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Curvature elasticity of smectic-C liquid crystals and formation of stripe domains
along thickness gradients in menisci of free-standing films
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Smectic liquid crystals with a layering order of rodlike molecules can be drawn in the form of free standing
films across holes. Extensive experimental studies have shown that smectic-C (SmC) liquid crystals (LCs)
with tilted molecules form periodic stripes in the thinner parts of the meniscus, which persist over a range
of temperatures above the transition of the bulk medium to the SmA phase in which the tilt angle is zero. The
prevailing theoretical models cannot account for all the experimental observations. We propose a model in which
we argue that the negative curvature of the surface of the meniscus results in an energy cost when the molecules
tilt at the surface. The energy can be reduced by exploiting the allowed (∇ · k)(∇ · c) deformation which couples
the divergence of k, the unit vector along the layer normal, with that of c, the projection of the tilted molecular
director on the layer plane. We propose a structure with periodic bending of layers with opposite curvatures, in
which the c-vector field itself has a continuous deformation. Calculations based on the theoretical model can
qualitatively account for all the experimental observations. It is suggested that detailed measurements on the
stripes may be useful for getting good estimates of a few curvature elastic constants of SmC LCs.
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I. INTRODUCTION

Smectic liquid crystals (Sm LCs) are made of freely rotat-
ing rodlike molecules which are assembled in liquid layers.
In the SmA phase, the director (n), which is the average
orientation direction of the long axes of the rods, is along the
layer-normal direction (k), while in the SmC phase n makes
a tilt angle θt with k (Fig. 1) [1]. In view of the crystal-like
elasticity of the Sm LC along k, it can be drawn in the form
of free standing films (FSFs) across millimeter sized holes in
glass plates [2]. The sample can be annealed so that the central
part of FSFs has a flat structure with a well-defined number of
layers, and investigations on such layers have led to various
discoveries like that of hexatic phases, etc.

The flat central part is connected to the walls at the edge
of the hole through a meniscus region in which the thick-
ness increases continuously, mediated by edge dislocations
in the layer structure. The dislocations are repelled by the
large surface tension of smectic LCs (γ ∼ 0.02 N/m) to the
center of the meniscus (Fig. 2). Detailed experimental and
theoretical studies [2] on SmA menisci have shown that in
the thinner parts close to the center, the dislocations have a
Burgers vector equal to the layer spacing d . Closer to the wall,
large Burgers vectors (�20 or so) mediate in the thicker parts,
which gives rise to a two-dimensionally deformed structure
made of parabolic focal conics. The meniscus surface has a
circular shape, with a radius RM � 100 μm, except very close
to the central flat region, in which it has an essentially linear
slope [3]. By Laplace’s law, the meniscus region will have a
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lower pressure �P = γ /RM compared to the air pressure, the
latter generating a compressive stress in the central flat layers.

If the FSF is made of a SmC LC with tilted molecules,
different features develop in the meniscus region. In addition
to the two-dimensional (2D) pattern made of parabolic focal
conics in the thicker parts, a radially oriented stripe domain
(SD) pattern is observed in the thinner parts (for a recent
review, see [4]). The spacing of the SD pattern decreases with
the height h of the meniscus, and the pattern disappears below
a critical thickness �1 μm [3] before the meniscus region
joins with the central flat part of the FSF. Periodic patterns
often arise in Sm LCs to minimize the elastic energy when
the layers cannot remain flat. For example, a thin SmA sample
taken on, say, a mica sheet treated to get a planar alignment
of n with the top surface exposed to air is subjected to antag-
onistic boundary conditions. The sample exhibits a periodic
focal conic structure [5]. A SmA disc immersed in a nematic
medium exhibits edge undulation arising from saddle-splay
elasticity [6]. From the point of view of the problem discussed
in this paper, an interesting case is a Sm sample taken in a
wedge shaped cell with a small wedge angle. A periodic array
of edge dislocations mediates the increase in the number of
layers with the thickness of the sample, made visible under a
polarizing microscope when the sample approaches the SmA-
SmC transition point [7]. Flow fields can also drive undulation
instabilities in smectics (for a recent example, see Ref. [8]),
but our main interest in this paper will be equilibrium struc-
tures.

Over the past four decades, there have been numerous
experimental studies and a few theoretical analyses of the SD
patterns in the meniscus region of a SmC FSF mentioned ear-
lier. In the following we summarize the experimental studies,
and outline the theoretical ideas put forward to elucidate the
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FIG. 1. Schematic diagram showing the layered structure of
smectic-C liquid crystals. The director n is an apolar vector along
the average orientation direction of the tilted rodlike molecules. Its
projection on the layer plane is a polar vector c, which is assumed to
be a unit vector. k along the layer normal is also a unit vector. Note
that the symmetry of SmC is preserved when both k and c change
sign.

