferometers can be

constructed using slit based diffraction. Similar to a double-slit setup, a higher

number of slits can be used to construct a multi-input-multi-output device, an ex-

ample of which is shown by finding the postselected transfer matrix for a triple-slit

setup. The future work involves quantizing the fields and making a quantum ver-

sion of slit-diffraction-based interferometers, which can be used for implementing

QIP protocols.

6.2 Scope of research

Quantum diffraction interferometry

In this thesis, we have shown that a double slit, with carefully chosen dimensions,

is effectively a beam splitter. The transfer matrix of the double-slit depends on its

geometrical properties like the sizes and positions of the sources, slits and detec-

tors. The interesting problem is to realize other transfer matrices by changing these

properties. Similarly, other transfer matrices can be realized by concatenation of

multiple double slits (like in the case of Mach-Zehnder interferometer) and also by

increasing the number of slits to realize higher-dimensional transfer matrices. The

classical treatment will give an intuition about how to design specific quantum gates

once the fields are quantized, and to construct a complete set of gates for universal

quantum information processing.

The real advantage and relevance of this formalism will come through with the

quantum treatment of the same. Therefore the future direction in this research is

towards dealing with quantized light and getting a double-slit beam splitter with

photons in postselected modes. Moreover, extending to higher-dimensional will
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result in a platform for higher-dimensional quantum information processing (QIP).

Although the decomposition of any N -dimensional unitary operator in terms of

beam splitters and phase shifters provides a protocol to realize higher-dimensional

QIP, realizing the same using multiple slits will facilitate miniaturization of the

interferometers and also reduce the number of components required, unleashing the

true advantage of slit based interferometers.

The classical-quantum boundary

In the quest for tools to characterize the double-slit beam splitter, we came across

an interesting result of Hong-Ou-Mandel like effect with the classical description of

light. We have shown that unlike the folklores, which say that Hong-Ou-Mandel

effect is a purely quantum phenomenon and cannot be explained using any classical

or semiclassical theory, can indeed be simulated using the classical description of

light. Moreover, the true quantum behaviour lies in the wave-particle duality of

photons that is not exhibited by classical light. This results in a refined boundary

between the classical and quantum nature of light. This motivated exploring other

signatures of the quantumness of light. Exhaustive comparisons between the quan-

tum and classical descriptions of light are discussed by D. N. Klyshko [49, 50], and

W. E. Lamb Jr. [51], for example.

A closer look at the classical-quantum boundaries has applications beyond intel-

lectual satiation. The field of quantum information and computing is rapidly growing

owing to the predicted advantages it has over classical computation. However, it

cannot be asserted whether a quantum computer will have a significant advantage,

partly because there may be a classical algorithm that we have not found. Mostly,

the confidence in a quantum algorithm comes from the fact that it uses one or more

effects that are signatures of quantum behaviour and have no counterparts in the

classical regime. Therefore, it is necessary to refine the boundary between classical

and quantum behaviour.
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Appendix A

Green’s function of the Helmholtz

equation

Here we will calculate the Green’s function for the Helmholtz equation in free-space.

We consider the three-dimensional case here, and finding the Green’s function for

other dimensionalities follows the same approach. First we make some reasonable

assumptions for simplification. Because of the homogeneity of free-space we con-

clude that the Green’s function is a function of r−r′. We assume that the free-space

Green’s function has a Fourier transform and transform the Green’s function equa-

tion as

(
∇′2 + k2

) ∫∫∫ d3p

(2π)3
eip·r G̃(p) =

∫∫∫
d3p

(2π)3
eip·r, (A.1)

where we use the fact that the Fourier transform of one is the Dirac-Delta function.

