
Active hydrodynamics of

actomyosin elastomer with

turnover during tissue remodeling

by

Deb Sankar Banerjee

2018

A thesis submitted to

the Jawaharlal Nehru University for the degree of

Doctor of Philosophy





Certificate:

This is to certify that the thesis entitled “Active hydrodynamics of actomyosin

elastomer with turnover during tissue remodeling” submitted by Deb Sankar

Banerjee for the award of the degree of Doctor of Philosophy of Jawaharlal Nehru

University is his original work. This has not been published or submitted to any other

University for any other Degree or Diploma.

Prof. Ravi Subrahmanyan Prof. Madan Rao

(Director) (Thesis Supervisor)

Raman Research Institute

Bangalore 560 080

India

iii





Declaration:

I hereby declare that the work reported in this thesis is entirely original. This thesis

is composed independently by me at Raman Research Institute under the supervision

of Prof. Madan Rao. I further declare that the subject matter presented in this

thesis has not previously formed the basis for the award of any degree, diploma,

membership, associateship, fellowship or any other similar title of any university or

institution. I also declare that I have run this thesis through the plagiarism checking

software Turnitin before submission.

Prof. Madan Rao Deb Sankar Bnerjee

Theoretical Physics

Raman Research Institute

Bangalore 560 080

India

v





Dedicated to

My Mother Reba Banerjee &

My Late Father Gouri Sankar Banerjee

vii





Acknowledgements

I am grateful to my supervisor Prof. Madan Rao for all the advices, care and

help I received from him. He changed my scientific vision in many different ways.

I thank Prof. Thomas Lecuit for many fruitful discussions and great insights that

encouraged me on my pursuit of science. I will remain grateful to Akankshi, Girish,

Ankita and other Lecuit lab members for their hearty welcome and support during

my visit to Marseille and for the biological insights I gained from them.

I would like to thank Prof. Yashodan Hatwalne, Prof. Pramod Pullarkat, Prof.

V.A. Raghunathan and other SAAC members for numerous helpful feedbacks on

various occasions and their mentoring throughout my PhD. I have enjoyed working

with Vijay Kumar Krishnamurthy and Mandar Inamdar and learned many things

from them during the course of my PhD. I am grateful to Sriram Ramaswamy for all

the insightful discussions we had. I want to thank all the faculties who taught us in

IISc and RRI for their invaluable teachings. I want to thank Debarghya Banerjee,

Richard Morris and Ananya Mitra for discussions that helped me greatly in my

research. My life would have been difficult without all the support that I got from

the scientific community in RRI, IISc, NCBS and Simons Center.

After spending all these years alongside my lab members, I really think it could

not have been better anywhere else. I cannot thank you all enough for being with

me through all these times, to Raj, Rituparno, Suman, Kabir, Amit, Amit, Amit,

Alkesh, Krishnan, Alex.

I want thank my friends and peers in IISc and RRI: Adhip, Suman, Narendra,

Tathagata, Tanujit, Saiantan, Shivam, Aniruddha, Santanu, Shusil, Deepak, Meera,

Niranjan, Raviranjan and many more. Its not possible to thank you enough for all

the experiences that we shared. And a spacial thank to Sufi Raja, without you our

life would be “tasteless”! I have been blessed with some crazy friends : Abhishek

and Riya.

ix



Acknowledgements

I have never seen a more friendly office than the RRI admin, I thank you all for

helping me whenever the need was there. I would like to thank K. Radha, Marisa,

Vidya for all their help. I would also like to thank NCBS administration for hosting

me and for all their numerous help and support.

When nothing works out I go running to these people and they have been always

there for me - Moumita, Rituparno, my three sisters and bordavai. I cannot express

my feelings in words but nothing would be possible without your constant support

in everything: Maa. Finally there is no acknowledgement I can give to my family,

whatever good is there in me has come from all of you.

x



Synopsis

Embryonic developmental processes in organisms involve well orchestrated changes

in shape, size and organization of the tissues. This remodeling of shape in tissue

(during embryonic development or elsewhere) is referred as tissue morphogenesis.

Tissue morphogenesis emerges from actively driven shape, size or relative position

changes in the constituent cells. These changes at cellular scale happen through

self organized mechano-chemical dynamics of sub-cellular structures. The apical ac-

tomyosin network is one major example of such sub-cellular machinery that drives

cell shape changes which result in tissue morphogenesis. Here we constrain our

study within a broad range of phenomena where actomyosin pulsation and flow

drive changes in cell shape and cell organization which in turn remodel the whole

tissue.

Active hydrodynamics of actomyosin pulsation and flow

Here we describe the hydrodynamics of the actomyosin cytoskeleton as a confined

active elastomer embedded in the cytosol and subject to turnover of its compo-

nents. Our treatment is adapted to describe the diversity of contractile dynamical

regimes observed in vivo. When myosin-induced contractile stresses are low, the de-

formations of the active elastomer are affine (homogeneous deformation over a spa-

tially coarse-grained scale), and exhibit features of an excitable medium, including

spontaneous oscillations, propagating waves, contractile collapse and spatiotemporal

chaos. The collective nonlinear dynamics shows nucleation, growth and coalescence

of actomyosin-dense regions which, beyond a threshold, spontaneously move as a spa-

tially localized traveling front. However, large myosin-induced contractile stresses,

can lead to non-affine deformations due to enhanced actin and crosslinker turnover.

This results in a transient actin network that is constantly remodeling and naturally

accommodates large intermittent strain fluctuations and intra-network flows of the
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actomyosin dense regions.

Our work suggests that the driving force for the spontaneous movement, both of

the travelling front and the intra-network flows, comes from the actomyosin-dense

region itself and not the cell boundary. These symmetry breaking flows correspond

to spatially localized traveling front solutions of the active hydrodynamic equations.

We verify many predictions of our study in Drosophila embryonic epithelial cells

undergoing neighbour exchange during a collective process of tissue extension called

germband extension.

Reliable and robust junction shrinkage through actomyosin pulsation

and flow

In a tissue, cells adhere to each other to form cell junctions and maintain integrity

the tissue. In many cases of tissue morphogenesis, organizational changes are driven

by active remodeling of cell junctions. Here we construct a dynamical model of

cell junction stating from a local hydrodynamic description of actomyosin network

(as an active elastomer) and E-cadherin adhesive complexes. We use this theory to

understand junction shrinkage during cellular intercalation which leads to germband

extension.

We show that this description is able to capture the qualitative behaviour of a

junction shrinkage observed during in vivo experiments. We also address a very

important question in the context of tissue morphogenesis: how the noisy dynamics

of local molecular force generators ultimately results in reliable and robust shape

changes at the cellular and tissue scale? In this work we identify a novel molecular

mechanism, based on two pools of myosin (active stress generators) working in

tandem, that provide a robust and reliable shrinkage of junction.

Prof. Madan Rao Deb Sankar Bnerjee

Raman Research Institute

Bangalore, India.
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Chapter 1

Introduction

In a multicellular organism many cells come together (adhere) to take a form and

perform specific functions. These organization of cells which interact chemically and

mechanically with the neighbouring cells, are called tissue [1]. A tissue can be very

dynamic as a structure and shape, size or organization of a tissue can change with

time as it undergoes remodeling. When a tissue undergo remodeling of its shape it

is generally referred as tissue morphogenesis.

In this study we aim to understand the physics of remodeling of tissue shape in

terms of shape-change in individual cells and dynamics of the sub-cellular elements

that drive the changes in cell shape. In this chapter we introduce and discuss the

physical and biological ideas that are crucial to our work and the main motivations

for this study.

We start with a discussion about tissue morphogenesis with an aim to introduce it

with necessary details and physical insights. We then briefly introduce the physics of

active matter and describe tissue as an example of active matter. Next we consider

a particular case of tissue morphogenesis and discuss the phenomenology involved

at various scales (tissue - cellular - sub-cellular). Finally we discuss the preliminary

ideas on how a coarse grained theoretical description can be used to understand the

physics of tissue remodeling at large lengths and long times.

1.1 Tissue morphogenesis

The word morphogenesis literally means the creation (genesis) of shape (morphê).

The process of development of an multicellular organism starts from a single cell

1
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that divides into many cells which then organize to form an embryo and with time

the embryo morphs into the organism with defined limbs and organs. This forma-

tion and transformation of an embryo into an organism is referred as embryogenesis.

During embryogenesis collection of cells assemble to form tissues. To organize the

embryo and to form organs, these tissues undergo a wide variety of changes ranging

from comparatively simple overall shape or size change of the tissue to complicated

topological or geometrical changes at tissue scale [2]. This process of rendering form

to the tissues, seen during embryonic development, is referred as tissue morphogen-

esis.

Tissue morphogenesis is a result of the well organized change in shape, size or

coordination of its constituent cells. Some of the well studied examples of such cases

of tissue morphogenesis are invagination of mesoderm tissue during gastrulation and

convergence-extension of germband tissue during germband extension in Drosophila

melanogaster. Mesoderm invagination involves bending and fold formation in the

mesoderm tissue achieved by apical constriction of individual cells [3, 4] (Fig.1.1 a)

whereas intercalation of individual cells results in germband extension [5] (Fig.1.1 b)

where the overall shape of the germband tissue changes. It is to be noted that local

changes in each cells can interact with changes in neighbouring cells via adhesive

connections to produce an integrated effect at tissue scale [6].

Following the similar principle of local dynamics giving rise to global effects,

the dynamics of constituent molecular components of a cell collectively drives the

changes in the shape or size of a cell [2].

2
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Apical constriction

(a)

(b)

Figure 1.1. Tissue morphogenesis driven by cell shape change: (a) Apical constric-
tion in mesoderm cells result in fold formation during mesoderm invagination (figure
from [4]). (b) Tissue shape change during germband extension happens through cel-
lular intercalation at each cell (figure from [3]).

In the above mentioned cases of tissue morphogenesis, the local forces generated

by the contractile machinery of actomyosin drive both intercalation [7] and apical

constriction [8] through remodeling of cell junction and apical surface of cell respec-

tively.

Next we briefly describe active matter and how a tissue fits into the active mat-

ter description. We then focus on a particular case of tissue morphogenesis called

germband extension in Drosophila melanogaster to discuss the processes involved in

tissue remodeling across different scales from tissue to sub-cellular actomyosin net-

work. The phenomenology of germband extension and the theoretical descriptions

used to understand germband extension will be presented in following sections.

1.2 Active matter

Study of active matter is a relatively new field of physics and has drawn significant

interest from many pure and inter-disciplinary branches of science. Active matter

refers to a system where the constituent elements are driven by energy infusion

(from the energy sources present inside the element or in the ambient medium)

and energy dissipation (through inter-element collision, substrate friction etc) at

the scale of the individual elements [9, 10]. Active systems can produce systematic

3
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movement through this energy intake and dissipation at microscopic scale and are

far from thermodynamic equilibrium [10, 9]. Active matter is different from an

externally/boundary driven non-equilibrium system as the time reversal symmetry

is broken at the level of the individual constituent elements.

Active matter can be living or non-living. Active matter systems can be found

across different length scales (see Fig. 1.2) ranging from a scale of few hundred

nano-meters (self propelled colloidal particles [16] or nanorods [15]) or a few micro-

meters (bacteria colony [13] or cell cytoskeleton [19]) to several kilometers (animal

migration [17]). Dynamical features in active matter can be slow or fast and span

across different timescales from few seconds (vibrated granular rods [14]) to few

hours (cell migration in confluent tissue [18]).

Figure 1.2. Example of active matter at (a) microscopic length scale : Turbulence
in growing bacteria colony of Bacillus subtilis is an example of turbulence in highly
viscous media (low Reynolds number) where each bacteria behave as an active el-
ement [13]. Scale bar is 35µm. (b) Active matter at macroscopic length scale :
A school of fish shows remarkable collective dynamics and emergent polar order in
their collective motion has been widely studied [21, 22] (Figure from [20]).

Living active matter like cells, tissues, bacteria colony, a flock of birds all use

chemically stored energy at the level of the respective active elements (each bacteria

in the colony, each cell in the tissue and such) to exhibit activity. We shall mainly

discuss about living active matter in this study. Such are usually very complex

in their entirety. A single living cell presents an immensely complex system to

study with huge variety of molecular components and various interactions among

these components happening at different lengthscales and timescales . This scope
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for seemingly immense diversity in behaviour can be constrained by global physical

principles such as symmetries, conservation laws etc. Thus it is important to try

and uncover these underlying global principles from a particular feature observed in

living active matter. This has been done very successfully in the case of dynamics

of active membranes [23], theory of flocking [22], large length scale dynamics of

cytoskeleton [24] etc.

Living active matter systems has also been studied using a minimal microscopic

description with emphasis on order, fluctuations and collective behaviour. Some

notably successful and important works in this direction are studies on flocking

[21, 25] and semiflexible filaments with crosslinkers and active stress generators to

understand cytoskeletal dynamics [26] etc.

In the case of tissue remodeling the active constituent elements can be defined

in a context dependent manner. For the cellular level the sub-cellular constituent

elements of cytoskeleton act as the active elements by exerting local forces through

conformational changes achieved using chemically stored energy from the ATP hy-

drolysis reaction. Then at the tissue scale the active matter description can be

achieved by considering the individual cells as the active elements changing shape

(or size) or going through topological transitions by using chemically stored energy

inside each cell.

In the next section we discuss a particular case of tissue remodeling and describe

how tissue morphogenesis is driven by active processes at various scales in the tissue

- from sub-cellular structures to the tissue scale.

1.3 Phenomenology of germband extension

The germband extension (GBE) is an example of tissue morphogenesis that occurs

during the development of Drosophila melanogaster embryo. It starts in stage 6

of drosophila development, shortly after the beginning of gastrulation process and

continues for approximately 2 hours upto stage 8 [5]. In this section we describe the

features of germband extension at the scale of tissue, cell and sub-cellular structures.

To proceed further we need to clearly illustrate the geometry of the germband

tissue and its cells .

• At the beginning of GBE, the length and width of germband tissue are defined
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along anterior-posterior axis and dorsal-ventral axis respectively (see Fig. 1.3

a).

• Germband cells are of columnar geometry with polygonal cross-section[30].

apical and basal side of a cell refer to the cell surfaces towards the outside and

inside of the embryo respectively (see Fig. 1.3 b).

• In the apical side of the cell, the two junctions oriented along dorsal-ventral axis

are called vertical junctions and the other four junctions are called transverse

junctions [6] (see Fig. 1.3 c).

• We shall refer the central portion of the apical cell-surface as medial region

and the region near the vertical junction is referred as junctional region [12]

(see Fig. 1.3 c).

D

V

Figure 1.3. Geometry of the germband tissue and the constituent cells : (a) The
germband is a part of the epithelial tissue of the drosophila embryo comprising the
gnathal, thoracic, and abdominal segments [5]. The letters A-P and D-V represent
the Anterior-Posterior and Dorsal-Ventral axis (lab frame of the embryo) respec-
tively. (b) The cells in germband tissue are of polygonal-columnar shape and they
adhere to each other to form the tissue. (c) The cells has polygonal cross section and
most of the activity during intercalation has been seen near the apical surface of the
cell [3, 12]. We define geometry of the apical surface : The two junctions oriented
along dorsal-ventral axis are called vertical junctions and the other four junctions
are called transverse junctions. The central portion of the apical cell-surface is called
medial region and the region near the vertical junctions are referred as junctional
region.
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Figure 1.4. Germband extension in Drosophila melanogaster. Black arrows mark
the anterior-posterior boundaries of the germband tissue at the given time (in green).
The overall elongation of the tissue is clearly visible in this figure [5]

1.3.1 Convergence-Extension of tissue

During GBE the tissue increases in length (about 250 % of its initial length [5]) along

anterior-posterior axis and simultaneously it gets shortened along dorsal-ventral axis

(see Fig.1.4 and Fig. 1.5). It is important to note that during GBE, the germband

tissue remodels without any cell divisions [5] and overall shape (polygonal) of the

cells remain similar before and after GBE. To attain this simultaneous extension and

convergence of the tissue, cells undergo active rearrangements [5] (see Fig. 1.5) where

individual cells in germband region go through a topological transition process of

exchanging neighbours called cellular intercalation (see Fig. 1.6). Due to the planar

polarity in the germband cells only the vertical junctions undergo intercalation [7,

12]. Through this intercalation, the number of cells along anterior-posterior direction

increases while number of cells along dorsal-ventral direction decreases [5] to give

rise to the above described overall shape change in the tissue.
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stage 6 stage 8

germband

0 min 12.5 min

Figure 1.5. Convergence-extension through cellular rearrangements : The
germband tissue at (a) the beginning of GBE and (b) at the end of the process.
Through GBE the tissue gets extended along anterior-posterior axis and simultane-
ously it gets shortened along dorsal-ventral axis. This shape change in the tissue is
a collective effects of cellular rearrangements where (c) the cells along the dorsal-
ventral axis reorient themselves (d) along the anterior-posterior axis. This happens
through cellular intercalation. (e-f) Images of germband cells with florescent E-
cadherin show rearrangements of two groups of cells during a time lapse of 12m 30s.

Next we discuss cellular intercalation in detail to understand how each cell goes

through this process of neighbour exchange.

1.3.2 Cellular intercalation

Cellular intercalation is a process where neighbouring cells change their co-ordination

(by exchanging places) with each other while keeping tissue integrity intact [3].