SD structures. Denoting the projection of the apolar n on the
layer plane by the polar vector c, Meyer and Pershan [9] noted
that a splay deformation of the c field on the surface layer of
a SmC sample can generate an electric polarization along k,
which can lower the energy of the sample. The surface can
then be covered by SDs, each of which has a finite splay angle
of 2ψ0 of c defining the domain, and separated by walls across
which the c vector jumps by the same angle in the opposite
sense. The walls penetrate a few layers of the sample, and
energy considerations imply that at the lower surface the SDs
are shifted by half their spacing in relation to those on the
upper one. It is clear that this mechanism does not depend on
the thickness (h) gradient of the meniscus region of a FSF.
However, in all experimental studies, SDs have been found
only in the meniscus region, and indeed are absent in any flat
part in the meniscus which separates parts with h gradients
[3].

In twist grain boundary (TGB) LCs blocks made of smectic
layers consisting of a certain class of chiral molecules twist
across grain boundaries with arrays of screw dislocations
[1,2]. In a binary mixture exhibiting two TGB phases with
upright (TGBA) and tilted molecules (UTGBC*, the asterisk
signifying chiral twist) respectively, FSFs exhibited the SD
structure in a thickness range in which the TGB LCs are
untwisted [10,11]. Polarized fluorescence microscopy of the
samples with added dye molecules clearly showed that in the
SDs the layers themselves had periodic undulations [11].

When colloidal spherical particles are deposited in the
central (flat) part of a FSF in a material exhibiting a lower tem-
perature SmC*, the higher temperature SmA LCs developed
meniscus regions around the particles, which were decorated
by radial SDs [12]. A model interpreting the coronal SDs
to be caused by the lower pressure (�P) in the meniscus,
which gives rise to an undulation instability of the layers, has
been proposed. Later similar studies [13] using both solid and
fluid particle deposits clearly demonstrated that the coronal
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FIG. 2. Schematic diagram of the meniscus region of a free
standing smectic film. Only the left section of a film taken between
two parallel walls (shaded region) is shown. The thickness h of
the meniscus decreases as one moves away from the wall along X,
reaching a flat part with thickness hF at X = Xmax. Edge dislocations
located at the midplane of the meniscus mediate the variation in h.
The Burgers vector of the dislocation (shown by the symbol T rotated
by 90°) is equal to the layer thickness d near the thinner parts and
several times d in the thicker parts. The surfaces of the meniscus have
a circular shape with a radius RM ∼ 100 μm. As the sample is cooled
towards SmA to SmC transition temperature (TAC), the director in the
layers near the surface develops a tilt angle, and the corresponding
c vector can be expected to develop a bend distortion by following
the surface profile, shown by the dashed lines near the surfaces. It is
argued in the text that this actually costs a positive energy, which is
reduced by the formation of stripe distortions of the thinner parts of
the structure with periodicity along Y. � is the small width of a slice
with thickness h used in the theoretical analysis.

SDs persisted in SmA in a range of temperatures above the
SmA-SmC (or SmC*) transition temperature (TAC). In fact
the main meniscus parts of the FSF close to the walls also
exhibited the SDs in a similar range of temperatures. It has
been experimentally established that in such materials, in the
layers close to the surface of SmA FSFs, the director develops
a tilt order which becomes stronger as TAC is approached [14].
On the other hand, if the material has no underlying SmC
phase, SDs do not develop either in the main meniscus region
or around deposited particles on the FSF. This clearly demon-
strates that the minimum requirement for the occurrence of
SDs is a tilt order in at least the surface layers of FSFs. Thus
the model developed in [12] for the coronal SDs is unlikely to
be correct.

Optical observations on the SDs in the SmC phase have
pointed to a structure in which there is a relative shift of half
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a period between the top and bottom surfaces of the meniscus
[15], as was proposed in the early model of Ref. [9]. Atomic
force microscopy (AFM) and phase shifting interferometry
(PSI) of the SDs have clearly shown that the surface itself
has a periodic height variation across the SD [3,16], which
is of the order of a few percent of the spatial period w of the
structure. w itself varies linearly with the local height h of
the meniscus [3,4,15,16]. Loudet et al. [16] have developed
a theoretical model of SDs, arguing that they arise due to an
undulation instability of the layers when the sample is cooled
below TAC. In this model, it is assumed that the layers are
strongly anchored at the walls, and that the reduction in the
layer spacing due to the tilting of n with respect to k leads to
a dilative stress on the SmC layers in the meniscus region,
which is relieved by undulations. The surfaces of the FSF
also undulates and the surface tension γ also contributes to
the free energy, which is taken to be that of the SmA phase
under a dilative stress [16]. Numerical results show that the
period w = 0.85 μm for a sample thickness h = 10 μm, and
further, w ∝ √