As the differential operator on the left-hand-side (LHS) is independent of the variable

p, it can be taken inside the integration. Moreover, as the set of functions eip·(r−r′)

for all p forms an orthogonal basis, its coefficients can be matched on the LHS and
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RHS, yielding,

(k2 − p2)G̃(p) =1 (A.2)

G̃(p) =
−1

p2 − k2
, (A.3)

which can be inverse-Fourier-transformed to get the Green’s function, i.e.,

G (r − r′) =
−1

(2π)3

∫∫∫
d3p

eip·(r−r′)

p2 − k2
. (A.4)

It is convenient to solve the integral in three-dimensional spherical coordinate system

(because the integral is spherically symmetric). In spherical coordinate system,

d3p = dp d(cos θ) dϕ p2, where we choose θ to be the angle between p and r − r′

and ϕ as the azimuthal angle. This yields

G (r − r′) =
−1

(2π)3

∞∫
0

dp p2

−1∫
1

d(cos θ)

2π∫
0

dϕ
eipr cos θ

p2 − k2
, (A.5)

where I have defined r = |r − r′|. The integration over ϕ and θ yield

G (r − r′) =
−1

(2π)3
2π

∞∫
0

dp p2

−1∫
1

d(cos θ)
eipr cos θ

p2 − k2
(A.6)

=
−1

(2π)3ir
2π

∞∫
0

dp p

−ipr∫
ipr

d(ipr cos θ)
eipr cos θ

p2 − k2
(A.7)

=
−i

(2π)2r

∞∫
0

dp p
eipr − e−ipr

p2 − k2
. (A.8)

Note that the integrand on the RHS is an even function of p and therefore we can

write the integration as

G (r) =
−i

2(2π)2r

∞∫
−∞

dp p
eipr − e−ipr

p2 − k2
, (A.9)
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b

b

k + iǫ

−k − iǫ

−R R

Figure A.1: The real number line shown in the interval (−R,R). The two poles at
z = +|k| and z = −|k| are pushed above and below the real line respectively. The
purpose of doing this is to avoid the pole being on the contour line.

and perform a contour integral. Consider a complex integral

G (r − r′) =
−i

2(2π)2r

∫
dz z

eizr − e−izr

z2 − k2
, (A.10)

the poles of which are on the real line, i.e., z = k and z = −k. We use the fact that

lim
ε→0+

k+ iε = k and displace the poles from the real line. Let us assume for now that

k > 0. The effect of displacing the the poles is shown in figure A.1. The expression

for the Green’s function becomes

G (r − r′) = lim
ε→0+

−i

2(2π)2r

∫
dz z

eizr − e−izr

(z + k + iε)(z − k − iε)
, (A.11)

which can be solved using contour integration. As r > 0, the contour must be closed

in the upper-half-plane (UHP) for the term eizr as shown in figure A.2. The closing

curve C is a semi-circle of radius R. The term eizr on C becomes an exponentially

decaying term which becomes asymptotically zero as R → ∞. Therefore, the only

contribution to the integration along the entire closed curve comes from the real line

lim
R→∞

(−R,R). From Cauchy’s integral theorem we have

∫
dz z

eizr

(z + k + iε)(z − k − iε)
=2πi (k + iε)

ei(k+iε)r

2(k + iε)
(A.12)

=πi ei(k+iε)r (A.13)

With similar reasoning, the contour for the term with eizr is in the lower-half-plane

(LHP) as shown in figure A.3. and the integral
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b

b

k + iǫ

−k − iǫ

R

−R R

C

Figure A.2: For the term involving eizr the contour is closed in the UHP so that the
integral along the semi-circle vanishes as R → ∞, leaving the only contribution to
the integral being from the integral along the real line.

b

b

k + iǫ

−k − iǫ

R

−R R

C

Figure A.3: For the term involving e−izr the contour is closed in the LHP so that
the integral along the semi-circle vanishes as R→∞, leaving the only contribution
to the integral being from the integral along the real line.
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b

b

|k| − iǫ

−|k|+ iǫ

−R R

Figure A.4: In case of the advanced Green’s function for which k < 0, the poles get
shifted in directions opposite to that in the case of the retarded Green’s function as
shown in figure A.1.