There are several types of intercalation processes but intercalation seen during GBE

in drosophila, is a mediolateral intercalation [3] where cells exchange places with

other cells on the same plane. Germband cells mostly intercalate between their

dorsal and ventral neighbours [5]. This preferential intercalation direction (due to

planar polarity in germband cells) is important for successful elongation of the tissue

[7, 12].

The cellular intercalation process starts with the shrinkage of a vertical junction

(junction oriented along dorsal-ventral axis) followed by reorientation of the junction

along a direction which is orthogonal with respect to the shrinkage direction (i.e.

along anterior-posterior axis) and subsequent elongation of this reoriented junction

(see Fig. 1.6 a). The above said reorientation of the junction results in co-ordination

change between the neighbouring cells (see Fig. 1.6 a,b).
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Cellular intercalation can be thought of as the unit of “change” which is occurring

locally at cell scale through mechanical and chemical processes happening at cellular

and sub-cellular scale. The integrated effect of this local change is driving the

remodeling of the whole tissue. Intercalation of the vertical junction in germband

cells is also referred as T1-process and we frequently use this term in our study.

• Cell junction : In confluent tissue like the germband region in drosophila

embryo, neighbouring cells form and maintain adhesive connections with each

other and form cell junctions [3]. It is very important to maintain and regulate

this connectivity to keep the tissue intact and successful completion of various

steps of embryogenesis depends on it [3, 12]. The adhesive connections can be

of various types which play specific important roles in the cell. Here we mainly

focus on adherens junctions and the main component of the adherens junction

is the adhesive molecule called cadherin. Details of cadherin dynamics and its

involvement in intercalation will be discussed later. From here on “junction”

shall refer to adherens junction unless specified otherwise.
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A

B

C

D

A

BD

C

AB C

1

2

AB C

1

2

0 s 350 s 650 s 950 s

E-cad GFP

Figure 1.6. Intercalation process and neighbour exchange in germband tissue :
(a) During intercalation of a junction (here between the “B” and “D” cell), first it
shrinks and then it grows in length after re-orientation of the junction to direction
which is perpendicular to the shrinkage direction. (b) A structure of nine cells
changes in shape when all of the vertical junctions undergo T1-transition. “A”
exchanges its neighbours “B” and “C” with “1” and “2” during this whole process.
(c) Panels show intercalation (shrinkage followed by an elongation) of a vertical
junction in germband tissue for a duration of 950 seconds.

Each intercalation event involves regulated remodeling of the cell junction. The

shrinkage (of vertical junction) and elongation (of re-oriented junction) occurs irre-

versibly [3] in a stepwise manner with repeated deformation and subsequent stabi-

lization [12, 11] of the junction, commonly referred as ratcheting of the cell junction

[11]. This remodeling of cell junction is driven by the local forces generated in sub-

cellular actomyosin network [7] which mechanically couple with the cell junction via

E-cadherin. We shall now discuss how the actomyosin dynamics remodel the cell

junctions which in turn facilitate the tissue remodeling.
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1.3.3 Actomyosin pulsation and flow

The apical actomyosin layer in germband cell is formed by assembly of crosslinked

actin filaments and myosin minifilaments [12] and regulated by various mechano-

chemical processes [11]. The dynamics of the actomyosin is localized near apical

surface of the germband cells (apico-basal polarity [3]). This apical actomyosin net-

work plays a critical role in driving the intercalation process through active contrac-

tile stress generation [7, 12]. Due to the apico-basal polarity of actomyosin activity

in the germband cells, we consider the apical surface of the cell to be a planar repre-

sentation of the cell. On top of the apico-basal polarity the germband cells also show

another polarity on the plane of the tissue in terms of actomyosin organization and

cell adhesion strength [3, 12], referred as the planar polarity. This planar polarity

dictates the orientation of intercalation events and results in selective remodeling of

vertical junctions.

Actomyosin dynamics starts with nucleation of small actomyosin rich regions in

the medial region of the cell and then they subsequently grow and coalesce together

to form a large actomyosin rich region[12]. This large actomyosin rich region then

flows towards one of the vertical junctions and it gets disintegrated near the junction.

This aggregation and disintegration of actomyosin occurs in a periodic manner and

referred as actomyosin pulsation, while the movement of actomyosin rich region

towards vertical junction is referred as actomyosin flow (see Fig. 1.7 a). This periodic

pulsation and subsequent flow shrinks the vertical junctions irreversibly when it

reaches the junctional region in a roughly step-wise manner [12] and thus drives the

cellular intercalation process (see Fig. 1.7 d).

Developing a theoretical description in terms of the main elements of apical acto-

myosin network to understand the dynamics of pulsation and flow and the dynamics

of junction remodeling during cellular intercalation is theme of this thesis.

11



Introduction

(a) (b) (c)

0 s 80 s 180 s

medial actomyosin rich region
junctional actomyosin rich region

Figure 1.7. Dynamics of actomyosin network in the apical surface of germband cells
drive the intercalation process : (a) Actomyosin dynamics starts with (I) nucleation
of small actomyosin rich regions in the medial region of the cell and (II) then they
subsequently grow and coalesce together to form a large actomyosin rich region. (III)
This large actomyosin rich region then flows towards one of the vertical junctions
and it gets disintegrated near the junction. This aggregation and disintegration of
actomyosin occurs in a periodic manner and referred as actomyosin pulsation, while
the movement of actomyosin rich region towards vertical junction is referred as
actomyosin flow. Fluorescently labeled (b) filamentous actin and (c) myosin minifil-
aments show the formation of actomyosin rich region. (d) This periodic pulsation
and subsequent flow (arrow) of actomyosin shrinks the vertical junctions irreversibly
when it reaches in junctional region. Fluorescently tagged myosin (magenta) shows
a pulse-flow shrinking a junction seen in fluorescently tagged E-cadherin (green).

We consider actin, myosin and cadherin to be the main components of the acto-

myosin network. Hence we provide brief introduction to these important constituent

elements.

• Actin : Actin is one major component of actomyosin network in eukaryotic

cells. The monomeric form of actin is known as globular actin which poly-

merizes to form filamentous actin with the length of a few micrometers. In

cytoskeletal structures mainly two types of actin assemblies are found actin

bundles and actin networks. These assemblies are formed by crosslinking

proteins which can bind with actin filaments and regulated through various
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mechano-chemical processes. Proper regulation of crosslinked actin network

in germband cells has been found to be important for pulsation and flow.

• Myosin : Myosin is a molecular motor capable of producing force (as a force

dipole) by using chemically stored energy through ATP-hydrolysis. There are

many types of myosin motors with different builds and functionalities but

here we only consider the non-muscle myosin− II. Myosin can self assemble

to create myosin minifilament and it has been found to be the main local

force generator in actomyosin inside germband cells. Myosin can bind to actin

filaments and it produces contractile stresses in actomyosin network.

• Cadherin : Cadherin (named from “calcium-dependent adhesion”) is a trans-

membrane adhesive protein. Cadherins are the main elements of an adherens

junction which is formed between cells. There are many kind of cadherin

molecules but in this study we only refer to the epithelial cadherin or E-

cadherin. E-cadherin molecules can interact with actin filaments via linker

proteins like catenin. On the cell membrane E-cadherin molecules can form

two types of chemical bonding with other E-cadherin molecules, (i)trans-bond,

when they bind to the cadherin from membrane of a neighbouring cell and (ii)

cis-bond, when they bind with cadherin from the same membrane. E-cadherin

plays a very important role in cell-cell force transduction and it is strongly

coupled with the actomyosin network.

1.4 Hydrodynamics

Hydrodynamics refers to a coarse-grained description of the system in terms of

its slow variables. Temporal dynamics of these variables at long length scale is

much slower compared to the inter-particle collision or elementary excitation relax-

ation timescales. Hence the dynamics of hydrodynamic variables can be treated

as perturbations from the thermodynamic equilibrium as any spatial point is near

thermodynamic equilibrium at any given instant. Densities of conserved quantities

and broken-symmetry elastic variables show such slow dynamics and therefore are

identified as hydrodynamic variables. Historically hydrodynamics started with the

study of water in terms of mass, momentum and energy densities as hydrodynamic
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variables as these quantities follow the respective conservation laws. Since then hy-

drodynamics has been extensively used to understand fluids, elastic solids, liquid

crystals, spin systems and many other problems.

Hydrodynamic framework has been used for several decades now to understand

active matter systems such as active colloidal suspensions [27], dry flocks [22], active

gel [24], active nematic liquid [28] and so on. Many seminal works paved the way for

understanding the physics of living matter using hydrodynamic framework. It has

been successfully used to understand the physics of many fascinating phenomena

observed in vivo inside living cells, tissues or in vitro studies of motility assays and

reconstituted actomyosin systems.

In this study we shall use the hydrodynamic description to understand the dy-

namics of active elastomer network which is described in detail in a later chapter.

1.5 Layout of this thesis

In this thesis we develop an active hydrodynamic framework to understand the sub-

cellular dynamics of actomyosin during intercalation and we derive a dynamical sys-

tems description for cell junction to understand the stepwise shrinkage(“ratcheting”)

of junction length during germband extension.

• In chapter 2, we discuss an active nonlinear spring model to understand the

overall pulsatile behaviour of actomyosin in the cell and state the need for a hy-

drodynamic description for actomyosin dynamics inside the cell to understand

the rich spatiotemporal behaviour observed during tissue morphogenesis.

• In chapter 3 and chapter 4, First we emphasis the existence of various dynam-

ical regimes in actomyosin dynamics and propose an active elastomer descrip-

tion for actomyosin with turnover of its components. We start with a hydro-

dynamic description for actomyosin network as an elastomer with turnover of

force generators: affine theory. We show that this description can capture the

essential features of actomyosin dynamics in germband cells and make impor-

tant predictions about the dynamics seen in vivo and verify qualitative aspects

through analysis of experimental data.
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• In chapter 5, we discuss the regime of the validity and applicability of the

affine description and we present an alternative description for actomyosin as

a transient network and discuss a preliminary theory which accommodates

nonaffine deformations through turnover of the network components.

• In chapter 6, we derive a dynamical systems description for cell junctions

starting from a coarse-grained field description and show that this dynamical

description is able to capture the essential features of the junction remod-

eling including the “ratcheting” that happens during intercalation. We fur-

ther explore the reliability and robustness of the ratcheting dynamics against

perturbations and propose a possible mechanism to incorporate robustness

through the self sustained actomyosin pulsation and flow already present in

the germband cells.

End of Chapter
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Chapter 2

Dynamics of apical actomyosin as an active
nonlinear spring

2.1 Introduction

Periodic density variation or pulsation has been seen in apical actomyosin layer inside

cells which are undergoing local shape/size changes leading to tissue morphogenesis.

Examples of such events include apical constriction during dorsal closure [8, 32, 33,

34] (see Fig. 2.1) and cellular intercalation during germband extension [12, 84, 11, 37]

(see Fig. 2.2) in embryogenesis of Drosophila melanogaster. Pulsation of actomyosin

plays vital role in driving the mechanics of tissue remodeling through production of

local contractile forces [31, 12].

The main purpose of this thesis is to develop a hydrodynamic theory to under-

stand actomyosin dynamics during tissue morphogenesis. But before we delve into

a hydrodynamic description of actomyosin network, in this chapter we shall de-

scribe the temporal behaviour of the apical actomyosin network in terms of a simple

zero dimensional mechanical model. We consider the apical layer of actomyosin as

a viscoelastic element with an active contractile stress generating machinery. We

shall show that this minimal description is able to capture the feature of actomyosin

pulsation as spontaneous oscillations in density and shape driven by local active

contractile forces.
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Sqh-Cherry ubiECad-GFP

Figure 2.1. Dorsal closure in Drosophila melanogaster : (A) Fluorescent mi-
croscopy images of myosin in green and E-cadherin in red, showing contraction
(during 0-90 seconds) and expansion (during 90-140 seconds ) during the early phase
of dorsal closure. The white arrow traces movement of a myosin rich region during
contraction of cell area (B,C) Temporal dynamics of cell radius (black line) and
medial myosin intensity (red line) during dorsal closure in two sample cells. (D)
Overall dynamics of normalised cell radius (black line) and medial myosin (red line)
for many cycles calculated in cells from multiple embryos. The result presents cell
size change is in phase with the pulsation in medial myosin. Image courtesy [34].

(a) (b)

Figure 2.2. (a) Study of the cell average of apical myosin and cell area show cor-
related area oscillation with myosin density oscillation during actomyosin pulsation.
(b) A qualitative phase diagram in myosin activity and myosin dissociation rate
shows pulsatile behaviour. Image courtesy [11].
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2.2 Description of the active nonlinear spring

The main ingredients of this minimal model of actomyosin are an elastic element and

a viscous or dissipative element connected in parallel with the elastic element and

active contractile stress generators where the amount of stress depends on the density

of the stress generator molecules (myosin motors) which undergo turnover with

binding and unbinding rates given by kb and ku respectively (Fig.2.3). These three

elements constitute the description of medial actomyosin network and this network

is connected to two elastic elements at the boundary representing the anchorage of

actomyosin network with the cell boundary via cadherin coplexes. This description

bears some similarity with the work presented in Solon et al. [49] where an active

Kelvin-Voigt like model was used to study apical cell area oscillations during dorsal

closure.

Figure 2.3. Schematic diagram of the active nonlinear spring: The active stress
depends on instantaneous density of bound myosin motors (red circle) which is
regulated by binding (with rate kb) and unbindin (with rate ku) processes. The
dissipative element has viscosity Γ and the stiffness of the left and right boundary
springs are given by kL and kR respectively.

Now we state the equation of motion for this active nonlinear spring in the next

section.
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2.3 Equation of motion

The variables of interest here is the length of the elastic element (l(t)) and density of

bound myosin (ρb(t)). The force balance in over-damped limit (i.e., ignoring inertia)

reduces to the balance between internal stresses which gives the dynamics of l(t) as

Γ
dl

dt
= σe + σa . (2.1)

The myosin motors go through turnover as stated earlier. The total amount of

bound myosin is conserved in absence of turnover which brings us the condition
d
dt

(lρb) = 0 for kb, ku = 0. This condition explains the last term on the right in the

myosin density equation, given by

dρb
dt

= −kuρb + kb −
ρb
l

dl

dt
. (2.2)

Here the unbinding of motors depends on the density of bound motors (∝ ρb) and

we consider a constant binding of unbound motors (assuming a pool of unbound

myosins). As we have already mentioned the total amount of bound myosin (lρb)

only changes by turnover.

In Eq.2.1 σe and σa stand for elastic stress and active stress respectively. We

consider contribution from higher order elastic terms in the elastic free energy up

to quartic order here. This nonlinearity in elastic stress is important to stabilize

oscillatory behaviour in the system. The active stress can be the origin of this

stabilizing effect and we discuss this in details in a later chapter. The elastic stress

here has the following form :

σe = −k1(l − l0)− k2(l − l0)2 − k3(l − l0)3 + σL + σR . (2.3)

Here σL and σR stand for elastic stresses from the left and right boundary elements

respectively and l0 and k1, k2, k3 are the rest length for the elastic element and its

stiffness constants respectively. The stresses from the boundary elastic elements are
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σL = −kL(lL − lL0)

σR = −kR(lR − lR0) .

Here kL,R, lL,R and lL0, R0 are the stiffness, instantaneous length and rest length

of the left and right boundary elements respectively. In further discussions we take

kL,R = k and lL0, R0 = l0 for simplicity.

The active stress (σa) generated in the active contractile element depends on the

density of the force generating motors (ρb) and given by the following relationship,

σa = −ζ1∆µ(ρb − ρb0) . (2.4)

Where ζ1 < 0 for contractile active stress, ρb0 is the steady state myosin density

and ∆µ is the change in free energy (chemical potential) during the process which

facilitate the active stress generation in molecular motors. We shall discuss the

concept of active stress in more details in coming chapters.

Now simplifying the equation of motion (Eq. 2.1 and Eq. 2.2) and writing them in

dimensionless form in terms of l
l0

and ρb
ρb0

we get

Γ

k1kb

d

dt
(
l

l0
) = (

k

k1

−1)(
l

l0
−1)− k2l0

k1

(
l

l0
−1)2− k3l

2
0

k1

(
l

l0
−1)3+

ζ1∆µρb0
k1l0

(
ρb
ρb0
−1) (2.5)

and
d

dt
(
ρb
ρb0

) = −(
ku
kb

(
ρb
ρb0

)− 1)−
l
l0

( ρb
ρb0

)

d

dt
(
l

l0
) (2.6)

We numerically solve the resulting equations and present the results in the next

section.

2.4 Spontaneous oscillations and contractile in-
stability

For small values of contractile stress ( ζ1∆µρb0
k1l0

) the system relaxes to an unstrained

state given by l = l0 in steady state (Fig. 2.4a) but as we increase contractile stress we

encounter oscillatory solutions (Fig. 2.4c) and finally at very high values (compared
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to the stiffness values) of contractile stresses the system encounter a contractile

instability (Fig. 2.4b). The oscillatory solution here is an emergent feature and a

result of active forces exerted by the myosin motors. Any increase in myosin density

further contracts the system and result in further increase in myosin density this

positive feedback is balanced by the turnover of myosin which always tries to keep

the myosin density in the steady state and these two competing effects gives rise to

the oscillation in the bound myosin density and deformation of the system.