h. On the other hand, the experimental results
show that w ≈ h, and w ∝ h [3,4,15,16]. Further, the undula-
tion instability [1,2] found in smectics subjected to a dilative
strain is a metastable structure, which is replaced by edge
dislocations that move in to fill space. On the other hand, the
SDs in SmC LCs have been observed to be stable over days
[3,15], even though the meniscus region easily accommodates
edge dislocations. Even in compounds which exhibit the SmA-
SmC sequence, the SD patterns are absent in intermediate flat
regions of the meniscus, though they are seen in neighboring
parts of the meniscus with thickness gradients [3]. Further,
when the area of a thick SmC FSF is suddenly increased,
holes with reduced number of layers, and thickness gradients
sporting radial SD patterns around their periphery, are gen-
erated [17]. Once again the flat regions on either side of the
periphery of the expanding holes are devoid of SD patterns.
Thus, thickness gradients are essential for the formation of SD
patterns. Further, SDs have been found in a material which
undergoes a first order transition directly from the nematic
(N) to SmC phase, in which the layers are not subjected to
the dilative strain due to thermal variation of the layer spacing
d [18]. More interestingly, in a compound with a transition
from the SmC in which the tilt angles of n in successive
layers are synclinic (SmCS) to one in which they are anticlinic
(SmCA), the SDs which formed in the SmCS LC disappear on
transition to the SmCA LC [18]. The observation brings out the
importance of the synclinic tilting of n to be the real cause of
SDs, and not the dilative strain caused by the tilting. However,
another system with a direct N-SmC transition exhibits the SD
pattern in the SmC meniscus, but the PSI scan shows hardly
noticeable surface undulations, with an amplitude <10 nm
[19]. The above summary of the present state of research on
SDs exhibited by FSFs clearly brings out the crucial role of
the tilting of n, even if only in the layers near surfaces. The
prevailing theoretical models [9,16] are clearly inadequate
to account for the observations. In the following section we
argue that a detailed analysis which takes into account a few
different terms necessary to describe the curvature elasticity of
SmCS LCs [1] is needed to understand the formation of SDs.

II. THEORETICAL MODEL

SmA LCs are characterized by a relatively simple elastic
response. Any gradients in layer spacing d cost a large energy,
and the only curvature distortion corresponds to that of the
bending of layers or, equivalently, the splay distortion of n,
which costs a very low energy. SmC LCs are characterized
by the additional vector c, which can have the usual splay,
twist, and bend curvature distortions of any vector field. In
addition, the layer bendings can also couple with the c-vector
fields requiring several elastic constants to describe the pos-
sible curvature distortions of the medium. A few different
approaches have been proposed for describing the distortions,
and a comprehensive summary of the models has been given
by Stewart [20]. In the following we find it convenient to use
the description based on c and k vector fields. Both c and k
are unit vectors, and with reference to Fig. 1, and the usual
understanding that the tilt angle θt between n and k is acute, c
points along the projection of n on the layer plane. If the sign
of k is reversed, that of c is reversed as well, and only those
curvature distortions in which the c- and k-dependent terms
totally add up to an even number are allowed.

Typically, the SmC stripes of a given periodicity form
a closed chain without coming into contact with any solid
boundaries, in the meniscus region around the central flat film.
Similarly, the coronal stripes around a deposited particle on
the central part of the FSF also form a closed chain. This
allows us to simplify the problem, and assume the FSF of SmA
LC to be formed between two parallel vertical walls (Fig. 2)
with edges lying in the YZ plane, and extended along the Y
axis, so that the equilibrium SD structure can be found by min-
imizing the energy density. Both the top and bottom surfaces
of the meniscus have a circular shape in the XZ plane, with a
radius RM , except very close to the boundary with the central
film of uniform thickness. The surface layers with k pointed
towards the center of the circle develop a tilt angle even a few
degrees above TAC. We first consider the temperature of the
sample to be below TAC, so that it is in the SmC phase. Let us
assume that the c vector in the surface layer naturally follows
the curved profile, and develops a nonzero bend distortion
vector c × curlc with a magnitude c2/RM , and oriented along
−k. The bend vector itself has a splay distortion as it is aligned
with k. This of course would lead to a crowding of the ends
of the tilted molecules at the surface, which is not favored.
In analogy with the saddle-splay elasticity in nematics, we
introduce the elastic term kSS ∇ · (c∇ · c + c × ∇ × c) which
is of course a surface term. The above argument shows that
kSS is negative, resulting in a positive energy density in the
medium. Considering a thin vertical slice of width �, across
which the meniscus height h can be assumed to be constant
(Fig. 2), the average energy density of the slice due to the
above term is given by

FSS = −2kSS/(hRM ). (1)

The factor 2 in the above arises as there are two equivalent
surfaces in the meniscus. A surface c field which is perpen-
dicular to the plane of the paper in Fig. 2 does not necessarily
reduce the energy density, as the ends of the tilted molecules
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are still crowded at the surface, costing energy. Introducing
the vector b = k × c, it is clear that b will have the bend
distortion in the latter case. We assume that kSS introduced
above adequately captures the physical process, and ignore
b-dependent terms in the following. We can note that around
layer steps in the FSF the c vector aligns parallel to the step
edge, i.e., the dislocation [3,17]. However, in the meniscus the
edge dislocation is located at the center, in which the c vector
has been found to have the orthogonal orientation, as shown
in Fig. 1(a) of Ref. [7]. Recently cryotransmission electron
microscopy has been used to image the edge dislocations of a
thin (∼100 nm) SmC∗ sample in bookshelf geometry [21]. If
the tilt plane is orthogonal to the dislocation, the core region
is found to be small (∼layer spacing). On the other hand, if
the dislocation is in the tilt plane, the core is spread over a few
layers in a direction along layer normal (Fig. 4 in Ref. [21]),
which probably costs a higher energy. We assume that the tilt
plane is orthogonal to the dislocation line, which simplifies
the analysis.