∫
dz z

e−izr

(z + k + iε)(z − k − iε)
=− 2πi (−k − iε)

e−i(−k−iε)r

2(−k − iε)
(A.14)

=− πi ei(k+iε)r (A.15)

on combining both the terms, we get the Green’s function

Gret (r) = lim
ε→0+

−i

2(2π)2r
2πiei(k+iε)r (A.16)

=
1

4π

ei|k|r

r
, (A.17)

where the subscript denotes the fact that k > 0 and the corresponding Green’s

function is called the retarded Green’s function.

On the other hand, if k < 0, the poles shift in the opposite directions as before,

as shown in figure A.4. Closing the contours in the same way as before, we get

Gadv (r) =
1

4π

e−i|k|r

r
, (A.18)

which is called the advanced Green’s function. Physically, the retarded Green’s

functions captures the field propagating in the forward direction, and the advanced

Green’s function on the other hand captures the backward propagating wave.
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Appendix B

Solution for slit diffraction

Consider an opaque (infinite) plane with a rectangular aperture in it, placed at

z = zs (refer to Fig. 2.10). Let the position of the center of the slit be rs. All

the other boundaries of the system are at infinity (for simplicity). A point-like

source of electromagnetic radiation is placed at position rf . Assuming that the

time-dependence of the source is harmonic, the field from the source will satisfy the

Helmholtz equation (Eq. (2.5)). To find the field diffracted by the slit, we solve

the Helmholtz equation for this system in two steps. First we find the field on the

slit-plane, and then from the field on the slit-plane, find the diffracted field.

For the first step, consider the infinite volume enclosed by the surfaces x = ±∞,

y = ±∞, z = ±∞. Adopting Kirchoff’s approximation, we impose that the field

on the opaque part of the slit-plane is zero. The field on the boundary is also zero,

because of the reasonable imposition that the field at a point infinitely far from the

source is zero.

Using the formal solution of the Helmholtz equation, i.e., Eq. (2.8) the field

within the area of the slit is

E(r) = G(r, rf ), (B.1)

and zero everywhere else on the slit-plane. Here we only use the retarded Green’s

function as in Eq. (A.16). The field within the slit can now be used to find the

diffracted at any point of interest P.
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Consider the semi-infinite volume enclosed by surfaces z = zs, z = +∞, x = ±∞

and y = ±∞. There is no source within this volume so the volume term in Eq. (2.8)

vanishes within this volume. Moreover, the only contribution to the surface term is

from the slit-plane as the other parts of the surfaces are at infinity. Therefore, the

diffracted field at a point P positioned at r is

E(r) =

∫
z=rs·ẑ

d2r′ ẑ · (G(r′, rf )∇′G(r, r′)−G(r, r′)∇′G(r′, rf )) , (B.2)

which depends only on the field over the area of the slit. This expression can be

simplified by adopting the far-field and small slit approximations as discussed in the

following subsections.

B.1 Far field approximation

An important property of the Green’s function is its symmetry under exchange of

arguments, i.e.,

G(r2, r1) = G(r1, r2), (B.3)

which follows directly from Eq. (A.16). Also

∇2G(r2, r1) = − 1

4π

ikeik|r2−r1|

|r2 − r1|
− eik|r2−r1|

|r2 − r1|2
∇2|r2 − r1|

= − 1

4π

eik|r2−r1|

|r2 − r1|

(
ik − 1

|r2 − r1|

)
r2 − r1

|r2 − r1|
, (B.4)

which means that ∇1G(r2, r1) = −∇2G(r2, r1). The far-field approximation is

applied by assuming that |ik| >> 1
|r2−r1| , which yields

∇2G(r2, r1) ≈ ik G(r2, r1)
r2 − r1

|r2 − r1|
. (B.5)
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With this approximation, Eq. (B.2) simplifies to

E(r) = −ik

∫
S

d2r′ G(r′, rf )G(r, r′)

(
z − z′
|r − r′| +

z′ − zf
|r′ − rf |

)
. (B.6)

Note if the point of interest P is far from the slit-plane but very close enough to

the line that runs perpendicular to the slit through its center, i.e., |r − r′| ≈ z− z′,

and similarly for the source and the slit, then the expression for the diffracted field

reduces to

E(r) = −2ik

∫
S

d2r′ G(r′, rf )G(r, r′), (B.7)

which is the mathematical representation of the Huygens principle which says that

every point on the slit can be considered a source of wave.