A phase diagram (Fig. 2.5) constructed in k
k1

vs −ζ1∆µρb0
k1l0

space shows the three

phases discussed above. The already discussed effects of increasing contractile stress

are evident from the phase diagram. Additionally we can also see the expected

result- stabilization of instability and oscillatory behaviour to a stable unstrained

state with increasing stiffness.
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Figure 2.4. Spontaneous oscillation and contractile instability in active viscoelastic
spring dynamics : Oscillatory and unstable solutions emerge as we increase the
renormalized contractile stress ( ζ1∆µρb0

k1l0
). (a) The unstrained state is stable at a low

contractile stress −ζ1∆µρb0
k1l0

= 0.1 (b) the system encounter contractile instability for

high values of contractile stress −ζ1∆µρb0
k1l0

= 5.0 (c) in the medium range, −ζ1∆µρb0
k1l0

=
3.0 we observe oscillatory solutions. For (a-c) the other parameters are kept constant

at Γ
k1kb

= 1, ( k
k1
− 1) = 1, k2l0

k1
= 1,

k3l20
k1

= 15 and ku
kb

= 1.
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Figure 2.5. Phase diagram in renormalized contractile stress (−ζ1∆µρb0
k1l0

) and stiff-

ness ratio ( k
k1

) : Shows the unstrained stable state (blue dots), oscillatory state
(black dots, blue shade) and the contractile instability (red dots). Other renormal-

ized parameters was taken to be Γ
k1kb

= 1, k2l0
k1

= 1,
k3l20
k1

= 15 and ku, kb = 1.

2.5 Need for a hydrodynamic description

This simple active nonlinear spring description of actomyosin network in the cell

shows the emergence of sustained oscillations. This periodic solutions are spon-

taneously generated without any external drive and will not emerge in absence of

active contractile forces generated by the molecular motors. Though this description

has been used as a preliminary means to understand the cell area oscillation during

dorsal closure in [49], it cannot explain the complex spatio-temporal features seen in

the actomyosin dynamics in various tissue remodeling events during development.

Thus to adequately describe the dynamics of apical actomyosin network, as we aim

to, a continuum description will be necessary. We dedicate the next few chapters to

develop an active hydrodynamic description for the actomyosin network.
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End of Chapter
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Chapter 3

Hydrodynamics of apical actomyosin as an
active elastomer : Affine description

3.1 Different regimes of actomyosin dynamics dur-
ing tissue morphogenesis

Before we start building up a theoretical description for actomyosin dynamics it is

important to understand the different length scales and timescales involved in the

actomyosin dynamics. A closer look into the experimental movies [73, 12, 11] will

reveal an early time (0-5 s) nucleation of small actomyosin speckles (Fig.3.1) that

grow in size with time and start moving in a timescale of 10-20 s (Fig.3.1). These

medium sized actomyosin rich regions then coalesce to form large actomyosin rich

region(s). This formation of the large high density actomyosin rich region happens

in a timescale of 30-50 s (Fig.3.1) and this results in actomyosin pulsation at 50-80 s

[12, 11](Fig.3.1).

0 s 5-10 s 20 s 50-100 s 200 s

nucleation

& growth

coalescence

small speckle

movement

pulsation

fluidization

large domain

 movement

flow

junction

shrinkage

deformation

movement

Figure 3.1. Different dynamical regimes in apical actomyosin dynamics in
germband cell spans from early time elastomeric behaviour to the longer time fluid-
like behaviour.
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Fluorescence recovery after photo-bleaching(FRAP) measurements in germband

cells, reveal an actin turnover time of around 10-20 s [12] and a myosin turnover

timescale of 5-10 s [11]. These timescales are similar to the early time nucleation-

growth and coalescence of actomyosin. Further in time the large actomyosin rich

regions start moving giving rise to actomyosin flow in a timescale ∼ 100 s [12, 11].

This actomyosin flow towards a vertical junction results in junction remodeling in a

timescale of 120−150 s [12, 85]. Thus the existence of different dynamical regimes in

actomyosin dynamics in germband cells during tissue morphogenesis becomes clear.

This suggests that the appropriate description should span the short-time elas-

tomeric and the longer time fluid-like regimes. We start our study of actomyosin

network with an elastic description of the network, where the local deformations in-

duced by myosin binding and release are affine. Increased myosin binding can lead

to rapid turnover of actin and crosslinkers, resulting in loss of network integrity and

its fluidization via intranetwork flows; we study this crossover to a nonaffine regime

later in Chapter.5.

3.2 Hydrodynamic description of actomyosin

In this section we describe apical actomyosin network in germband cell as an active

elastomer embedded in a viscous fluid and we build up a hydrodynamic description

of the active elastomer from symmetry principles and introducing minimal phe-

nomenologically inspired inputs. The elements of the active elastomer are conceived

from the constituents of the actomyosin network. Then the slow variables are iden-

tified that describe the long time-large length scale dynamics of the elements of

active elastomer. The active hydrodynamics description has been proposed in terms

of these slow variables.

Later in this chapter we investigate the temporal behaviour of active elastomer

using various approximate methods described in details in the respective sections.

3.2.1 Elements of the theory

The main elements of the actomyosin network considered here are the cross-linked

f-actin network, myosin minifilaments which can bind to this network and exert con-

tractile forces and finally the cytosol in which this actomyosin network is immersed
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(see Fig. 3.2). Finally the actomyosin network is attached to the cadherin in cell

boundary via linker proteins. Below we discuss the essential physical aspects of

these constituents and how the active elastomer elements are conceived from these.

• We describe the cross-linked actin network as an elastomer network in the

regime where active contractile forces are low. In this low active force limit

the co-ordination of the elastomer network does not change over time ,i.e., the

crosslinkers in actomyosin network do not undergo turnover. Thus the local

deformation in the elastomer is considered to be homogeneous or affine. The

hydrodynamic variables those describe this elastomer network are density of

the network, ρ(x, t) and the displacement field of the network, u(x, t).

• The non-muscle myosin minifilaments are the active force generators as they

produce contractile forces when they are bound to the crosslinked actin net-

work. The hydrodynamic variable used to describe myosin dynamics is the

density of bound myosin, ρb(x, t) and unbound myosin, ρu(x, t).

• The cytosol is a highly viscous fluid in which the actomyosin network remains

immersed. The appropriate hydrodynamic variables to describe this viscous

fluid will arise from the mass and momentum conservation and those are the

density, ρf (x, t) and velocity, vf (x, t) of the fluid respectively.

• The cadherin complexes are adhesive molecules that hold on to the actomyosin

network. The cadherin population can be described by the density ρcad(x, t).

Here we consider affine deformations of crosslinked actin network in the timescale

of the actomyosin dynamics. We describe a theory for non-affine elastomer allowing

network turnover in a later chapter.
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Figure 3.2. Schematic diagram to illustrate the main components of the active
elastomer. Crosslinked actin network is attached to the cell boundaries by adhesive
molecules like cadherin. The myosin minifilaments can bind (with rate kb) to the
network and unbind (with rate ku) from it and exert contractile forces while they
are in the bound state. This whole actomyosin network is immersed in the highly
viscous fluid cytosol.

3.2.2 Dynamics of elastomer network

The elastomer network, conceptualized as a filament network crosslinked by passive

crosslinker proteins, is described by the density ρ(x, t) and the displacement field

u(x, t). These quantities represent a coarse grained picture of the elastomer network

at a length scale much larger than the mesh size (average distance between two

crosslinking sites).

The force balance relation (Eq. 3.1) which dictates the spatial and temporal evo-

lution of the displacement field u(x, t) is given by
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ρü+ Γ(u̇− vf ) = ∇ · (σ) . (3.1)

Here σ is the total internal stress and Γ is the friction coefficient for the frictional

force which acts upon the elastomer whenever there is a relative motion (u̇−vf 6= 0)

with respect to the surrounding viscous fluid. The friction Γ between the mesh and

cytosol can in principle depend on the mesh density. Later in this section we define

the total stress σ in terms of internal stresses in details.

The network density ρ(x, t) dynamics (Eq. 3.2) is described here by taking into

account the changes in density caused by advection, permeation and actin turnover

:

ρ̇+ ∇ · (ρu̇) =M∇2 δF

δρ
+ Sa . (3.2)

Here the actin turnover is given by Sa = (k+ − k−ρ) where k+ and k− are the

binding and unbinding rates respectively. Permeation happens with mobilityM. We

discuss the detailed form of free energy functional F (ρ,u, . . .) later in this section.

3.2.3 Dynamics of active force generators

The myosin minifilaments play major role in producing contractile forces in acto-

myosin network of germband cells and conceived as active force generators in the

active elastomer description. The myosin, while bound to the mesh, gets advected

by local velocity field (u̇) of the elastomer network and diffuse on the network with

a diffusion constant D. Unbound myosin diffuses through the medium with diffusiv-

ity Du. The turnover of myosin is described by the term Sm while total amount of

myosin (ρb+ρu) remains conserved. The resulting equations for bound and unbound

myosin with the above described dynamics are given by

ρ̇b + ∇ · (ρbu̇) = D∇2ρb + Sm
ρ̇u + ∇ · (ρuvf ) = Du∇2ρu − Sm . (3.3)

We unfold the source term Sm later in this chapter.
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3.2.4 Dynamics of ambient fluid

The cytosol conceived as a compressible Newtonian fluid with the hydrodynamic

description given by the Naviers-Stokes equation as

ρf (v̇f + vf ·∇vf ) = ηsf∇2vf + (
ηsf
3

+ ηbf )∇(∇ · vf )−∇P + Γ(u̇− vf ) . (3.4)

Here P is the pressure, ρf is the density and ηsf and ηbf are the shear and bulk

viscosities of the fluid.

These equations (Eq. 3.1, 3.2, 3.3, 3.4) are the complete set of equations that

describe the hydrodynamic description of the active elastomer. We shall further

expand them and simplify them as we proceed to treat them with various analyt-

ical and numerical methods to understand the spatiotemporal dynamics of active

elastomer. The hydrodynamical description discussed here bears resemblance to

[45, 46].

3.2.5 Forces and stresses

The total internal stress σ(x, t) in the Eq. 3.1 is the sum of the elastic stress (σe),

dissipative stress (σd) and active stress (σa) as given by

σ = σe + σa + σd . (3.5)

The constitutive relations for the elastic (σe) and dissipative (σd) stresses are

given by

σeij =
δF

δuij
(3.6)

=

(
λ+

2ν

3

)
δij∇ · u+ 2ν

(
εij −

1

3
δij∇ · u

)
σdij = ηbδij∇ · u̇+ 2ηs

(
ε̇ij −

1

3
δij∇ · u̇

)
. (3.7)

Here λ, ν are the bulk and shear Lamé coefficients of the elastic mesh (Eq. 3.8)
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and ηb, ηs are the bulk and shear viscosities of the mesh, respectively. F denotes

the bulk free energy of the elastomer that governs the equilibrium dynamics of the

elastomer and it is defined as F (u, ρ, . . .) =
∫
r
drfB. Here fB is the free energy

density which is given by the following equation :

fB =
1

2
(λεiiεjj + 2νεijεij) + Cδρεii +

A

2
δρ2 + . . . (3.8)

Here the linearized elastic strain is defined as ε = 1
2
(∇u + (∇u)T ) and C and A

are positive constant co-efficients which appear in the relationship of mesh density

variation and local strain as described in the next section. By taking this form of

fB we assume the isotropic elastic nature for the active elastomer.

The active stress σa should depend on the density of myosin ρb and actin ρ and

it should increase with increasing myosin density and then saturate. Thus we find

it reasonable to propose the following form :

σa = −ζ(ρ, ρb)∆µ I

= − ζ1ρb
1 + ζ2ρb

χ(ρ) ∆µ I . (3.9)

Here ∆µ represent the change in chemical potential during ATP-hydrolysis, ζ(ρ, ρb)

is a function of mesh density and bound myosin density. The parameters ζ1 and ζ2

determine how the active stress depends on myosin density and the values ζ1 < 0

[54], ζ2 > 0 together with the overall negative sign ensure that the active stress

is contractile in nature i.e., active stress creates a local “negative pressure” which

draws in surrounding material. Here χ(ρ) is a smooth, positive function of ρ and I

is an identity matrix.

We now expand χ(ρ) about the steady state mesh density ρ0 and obtain the

following resulting form :

χ(ρ) = χ(ρ0) + χ′(ρ0)δρ+
1

2
χ′′(ρ0)δρ2 + . . . . (3.10)

Now finally rewriting the active stress σa as a function of ρ and ρb in the expanded
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form we get :

σa = − ∆µζ1ρb
1 + ζ2ρb

(
χ(ρ0) + χ′(ρ0)δρ+

1

2
χ′′(ρ0)δρ2 + . . .

)
I . (3.11)

3.3 Resulting equations

With the generic hydrodynamical description of active elastomer we now specify the

final set of equations using problem specific considerations and reasonable simplifi-

cations as discussed below.

• The cell interior is a dense system with high viscosity. So expecting the elas-

tomer network dynamics to be over-damped, we ignore inertia and drop the

ü term in Eq. (3.1).

• Here we reemphasize that we take the crosslinks in the elastomer network to be

long lived, such that the turnover timescale of the crosslinkers are sufficiently

large compared to the timescale of myosin motors turnover and contractile

force generation. We shall present a detailed discussion on this crucial as-

sumption later in this thesis but here we consider the above case to be true

in low enough contractile stress. Thus in the absence of remodeling of the

network co-ordination the local change in the density of elastomer network is

slaved by local deformation , given by δρ ∝ −∇ ·u. The negative sign carries

the meaning that local compression (or extension) will condense (or dilute)

the local network density.

• With the above discussion in mind we express the mesh density fluctuation

by the local compression as δρ = −cεii using Eq.3.2 and Eq.3.8. Here c is a

positive constant given by c = C
A

. Now we express the active stress in terms

of myosin density and local deformation as

σa = − ∆µζ1ρb
1 + ζ2ρb

(
χ(ρ0)− cχ′(ρ0)εii +

1

2
c2χ′′(ρ0)ε2ii + . . .

)
I . (3.12)

• We assume a bath of unbound myosin and only consider the dynamics of the

bound myosin density.
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• The form of the turnover dynamics which dictates the binding and unbinding of

myosin to the elastomer network, has been taken as Sm = −ku(ε)ρb+kbρ. This

form is obtained considering unbinding is proportional to the bound myosin

density ρb and binding is more if there is more mesh available (i.e. proportional

to ρ).

• We ignore the hydrodynamics of the fluid following Rouse dynamics [53]; this

is suggested by experiments that show the actin mesh moves with respect to

the fluid, and does not carry (advect) the fluid and other soluble molecules

along with it, except for those which are bound to the mesh [11, 12]. Therefore

we ignore the dynamics of the fluid (Eq.3.4) and the frictional dissipation in

force balance (Eq.3.1) becomes Γu̇.

With the above discussed considerations we describe the active elastomer by the

dynamics of the displacement field u(x, t) and bound myosin density ρb(x, t) given

by

Γu̇ = ∇ · (σe + σa + σd) (3.13)

and

ρ̇b + ∇ · (ρbu̇) = D∇2ρb − ku0e
α∇·uρb + kbρ . (3.14)

Here the unbinding rate ku(ε) is taken to be strain dependent and we take a

Hill-equation like form given by ku(ε) = ku0e
α∇·u [56, 55] where ku0 is the strain

independent unbinding rate and α is a dimensionless quantity. The nature of strain

dependence will depend on sign of α when α > 0 a local extension (compression) of

the mesh will increase (decrease) the myosin unbinding, while with α < 0 we get an

opposite effect. We explore all these possibilities and show that the sign of α does

not change the qualitative behaviour of the dynamics (see Appendix.A.1).

3.4 Linear stability analysis of active elastomer

3.4.1 Linear equations

For the linear analysis, we consider Eq. 3.13 and Eq. 3.14, with the mesh density

slaved to the elastic compression as described before. To keep this analysis simple,
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we take the σa = −ζ1 (1 + ζ ′ρ) ∆µρb, σ
e = B∇ · u and σd = η∇ · u̇. Since σa

is contractile, we take ζ1 < 0. In this one-constants approximation, B and η are

given by λ + 2ν and ηb + 4
3
ηs, respectively. For convenience, we set ζ ′ = 1. These

equations can be rewritten in dimensionless form with time (t) and space (x) in units

of k−1
b and l =

√
η
Γ
, respectively, leading to the following redefinitions described in

Table. 3.1.

Table 3.1. Dimensionless redefinitions
u
l
→ u ρb/ρb0 → ρb

B
Γkbl2

→ B
ζ1∆µρb0

Γkbl2
→ ζ1∆µ ku0

kb
→ k D

kbl2
→ D

The rescaled parameter k is referred as inverse lifetime. Using the above redefi-

nitions we rewrite Eq. 3.13 and Eq. 3.14 in dimensionless form

(1−∇2)u̇ = (B + ζ1∆µ)∇2u− ζ1∆µ∇ρb

ρ̇b + ∇ · (ρbu̇) = D∇2ρb − keα∇·uρb + ρ (3.15)

Upon linearizing about the unstrained, homogeneous fixed point (u0, ρb0, ρ0) , we

obtain the following equations,

(1−∇2)δu̇ = (B + ζ1∆µ)∇2δu− ζ1∆µ∇δρb
δρ̇b +∇ · δu̇ = D∇2δρb − k(α + c)∇ · δu− kδρb (3.16)

where we have used the fact that the fluctuation in ρ is slaved to the compression,

δρ = −cεii (c > 0). Now by taking Fourier transform of the above equations

(Eq. 3.16) in space, f̃(q, t) =
∫∞
−∞ f(x, t)e−iq·xdx, we obtain the eigenvalue equation,

[
δ ˙̃u

δ ˙̃ρb

]
=

 −
(

q2

1+q2

)
(B + ζ1∆µ) −

(
iq

1+q2

)
ζ1∆µ

iq
(

q2

1+q2 (B + ζ1∆µ)− (α + c)k
)
−
(
k + q2

1+q2 ζ1∆µ+ q2D
)×[ δũ

δρ̃b

]
.