The structure of the meniscus can change to lower the
positive energy given by Eq. (1) due to the negative curvature
of the surface, by exploiting other curvature elasticities of
the medium. As kKC (∇ · k)(∇ · c) is an allowed deformation
[20] which can cost a negative energy, we propose a structure
in which the meniscus height h is constant. The layers are
assumed to bend in the YZ plane, periodic along Y as shown
in Fig. 3. Again considering a slice of width � along the X
axis, in which the height of the meniscus is h, all the layers
are assumed to bend in circular arcs with an angular spread
α, centered on some line parallel to the X axis and lying
below the lower surface, to form a V-shaped section. The two
neighbors of this section will have an inverted V shape, with
the layers bending about centers lying above the top surface,
such that there is a smooth continuity of all the layers across
the sections. The circular shape of the bent layers ensures that
the layer spacing does not have any gradient, thus avoiding a
costly elastic energy, and only the weak elasticity of curvature
deformations contribute to the energy of the structure. Further,
as the height h does not change on the formation of the
periodic structure, there is no net change in the surface area,
i.e., there is no additional cost due to surface tension. Thus
if b is the width along the Y axis of the slice before bending
of the layers, the total area of the two surfaces exposed to
air is 2b�. If Ri is the radius of the lower surface, that of
the upper surface is given by Ru = Ri + h. As the volume of
the slice is preserved after bending, α, the angle of bending
[Fig. 3(a)] satisfies αh(2Ri + h)/2 = hb. This value of α also
ensures that the total area exposed to air after bending, viz.,
α(2Ri + h)� is also unaltered, as mentioned above. The width
of the curved central layer at h/2 is given by α(Ri + h/2)
which is equal to that of the section before the bending of
the layers, viz., b. This means that the length of the edge
dislocation line, which resides at the center of the menis-
cus, remains unaltered after the change in structure, and we
can assume the dislocation energy to be unaffected by the
change, to a good approximation. We ignore the presence of
the dislocations in further analysis of the problem, but come
back to point out their possible influence towards the end of
the paper.
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FIG. 3. (a) Schematic diagram of the proposed model of the
stripe domains in the thinner regions of the meniscus of a free stand-
ing film of SmC liquid crystal. Side view along X of a slice as shown
in Fig. 2, which is also along the ζ axis of the local cylindrical coordi-
nate system, and pointed into the plane of the diagram. In the central
V-shaped section, the layers bend in circular arcs of angular extent α

around the center at O. The layers in the neighboring sections bend
around symmetrically located centers above the uppermost layer,
producing inverted V-shaped sections. The spatial distortion of the
tilted director n field is shown in a middle layer. The thicker ends of
the triangular symbols signify projections towards the reader. Both
the layers and the n fields vary smoothly across the neighboring
sections. The radius of the nearest layer from O is Ri = OD, and
that of the upper-most layer OA = Ri + h. The spatial period of the
stripe pattern is w = AB + BC, and the amplitude of the surface
modulation is given by a. (b) Top view showing the c-vector field
of the stripe domains in a slice of width �. Note that both the c field
and the corresponding k field as seen in (a) have opposite divergences
in neighboring sections.

We introduce a local cylindrical coordinate system rφζ

with the origin at O and the ζ axis along the X axis of the
Cartesian system introduced earlier, r along the radius vector,
and with the azimuthal coordinate angle φ measured from the
vertical radius vector bisecting the V-shaped section (Fig. 3).
We assume that � is so small that all gradients along ζ can be
set equal to 0 within the sliced section. k is the unit vector
along r, and we can note that the layer saddle splay term
∇ · (k ∇ · k) vanishes in the proposed structure, and there is
no energy gain in the SmA phase. It means that the only reason
for the layer bending with nonzero ∇ · k is the coupling with
∇ · c which is possible only in the SmC phase.

If the elastic constant kKC introduced above has a positive
value, the sign of ∇ · c will be negative to lower the energy of
the structure [Fig. 3(a)]. If ψ(φ) is the azimuthal angle made
by c with the (local) ζ axis [Fig. 3(b)], we assume that ψ varies
from +π /2 to +3π /2 as φ varies from −α/2 to α/2 across
the section. By definition cr = 0, and the other components
are cφ = sinψ , and cζ = cosψ . The assumed range of ψ(φ)
ensures that both k and c vectors vary smoothly across neigh-
boring sections without any walls with discontinuities in the
vector fields.
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The curvature distortions are given by

∇ · k = 1

r
; ∇ · c = cosψ

r

∂ψ (φ)

∂φ
;

c × ∇ × c =
(

(sinψ )2

r
, − sinψcosψ

r
∂ψ (φ)

∂φ
,

(sinψ )2

r

∂ψ (φ)

∂φ

)
. (2)

The elastic energy density of the structure has many con-
tributions. The cost of bending the layers is given by