Further simplification can be made by assuming that the size of the slit is much

smaller than the distance between the slit and point P. The quantification of such

approximations is done by calculating the Fresnel number for the system which is

defined as

F =
w2

λL
, (B.8)

where w is the width of the slit (or the width of the longer side of the rectangle),

L is the distance between the center of the slit and the point of interest, P in this

case, and

λ =
2π

k
, (B.9)

i.e., the wavelength of the light. When

F � 1, (B.10)

the solution of the Helmholtz equation is called the far-field or Fraunhofer solution.
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In the following section, we consider the the small slit approximation to further

simplify the solution.

B.2 Small slit approximation

Let rs be the center of the slit with a width very small compared with its distance

from the point of detection such that Eq. (B.10) is satisfied. A position within the

area of the slit can be written as r′ = rs + ∆s. Therefore,

G(r′, rf ) = − 1

4π

eik|rs−rf+∆s|

|rs − rf + ∆s|
, (B.11)

where the small slit approximation is applied as |∆s|/|rs − rf | � 1 so that

|rs − rf + ∆s| =
√
|rs − rf |2 + |∆s|2 + 2∆s · (rs − rf )

= |rs − rf |
√

1 +
|∆s|2
|rs − rf |2

+ 2∆s ·
(rs − rf )

|rs − rf |2

≈ |rs − rf |
√

1 + 2∆s ·
(rs − rf )

|rs − rf |2

≈ |rs − rf |
(

1 + ∆s ·
(rs − rf )

|rs − rf |2
)
. (B.12)

Furthermore, for far-field and small slit

1

|r′ − rf |
≈ 1

|rs − rf |
(B.13)

which results in

G(r′, rf ) = − 1

4π

eik|rs−rf |

|rs − rf |
e

ik∆s·
rs−rf
|rs−rf |

= G(rs, rf ) e
ik∆s·

rs−rf
|rs−rf | . (B.14)
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Similarly,

G(r, r′) = G(r, rs) e−ik∆s· r−rs
|r−rs| , (B.15)

and using this approximation in Eq. (B.6) we get

E(r) =− ik

∫
S

d2∆s G(r, rs) G(rs, rf ) e
−ik∆s·

(
r−rs
|r−rs|

−
rs−rf
|rs−rf |

)

×
(
z − zs
|r − rs|

+
zs − zf
|rs − rf |

)
. (B.16)

For a rectangular slit wx wide along x and wy along y, the integral is a sinc function

and the final expression for the field of the slice is

E(r) =− ikwxwy

(
z − zs
|r − rs|

+
zs − zf
|rs − rf |

)
G(r, rs) G(rs, rf )

× sinc

(
kwx

2

(
r − rs
|r − rs|

− rs − rf
|rs − rf |

)
· x̂
)

× sinc

(
kwy

2

(
r − rs
|r − rs|

− rs − rf
|rs − rf |

)
· ŷ
)
, (B.17)

which is the familiar sinc diffraction pattern for rectangular slits.
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Appendix C

Slice-to-slice map

The surface term of the formal solution of the Helmholtz equation is used to find

the slice-to-slice map as follows. Consider the double-slit setup shown in Fig. 3.2

with only source S1 switched on. The Helmholtz equation for the field within this

boundary is

(
∇2 + k2

)
E(r) = δ3(r − rS1). (C.1)

As the slits are far from the source, the surface term of the formal solution of the

Helmholtz equation can be dropped and the field on the plane z = z1 is approxi-

mately G(r, rS1) (discussed in the main text in Eq. (3.7)) where r · z = z1, i.e., the

field is projected on this plane and hence is a slice of the 3D solution.