(3.17)
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Solving (3.17) for the two eigenvalues, λ+ and λ−, we obain the general solution,

δũ(q, t) = u1(q)eλ+t + u2(q)eλ−t

δρ̃b(q, t) = ρb1(q)eλ+t + ρb2(q)eλ−t (3.18)

where, λ± = λ1 ±
√
λ2, with

λ1 =
−
(
k(1 + q2) +Dq2(1 + q2) + q2(B + 2ζ1∆µ)

)
2(1 + q2)

λ2 =

(
k
(
1 + q2

)
+ q2

(
(B +D +Dq2

)
+ 2q2ζ1∆µ

)
2 − 4q2

(
1 + q2

) (
B
(
k +Dq2

)
+
(
Dq2 + k(1 + c+ α)

)
ζ1∆µ

)
4(1 + q2)2

(3.19)

Next we investigate the stability of the homogeneous, unstrained state with chang-

ing parameters.

3.4.2 Fastest growing mode : Instabilities of the homoge-
neous state

With the eigenvalues given by Eq. 3.19 now we can explore the stability of the un-

strained, homogeneous fixed point (u0, ρb0, ρ0) and the nature of temporal evolution

of the perturbations about this fixed point. We charaterize the dynamics of the

solutions δρ̃b(q, t) and δũ(q, t) using the eigenvalues as described below -

Table 3.2. Phases from linear stability analysis

max{Re(λ±)} < 0 Im(λ±) = 0 Stable (monotonic decay)

max{Re(λ±)} < 0 Im(λ±) 6= 0 Stable (damped travelling wave)

max{Re(λ±)} > 0 Im(λ±) 6= 0 Oscillatory

max{Re(λ±)} > 0 Im(λ±) = 0 Contractile instability

Here contractile instability refers to a state where the elastomer behaves like a

material with a negative bulk modulus.

When λ2 < 0 i.e., Im(λ±) 6= 0, then the real part of λ± = λ1. Now this real part

reaches a maximum for the mode q = q∗ obtained by solving ∂qλ1 = 0 for q. This q∗

is regarded as the fastest growing mode (the mode with the largest rate of amplitude
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increase) in this problem and given by,

q∗ =

√
−D +

√
−(B + 2ζ1∆µ)D

D
(3.20)

The homogeneous, unstrained state becomes unstable (solutions diverge in time) for

Re(λ±) > 0. At the threshold solving Re(λ±) = 0 for q gives us the critical wave

vector qc and at the wake of the instability the fastest growing mode should be equal

to qc (see Fig. 3.3). Then this condition q∗ = qc let us rewrite the fastest growing

mode at the threshold when the instability first appears as

qc = (
k

D
)

1
4 (3.21)
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Figure 3.3. Fastest growing mode in linear stability : Im(λ±) and Re(λ±) values
as function as wave number q shows the wake of the instability. The parameter values
are (a) −ζ1∆µ = 3, (b) −ζ1∆µ = 3.83, (c) −ζ1∆µ = 4.2, and other parameters are

B = 5.5, c = 0.1, D = 0.1, k = 1.5, α = 0.1. Using the relation qc = ( k
D

)
1
4 in this

case, we get the rough value qc = 1.96.

Using the value for qc enables us to write the condition for emergence of the

unstable behaviour in a mode independent way :

B +D + k

(
1 +

√
4D

k

)
< −2ζ1∆µ . (3.22)

We characterize the phases and present the phase diagrams in terms of the relevant

parameters in the next section.
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3.4.3 Phase diagram

Here we discuss the phase diagrams using conditions for four different states (Ta-

ble. 3.2). The phase diagrams (Fig. 3.4) presented in terms of the rescaled parame-

ters (Table.3.1) such as the bulk modulus B, contractile stress −ζ1∆µ and binding

unbinding rate ratio or inverse lifetime k provide preliminary yet useful physical

understanding of the active elastomer dynamics. In case of large rigidity of the

mesh (B → large) or small lifetime (k → large) of bound myosin, the homogeneous,

unstrained state is stable under perturbations (Fig. 3.4 a,b). In this scenario we

see two different kinds of relaxation dynamics : either the disturbances decay ex-

ponentially in time regarded here as monotonic decay (Sd) or they decay through

damped travelling waves (St). The homogeneous, unstrained state becomes unstable

in the regime where the active contractile stress (−ζ1∆µ) becomes large (Fig. 3.4

a,b). The unstable behaviour can be characterized in two states : the unstable

oscillations where the travelling wave amplitude diverges in time regarded here as

oscillatory (O) and another is regarded as contractile instability (CI) where the per-

turbations diverge exponentially in time. The typical behaviour of eigenvalues (λ±)

with the wave vector q is presented in Fig. 3.4 (c-f) to illustrate monotonic decay,

damped travelling wave, oscillatory, contractile instability phases respectively.
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Figure 3.4. Phase diagram and dispersion relations from linear stability : (a-b)
Linear stability phase diagrams in (a) effective elastic stress density vs. contractile
stress density at k = 1 and (b) Effective contractile stress density vs. inverse lifetime
of bound myosin at B = 4. The stresses are normalized by the frictional stress
density, Γkbl

2. The phases are described in the legend. Rest of the dimensionless
parameters are α = 0.1, c = 0.1, D = 0.1. (c-f) Typical dispersion curves obtained
from linear stability analysis, showing the complex roots λ± as a function of wave-
vector q. Colour code displayed above. Panels shows typical behaviour in the (c)
stable, (d) damped travelling wave, (e) unstable oscillations, and (f) contractile
instability phases.
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Now we again consider the case when the homogeneous, unstrained state first

becomes unstable, i.e., Re(λ±) = 0 is true only for the fastest growing mode, q = qc.

This condition corresponds to a point in the parameter space on the phase boundary

between stable and unstable phases. On this phase boundary we can simplify the

general solutions (Eq. 3.18) to show that we get stable travelling wave solutions with

frequency ωc =
√

kB
2

and veloity vc = ωc
qc

=
(
kDB2

4

) 1
4
.

The onset of the oscillatory behaviour is dictated by Im(λ±) > 0 or simply λ2 < 0.

The threshold condition Im(λ±) = 0 define the phase boundary of the oscillatory

behaviour and given by

(
Bq2 + (1 + q2)(k + qD)

)2
+ 4q2ζ1∆µ(Bq2−k(α+ c)(1 + q2) + q2ζ1∆µ) = 0 (3.23)

The frequency of oscillation in the oscillatory phase is given by ω =
√
λ2. Linear

analysis predicts a non-monotonic dependence of frequency on bulk modulus of the

mesh and contractile stress as presented in Fig. 3.5.
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Figure 3.5. Frequency of oscillation from linear analysis shows non-monotonic
behaviour with (a) changing bulk modulus B and (b) contractile stress −ζ1∆µ. The
parameter values are (a) −ζ1∆µ = 1, k = 0.25 (b) B = 6, k = 0.5 and other
parameters are c = 0.1, D = 0.1, α = 0.1, q = 2 (same for both plots).

The contractile instability is a runaway instability and the behaviour is similar

to a material with negative bulk modulus where the homogeneous, unstrained state

becomes a unstable fixed point of the system. One would expect that including

higher order elastic free energy terms will subdue this instability and give rise to

stable contracted state. This is true in our case as we shall see later in this chapter.
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While the insight gained from linear stability analysis is limited, the analysis

indicates the possible existence of sustained oscillations when one includes the non-

linear terms which might stabilize the oscillatory phase and we investigate the effects

of various nonlinear terms in the next few sections in this chapter as we deal the

problem with mode truncated studies.

3.5 Active elastomer in one dimension

As already discussed, with the linear stability indicating unstable oscillations and

contractile instability, we shall probe nonlinearities of the system and learn the

essential feature they can bring to the dynamics. We perform the mode truncated

analysis in one dimension so we shall briefly present the one dimensional description

of the active elastomer for completeness.

Derived from Eq.3.13 and Eq.3.14, the one dimensional equations are given by

Γu̇ = ∂x
(
σe + σd + σa

)
(3.24)

and

ρ̇b + ∂x(u̇ρb) = D∂2
xρb − ku0e

α∂xuρb + kbρ . (3.25)

Here the linearized strain is simply ∂xu. With this we shall proceed to perform

the mode truncated analysis for the active elastomer.

3.6 Mode truncated analysis

With the linear analysis results we can see the existence of unstable oscillations and

it is possible that these unstable oscillatory behaviour might get stabilized when

nonlinearities are introduced. To investigate this we perform mode truncated anal-

ysis (also known as Galarkin truncation method [59]) including nonlinearities arising

from strain dependent unbinding of myosin, advective current of bound myosin, ac-

tive stress and elastic stress. In this section we introduce the basic setup for the

analysis and in the next few sections we discuss the effects of introducing various

nonlinearities.

Now rewriting the equations (Eq. 3.24 and Eq. 3.25) in terms of the variation in
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displacement field (δu = u − u0) and bound myosin density (δρb = ρb − ρb0) about

the homogeneous, unstrained state (ρb0, u0) and using the dimensionless parameters

(Table.3.1) we get

(1 + ∂2
x)δu̇ = ∂xσ

e + ∂xσ
a (3.26)

˙δρb + ∂x(δu̇(1 + δρb)) = D∂2
xδρb − k

(
α∂xδu+

α2

2
(∂xδu)2

)
(1 + ∂xδρb)− c∂xδu .

Here for the strain dependent myosin unbinding we take an approximate form with

leading order nonlinearity ku0e
α∂xuρb = ku0(1 + α∂xu + 1

2
(α∂xu)2)ρb throughout all

mode truncated analysis done in this section.

Now we assume an solution for δu(x, t) and δρb(x, t) in terms of Fourier series in

a region x ∈ [−L,L] with periodic boundary conditions.

δu(x, t) =
∞∑
n=0

un(t)cos(
nπx

L
) + u′n(t)sin(

nπx

L
)

δρb(x, t) =
∞∑
n=0

ρbn(t)sin(
nπx

L
) + ρ′bn(t)cos(

nπx

L
) (3.27)

With this general solution in terms of all individual modes we only consider a finite

number of modes in mode truncated studies and plug these approximate solutions

in the Eq. 3.26. Then considering the balance of each mode separately we find

the resulting system of ordinary differential equations in terms of the amplitudes

of the individual modes (i.e., un(t), u′n(t), ρbn(t), ρ′bn(t)). This system of ODE’s

dictate the temporal dynamics of the appropriate system constituted of the selected

modes. In the next sections we perform mode truncated analysis in terms of the

largest length-scale and second largest length-scale modes to explore the features

of active elastomer. This kind of analysis has been done previously to study active

solids descriptions relevant to muscle cells [46] and active solid description used to

understand area oscillation in dorsal closure [49].
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3.7 One mode analysis

Now taking account of only the first nontrivial mode (n = 1) in the system we

describe the single mode approximate solution of δu and δρb as

δu(x, t) = u1(t)cos(ax)

δρb(x, t) = ρb1(t)sin(ax) (3.28)

Here a = π
L

and we have taken u′1 = 0 and ρ′b1 = 0 for simplicity. Now we

use the above stated single mode approximate solution to rewrite the active elas-

tomer equation (Eq. 3.26). The elastic and dissipative stresses are given by σe =

B∂xu + B′(∂xu)3 and σd = η∂xu̇ respectively. The active stress is given by σa =

−ζ1∆µ (ρb − ζ ′∂xu). The nonlinearity in the elastic stress is coming from a quartic

term in elastic free energy. We shall present a more formal discussion about the

possible origin of these higher order terms in the elastic free energy in the next

chapter. Here we mainly explore the effects of incorporating such nonlinearities.

The resulting dynamical system in terms of the time dependent mode amplitudes

u1(t) and ρb1(t) is given below.

u̇1 = −
(

a2

1 + a2

)
(B + ζ1∆µ)u1 −

(
a4

4(1 + a2)

)
B′u3

1 − ζ1∆µ

(
a

1 + a2

)
ρb1

˙ρb1 = au̇1 − kρb1 −
3

8
a2α2ku2

1ρb1 + a(c+ αk)u1 (3.29)

Here we have assumed ζ ′ = 1 for simplicity. Next we show that this resulting

dynamical system is similar to Van der Pol oscillator and stable limit cycle solutions

appear at certain parameter range.

3.7.1 Mapping to Van der Pol oscillator

The resulting dynamical system can be mapped to a generalized Van der Pol oscil-

lator of the form

ü1 = −A1(u2
1 +

A2

A1

)u̇1 − P (u1)u1 (3.30)
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Here A1, A2 and P (u1) are given as following

A1 =
3

8

(
a2

1 + a2

)(
2a2B′ + (1 + a2)kα2

)
A2 =

(
a2

1 + a2

)
(B + 2ζ1∆µ) + k

P (u1) =

(
a2

1 + a2

)
(Bk + ζ1∆µ(c+ k + αk))

+

(
a4k

8(1 + a2)

)(
2B′ + 3(B + ζ1∆µ)α2

)
u2

1

+

(
3a6

32(1 + a2)

)
(α2kB′)u4

1

(3.31)

From the resulting generalized Van der Pol equation (Eq. 3.30) solution we see the

emergence of limit cycle when A2 crosses zero. This provide us with the condition

for sustained oscillations when B + 2ζ1∆µ+
(
1 + 1

a2

)
k < 0 and P (u1) > 0. The os-

cillatory behaviour emerges because of the nature of the dissipative term in Eq. 3.30

which provides negative dissipation (energy infusion into system) when u2
1 + A2

A1
< 0

and positive dissipation otherwise. This is only possible if A2 < 0 as u1 is real and

A1 is always positive.
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(a) (b)

(c) (d)

Figure 3.6. Temporal dynamics of u1 and ρb1 shows (a) stable, (b) oscillatory and
(d) contracted steady state from one mode analysis. The u1 and ρb1 solution shows
emergence of limit cycle (b) where these variables show spontaneous oscillation (c)
resulting from the contractility of myosin motors. The red arrow marks the initial
position and the direction of change of u1 and ρb1 with time. Parameter values : (a)
−ζ1∆µ = 0.1, (b) −ζ1∆µ = 5, (d) −ζ1∆µ = 15 and all other parameter values are
B = 8, B′ = 0.005, α = 0.1, c = 0.1 and k = 0.1.

3.7.2 Limit cycle and Hopf-bifurcation

At low values of active contractile stress the homogeneous, unstrained state (δu =

0, δρb = 0) is stable fixed point of the system (see Fig. 3.6 a). Oscillatory solutions

appears with increasing contractile stress as the homogeneous, unstrained state be-

comes unstable and a stable limit cycle solution emerges, this marks a super-critical

Hopf-bifurcation in the system at −ζ1∆µ = B
2

+
(
1 + 1

a2

)
k
2

(see Fig. 3.7 and Fig.3.6

b,c). At even higher values of contractile stress a stable fixed point with non-zero u1
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value emerges (see Fig.3.7 and Fig.3.6 d). This fixed point refers to the contracted

state of the active elastomer. This deformed stable state is a result of including a

higher order term (nonlinearity in elastic stress) in elastic free energy without this

nonlinearity we would encounter contractile instability (see Fig.3.8 c).

(a) (b)

Figure 3.7. A supercritical Hopf-bifurcation shows emergence of limit cycles in (a)
u1 vs −ζ1∆µ and (b) ρb1 vs −ζ1∆µ. At higher values of −ζ1∆µ we see the system
to settle in a fixed point with nonzero u1 value. This fixed point correspond to the
contracted state of the active elastomer. Parameter values used for this plot are
B = 8, B′ = 0.005, α = 0.1, c = 0.1 and k = 0.1.
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(a) (b)

(c) (d)

Figure 3.8. Emergence of limit cycle in bifurcation diagrams for (a) u1 vs −ζ1∆µ
and (b) ρb1 vs −ζ1∆µ with α = 0 shows that nonlinearity in elastic stress (from
higher order terms in elastic free energy) is sufficient for sustained spontaneous
oscillatory behaviour. Bifurcation diagrams in (c) u1 vs−ζ1∆µ and (d) ρb1 vs−ζ1∆µ
with B′ = 0 shows sustained spontaneous oscillations, proving that nonlinearity in
strain dependent unbinding term can also give rise to oscillatory behaviour but it
fails to stabilize the contractile instability. Parameter values used for this plot are
B = 8, B′ = 0.005 (a-b), α = 0.1 (c-d), c = 0.1 and k = 0.1.

Probing the effects of the nonlinearities in elastic stress and unbinding rate (see

Table.3.3) we conclude that both the nonlinear effects can support a sustained spon-

taneous oscillatory state but without the nonlinearity in elastic stress the contractile

instability at high values of contractile stress can not be stabilized.
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Table 3.3. One mode analysis

α = 0 B′ = 0 No spontaneous oscillation Contractile instability

α 6= 0 B′ = 0 Spontaneous oscillation Contractile instability

α = 0 B′ 6= 0 Spontaneous oscillation Contracted state

α 6= 0 B′ 6= 0 Spontaneous oscillation Contracted state

With the one mode approximation we could probe the above discussed nonlinear

effects but some nonlinearities (e.g., advective nonlinearity) cannot be probed with

this approximation and we need to include higher modes (smaller wavelength) in the

approximate solution to capture the effects of such nonlinearities. So we proceed to

perform a two mode analysis in the next section.