FB = kB

2
(∇ · k)2 = kB

2r2
. (3)

Assuming the one constant approximation for both the
splay and bend distortions of the c field, the relevant energy
density is given by

FC = kC

2

[
(∇ · c)2 + (c × ∇ × c)2

]

= kC

2r2

[
(sinψ )4 +

(
∂ψ (φ)

∂φ

)2]
. (4)

The coupling between the splay deformations of both k and
c mentioned earlier leads to the energy density

FKC = kKC (∇ · k)(∇ · c) = kKC
cosψ

r2

∂ψ (φ)

∂φ
. (5)

The saddle-splay-like term of c deformation mentioned at
the outset cancels out in the proposed structure:

FSS = kSS∇ · (c ∇ · c + c × ∇ × c) = 0. (6)

Another total divergence term which depends on both k
and c is

FSKC = kSKC ∇ · (k ∇ · c + k × ∇ × c). (7)

It is interesting to note that the ∇ · (k ∇ · c) part of the
above equation is essentially the surface term introduced in
Ref. [9], but it has a null value in the structure proposed
by us. [It can be pointed out that this term is different from
the kKC term of Eq. (5)]. k × ∇ × c has only a nonzero φ

component, and as the structure is assumed to extend along
the Y axis, the surface contribution arising from this term can
be ignored. The spatial dependence of c, or equivalently ψ(φ),
can be obtained by minimizing the total energy density. Only
Fc given by Eq. (4) has a quadratic dependence on the gradient
term, and the Euler-Lagrange equation leads to the following
relation: ∫ α/2

0
dϕ = α

2
=

∫ 3π/2

π

dψ√
A + (sinψ )4

, (8)

where we have used the symmetry of the structure in the given
section, and A is a constant of integration.

The total elastic energy density as a function of the location
in the section is given by

FT = FB + FC + FKC . (9)

The energy density averaged over the volume of the section
is given by

FS = 4

α h(2Ri + h)

∫ Ri+h

Ri

dr
∫ α

2

0
FT rdϕ

= 4 Ln
(Ri+h

Ri

)
α h(2Ri + h)

{
1

4
kBα − kKC

+ 1

2
kC

∫ 3π/2

π

(
A + 2(sinψ )4

)
√

A + (sinψ )4
dψ

}
. (10)

In the above, the volume of the V-shaped section is
0.5αh(2Ri + h)�. As we should compare the energy density
of the periodic structure of the meniscus with that without it as
given by Eq. (1), we should also take into account the changed
contribution from the bend of c vector as it follows the circular
surface of the meniscus. Experimental studies [3,16] as well as
the results of calculations based on the model to be presented
below show that the amplitudes of the periodic surface distor-
tions are quite small. We can estimate the reduced contribution
to be given by

FM = −2kSS〈cos2ψ〉/(hRM), (11)

in which the average of cos2ψ is calculated over the angular
width α of the section. The total averaged energy density of
the periodically distorted structure is

FT S = FS + FM . (12)

Two lengths which have been measured in relation to the
height h are as follows:

(i) the width w of the stripe which is given by AC = AB +
BC in Fig. 3(a),

w = 2(2Ri + h) sinα/2; (13)

(ii) the amplitude a of the layer displacement is given by
half the height difference between the crest of a given section
and the trough of its neighboring section [Fig. 3(a)],

a = (Ri + h/2)(1 − cosα/2). (14)

The curvature elastic constants pertaining to distortions
in the c field, viz., kSS , kC , and kKC , depend on the tilt or-
der parameter, and while kKC and kSS can be expected to
be proportional to the tilt angle θt , kC ∝ θt

2 [20]. We have
made calculations using the following set of parameters:
RM = 200 μm, kB = 20 × 10−12 N, kC = 3 × 10−12 N, kSS =
−9 × 10−12 N, and kKC = 12 × 10−12 N. The two parameters
defining the structure at any given height h are Ri and α. For
example, when h = 5 μm, in the absence of the stripes, the
energy given by Eq. (1) is FSS = 0.018 J/m3. At any given Ri,
the average energy density of the stripe structure FT S exhibits
a minimum as a function of α. The minimized value, which re-
mains positive, decreases as Ri decreases. For Ri ∼ a few layer
spacings (d), the spatial deformations in k and c fields become
very strong in the layers close to O, and can be thought of as
forming the core of the partial disclinations in the two fields.
The core region loses the layering and the orientational orders,
and the transformation of course costs a relevant energy. The
total energy of the structure should again start to increase as Ri

is reduced below a few times d . We assume that the minimum
occurs at Ri = 10 nm. The minimum energy of 0.0098 J/m3
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FIG. 4. (a) Variation of the stripe width w with the height h of
the meniscus in the SmC phase. The linear dependence is in accord
with experimental results [3,16]. (b) Variation of the amplitude a
of the periodic surface profile of the stripes, as a function of the
stripe width w. The relative magnitude of a is a few times larger
than the experimental value, but the linear dependence reflects the
experimental trend [3,16].

occurs for α = 1.18 radians. As this energy is smaller than
that for the meniscus without the stripes, the stripe structure
is favored. Similar calculations at other values of the height
h lead to similar results. Remarkably, the minima occur for
α = 1.18 radians independent of the height. This in turn leads
to the result that the stripe width w defined in Eq. (13) varies
essentially linearly with h, and for the parameters chosen,
w ≈ h [Fig. 4(a)]. The linear dependence has been noted
in some experiments [3,16]. The amplitude of the periodic
surface height variations defined in Eq. (14) in turn varies
linearly with w [Fig. 4(b)], and is ∼6 or 7% of w, reflecting
the experimental trend [3,16], though the measured value of
a/w is only ∼1%.