The field at another plane, say z = z2 can be calculated from the slice at z1.

For this, consider a semi-infinite volume enclosed by the planes z = z1, z → ∞,

x → −∞, x → ∞, y → −∞ and y → ∞. This volume includes the double-slit,

the source is now excluded, leading to a homogeneous Helmholtz equation within

the volume, albeit with complications due to the presence of the slits, whose opaque

parts will have some dielectric constant other than one. Because of this the Green’s

function, say G̃(r, r′) is no longer the free-space Green’s function, near the slit plane.

However, this approach yields the slice-to-slice map directly, as the solution at

any point within the volume will have contribution only from the slice at z1 because
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the other surfaces are at infinity. Therefore if one defines a propagator

P(r, r′) :=ẑ ·
(
E(r′)∇′G̃(r, r′)− G̃(r, r′)∇′E(r′)

)
, (C.2)

the field within the volume can be calculated from the slice at z1 as

E(r) =

∫∫
z=z1

d2r′ P(r, r′) E(r′), (C.3)

where the integration is over the plane z = z1. Finally, the slice at z2 is the projection

of the field on the plane z = z2, i.e., E(r)|z2 .

The basis constructed using Haar scaling functions and the wavelet functions

form a discrete orthonormal basis for the slices. This facilitates a matrix represen-

tation of the propagator that maps one slice to another. For example, the matrix

representation of the free slice-to-slice propagator P(r⊥, r
′
⊥; z, z′) in the new basis

is

Pı(z2, z1) =

∫∫
d2r⊥

∫∫
d2r′⊥ gı(r⊥; z2) P(r⊥, r

′
⊥; z2, z1) g(r

′
⊥; z1), (C.4)

where gi(r; z) is a basis function on slice at z and gj(r
′; z′) is that on slice at z′. Note

that the basis is infinite-dimensional and therefore so is the matrix representation

of the free propagator.



Appendix D

Effective signals recorded by the

oscilloscope

D.1 Generated signals

Mathematical expressions of the signals generated using an AWG are

E1(t) = A1 e−
1
2
t2

σ2 sin (2πft) , (D.1a)

E2(t; τ, φ) = A2 e−
1
2

(t−τ)2

σ2 sin (2πft+ φ) . (D.1b)

A1 = 0.05 V = A2 are the peaks of the Gaussian envelopes of the two signals. Both

signals have identical envelopes with σ = 0.001 s, and the sinusoidal wave has a

frequency f = 1 KHz.

D.2 Effective input signals

The frequency range in which the power-splitter has a splitting ratio of 50:50 is

well beyond the maximum frequency that the AWG can produce. So, the effective

input is generated by up-converting the frequency of the input signal by using a

frequency mixer. The frequency of the local oscillator SG signal used for the mixing

is fL = 1161 MHz. The up-converted signals, which are used as the input to the
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power-splitter, take the form

S1(t) = AL A1 e−
1
2
t2

σ2 sin (2πft) sin (2πfLt+ φL) , (D.2a)

S2(t; τ, φ) = AL A2 e−
1
2

(t−τ)2

σ2 sin (2πft+ φ) sin (2πfLt+ φL) , (D.2b)

where AL is the amplitude of the signal from the local oscillator and φL is its phase

relative to V1(t). A 4-port power-divider PD is used to branch the SG signal into 4

channels, two of which are used to up-convert the input signals, and the other two

are used to down-convert the output of the power splitter.

D.3 Action of the power-splitter

The power-splitter transforms the effective input signals by the beam-splitter oper-

ation. The output signals are

S ′1(t; τ, φ) =
S1(t) + S2(t; τ, φ)√

2
, (D.3a)

S ′2(t; τ, φ) =
S1(t)− S2(t; τ, φ)√

2
, (D.3b)

where the output signals have frequencies beyond the sensitivity of the oscilloscope,

and therefore need to be down-converted.