3.8 Two modes analysis

In this section we probe the advective nonlinearity and the nonlinearities in active

stress along with the nonlinearities already probed in one mode analysis. The advec-

tive and active stress related nonlinearities cannot be captured with a single mode

approximation as used in one mode analysis. To probe the these nonlinearities we

take the simplest approximate solutions just adding a contribution from the second

mode (n = 2) in myosin density variation δρb as stated here.

δu(x, t) = u1(t)cos(ax)

δρb(x, t) = ρb1(t)sin(ax) + ρb2(t)cos(2ax) (3.32)

This two mode analysis allows us to construct a 3-dimensional dynamical system

description (u1, ρb1, ρb2) of active elastomer to investigate existence of chaotic so-

lutions which are not possible to probe in lower dimensional systems. The active

stress in this case is defined as σa = −ζ1∆µ (ρb − ζ ′∂xu+ ζ ′′ρb∂xu+ ζ ′′′ρ2
b). All other

terms are same as defined in case of one mode analysis.
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3.8.1 Resulting equations

Now using the above stated two mode approximation for the active elastomer dynam-

ics (Eq. 3.26) and separating the resulting equations mode-wise we get the following

dynamical systems description

u̇1 = −
(

a2

1 + a2

)
(B + ζ1∆µ)u1 −

(
a4

4(1 + a2)

)
B′u3

1 − ζ1∆µ

(
a

1 + a2

)
ρb2

+

(
a

1 + a2

)
ζ3∆µρb1ρb2 −

(
a2

1 + a2

)
ζ2∆µu1ρb2

˙ρb1 = a(1 +
ρb2
2

)u̇1 − a2Dρb1 + acu1 −
(
akα

2

)
u1ρb2 −

3

8
a2α2ku2

1ρb1 (3.33)

˙ρb2 = aρb1u̇1 − 4a2Dρb2 −
(
akα

2

)
u1ρb1 −

1

4
a2α2ku2

1ρb2

Here we have taken ζ ′ = 1, ζ1 ζ
′′ = ζ2 and ζ1 ζ

′′′ = ζ3. We solve the above

dynamical system and probe the effects of various nonlinearities and show that the

system, in addition to the spontaneous oscillations already seen, takes a period

doubling route to chaos. In the next section we present these results and determine

the essential nonlinearities that drive the system to chaotic solutions.

3.8.2 Bifurcation and limit cycle

We probe the time evolution of the system with increasing contractile stress and for

low values of contractile stress the behaviour of the system is similar as found in the

one mode analysis earlier, i.e. the homogeneous unstrained state is a stable fixed

point of the system. With increasing contractile stress we encounter emergence of

limit cycles (see Fig. 3.9 a) as the system exhibit spontaneous oscillations. With

further increase in contractile stress we encounter period doubling (see Fig. 3.9 b,c)

and eventually the system run into chaos (see Fig. 3.9 d) and with very high values

of contractile stress we find the system to reach a stable contracted state (see Fig. 3.9

f). The bifurcation diagrams (see Fig. 3.10) for u1, ρb1 and ρb2 in −ζ1∆µ shows the

emergence of the limit cycle and chaos. The limit cycle orbits can take complecated

shapes in the three dimensional phase space as shown in Fig. 3.11.
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(a) (b)

(d)

(c)

(e) (f)

Figure 3.9. Spontaneous oscillations and chaos in two mode analysis : The ρb1-
ρb2 projection of the three dimensional trajectory shows (a) oscillatory solutions
(−ζ1∆µ = 7.0), (b-c) period doubling (−ζ1∆µ = 8.0 and 9.0), (d) chaotic solution
(−ζ1∆µ = 9.5790), (e) asymmetric limit cycle (−ζ1∆µ = 10.0) and (f) contracted
stable state (−ζ1∆µ = 11.0). The other parameters are B = 8, B′ = 0.05, ζ1 = −1,
ζ2 = 0.1, ζ3 = 0.1, α = 0.1, c = 0.1, D = 0.1 and k = 0.1.
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(a) (b) (c)

Figure 3.10. Bifurcation diagrams from two mode analysis : Bifurcation diagrams
numerically constructed for (a) u1, (b) ρb1 and (c) ρb2 with increasing contractile
stress shows emergence of limit cycle, period doubling. Though the existence of
chaotic solution is not apparent here as in this case the chaotic solutions are found
in small window around −ζ1∆µ = 9.5. This will be more evident in further analysis.
The parameters are B = 8, B′ = 0.05, ζ1 = −1, ζ2 = 0.1, ζ3 = 0.1, α = 0.1, c = 0.1,
D = 0.1 and k = 0.1.

Figure 3.11. Limit cycle in phase space of u1, ρb1, ρb2 : The three dimensional
orbit (black) shows a typical limit cycle solution. The projections of this limit cycle
in u1− ρb1 (red), u1− ρb2 (blue) and ρb1− ρb2 (green) plane has also been presented.
The parameters are B = 8, B′ = 0.05, −ζ1∆µ = 7.0, ζ1 = −1, ζ2 = 0.1, ζ3 = 0.1,
α = 0.1, c = 0.1, D = 0.1 and k = 0.1.
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3.8.3 Chaos

Apart from the spontaneous oscillations the system shows chaotic solution (see

Fig. 3.9 d). Further investigation reveals that the chaotic behaviour in the system

appears within one (or more) thin window ( short ranges of−ζ1∆µ) and this becomes

more apparent as we zoom into the bifurcation diagram. We take the bifurcation

diagram in ρb1 (Fig. 3.10 b) and we look more closely into the region −ζ∆µ = [7, 10]

(see Fig. 3.12). We find many chaotic windows in the range −ζ∆µ = [9.575, 9.58]

(see Fig. 3.12 c). Within the chaotic window the bifurcation diagram becomes space

filling which indicates chaotic time evolution of the quantities. A look into the time

evolution of phase space trajectories (see Fig. 3.13) and the variables (see Fig. 3.14)

also points towards aperiodic, chaotic solutions and exhibit space filling trend in

phase space with the possibility of existence of strange attractor.
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(a) (b)

(c)

Figure 3.12. A closer look into bifurcation diagram for ρb1 in the range (a)
−ζ1∆µ = [7, 10], (b) −ζ1∆µ = [9.5, 9.65] and (c) −ζ1∆µ = [9.575, 9.58] reveals
many windows of apparently chaotic solutions with space filling nature. The pa-
rameters are B = 8, B′ = 0.05, ζ1 = −1, ζ2 = 0.1, ζ3 = 0.1, α = 0.1, c = 0.1,
D = 0.1 and k = 0.1.
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Figure 3.13. The phase portrait (black) in u1, ρb1, ρb2 shows space filling structures
those indicate chaotic solutions and possible existence of strange attractor. The
projections of the three dimensional trajectories are shown in u1−ρb1 (red), u1−ρb2
(blue) and ρb1 − ρb2 (green) planes respectively. The parameters are B = 8, B′ =
0.05, −ζ1∆µ = 9.579, ζ1 = −1, ζ2 = 0.1, ζ3 = 0.1, α = 0.1, c = 0.1, D = 0.1 and
k = 0.1.
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(a)

(b)

Figure 3.14. Aperiodic chaotic solutions in (a) u1 and (b) ρb1 in a time stretch
(800-1000). The parameters are taken to be B = 8, B′ = 0.05, −ζ1∆µ = 9.579,
ζ1 = −1, ζ2 = 0.1, ζ3 = 0.1, α = 0.1, c = 0.1, D = 0.1 and k = 0.1.

Now we calculate the largest Lyapunov constant [60, 61] (Le) for u1, ρb1 and ρb2

time evolution to investigate the chaotic solutions in the range −ζ∆µ = [9.575, 9.58]

and find many windows of positive Lyapunov exponent (see Fig. 3.15) indicating

existence of exponentially diverging neighbouring trajectories in phase space.
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Figure 3.15. Maximal Lyapunov exponent (Le) calculated in the window defined
by −ζ1∆µ = [9.575, 9.58] for (a)u1, (b) ρb1, (c) ρb2. Existence of many windows
with positive Lyapunov exponent confirms the chaotic behaviour of the solutions in
these particular range of contractile stress values. The parameter values used are
B = 8, B′ = 0.05, ζ1 = −1, ζ2 = 0.1, ζ3 = 0.1, α = 0.1, c = 0.1, D = 0.1 and
k = 0.1.

Now that we can see the existence of chaotic behaviour in the active elastomer

dynamics with the inclusion of nonlinear effects. To be more specific about which

nonlinearities are important for chaotic behaviour we solve the two mode system

(Eq. 3.33) with one or more specific nonlinearities and present the result below (Ta-

ble. 3.4) which clearly indicates the role of convective nonlinearity (ρbi u̇1 terms,

i = 1, 2) is important for chaotic solutions.

Table 3.4. Two mode analysis

α 6= 0 ζ2, ζ3 6= 0 B′ 6= 0 ρbiu̇1 6= 0 Chaos

α 6= 0 ζ2, ζ3 = 0 B′ 6= 0 ρbiu̇1 6= 0 Chaos

α 6= 0 ζ2, ζ3 6= 0 B′ 6= 0 ρbiu̇1 = 0 No chaos

3.9 Concluding Remarks

Here we summarize the results presented in this chapter and pose the possible short-

comings and scope for future developments.

• We discussed how actomyosin network can be described as an active elastomer

where each element of the active elastomer reasonably represent the constitu-

tive elements of actomyosin network.
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• An active hydrodynamic theory was developed with minimal phenomenological

inputs to understand the dynamics of active elastomer.

• Stability analysis was performed for a linear theory and existence of unstable

oscillation and contractile instability was found.

• Inclusion of nonlinear effects for a theory only in terms of largest modes (re-

sulting in a two dimensional dynamical system) showed emergence of sustained

spontaneous oscillations through a supercritical Hopf-bifurcation.

• Further investigation for the mode truncated theory led us to a three dimen-

sional dynamical systems description of active elastomer and we could study

the emergence of aperiodic, chaotic behaviour in the system.

In this chapter we see emergence of sustained oscillation and chaos in active

elastomer. But these approximate analysis provide information about temporal

evolution only as the spatial degrees of freedom do not exist in these descriptions.

Thus to explore the spatiotemporal dynamics of actomyosin pulsation and flow, we

numerically solve the resulting system (Eq. 3.13 and Eq. 3.14) for active elastomer

in the next chapter and present the findings.

End of Chapter
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Chapter 4

Numerical solution of affine active elas-
tomer : Spatiotemporal features

4.1 Introduction

We have proposed a hydrodynamical theory for active elastomer to understand ac-

tomyosin dynamics during morphogenesis of cell and tissue. This description was

derived from symmetries of the system with phenomenologically inspired inputs as

we presented in the previous chapter. We also attempted to understand the dynam-

ical behaviour of active elastomer from linear stability analysis and mode truncated

studies. These studies enabled us to understand the emergence of sustained spon-

taneous oscillations which can be related to the spontaneous periodic density vari-

ation (i.e., the pulsation) in apical actomyosin during germband extension [12, 11]

and mesoderm invagination [8, 4]. But the analysis done in the previous chapter

brings out the features of temporal dynamics only so the features of spatiotemporal

dynamics of the actomyosin could not be explained from such approximate meth-

ods. In this chapter we treat the resulting equations of the active elastomer system

numerically with all the nonlinearities and explore the spatiotemporal features.

Let us recapitulate the essential features of actomyosin dynamics in the context

of germband extension that we are interested in. During germband extension, inter-

calation in germband cells drive the tissue elongation [5] and the contractile forces

generated through actomyosin pulsation and flow inside the individual cells drive

junction remodeling [12, 31] which results in T1 intercalation. Now a closer look at

the spatiotemporal dynamics of the actomyosin network will reveal that pulsation

and flow (see Fig.4.1) emerges from dynamics of f-actin network and non-muscle
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myosin at smaller length scales. As in the case of any in vivo process these actin

and myosin dynamics are regulated locally via many chemical signalling pathways

(conserved Rho1-ROCK pathway is one major example[11]). Having said this, the

work by akankshi et al [11] has presented an important analysis to show that me-

chanics play a vital role in flawless completion of cell and tissue morphogenesis and

the dynamics of actomyosin in germband cell is truly a mechano-chemical in nature.

Figure 4.1. Actomyosin Pulsation and flow seen in fluorescent myosin (RLC-
mCherry) shows emergence of an actomyosin rich region(s). Periodic assembly (0-
21s), flow (21-60s) and disassembly (36-60s) of these actomyosin rich regions result
in remodeling of the cell junctions [12]. The green arrow highlights the actomyosin
rich region and the scale bar size is 1µm (leftmost panel).

Next we reiterate the hydrodynamic theory briefly then we present the features of

active elastomer dynamics from the numerical solution.

4.2 Equation of motion

In this section we reiterate some basics of the active hydrodynamic description

that we proposed earlier and then discuss the form of active stress and how it can

be understood in terms of the effective elastic free energy and a purely myosin

dependent active stress.

Derived from Eq.3.13 and Eq.3.14, the one dimensional equations are given by

Γu̇ = ∂x
(
σe + σd + σa

)
(4.1)

and

ρ̇b + ∂x(u̇ρb) = D∂2
xρb − ku0e

α∂xuρb + kbρ . (4.2)

The hydrodynamic variables here are the actin mesh displacement field u(x, t),

the actin mesh density ρ(x, t) and the density of the bound myosin minifilaments
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ρb(x, t). Now at a coarse graining length scale larger than the dissipative length

scale ld where the internal viscous dissipation of the mesh becomes comparable to

the frictional dissipation from the ambient fluid (ld =
√

η
Γ
), we can take the frictional

dissipation to be the dominant dissipative mechanism in the system (Γu̇ >> ∂xσ
d)

and neglect internal viscous dissipation. We also take mesh density to be slaved by

local deformation as mentioned earlier.

The elastic stress is σe = Bε where the strain is defined as ε = ∂xu. Now the the

active stress is given by

σa = − ∆µζ1ρb
1 + ζ2ρb

(
χ(ρ0)− cχ′(ρ0)ε+

1

2
c2χ′′(ρ0)ε2 + . . .

)
. (4.3)

Now separating the ε dependent terms and combining them with the elastic stress

already defined, we can rewrite an effective elastic free-energy given by

Φ(ε) =
1

2
K2(ρb, ρ0)ε2 +

1

3
K3(ρb, ρ0)ε3 +

1

4
K4(ρb, ρ0)ε4 . (4.4)

Here Ki (i = 1, 2, 3) are density dependent coefficients given by K2 = B +
ζ1∆µρb
1+ζ2ρb

cχ′(ρ0), K3 = − ζ1∆µρb
1+ζ2ρb

c2 χ
′′(ρ0)

2
and K4 = ζ1∆µρb

1+ζ2ρb
c3 χ

′′′(ρ0)
6

. Here ζ1 < 0 and

χ′(ρ0) > 0, so K2 goes from being positive to negative as contractility increases.

The signs of the other constants are: ζ2 > 0, χ′′(ρ0) > 0 and χ′′′(ρ0) < 0, so that

K3 and K4 are always positive. The quartic term with K4 > 0 ensures that the

local compressive strain does not grow without bound, as a consequence of steric

hinderance, filament rigidity or crosslinking myosin.

The effective elastic free-energy Φ(ε) that emerges as a consequence of activity,

has three important features : (i) for weak active contractile stress, the minima

at ε = 0 gets shallower, indicating that the elastic stiffness B decreases, (ii) as we

increase the active stress, there appears another minimum at ε = ε0 (iii) for large

active stresses, the ε = 0 state can be unstable, with K2 < 0 (see Fig.4.2). The last

scenario presents a case of strained stable state (ε 6= 0) [45] which we have already

encountered and defined as contracted state.
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Figure 4.2. Effective elastic free-energy of the active elastomer : Effective elastic
free energy Φ(ε) as a function of strain for three different values of active stress.
At low active stress, Φ has a single minimum at ε = 0, the free-energy profile has
a lower curvature (corresponding to lower renormalized elastic modulus) than the
passive elastomer. At intermediate values of active stress, there appears a second
minimum at ε = ε0. At higher values of active stress, the minimum at ε = 0 becomes
unstable.

We define the remaining purely ρb dependent part of active stress as σ̄a(ρb) =
−ζ1∆µρb
1+ζ2ρb

χ(ρ0). Finally we arrive at the resulting equation of motion given by

Γu̇ = ∂xΦ
′(ε) + ∂xσ̄

a(ρb) (4.5)

and

ρ̇b = −∂x(ρbu̇) +D∂2
xρb − ku0e

α∂xuρb + kbρ . (4.6)

Next we present the results of numerical solutions of these above equations.

4.3 Steady state phases and phase diagram

The final set of equation of motion (Eq.4.5 - 4.6) is numerically solved with periodic

boundary conditions using a finite difference scheme (see Appendix.A.2 for details).

Initial conditions are small amplitude random fluctuations about the homogeneous

unstrained state. The numerical phase diagram, displayed in Fig. 4.3, shows several
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new features compared to the linear phase diagram, which we discuss below.