Though the energy of the stripe domain is lower than that
of the meniscus without stripes, its sign remains positive. This
means that the stripes do not form in the central part of a FSF
with flat layers, in which the c-vector field can be assumed
to be undistorted. We may also note the following points in
relation to some experimental results: (i) The positive energy
of the undistorted meniscus given by Eq. (1) has its origin
in the negative curvature of the meniscus. In fact the actual

curvature of the meniscus (1/RM) is unimportant, as long
as the curvature is large enough to cost a sufficiently high
positive energy given by Eq. (1). The parameters of the SD
pattern (w and a) depend mainly on kB, kC , and kKC and not
strongly on kSS . Indeed the part of the meniscus close to the
central flat film has a negligible curvature [3] and hence also
the associated positive energy. As a result, the SD structure
forms above a threshold value of the thickness h [3]. (ii) In
some samples cooled rapidly, the second neighbor SD stripes
at the thinnest part bend around and join to loop around a
central stripe [3]. From Fig. 3(a), it is clear that the outer
stripes with inverted V sections can rotate around the central
vertical axis passing through O, to smoothly join with each
other, as they are geometrically compatible. This structure
probably has a higher energy than the one which just ends
at a critical meniscus thickness mentioned above, and has not
been seen in the systems reported in Ref. [4]. (iii) The plot
of a vs w reported in Ref. [3], which has a compressed scale
along the horizontal axis compared to the vertical one, has
a more rounded crest compared to the sharper trough, which
is compatible with the structure shown in Fig. 3(a). (iv) The
experimental amplitude of surface undulation is ∼1% of the
stripe width [3,16], while the calculated one is several times
larger. From Eqs. (13) and (14),

a

w
= 1

4
tan

α

4
. (15)

The ratio which depends only on the angle α, reduces
with the angle. Again, with RM = 200 μm, if the elastic con-
stants are kB = 19.5 × 10−12 N, kC = 1 10−12 N, kSS = −9 ×
10−12 N, and kKC = 7 × 10−12 N, α is reduced to 0.7 rad, and
a/w = 0.044. But as α is lowered, the ratio of stripe width
to the sample thickness w/h is also reduced to ∼0.7, whereas
experimentally, the latter ratio is ∼1. We will comment later
on a possible origin of the low value of observed a/w, espe-
cially in the case reported in Ref. [19], in which it is ∼0.001.
(v) In an experiment involving a sudden increase in the area of
a thick FSF [17], the holes generated also develop a thickness
gradient at their peripheries, in which radial SD patterns are
formed beyond a critical thickness. As the holes expand, the
peripheral region gets stretched, but the number of SD stripes
does not vary significantly. From Fig. 3, a change in the num-
ber of stripes would require a major structural rearrangement
of the bent layers, which is a slow process.

As the sample is heated above the SmC to SmA transition
temperature TAC, the tilt order is lost in the bulk, i.e., in the
interior layers of the FSF. However, the tilt order persists near
the surfaces [14], decreasing in strength as the temperature
is increased. We make the simplifying assumption that a rela-
tively small and uniform tilt order persists over some thickness
δ near the surfaces of the sample, and the order vanishes in the
rest of the sample (Fig. 5).

It is clear that, unlike in the SmC phase, the elas-
tic terms favoring the formation of stripes which require
the c-vector field are effective only in the two surface
regions, whose relative contribution decreases as the thick-
ness of the meniscus h increases. Consequently, in the free
energy density averaged over the volume of a V-shaped sec-
tion, while the kB term is multiplied by Ln((Ri + h)/Ri )
as in Eq. (10), the kKC and kC terms are multiplied by
Ln[(Ri + h)(Ri + δ)/Ri(Ri + h − δ)], reflecting the reduced
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FIG. 5. Schematic diagram of a section of stripe above the SmC
to SmA transition temperature TAC. The shaded areas of thickness δ at
the top and bottom surfaces are assumed to have a nonzero tilt order,
while the rest of the medium is in the SmA phase without any tilt
order. As described in the text, in order to reduce the positive elastic
energy of bending of the layers, the center OA is pushed far away
from the surface, increasing Ri(= OAL) to tens of micrometers.