D.4 Down-conversion of the output signals

The measurement device used is an oscilloscope, two of whose channels are used

to measure the two outputs of the power-splitter. However, the oscilloscope has an

upper limit to the frequencies that it can measure and therefore, the high frequency

output of the power-splitter is down-converted using the SG. After down-conversion

E+(t; τ, φ) = AL sin (2πfLt+ φL)
S1(t) + S2(t; τ, φ)√

2
, (D.4a)
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E−(t; τ, φ) = AL sin (2πfLt+ φL)
S1(t)− S2(t; τ, φ)√

2
, (D.4b)

which implies

E+(t; τ, φ) = A2
L sin2 (2πfLt+ φL)

E1(t) + E2(t; τ, φ)√
2

, (D.5a)

E−(t; τ, φ) = A2
L sin2 (2πfLt+ φL)

E1(t)− E2(t; τ, φ)√
2

, (D.5b)

In general

sin2 (2πfLt+ φL) sin (2πft+ φ) =
1

2
sin (2πfLt+ φL) {cos (2πfLt− 2πft+ φL − φ)

− cos (2πfLt+ 2πft+ φL + φ)} (D.6)

=
1

4
sin (4πfLt− 2πft+ 2φL − φ)

+
1

4
sin (2πft+ φ)

−1

4
sin (4πfLt+ 2πft+ 2φL + φ)

−1

4
sin (−2πft− φ) (D.7)

which means that the down-converted signal has very high frequency signals along

with the signals that have the frequency of the input signals which we need to filter.

Now since the oscilloscope has an upper limit to the frequency that it can measure,

it acts as a low-pass filter and measures only the low frequency components, making

the effective output

E+(t; τ, φ) =
A2
L

2

E1(t) + E2(t; τ, φ)√
2

, (D.8a)

E−(t; τ, φ) =
A2
L

2

E1(t)− E2(t; τ, φ)√
2

, (D.8b)

and therefore, the oscilloscope only records the signal with the carrier frequency

equal to that of the input pulses, giving us an effective beam splitter transformation

on the inputs.
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Appendix E

Sources of error for HOM

experiment

Using the quantum description, the coincidence probability at the output of a (loss-

less) beam splitter is given by the well known result by Hong-Ou-Mandel,

C(δτ) = |T |4 + |R|4

− 2 |T |2 |R|2
∫

dτ Re{g(τ + δτ)g∗(τ − δτ)}, (E.1)

where, g(τ) is the fourier transform of f(ω); f(ω) is the normalized joint spectral

amplitude (JSA) of the two input photons, ω being the difference in the frequency

components of the two photons (ω = (ω2 − ω1)/2). The time delay between the

two input photons to the beam splitter is δτ . If the two photons are completely

indistinguishable, then a balanced beam splitter causes the coincidence probability

to drop to zero, i.e, C(0) = 0. C(δτ) = 1/2 for δτ � τc, where τc is the coherence

time of the single photons.

In practice, however, different components may introduce some distinguishabil-

ity in different degrees of freedom (frequency, polarization, spatial mode, etc.) of

the two input photons. Let η be the probability that the input photons retain in-

distinguishability and ζ the probability both photons fall on the same port of the
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beam splitter. Then

C(δτ) = (1−ζ)

[
|T |4 + |R|4 − 2|T |2|R|2η

∫
dτ Re{g(τ + δτ)g∗(τ − δτ)}

]
+2ζ|T |2|R|2

(E.2)

which is the expression used to fit the coincidence probability curve to the experi-

mental data.