The two features that are expected to arise from nonlinear effects, namely, the tem-

pering of the linear instabilities to obtain both finite-amplitude oscillatory and finite-

amplitude contractile collapse phases at intermediate and high contractile stresses,

respectively, show up in the steady state phase diagram, Fig. 4.3. The corresponding

kymographs in the bound myosin density (Fig. 4.4) show the appearance of these

steady state at late times. The time development of configurations in these phases

can be summarized as follows - starting from a generic state with small random fluc-

tuations about the homogeneous unstrained state, the configuration quickly results

in a spatially heterogenous (un)binding of myosin filaments onto the actin mesh,

transiently generating localized compression. This will increase the local concen-

tration of actin, which in turn will facilitate more myosin recruitment and hence

more compression. This local compression will be resisted by an elastic restoring

force, and the resulting strain can lead to an enhanced myosin unbinding. If it does,

this will lead to a relaxation of the compressed region, to be followed by another

round of binding-compression-unbinding leading to the observed oscillations. In this

spontaneous oscillating phase, the frequency gets smaller with increasing the active

stress or decreasing unbinding rate [11]. On the other hand, if myosin unbinding

does not occur fast enough, the elastomer will undergo a contractile instability, to

be eventually stabilised by nonlinear effects such as steric hinderance and filament

rigidity.
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Figure 4.3. Phase diagram obtained from numerical solutions of Eqs. (4.5-4.6) :
(a) Effective elastic stress density vs. contractile stress density, with k = 0.1. (b)
Effective contractile stress density vs. inverse-lifetime, with B = 5. The phases
are (i) Stable (yellow), (ii) spontaneous Oscillatory (blue), (iii) spontaneous Moving
(grey) and (iv) contractile Collapse (light-green). The regions marked violet and
dark-green are the coexistence phases - the oscillatory-moving coexistence (open
circle) and the collapse-moving coexistence (open square). Apart from the new
phases, the topology of the phase diagrams are roughly similar to the linear stability
diagram (Fig. ??b), except for the upturn of the phase boundaries towards larger
active stress in (b), which arises from the non-linear strain-dependent unbinding.
Symbols are points at which numerical solutions have been obtained. Rest of the
dimensionless parameters are, α = 3, c = 0.1, χ(ρ0)ζ1 = −0.5 and ζ2 = 0.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4. Kymographs of the bound myosin density for Stable (yellow), sponta-
neous Oscillatory (blue), spontaneous Moving (grey) and contractile Collapse (light-
green) phases (indicated by the colour and symbol on the upper left corner) is shown
in (a), (b), (d) and (f), respectively. The kymographs for the coexistence phases
- the oscillatory-moving coexistence (violet, open circle) and the collapse-moving
coexistence (dark-green, open square) are shown in (c) and (e) respectively.

Additionally, there is a wholly unexpected feature that emerges from a numerical

solution of the full nonlinear equations. In the parameter regime between the oscil-

latory and the contractile collapse phases, there appears a moving phase (Fig. 4.3),

where spatially localized actomyosin-dense regions (which we later identify as trav-

eling fronts) spontaneously move to either the left or right boundary. In the regimes
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between the pure moving phase and the oscillatory and collapse phases, lie the co-

existence phases where the moving phase coexists with oscillations and collapse,

respectively. The corresponding kymographs in the bound myosin density (Fig. 4.4)

show the appearance of these steady state at late times. We may understand the

occurrence of these phase transitions using a simple argument based on the relative

time scales of these dynamical events, as displayed in Fig.4.5.

0
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3 4 5 6 7 8 9 10

Figure 4.5. Time scale of various events - oscillation, front propagation and con-
tractile collapse - as a function of the active stress, obtained from theory, shows
that with increasing active stress one first encounters the oscillatory phase, then
the pulse propagation and finally the collapse. The boundaries of these transitions
support coexisting behaviours. The oscillatory and contractile collapse timescale
values are calculated from the one mode analysis with the rest of the parameters
fixed at B = 8, α = 1, c = 0.1 and k = 5.

Several qualitative assertions follow immediately from the affine theory, such as

: (i) the existence of bounded (finite-amplitude) oscillations requires both strain-

dependent unbinding and turnover of myosin, (ii) the coexisting oscillation-moving

and collapse-moving phases cannot be obtained in the absence of strain-dependent

unbinding, (iii) advection is a necessary condition for front movement. We now look

more closely at the dynamics of actomyosin dense regions and compare the results
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of the affine theory with early time dynamics of myosin dense regions in-vivo.

4.4 Nucleation, growth and coalescence

During the observed pulsation and flow in the germband cells, actomyosin rich re-

gions form through a process of nucleation, growth and coalesce. This starts with

nucleation of small actomyosin rich regions(Fig.4.6a 0-10s) then these regions grow

and subsequently coalesce (Fig.4.6a 10-20s) to form a big actomyosin rich region

which then proceed to flow and finally disassociate near a vertical junction.

(a)

(b) (I) (II)

(III) (IV)

0 s 15 s 22.5 s 30 s

Figure 4.6. (a) Nucleation (0-10s), growth (10-15s) and coalescence (15-20s) during
actomyosin pulsation and flow in germband cells observed via intensity variation of
fluorescently tagged myosin (RLC-mCherry). (b) A closer look into the process of
nucleation, growth and coalescence, (I-IV) refer to a zoomed in version of the four
panels above starting the leftmost panel.

In the moving regime, the effective ‘elastic free-energy’ functional Φ(ε) develops
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a second minima at ε = ε0 corresponding to a local compression due to contractility

(Fig.4.2). Initiation of movement starts with the nucleation of actomyosin-dense

regions, which grow and coalesce to form larger actomyosin-dense regions. This is

best seen using a space-time analysis of Eqs. 4.5-4.6 with initial conditions stated

above. Kymographs of the spatial profile of bound myosin density, calculated from

the theory, show nucleation and growth (0 < t < 0.15) followed by coalescence

(0.15 < t < 0.7) and eventual movement (t > 0.7) (Fig. 4.7 a,b). This space-time

behaviour accurately recapitulates the early time dynamics of medial myosin in-vivo

as seen from the experimental kymographs, Fig. 4.7 c,d.

Figure 4.7. Kymographs of bound myosin density from theory and experiment :
(a-b) Kymograph of the spatial profile of bound myosin density from theory, shows
nucleation and growth (0 < t < 0.15), followed by coalescence (0.15 < t < 0.7) and
movement (t > 0.7). Here B = 6, −ζ1∆µ = 5.5, k = 0.5, α = 1 and D = 0.15.
Rest of the parameters as in Fig. 4.3. (c) Kymograph of the spatial profile of labeled
myosin from experiment, shows nucleation and growth (0 < t < 5s), followed by
coalescence (5 < t < 10s) and (d) eventual movement of the formed actomyosin rich
region (t > 10s).
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4.5 Asymmetric profile of traveling front

Here we investigate the origins of the spontaneous movement of the actomyosin-dense

region. We study the configuration of the localized actomyosin-dense region just

prior to movement, and find that it assumes a symmetric localized profile (Fig. 4.8a)

within which the strain ε = ε0 (the second minimum) where Φ′(ε) = 0. The active

stress within this region is higher than outside, the resulting gradient in stress should

induce inflowing myosin currents from either side of it. We verify this by monitoring

the fluxes JL and JR, coming from the left and right of this symmetric profile. Over

time, owing to stochasticity either in the initial conditions or the dynamics, there is a

net flux,JL + JR, from either the left or the right (Fig. 4.8b), leading an asymmetric

profile (Fig. 4.8c), and hence a gradient of ρb across the profile. This marks the

onset of the traveling front. This feature also appears to be present in the early

time dynamics of the moving myosin profiles observed in-vivo, as seen in Fig. 4.8d-f.

The affine theory predicts that the myosin density profile is asymmetric and moves

as a traveling front, with a constant velocity while maintaining its shape (as long

as there are no further coalescence events). We confirm this using a variety of

initial conditions of the bound myosin density ρb, including starting with a single

symmetric gaussian profile. We analyze the asymmetric profile of the traveling front

by transforming to the co-moving frame x± vt (Fig. 4.9).

We find that within the traveling front, the strain takes a value slightly more com-

pressed relative to ε0, the value of the strain at the second minima, where Φ′ = 0.

The traveling front is stably compressed in a force-free state (Fig. 4.9a,b). The asym-

metric myosin profile gives rise to a gradient in the active stress (Fig. 4.9c), which

provides the propulsion force for the traveling front to move to the right in Fig. 4.9c.
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Figure 4.8. Time evolution of ρb, the density profile of bound myosin in a cluster
prior to movement : (a) Prior to movement the myosin density profile is seen to
be symmetric, following which we compute the instantaneous left-right fluxes, JL,R
of myosin drawn into it. (b) Time evolution of the algebraic sum JL + JR, shows
that after a while, there develops a net flux in one direction as a precursor to the
asymmetric traveling front. (c) Emergence of the asymmetric traveling front which
moves towards the right in a shape-invariant manner. (d-f) Myosin intensity profiles
from experiments, which shows how an initial stationary symmetric myosin profile
at t = 0, finally evolves to an asymmetric profile at t = 4.5 s, which then travels
to the right. The degree of shape asymmetry of the profiles is described by the
skewness S, the standard error of mean(s.e.m.) reported is due to projection of the
images to one dimension.

4.6 Dynamics of traveling front

The dynamics of the traveling front that emerges from the affine theory is local,

its propulsion is therefore independent of the boundary or the distance from the

boundary. We calculate the velocity of the traveling front by integrating Eqs. (4.5-

4.6) across the scale Ω of the traveling front in the co-moving frame. This leads to

the formula, v = Γ−1
∫

Ω
∂xσ

a ≡ Γ−1fact, which states that the velocity depends only
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on the shape asymmetry of the front; if the shape is maintained over time, then the

velocity is a constant. In Fig. 4.9d, we plot the fact versus the velocity and show that

they are proportional to each other over a large range of active and elastic stresses.

We will later make connection with experiments, where it is convenient to use the

shape-asymmetry or skewness of the myosin profile, S ≡
∫
Ω(x−xCM )3ρb(x)

(
∫
Ω(x−xCM )2ρb(x))

3/2 , as a

proxy for the driving force. We find that the traveling front velocity increases with

increasing skewness before saturating at larger velocities (inset of Fig. 4.9d).
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Figure 4.9. Anatomy of the traveling front in the co-moving frame : (a) Spatial
profile of Excess bound myosin density (black) and strain ε (red) profile, (b) Spatial
profile of Myosin density and derivative of the effective elastic free energy Φ′(ε) (red),
(c) Spatial profile of myosin density and active force (red). Horizontal axis is distance
from centre of mass position, xCM . Here B = 6.0, −ζ1∆µ = 4.8, k = 0.2, α = 1.0
and D = 0.25. (d) Theory predicts that the traveling front velocity is proportional
to the net active force integrated over the front profile across the moving front.
We demonstrate this fact from a numerical solution of the dynamical equations by
varying the parameters of the active stress (circle) and the elastic stress (triangle).
for different values of B (with −ζ1∆µ = 6.0, k = 0.2 and D = 0.15 fixed) and
−ζ1∆µ (with B = 8.0, k = 0.2 and D = 0.15 fixed). Rest of the parameters
as in Fig. 4.3.The colour bar shows the magnitude of these stresses in dimensionless
units. (inset) Skewness of bound myosin profile in the traveling front versus velocity,
obtained by varying the contractile stress −ζ1∆µ from 3−4, shows a linear increase
followed by saturation. The other dimensionless parameters are : B = 4, k = 0.2,
D = 0.1, α = 1 and c = 0.1. The error bars are calculated as s.e.m.

72



Numerical solution of affine active elastomer : Spatiotemporal features

Affine theory predicts moving deformation :

It is important to note that the movement of the actomyosin-dense region arising

from affine deformations of the active elastomer is a moving deformation of the acto-

myosin mesh, and once established, is not contingent on myosin turnover, as shown

in Fig 4.10a. One could also sustain a traveling front or moving deformation of the

actomyosin mesh by ensuring a differential myosin binding and unbinding rates at

the leading and trailing edges of the front, in a kind of treadmilling movement,

Fig 4.10b. None of these however is associated with mass flow of actin and myosin.

Indeed, the dynamical equations describing the active affine elastomer, Eqs. 4.5-4.6,

bear a close resemblance to the generalized FitzHugh-Nagumo model, an excitable

system which is known to exhibit traveling front solutions [48].

Figure 4.10. Possible mechanisms for the movement of actomyosin-dense struc-
tures in an active affine elastomer : (a) moving deformation of the actomyosin mesh
without turnover, implying a traveling front, and (b) moving deformation of the
actomyosin mesh with differential myosin binding unbind rates at the leading and
trailing edges of the front.

4.7 Spatiotemporal Chaos in coexistence phase

We found two dynamical phases where coexisting oscillation-movement and movement-

collapse can be observed (see Fig.4.4 c,e). Now to understand these phases better

we carry on further analysis. Irregular and aperiodic dynamics of the bound myosin
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density and displacement field poses a possibility of spatiotemporal chaos in the

coexistence phases. We have already seen emergence of chaotic behaviour in mode

truncated studies (Chapter 3) upon introducing advective nonlinearity. Here we

see long-time spatiotemporal chaotic behaviour in the coexistence phases, probably

as a result of competing oscillatory-advective and collapse-advective effects in the

system.

x
/L

t

t

t

x
/
L

(a) (b)

(c)

Figure 4.11. Spatio-temporal chaos in the kymograph of (a) bound myosin density
and (b) displacement field. (c) Time series of the mean bound myosin density shows
aperiodic, chaotic behaviour in long times. Parameter values used for the above are
B = 8, −ζ1∆µ = 7.5, α = 3, k = 0.2, D = 0.1 and other parameters are same as in
Fig.4.3.

Proceeding further with the analysis of the chaotic behaviour we calculate the

subsystem Lyapunov spectra [64, 62, 63] from bound myosin density space-time
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evolution in coexistence phase. The results show increasing number of positive Lya-

punov exponents (NL) (Fig.4.12 a) and value of the maximum Lyapunov exponent

(Lmax) (Fig.4.12 b) with increase in sub-system size (ns), features of spatiotemporal

chaotic behaviour[65].

Figure 4.12. Lyapunov spectra calculated from bound myosin density space-time
evolution in coexistence phase shows (a) increasing number of positive Lyapunov
exponents and (b) increase in the value of the maximum Lyapunov exponent with
increasing sub-system size. These features indicate spatiotemporal chaotic behaviour
in coexistence phases.

4.8 Concluding remarks

Here We conclude our study of the affine hydrodynamical description of actomyosin

as active elastomer. While we allowed turnover of only active force generator myosin

motors and assumed no turnover for the elastomer network, this description could

successfully bring out important features like spontaneous oscillation and sponta-

neously propagating fronts which bears similarity with the observed pulsation and

flow during morphogenesis of germband tissue. This description could explain the

actomyosin dynamics in low contractility regime where an actomyosin rich region

form through nucleation, growth and coalescence and we established that moving

actomyosin regions are driven by local contractile forces generated by an asymmetric

myosin density profile.

This study of the affine hydrodynamics of active elastomer predicts deformation

flow in actomyosin and it is very important to understand the validity of this predic-

tion. We finally address this concern in the next chapter where we take forward this

theory to include turnover of the network and present a comprehensive comparison
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of the theoretical results and the in vivo experiments.

End of Chapter
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Chapter 5

Non-affine dynamics of apical actomyosin
: Transient network description

5.1 Introduction

In this study we have described the medial actomyosin crosslinked mesh as an ac-

tive elastomer embedded in a viscous fluid, subject to active contractile stresses

arising from the binding of myosin minifilaments [84, 43, 35, 44]. So far we have

only considered affine deformation of the mesh (neglecting the network remodeling)

and turnover of myosin motors only. Here in this chapter we argue the regime of

validity of this affine description and propose an active elastomer with network re-

modeling. This new feature of network remodeling in the elastomer mesh involves

breakage and reformation of crosslinks, allowing non-affine deformations [71, 72] to

take place. We discuss the importance of perceiving the actomyosin system as a

transient active elastomer network then present a rudimentary theoretical descrip-

tion of active elastomer with turnover of all of its components. Finally we compare

the features of active elastomer dynamics that we have developed so far with in vivo

experiments on Drosophila germband extension.

5.2 Where the affine theory works and where we
need a non-affine description

Here we provide a justification for treating this as an active elastomer with turnover,

rather than directly as an active fluid, as was done in the context of C. elegans

embryo [51, 52].
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We first note that, when the time scales of turnover of the actin mesh or crosslink-

ers are much smaller than the time scales of macroscopic processes of interest, then

the stress relaxation is set by the turnover time scale, and the system should be

treated as a fluid. Alternatively, when the actin mesh or crosslinker turnover time

scales are much larger than the time scales of macroscopic processes, then the sys-

tem should be treated as a dissipative elastic medium. The interpretation in these

two extreme regimes is unambiguous. However, Fluorescence recovery after photo-

bleaching(FRAP) measurements in germband cells, reveal an actin turnover time of

around 10 − 20 s [12], which is the same order as the time scale of nucleation and

growth, around 10 − 20 s, and the period of medial actomyosin pulsation, around

50 − 100 s [12, 83, 11]. Indeed a more detailed look at the movies of myosin [73],

show a distribution of time scales and a range of dynamical regimes, starting from

the appearance and disappearance of small myosin-rich speckles over a time scale

of 5-10 s. This suggests that the appropriate description should span the short time

elastomeric and the longer time fluid-like regimes. As mentioned in the Introduc-

tion, we do this by starting out with an elastic description of a mesh, where the local

deformations induced by myosin binding and release are affine. Increased myosin

binding can lead to rapid turnover of actin and crosslinkers, resulting in loss of net-

work integrity and its fluidisation via intranetwork flows; we study this crossover to

a non-affine regime. Indeed this strategy of going from the short time elastic to long

time fluidisation, as a function of increasing turnover, opens up novel rheological

possibilities, such as correlated strain fluctuations and power-law response, which

we take up later.