contributions from the latter terms. As the temperature is
increased just above TAC, we expect the stripe domain in
the meniscus with the largest value of h, which occurs just
adjacent to the two-dimensional structure made of parabolic
focal conics, to become unstable as its energy increases. The
tilt order in the surface layers can be expected to be lower
than in the SmC phase, and we use the following parameters
in the calculations: RM = 200 μm, kB = 10 × 10−12 N, kSS =
−3 × 10−12 N, kC = 0.6 × 10−12 N, kKC = 4 × 10−12 N, and
δ = 20 nm. Assuming that the stripe domain emerges from the
two-dimensional structure at h = 25 μm, the energy density
in the absence of the stripes, arising from the kSS contribution
[Eq. (1)] is 0.0012 J/m3. The dominant layer bending contri-
bution can be reduced by increasing Ri (Fig. 5). As the stripe
structure is found to smoothly emerge from the focal conic
structure, with the periodicities in the two being comparable
[15], the angle α has to be reduced as Ri is increased (Fig. 5).
The average energy density decreases as Ri is increased, the
rate of change decreasing as well. When Ri = 80 μm, and
α = 0.18 rad, the energy density is just lower than that of
the meniscus without the stripe. This can be considered as
the threshold condition for a stable stripe structure. For a
smooth structure in the meniscus, as in the SmC phase, we
can assume that Ri and α remain independent of h. As Ri is
much larger than h, it is clear from Eq. (13) that the stripe
width w is not very sensitive to h, unlike in the SmC phase.
For the parameters given above, w is about 30 μm, and
reduces by about 10% as h is decreased from 25 to 5 μm.
Indeed, experimentally the stripes have been found to become
straight [13], without the branching needed to accommodate
the decrease in w with that in h as found in the SmC phase.

The amplitude a [Eq. (14)] is also essentially independent
of h, and is found to be ∼1% of w, much less than in the
SmC phase. Indeed, the energy density slowly decreases as
Ri is increased further. As both Ri and α have to change
over the entire meniscus region, and the relevant viscosities
of the SmA phase are quite large, the process is quite sluggish
at low temperatures, and the stripes have been found to be
fairly long lived. However, as the temperature is raised, the
viscosities and the tilt order at the surface decrease, and the
process mentioned above accelerates: Ri can be expected to
increase with time, inevitably reducing the amplitude a of
the structure, which can be expected to fade away with time,
as found in experiments [13,4]. When the sample is cooled
from a high temperature in the SmA phase, the stripes are not
expected to form until TAC is approached. Indeed experimen-
tally, very fine stripes have been found to form near the edge
of the focal conic domains close to TAC, and then pervade
the meniscus as the temperature is lowered across TAC [3].
Presumably the undulations already present in the focal conic
domains facilitate the formation of the undulations of the
SD pattern.

As mentioned earlier, spherical solid particles or liquid
drops of micrometric dimensions have been deposited on the
central flat part of the FSF to find radial stripes in the coronal
region both in the SmC phase and in the SmA phase above
TAC [12,13]. They are very similar to those found in the
meniscus region of the usual FSF. The surface tension values
of the deposited materials are considerably higher than that
of the smectic liquid crystal, which covers the depositions,
and forms a coronal meniscus region. The model proposed by
us is hence applicable to these systems as well. The structure
shown in Fig. 3 can be expected to be wrapped around the
central particle in cylinders, the meniscus height h depending
on the radial distance from the particle. In the thinner parts
of the corona, far away from the deposition, the model given
above can be expected to be a good approximation. Closer
to the particle, as the radial distance becomes smaller, some
additional curvature distortions of the c field arising from the
cylindrical wrapping can be expected to make non-negligible
contributions to the elastic energy. Further, minimization of
the total energy of the entire coronal region should lead to the
formation of a relatively small integral number of stripes as
found in experiments. We can thus expect some quantitative
changes in the calculated parameters, but the basic physical
mechanism for the formation of the stripes is the same as the
one discussed above.

We reemphasize that the reason for the proposed structure
of Fig. 3 to be favored in the formation of SD stripes is that
the only energies involved are the relatively weak curvature
elasticities of SmC LCs, without any contributions from the
expensive surface energy or the compression modulus.

III. DISCUSSION AND CONCLUSIONS

As we have summarized in the Introduction, the forma-
tion of stripes along the thickness gradient of the meniscus
region of FSF in SmC liquid crystals has been investigated
extensively. The first theoretical model [9] was based on the
idea that a divc distortion at the surface could produce an
electric polarization normal to the surface, which could lower
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the energy. The model would lead to the stripe structure even
in the flat layers of the FSF, which have not been found.
An experimental result to bring out the connection of stripe
formation with layer height modulations was obtained using
fluorescence microscopic studies [11]. Later AFM and phase
shifting microscopy were used to measure the periodic surface
height modulations associated with the stripes. Undulation
instability of the layers in response to the reduced pressure in
the meniscus region around a dispersed particle was suggested
as the origin of coronal stripes [12]. The reduction in layer
spacing on the transition from the SmA to SmC phase was
suggested to give rise to the undulation instability, and the
associated stripes [16], but the predicted ratio of stripe width
to local thickness of the meniscus is an order of magnitude
smaller than the measured values. Also, the formation of
stripes in materials with a direct nematic to SmC phase, and
its disappearance in a material when it undergoes a transition
from the SmC to SmCA phase with anticlinic tilts in neighbor-
ing layers [18] rules out this model.