E.1 Theoretical estimate for HOM profile for the

quantum experiment

We have plotted coincidence counts vs time delay, taking into account various instru-

mental errors (Eq. (E.2)). The dominant contributions to these errors are from the

non-ideal extinction ratio of the polarizing beam splitter (PBS), imperfect rotation

of the half-waveplates and the effect of the interference filter. Ideal PBS trans-

mits only horizontally (|H〉) polarized light and reflects vertically (|V 〉) polarized

light. But in practice this may not happen owing to the imperfect extinction ratios.

Similarly, errors in the half-waveplate rotation may introduce distinguishability in

polarization. The transmittance of the band-pass filter affects the JSA of the input

photons.

The values of these error parameters were obtained from the datasheets of the

respective instruments. The PBS has extinction ratios 1000:1 in transmission arm

and, 52:1 in the reflection arm. So, TH/TV = 1000 and RV /RH = 52, where TH , RH

represents transmission and reflection probabilities of |H〉 polarized light through

the PBS. TV and RV are the transmission and reflection probabilities of |V 〉 polarized

light. Probability of both |H〉 and |V 〉 photons being in any one of the output arm

of the PBS (ζ in Eq. (E.2)) is

ζ = THTV +RHRV = 0.0201. (E.3)

The transmission and reflection coefficients of the fiber beam splitter (FBS) are
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|T |2 = 0.52, |R|2 = 0.48. The Half-waveplate (HWP) rotation should be such that

the angle (θ) of the HWP axis w.r.t. the horizontal axis is 45o; in order to make both

the photons possess the same polarization. But the HWP rotation has an error of

±1o, leading to

η = sin2 2θ = 0.9988. (E.4)

The transmission-vs-frequency data F (ω) for the filter is provided by the manu-

facturer. With the filter, the joint-spectral-amplitude of the two input photons

becomes

f(ω) = F (ω)φ(ω), (E.5)

where φ(ω) is the joint-spectral-amplitude of the photons without the filter. We

have assumed φ(ω) to be a Gaussian distribution with standard deviation σ.

In order to compare with the experimental data, we have multiplied a scaling

factor (K) to the coincidence probability C(δτ) (coincidence counts=K×C(δτ)). We

put values to all relevant parameters, i.e. η, ζ, T , R and fit the function K ×C(δτ)

with the experimental data, while taking only K, σ as fit parameters. We get a fit

(shown as “Theory” in Fig. 5 in main text) with R-squared 0.9998 for σ = 0.59 nm,

K = 2301, resulting in an expected TPCVD of 97.56%.

E.2 Finding a fit to the experimental result

Although the major systematic errors have been taken into account above, there are

additional errors that are untraceable, like dispersion and rotation of polarization as

the photon passes through different fibres and components, spatial mode mismatch

in the two fiber inputs of the FBS, etc. Consequently, the experimental result has

a slight deviation from the theoretical estimate. To get a better fit to the data,

we use the expression K × C(δτ) (see Eq. (E.2)) to find a fit with η, ζ, K, σ as

fit-parameters.

The “Fit” line in Fig. 5 is a result of such a fit. The best fit, with R-squared

0.9998 was achieved for σ = 0.581 nm, K = 2303, ζ = 0.038, η = 0.9995, resulting
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in a TPCVD of 96.06%.



Appendix F

Confidence intervals for photon

counts using bootstrap

The result of the experiment is a graph of coincidence-counts vs actuator-position

(which is proportional to the time delay between the input photons). 100 iterations

of the experiment were done, which resulted in a sample of 100 values of the coinci-

dence counts for each actuator-position. Consider the sample of coincidence counts

X = {c1, c2, · · · , c100} at a particular actuator position, say, l. The estimate of the

counts is then the mean over X which is the sample mean, i.e., c̄. The confidence

interval for c̄ was then found by employing a statistical bootstrap. The method

involves creating a large number of sets by resampling-with-replacement from the

original set. The size of the resampled set is the same as that of the original. Let

one such resampled set be X∗ and its mean c̄∗. We define a quantity

δ = c̄∗ − c̄. (F.1)

Repeating the above step a large number of times, in our case 10,000, we get a

sample for δ. To find a 95 percentile confidence interval, we pick the 2.5th and the

97.5th percentile of this sample, δ0.025 and δ0.975. The confidence interval for c̄ is then

simply, [δ0.025 + c̄, δ0.975 + c̄]. We then repeat the bootstrap method for all values of

the actuator-positions. These confidence intervals were plotted as the error bars for
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the mean value at each actuator position.