There are several other empirical reasons for starting with an elastomeric descrip-

tion and allowing for turnover of components :

• Current high resolution images of medial actin filaments, both in the germband

cells and in the amnioserosa, show two distinct populations of actin filaments

- a cell-spanning actin filamentous network which appears connected to the

cell boundary and a possibly more rapidly turning over pool of shorter actin

filaments (T. Lecuit and B. Dehapiot, unpublished observations). The rela-

tive levels of these two architectures of actin filaments is likely to be context

dependent.
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• The medial actin mesh is connected to the cell junctions; consistent with this,

modulating the strength of the coupling of medial actin to the junction via

β-catenin affects the pulsation [11].

• Finally, the pulsation of medial actomyosin in these systems appears to be

correlated with the oscillations in the area of the apical surface [8, 11, 37, 49].

With this in mind, we will next explore the consequences of actin turnover and

network remodeling, the hydrodynamics of a nonaffine elastomer, giving rise to in-

tranetwork flows and consequent fluid-like behaviour.

5.3 Nonaffine elastomer with network remodel-
ing and intranetwork flow

As time progresses and the myosin-dense clusters grow, the local contractile stresses

can become large. Such large contractile stresses may dramatically enhance actin

turnover and crosslinker unbinding. In Fig. 5.1a, we give a schematic plot of the

actin turnover time as a function of contractile stress, and compare it with the

time scales of oscillation, front propagation and contractile collapse obtained from

the affine theory. Indeed there is experimental evidence that actin turnover times

at first increase with increasing contractility [69, 67, 68] - this is likely due to the

fact that bound myosin might occupy the binding sites of actin remodeling proteins

such as cofilin. There is also evidence that for large levels of contractility, the actin

turnover rates are large, possibly because of destabilisation of actin or unbinding of

crosslinkers at large contractile stress. We make the plausible assumption that the

qualitative change in turnover rates is sudden at a stress scale σ? (Fig. 5.1a), beyond

which the deformation of the mesh can no longer be considered affine and one needs

a description of nonaffine deformations of the active elastomer.
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Figure 5.1. Enhanced actin turnover results in nonaffine deformation of the elas-
tomer : (a) Qualitative behaviour of the actin turnover time as a function of con-
tractile stress, consistent with data from [69, 67, 68]. This should be compared with
the time scales of oscillation, front propagation and contractile collapse obtained
from the affine theory (see, Supplementary Fig. 5). Based on the discussion in the
text, we have placed the crossover stress σ? in the moving regime, thus implying
that the crossover to the nonaffine description occurs in this regime. (b) Schematic
showing the intranetwork flow of an actomyosin-dense region (enclosed within the
yellow circle) resulting from active stress induced unbinding and rapid turnover of
the actin in a transient actomyosin network.

We use this insight to arrive at a nonaffine description of the active elastomer.
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Consider a disordered mesh comprising actin filaments linked to each other by

crosslinkers such as α-actinin and myosin (we will assume that this is an unen-

tangled network). The bound myosin locally compresses the mesh here and there,

recruiting more myosin in the process. When the local bound myosin concentration

goes beyond a threshold (so that the configuration now samples the second mini-

mum of the effective free energy, Φ(ε)), the local compression is high and the mesh

surrounding this myosin-dense region gets significantly stretched. This could lead

to a tearing or ripping of the mesh, either via the unbinding of crosslinkers, desta-

bilisation of actin or by the sliding and slipping of filaments past each other. This

mesh breakage subsequently heals by the rebinding of crosslinkers or actin itself.

With this picture in mind, we refer to several seminal studies on thermally ac-

tivated reversibly crosslinked networks in the context of the dynamic properties of

physical gels [70, 71, 50]. The most dramatic feature of such reversible networks is

its internal fluidity, where each chain can diffuse through the entire network due to

the finiteness of the crosslinker life time, in spite of being partially connected to the

macroscopic network structure in the course of movement. These systems thus flow

under an external stress on time scales longer than the crosslinker dissociation time.

In the context of actomyosin networks, the disrupting influence of filament turnover

and the ultimate fluidisation has been the subject of some study [74]. In a very re-

cent submission, the healing effect of turnover has also been investigated, and long

range network flows have been demonstrated in simulations of a model actomyosin

network [75].

In the present context, when the local bound myosin concentration rises beyond

a threshold and attains an asymmetric density profile, it induces mesh breakage in

its surrounding regions. This actomyosin-dense region can move through the entire

network due to the finiteness of the crosslinker life time, in spite of being partially

connected to the macroscopic network structure in the course of movement. These

systems should thus exhibit flow under an internal active contractile stresses on time

scales longer than the crosslinker dissociation time. This is depicted in Fig 5.1b.

To describe this mathematically, it is convenient to define physical quantities

coarse-grained over the scale of the actomyosin-dense region Ω, such as ρ̄b = Ω−1
∫

Ω
ρb

and p = Ω−1
∫

Ω
∇ · σa, the net force-dipole associated with the anisotropy of the

myosin profile. We may decompose myosin density configuration ρ̄b into a sum of
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actomyosin-dense clumps (contributing to nonaffine deformations) with volume frac-

tion φ and a background (contributing to affine deformations). The equation for the

ρ̄b may now be written as,

˙̄ρb = −∇ · (ρ̄bv) +D(1− φ)∇2ρ̄b + Sm(ρ̄b) (5.1)

where, v = φβ (p + γp · ε) + (1 − φ)u̇, and β is the mesh breakage probability

and γ is a strain-alignment parameter.

Flow described here is a consequence of internal active deformations in a transient

actomyosin network. We believe this is a new physical phenomenon; unlike the

flow observed in physical gels under external load, this active flow is generated by

internally generated stresses even in the absence of an external load.

In general, the interplay between actively generated contractile stresses and stress-

dependent turnover of components that shows up in many cellular contexts, promises

a rich phenomenology with novel rheological consequences. The constant remodel-

ing and turnover of the actin mesh could drive the system from an elastic regime to

a fluid-like behaviour via a critical elastic state, characterised by correlated strain

fluctuations which might be intermittent. A more complete hydrodynamic theory of

nonaffine deformations of a actomyosin network with turnover is a task for the future.

5.4 Comparison with experiments

In making comparisons of the theory presented here with experiments in germband

cells in-vivo, it is important to demarcate the affine and nonaffine regimes of the

elastomer. The difficulty in doing this, is that we do not know the detailed physical

mechanism that would allow us to compute the form of the actin turnover time

as a function of contractile stress (Fig. 5.1a). Nevertheless it is clear that starting

from an unstrained elastomer, the early time dynamics should be described by the

linear and leading nonlinear analysis of the affine theory, as described earlier. The

dynamical behaviours described by this analysis include oscillations and contractile

collapse, from which we make the following qualitative assertions : (i) the existence

of bounded (finite-amplitude) oscillations requires advection, strain-dependent un-

binding and turnover of myosin, (ii) the coexisting oscillation-moving and collapse-
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moving phases cannot be obtained in the absence of strain-dependent unbinding and

advection. As the kymographs in Fig. 4.4 show, these dynamical behaviours start

emerging at t ≈ 2 - which translates to a real time of ≈ 6 s (Methods) -smaller than

the actin turnover time of around 10− 20 s [12].

The stable, oscillatory and the collapse phases of the affine theory compare favourably

with in-vivo experiments in germband cell [11]. First, our phase diagram showing

the stable, oscillatory and contractile collapse phase is grossly consistent with the

experimental phase diagram that appears in [11]. Pulsatory solutions are obtained

over a wide range of parameters which include the pure oscillatory and the coex-

istence phases (panels (b),(c),(e) of Fig. 4.4). In addition, we compare the finer

aspects of the oscillatory phase with the pulsation seen in experiments (Fig.5.2).

Consistent with [11], we see that advection is crucial to obtain oscillations of bound

myosin, both locally (Fig.5.2(a),(b)) and cell-averaged (Fig.5.2(c)). We find a strong

correlation between convergent (divergent) advection velocities and increased (de-

creased) myosin density (Fig.5.2(a)-(c)). Moreover, the amplitude of the oscillation

decreases when we reduce actin density ρ0 (Fig.5.2(d)), consistent with the actin

perturbation experiments in [11].
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Figure 5.2. We compare the characteristics of the oscillatory phase with the pulsation seen in
experiments on germband cells as reported in [11] (specifically Fig. 4 of [11]). (a)-(c) shows that
advection is crucial to obtain oscillations of bound myosin. (a) Space-time plot (kymograph) of
the bound myosin density (colour bar) against a foreground of arrows indicating the local velocity
vector u̇ (whose magnitude is given by the size of the arrows). This velocity vector describes the
advection of myosin by the actin mesh, and shows that local convergence of velocity is associated
with increased myosin density (and vice versa). This recapitulates the advection-myosin density
profiles shown in Fig. 4a of [11]. (b) This panel shows spatial profiles extracted from the above
figure at three specific time instants. There is a definite correlation between convergent velocity
vectors (black arrows) and increased myosin density (blue graph) between t = 0.5 and t = 1, and
divergent velocity vectors (black arrows) and reduced myosin density (blue graph) between t = 1
and t = 1.5. Green arrows show overall convergence (divergence) of advection. Our results here
are consistent with Fig. 4a-c of [11]. (c) Time variation of spatially averaged myosin density ρ̄b
(black line) and advection speed v̄ (obtained from magnitude of u̇, red line) during an oscillation
cycle. The graph of v̄ is shifted to the left with respect to the myosin density graph by an amount
0.2, indicating that the advection is a cause for local enhancement of myosin density. Our results
are entirely consistent with Fig. 4m of [11]. (d) The amplitude of the oscillation decreases when we
reduce actin mesh density ρ0, here we compare ρ0 = 1 with ρ0 = 0.7. Compare this to the actin
perturbation experiments, Fig. 4f of [11]. Parameter used here are, B = 8 , −ζ1∆µ = 5.2, k = 0.2
, D = 0.25, α = 3, c = 0.1.
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Now the nucleation, growth and coalescence events of the myosin-dense clusters,

precursors to the eventual moving phase of the affine theory, also take place over

these time scales - and compare well with the in-vivo kymographs (Fig. 4.7). The

establishment of the asymmetric profile of the myosin-dense cluster at the onset

of movement also appears to be present in the early time dynamics of the moving

myosin profiles observed in-vivo, Fig. 4.8d-f.

The moving (traveling front) solution is the one significant prediction of the full

nonlinear affine theory, and appears at later times. By this stage the local contractile

stresses are high, opening up the possibility of a crossover to the nonaffine regime.

Both the affine and nonaffine theories predict movement - the affine theory predicts

a moving deformation or a traveling front, while the movement in the nonaffine

theory is associated with mass flow as a consequence of the steady turnover of actin

filaments.

To test which of these pictures is true in-vivo, we appeal to FRAP experiments

performed on a small region within the actomyosin-dense cluster [12]. These pre-

liminary experiments show loss of recovery upon FRAP, suggesting the possibility

of actual mass flow, consistent with the predictions of the nonaffine theory (see

Supplementary Information in [12]).
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Figure 5.3. Spatial profile and movement of myosin dense regions : Excess bound
myosin density in the moving frame. (a-c) Three separate examples of the spatial
profile of myosin intensity in the co-moving frame of the flowing actomyosin-dense
cluster displayed at different times. Note that the actomyosin-dense cluster hardly
changes its shape as it flows towards a junction.

The fact that the actomyosin-dense region commences to move with a constant

velocity when it has attained an asymmetric profile, is common to both the affine

and nonaffine theory. It moves with a constant velocity in the direction where the
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leading edge has the smoother slope and maintains its asymmetric shape as it moves.

This appears to be consistent with the situation in-vivo, Fig. 5.3a-c.

The driving force for this movement is established within the medial actomyosin-

dense cluster and not the cell boundary. Its propulsion is therefore independent of

the boundary or the distance from the boundary. We ask whether this is true of

the moving actomyosin-dense regions in-vivo. Figure 5.4a shows that irrespective of

its initial position at the commencement of the flow, the moving actomyosin-dense

region travels to the left or right cell boundary with equal probability. Further,

Fig. 5.4b shows that the moving actomyosin-dense region travels with a constant

velocity as it moves towards a given cell boundary, its speed does not depend on the

distance from the cell boundary.

From the myosin intensity, we compute the shape-asymmetry via the skewness,

S ≡
∫
Ω(x−xCM )3ρb(x)

(
∫
Ω(x−xCM )2ρb(x))

3/2 , of the myosin profile, and find that it is proportional to the

speed of the moving myosin-dense cluster (Fig. 5.4c). To our mind, this establishes

unambiguously that the flow towards the junctions is spontaneous with the driving

force coming from the gradient in myosin established within the front. The boundary

does not affect the flow speed, at best, weak asymmetries that may arise at the

boundary (for instance due to an asymmetry in functional cadherin) may bias the

direction of the flow [84]. One consequence of this is that a cluster moving to the

right, might reverse its direction following a coalescence with another moving cluster;

such reversals are observed in in-vivo experiments (see Fig.5.5).
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Figure 5.4. Velocity and profile of myosin dense regions : (a) Histogram of the
number of flows that move to the right junction R starting from either the right R
(P (R|R) or the left L (P (R|L) region of the cell (inset shows schematic). Data col-
lected from 24 actomyosin-dense clusters over 18 cells. The fact that the histograms
are similar is consistent with the theoretical prediction that the flow is spontaneous
and not driven by the cell boundaries. (b) Velocity of an isolated flowing actomyosin-
dense cluster monitored over time shows that it is a constant, as predicted by theory.
(c) Here we present average skewness values of 28 different pulses plotted against
average velocities of the respective pulses. The linear behaviour is quite clear from
the data and a linear fit produced a slope value of 2.6 ± 0.5. This intensity data set
was prepared from 20 myosin-mCherry tagged germband cells (N=20). Error bars
indicate s.e.m. of fluctuation of skewness and velocity values of a pulse in time.
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Figure 5.5. Direction reversals of the moving myosin-dense cluster indicate that
the driving force for flow does not come from the boundary but is intrinsic to the
myosin-dense regions. (a) The 2d intensity maps at different time instants, shows
a myosin-dense cluster moving towards the right, which following coalescence, then
reverses its direction (movement is along the direction of arrow). (b) Corresponding
kymograph clearly shows this velocity reversal. From the projected intensity maps,
we quantify the velocity reversals by (c) the center of mass of the myosin-dense
cluster xCM versus time and (d) the moving cluster velocity versus time. There is
some reorganisation of the myosin-dense cluster upon coalescence.
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5.5 Physical values of rescaled parameters

Here we relate the values of the dimensionless parameters to real units extracted

from a variety of experimental measurements. For the unit of length, l =
√
η/Γ

or the actin mesh size, we take 0.5µm (consistent with the rough estimates in [12])

The unit of time, k−1
b , can be estimated from the myosin FRAP data [11] - we find

ku = 0.2 ± 0.08 s−1, and taking the ratio k = ku/kb to be 1.0, we obtain a binding

rate, kb = 0.2 s−1. The viscosity of the mesh is taken to be 50 Pa.s [74].

We can now convert all the dimensionless values into real values, and check for

consistency with other experimental estimates. Thus, a dimensionless value of the

bulk modulus B = 5 translates to B = 42 Pa (consistent with what can be estimated

from [76]). Similarly, a dimensionless value of the magnitude of the active stress,

|ζ1∆µ| = 5 translates to |ζ1∆µρb0| = 42 Pa (roughly the order of magnitude esti-

mated from [76]). Finally, the dimensionless diffusion coefficient D = 0.25 implies a

real value of D = 0.01µm2/s.

This implies that a dimensionless front velocity v = 1 (see, Fig. 5.4c) trans-

lates to a real velocity of v = 0.08µm/s (consistent with the flow velocity of ac-

tomyosin reported in [12], also see Supplementary Fig.8). Likewise, the time pe-

riod of oscillation obtained in the section on ‘Leading order nonlinearities’, T =

2π (η/ku0(B + ζ1∆µρb0))1/2 translates to be ∼ 20s and the active propulsion force

fact is estimated at 30− 60pN (consistent with [76]).

5.6 Concluding remarks and future directions

Although simplified, in that it has completely ignored the coupling of actomyosin

dynamics to local chemical signalling such as Rho [11], we believe this active elas-

tomer model with strain-dependent turnover of components, admitting both affine

and nonaffine deformations, captures the essential physics of actomyosin pulsation

and flows observed in a wide variety of tissue remodeling contexts such as Drosophila

germband extension and dorsal closure in the amnioserosa. The minimal ingredi-

ents for actomyosin pulsation and flow are mesh-elasticity, actomyosin contractility,

advection and turnover of both myosin and actin.

In this study, we have modelled the medial actin mesh during apical constriction
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and germband extension in the Drosophila embryo as an active elastomer embed-

ded in a solvent [84, 43, 35, 44], which undergoes turnover of all its components.

Our description goes from the hydrodynamics of an affine elastomer to a nonaffine

elastomer, the latter incorporating network rupture and remodeling, resulting in

intranetwork flows. It thus goes from an elastomer to a fluid-like description. To-

gether, the affine and nonaffine active elastomer model captures the range of dy-

namical regimes exhibited in this system.