Our model is based on the following arguments: (i) The
meniscus surface has a negative curvature due to a gradient
in thickness mediated by edge dislocations. A tilting of the
molecules of the surface layer gives rise to a crowding of their
top ends however they are aligned, costing additional energy.
(ii) This energy can be lowered by changing the structure
of the meniscus by exploiting the allowed kKC (∇ · k)(∇ · c)
curvature deformation, which couples the k and c vector fields
to gain energy. (iii) We have proposed a structure (Fig. 3) in
which both fields vary smoothly across neighboring sections
of a periodic stripe deformation, avoiding expensive gradients
in layer spacings and walls across which the c field has dis-
continuities. (iv) The structure also does not change the area
of the surfaces, or the length of the dislocation lines located
at the midplane of the meniscus, avoiding additional energy
costs. (v) Though the layer bending and c-field distortion
cost energies, using reasonable values of the relevant elastic
constants, our calculations show that the energy density of
the structure can be lower than that of the meniscus without
the formation of the stripes. (vi) The lowered energy density
of the stripes is positive, which means that the stripes cannot
form in the central region of FSFs made of flat layers. (vii) The
experimentally noted linear dependence of the stripe width w

and the amplitude a (which is a few % of w) on the height
h of the meniscus have a natural explanation, as Ri is of
molecular dimensions. (In the undulation model proposed in
[16], w ∝ √

h). (viii) In the structure shown in Fig. 3 the
relative deformation patterns at the top and bottom surfaces
are shifted by w/2, as has been found experimentally [15].
(ix) It is clear that if successive layers have anticlinic tilts, the
divergence of c will also have opposite signs in neighboring
layers, and the kKC term does not apply, so that the stripe
structure cannot occur, as found in an experiment [18]. (x)
The basic physical model can apply even above the SmC to
SmA transition, as long as there is a reasonable tilt order in
the surface region. In order to lower the energy of the bending
of layers, the layer curvature and the bend angle in each
section reduce, decreasing the amplitude of surface height
modulation. The stripe width hardly varies with h, giving rise
to straightened stripes without branching. The structure can
lower energy by continuing this process, which results in a

fading away of the stripes at higher temperatures. (xi) As the
temperature is lowered towards TAC, the physical processes
discussed in the paper kick in, starting at the edge of the focal
conics seen even in the SmA phase beyond some thickness
of the meniscus. Presumably the deformation already present
in the focal conics facilitates the formation of SDs. (xii) The
above arguments are applicable to the meniscus region gen-
erated around spherical particles deposited on the flat layers
of the FSF to form coronal stripes. However, the wrapping
of the structure shown in Fig. 3 in a cylindrical shell around
the particle gives rise to additional curvature deformations
of the c field, which we have not analyzed.

The proposed model thus captures the physical origin
of the formation of SD patterns in the meniscus region
of the SmC phase and also over some temperature range above
the SmC to SmA transition point. However, we may note
that the model overestimates the amplitude of the distortion.
Typically the ratio of the amplitude of SD to its width (a/w) is
measured to be ∼1%, while the prediction made by the model
is about six times larger. In one sample which has a direct
transition from nematic to SmC phase, the ratio appears to be
far smaller, ∼0.01%. We can speculate about the origin of this
discrepancy. As in all the earlier models, the present one also
ignores the influence on the SD structure of the edge disloca-
tion lines mediating the thickness profile of the meniscus. We
argued that the length of the dislocation line, which occurs at
the center of the meniscus, is unaltered by the structure shown
in Fig. 3(a). However, the dislocation, which has to bend with
the structure, has a typical line tension of ∼2 10−3 N/m [2].
The bending of the line should cost a relevant curvature en-
ergy, which is reduced by pushing the dislocation line towards
the surface with a lower curvature, i.e., r tends to increase
from the value (Ri + h/2) corresponding to the center of the
meniscus. However this also increases the length of the dislo-
cation, which is not favorable. The dislocation can straighten
appropriately to restore the length. The net result is that the
layer structure which is coupled to the shape of the dislocation
line also flattens out appropriately, reducing the amplitude of
the distortion. It seems that in the sample having a first order
transition from the nematic to the layered SmC phase directly,
with a large tilt angle which is not very sensitive to variations
in temperature, and forming the dislocations along with the
SD structure when the FSF is drawn, this process leads to
nearly flat layers. On the other hand, in systems exhibiting
SmA to SmC transition, the tilt angle is smaller and varies with
temperature, and the dislocation line can be expected to cost
a lower bending energy, thus giving rise to larger a/w ratios.
A detailed theoretical analysis of this process should take into
account all the relevant contributions, and is beyond the scope
of the present paper.

In conclusion, a few different terms of the curvature
elasticity of SmC liquid crystals contribute to the formation
of the stripe structure in the meniscus regions of FSFs.
Though the relevant elastic constants have not been measured
in the experimental systems, the fact that the model can
qualitatively account for all the experimental observations
implies that the relative values assumed in the calculations are
in the correct ballpark. It is possible that detailed experimental
measurements on the stripes can lead to better estimates of
the elastic constants.
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