Appendix G

The cross-correlation of outputs in

a beam splitter

In semi-classical theory of photo-detection [37, 36, 38], the probability of coincident

photo-detections is proportional to the intensity-intensity cross-correlation of the

outputs, a normalized version of which is

C(τ) :=

∫
dϕ p (ϕ)

Toff∫
Ton

dt |E+(t; τ, ϕ)|2
Toff∫
Ton

dt′ |E−(t′; τ, ϕ)|2[∫
dϕ p (ϕ)

Toff∫
Ton

dt |E+(t; τ, ϕ)|2
][∫

dϕ′ p (ϕ′)
Toff∫
Ton

dt |E−(t; τ, ϕ′)|2
] , (G.1)

where E+ and E− are the output pulses when the input pulses have a time delay

τ between them and a relative phase ϕ. The phase ϕ fluctuates with a probability

distribution p(ϕ) and, Ton and Toff are detector on and off times respectively. The

delay τ plays the role of a distinguishability parameter between the two input pulses.

The cross-correlation is a measure of the fourth-order interference between the two

outputs. For a 50:50 beam splitter, C(τ) shows a variation dependent on the shape

of the pulse. If the probability distribution p(ϕ) is uniform over the interval [0, 2π),

i.e.,

p(ϕ) =
1

2π
, (G.2)
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the curve shows a visibility of 0.5. A detailed analysis of this cross-correlation with

classical pulses is discussed in [41].

If the distinguishability parameter is the angle of polarization θ between the two

input pulses instead of time-delay τ , the cross-correlation of the intensities can be

redefined as in Eq. 5.2, where the time-delay between the input pulses is zero. For

a 50:50 beam splitter, C(θ) shows a sinusoidal variation as shown in Fig. 5.2, for

uniformly randomized phase as in Eq. (G.2).

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.00

0.25

0.50

0.75

1.00

C(
)

Figure G.1: The cross-correlation function plotted as a function of the relative
polarization angle θ, which is the distinguishability parameter. The correlation is
minimum when both the sources are indistinguishable, i.e., θ = 0, and maximum
when they are completely distinguishable, i.e., θ = π/2. The plot has been generated
using Eq. (5.2) for a regular cubic 50:50 beam splitter with two identical input pulses
having zero delay between them. When the distinguishability parameter is θ the
shape of the pulses does not affect the correlation.

The equation that fits the data in the plot of Fig. 5.2 is

Cfit(θ) = 0.75− 0.25 cos 2θ, (G.3)

which has a visibility of 0.5.

As C(τ) and C(θ) are dependent on the probability distribution of the phase

ϕ, the visibility of the curves can exceed 0.5, with an appropriate choice of the

probability distribution. For some distribution, the visibility can reach 1, classically
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[41]. The variation of the correlation as a function of the distinguishability parameter

is used as a signature of a beam splitter, which the double-slit setup, as is discussed

in this work, also exhibits.
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Appendix H

The implementation of the phase

shifter in MZI

The phase shifter in the double-slit MZI is modelled as a medium of thickness t and

with refractive index n. Within the medium the Green’s function (and hence the

propagator) will change to

G(r, r′;n) = − 1

4π

eink|r−r′|

|r − r′| , (H.1)

where the refractive index of the medium causes a change in the propagation constant

resulting in bending of light and a change in the phase. The thickness of the medium

is small enough that the effect can be approximated by an extra phase

α =
2π

λ
(n− 1)t, (H.2)

imparted to the field and the net effect is captured by simply multiplying the output

at port D2 by eiα.
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