To make a detailed comparison of the spatiotemporal actomyosin patterns with

experiments generated using quantitative imaging, we will need to extend this nu-

merical study to 2-dimensions, using appropriate (anisotropic) boundary conditions

and allowing for shear. The nucleation and growth of the actomyosin-rich domains

are similar to that seen in 1-dim, with the difference being that domains can move

around each other in 2-dim and can exhibit anisotropic movement.

In future, we would like to extend this framework to understand the dynami-

cal coupling of the medial actomyosin with degrees of freedom (concentration of

E-cadherin) attached to a deformable cell junction. Though the emergence of acto-

myosin flows does not depend on specific boundary conditions, cell boundaries may

directionally bias the intrinsic ability of actomyosin networks to generate flow, as

proposed before [84].

End of Chapter
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Chapter 6

Dynamics of junction shrinkage

6.1 Introduction

A central problem in tissue morphogenesis is to understand how the noisy dynamics

of local molecular force generators ultimately results in reliable and robust shape

changes at the cellular and tissue scale. A striking example is the myosin driven cell

shape changes in developing tissues across organisms. For instance, tissue extension

in the Drosophila embryo proceeds by the intercalation of cells, which is initiated

by the active step-wise shrinkage of the vertical cell junctions (Fig. 6.1(a)). This

junctional shrinkage is driven by the enrichment of myosin at this junction and

resisted by the trans-clusters of the cell adhesion proteins, E-cadherin [83, 12]. The

noisy step-wise shrinkage of junction length observed in experiments suggests a

ratchet-like driving mechanism (Fig. 6.1(b)).

In this chapter we derive a precise dynamical model for the ratchet based on

basic phenomenology of myosin and cadherin at the junction. More significantly,

we identify a novel molecular mechanism, based on two pools of myosin working in

tandem, that provide a robust and reliable ratchet.
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Figure 6.1. Junction shrinkage from actomyosin pulsation and flow : (a) Pulsation
and subsequent flow of myosin (in magenta) dense regions towards vertical junc-
tions (in green) shrinks the junction in stepwise manner. The white arrow marks a
convergence of actomyosin dense region with the junction, following the convergence
the dense region decay. (b) Measurement of total junctional myosin intensity (renor-
malized by the initial intensity) and length of the above shown junction throughout
shrinkage of the whole junction shows that shrinkage happens in a stepwise manner
upon convergence of myosin pulse with the junction. The total junctional myosin
intensity was normalized by the initial intensity value.

6.2 Theoretical description of a junction

Here we develop a theoretical description of the cell junction to understand the

junctional remodeling dynamics during junction shrinkage in terms of the following

dynamical variables - the length of the junction L(t), total amount of myosin at

junction ρm(t) and total amount of E-cadherin cluster ρc(t) and monomer ρ1(t) at

the junction. The dynamics of a junction in terms of these dynamical variables is

a result of the spatial and temporal evolution of local quantities. Thus to arrive
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at the dynamical description we identify the important local quantities and derive

the dynamical equations from the local dynamics by integrating over the spatial

degrees of freedom. We begin with the description of the junction in the plane of

the tissue (thick junction) then arrive at a reduced description of an interface in the

plane (thin junction). Then we finally derive the resulting dynamical system from

the thin junction description. We elaborate on these steps below.

To elucidate the thick junction description we first consider the apical actomyosin

layer of the germband cell which is anchored to the E-cadherin molecules in the

cell membrane. The E-cadherin molecules play major role in cell adhesion and

inter-cellular force transduction via forming trans-homophilic clusters with cadherin

molecules from the neighbouring cells in the adjacent membrane (see Fig.6.2a) [86].

They also form cis-homophilic clusters with the same-membrane cadherin molecules

(see Fig.6.2a) [86]. The dynamics of E-cadherin clusters are modulated by its interac-

tions with actomyosin mesh [90] via linker proteins (see Fig.6.2a) such as α-Catenin,

vinculin which physically link the cadherin adhesive complexes to actomyosin net-

work [91].

The the actomyosin network near the cell membrane of both the cells connected

via trans-clusters provide the structural rigidity to the cell junction and this inter-

cellular structure is important in determining the mechanical properties of the cell

junction. This connected structure spanning the region near cell membrane of both

the cells is referred as thick junction here (Fig.6.2a). The part of actomyosin network

away from the junction (medial, see Fig.6.2a) is transiently connected to the thick

junction and exert contractile forces on the junction. Material transfer takes place

between junctional and medial actomyosin in germband cells via actomyosin flow

[12].
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Figure 6.2. (a) The thick junction is the two dimensional description of cell
junction formed by inter-cellular actomyosin network connected via cadherin trans-
clusters which anchor to the actomyosin via linker proteins. (b) The one dimensional
thin junction description

Now integrating on the thick junction structure along the thickness lead us to

a one dimensional description of actomyosin mesh described by displacement field

u(x, t) and bound myosin density ρ(x, t) and similarly cadherin can be described by

monomer and trans-cluster density profile along the length (ρ′1(x, t) and ρ′c(x, t) re-

spectively). Now we can use the previously developed hydrodynamic description for

actomyosin network [73] to describe this thin junction (Fig.6.2b). The overdamped

Rouse dynamics of the actomyosin network is described by force balance given by

Γ(∂tu− v) = ∂xσ(x, t), (6.1)

dynamics of the myosin density (ρ) given by

∂tρ+ ∂xJ = kb − kuρ+ P (x, t) (6.2)
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and dynamics of cadherin trans-cluster(ρ′c) and monomer (ρ′1) as

∂tρ
′
c + ∂xJc = −ρ

′
c

τf
+
ρ′1
τa

+ sc(x, t)

∂tρ
′
1 + ∂xJ1 = −ρ

′
1

τa
+
ρ′c
τf

+ s1(x, t) . (6.3)

Here v is the velocity of fluid in the lipid bilayer, the total internal stress σ is the

sum of elastic, dissipative and active stresses, σ = σe + σd + σa and Γ is the friction

resulting from relative motion of the actomyosin network with respect to the cytosol

and the movements of cadherin molecules in lipid bilayer membrane. The myosin

flux along the junction, given by J , arises from advection and diffusion along the

length of the junction. The turnover of myosin occurs with binding and unbinding

rates given by kb and ku respectively. In the myosin dynamics (Eq.6.2) P (x, t) acts as

a source term representing inflow of myosin into the junction from the medial region

as a result of actomyosin flow towards vertical junctions. The cadherin monomer

and trans-cluster density dynamics is dictated by respective currents (J1, Jc) and a

aggregation-fragmentation dynamics where monomers aggregate to form cluster in

a timescale τa and clusters break into monomers in a timescale τf . The source terms

s1 and sc in cadherin dynamics can originate from the processes such as endocytosis,

recruitment and flow of cadherin. For details of the derivation please refer to the

additional calculations (Appendix.A.5).

6.3 Dynamical equations for junction

Now we can derive the dynamical equations from the thin junction description by

integrating the equations (Eq.6.1-6.3) along the length of the interface.

Junction length dynamics follows from force-balance applied to an elastomer sub-

ject to active stresses

L̇ = − 1

τL
(L− L0) + F a (6.4)

where the junction length relaxes in a timescale τL which depends on stiffness and

viscosity of the elastomer (thus in principle it can depend on ρm and ρc), the junction
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rest length L0 depends on ρc, and the active contractile force F a depends on the

junctional myosin ρm.

Junctional myosin undergoes turnover at the junction and get replenished by the

periodic pulsation

ρ̇m = − 1

τm
(ρm − ρm0) + ∆J (6.5)

where the time dependent influx to the junction or the junctional pulse, arising from

the flow of medial myosin, is defined as ∆J and ρm0 is the steady state distribution

of junctional myosin in the absence of the medial myosin flow and is set by the

binding-unbinding rates of myosin at the junction.

Cadherin trans-cluster and monomer undergoes turnover and fragmentation-aggregation

ρ̇1 = −ρ1 − ρ10

τc
+ S1 (6.6)

ρ̇c = −ρc − ρc0
τc

+ Sc (6.7)

with rates (τa, τf ) that depend on the density of junctional myosin and the turnover

of cadherin via flows from the boundary or endocytosis is described by S1 and Sc.

It is important to note that in the aggregation-fragmentation dynamics there is

actually a single timescale that determine the relaxation to steady state of cadherin

cluster and monomer (ρc0, ρ10). This relaxation time for cadherin dynamics is given

by τc =
τaτf
τf+τa

. Here ρ10 =
(
τc
τf

)
n and ρc0 =

(
τc
τa

)
n, where we set total amount

of cadherin n(t) = ρ1(t) + ρc(t) at any point of time. For details of the derivation

please refer to the additional calculations (Appendix.A.5).

6.3.1 Constitutive formulae: dependence of phenomenolog-

ical parameters on myosin and cadherin

Now we define the constitutive relations for junction rest length (Fig.6.3 a) and

active force (Fig.6.3 b) derived from phenomenology. Active force is given by

F a(ρm) = ζ1∆µ

(
ρm

1 + ζ2ρm

)
(6.8)

96



Dynamics of junction shrinkage

and the rest length is given by

L0(ρc) = L∗ + β1

(
ρθc

1 + ρθc

)
. (6.9)

Here ∆µ is the difference in the chemical potential of ATP and its hydrolysis

products, ζ1 < 0 for contractile active stress and ζ2 is positive. The rest length has

a cadherin independent residual part L∗ and the cadherin trans cluster dependent

part has two parameters, a length contribution factor β1 and a dimensionless positive

constant θ that controls the cadherin dependence of L0 at low values of cadherin

cluster amount.

re
st

 l
en

g
th

ac
ti
v
e 

st
re

ss

E-cadherin trans-cluster junctional myosin

L*

(a) (b)

fr
ag

m
en

ta
ti
on

 t
im

e

excess junctional myosin

(c)

Figure 6.3. Phenomenological dependence of (a) junction rest length, (b) active
stress and (c) fragmentaion time on myosin/cadherin.

The junctional pulse signal ∆J(t) is defined by four parameters namely the am-

plitude of the pulse (A), duration of the pulse (τp), waiting time between two pulses

(τw) and noise in the signal (δ) (see, Fig. 6.4a) as

∆J(t) = A

np∑
i=1

(H(t− ti)−H(t− (ti + τp)) + δ(t) . (6.10)

Here H(t) is an Heaviside step function defined as H(x) = d
dx
max{x, 0} and ti =

t0 + (i − 1)(τp + τw) where the pulses start from t = t0 and np is the number of

actomyosin flow event (a single pulse) that the signal contains (see, Fig. 6.4a).

The aggregation-fragmentation dynamics is dictated by the timescales τa and τf

and as we have already mentioned the cadherin dynamics is modulated by contractile

forces from actomyosin dynamics. So these timescales can be written as a function
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of medial and junctional myosin. Here we specifically consider the effect of the

junctional myosin pool on the cadherin aggregation-fragmentation dynamics. We

consider a enhanced de-clustering of cadherin trans-clusters upon increasing active

force in the junction (Fig.6.3 c) and this is incorporated as active force dependent

fragmentation time given by

τf = τf0e
γ1(Fa−Fa0 ) . (6.11)

Here γ1 is a negative constant that represents the strength of active force depen-

dence of fragmentation time, τf0 is the force independent fragmentation time and

F a
0 = F a(ρm0). So γ1 being negative, excess active forces will reduce τf resulting in

enhanced fragmentation of cadherin clusters.
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Figure 6.4. Dynamic phases of junction shrinkage dynamics from experiments:
(a) A typical junctional myosin pulse signal (in myosin intensity as I(t)

<I>
) containing

multiple pulses. The pulse amplitude A, pulse duration τp and waiting time between
two pulses τw are marked for one of the pulses. Dynamical phases of junction
shrinkage in terms of junction length (in µm) and myosin pulse intensity (in I(t)

<I>
)

show example of (b) reversible, (c) reliable stepwise shrinkage and (d) junction
collapse.
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6.3.2 Steady state of the junction

We consider the junction to be in steady state given by (L = Ls, ρm = ρsm, ρc = ρsc)

in absence of any myosin pulses (∆J = 0) with no cadherin turnover (ṅ = 0). Note

that the constraint of total cadherin conservation allows us to reduce the cadherin

dynamics to only cadherin cluster (ρc) dynamics. Thus the steady state of the

junction is given by

ρsm = ρm0

ρsc =

(
τc
τa

)
n

Ls = L∗ + β1

(
(ρsc)

θ

1 + (ρsc)
θ

)
+ τLζ1∆µ

(
ρsm

1 + ζ2ρsm

)
. (6.12)

6.3.3 Classification of dynamical phases

In our analysis we encounter three distinct dynamical phases in response to forces

exerted by myosin pulses which we describe below. Here we describe the shrinkage

of the junction in terms of its steady state length in response to a junctional myosin

pulse which is “ON” (∆J 6= 0) during t1 6 t 6 t2. We can define three possible

cases (see, Fig. 6.4 b-d) in terms of deformations of the junction length to be

• Unreliable shrinkage (reversible) : junction shrinks in response of pulse but

when the applied pulse is removed it relaxes back to steady state length(Ls).

So away from the pulse the junction is always at same length Ls.

• Reliable stepwise shrinkage (irreversible) : junction shrinks in response of pulse

but when the applied pulse is removed it does not relax back to steady state

length (Ls) but to a reduced steady state length and remain in this reduced

length unless perturbed again. So Ls(t > t2) < Ls(t < t1).

• Junction collapse : junction shrinks in response of a pulse (while t 6 t2) to a

length Ls → 0.
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6.4 Junction shrinkage with fixed cadherin level :

Unreliable shrinkage

Here we explore the junction shrinkage using the description given by the equations

Eq.6.4-6.7 with constitutive relations described in Eq.6.9-6.11. The imposed con-

straint of fixed cadherin level or the absence of cadherin turnover can be described

by the condition ṅ = 0. Let us rewrite the dynamical equations for this particular

case.

Using the condition ṅ = 0 we can describe the dynamics of cadherin by only ρc

(or ρ1). It is also clear that the said condition imply S1 + Sc = 0. The resulting

dynamical equations will be given by

L̇ = −L− L0

τL
+ F a ,

ρ̇m = − 1

τm
(ρm − ρm0) + ∆J(t) ,

ρ̇c = − 1

τc
(ρc − ρc0) (6.13)

In the following subsection(s) we treat this resulting system analytically (with few

simplifications for analytical tractability) and compare the results with numerical

solutions. The results bring out interesting effect of conserved cadherin dynamics

in junction shrinkage.

6.4.1 No reliable stepwise shrinkage in junction with fixed

cadherin level

We study the system analytically for a single pulse (np = 1) and for a pulse train

(np > 1). A single isolated pulse always produce either a reversible shrinkage or a

junction collapse in absence of cadherin turnover. This result is intuitive because

without any change in total cadherin the single pulse can only impart transient

effect (no effect of the pulse remain in L, ρm and ρc at a time t > τm, τc, τL) on

the junction length. Thus if the junction length becomes very small L → 0 within
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the duration of the pulse we get a junction collapse but all other cases result in

reversible or unreliable shrinkage.

When the junctional pulse signal (∆J) consists of many pulses we get stepwise

looking shrinkage in a limit where the relaxation of myosin, cadherin or length is

much slower compared to the pulse waiting time i.e., τw < τm, τc, τL. In this limit

the stepwise nature of junction shrinkage emerges from a collective effect of pulses

where the junction cannot relax back to the steady state as the pulsation is faster

than the timescale of relaxation. Thus the observed stepwise shrinkage is referred

as unreliable stepwise shrinkage where the stepwise shrinkage disappears and the

junction returns to its initial length once the pulse train is removed (∆J = 0) (see

Fig.6.5c).

We present the phase diagram predicted from the analytic study (see Fig.6.5a)

and the phase diagram from numerical solutions (see Fig.6.5b). The analytic phase

diagram calculated from a simplified system roughly matches with the numerical

study of the system (Eq.6.13). The analytic phase boundaries between reversible

and unreliable stepwise shrinkage is given by the condition

L∗ + τLζ1∆µ(ρm0 + Aτm(1− χp))

+β1(1− e−
τp
τc )

(
eγ1ζ1∆µAτm(1−χp)

1 + eγ1ζ1∆µAτm(1−χp)

)
n

+β1

(
e−

τp
τc

2

)
n = 0 (6.14)

and the analytic phase boundaries between unreliable stepwise shrinkage and junc-

tion collapse is given by the following condition

L∗ + τLζ1∆µ(ρm0 + Aτmφ
H) + β1

(
eγ1ζ1∆µAτmφH

1 + eγ1ζ1∆µAτmφH

)
n = 0 . (6.15)

Here φH = 1 −
(

1−χp
1−χpχw + χp

)
χp, χp = e

−τp
τm and χw = e

−τw
τm . See Appendix.A.6

for details.
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Figure 6.5. Fixed cadherin level produces unreliable shrinkage : Phase diagram in
myosin relaxation time (τm) and pulse duration (τp) from (a) approximate analyt-
ical solution and (b) numerical solution shows the reversible or unreliable junction
shrinkage (R), unreliable stepwise shrinkage (US) and junction collapse (JC). Here
we take ζ2 = 0, θ = 1 and the other parameter values used for both the phase dia-
grams are given below (Table.6.1). (c) An instance of unreliable stepwise junction
shrinkage from numerical solution of Eq.6.13.

Table 6.1. Parameter values

γ1 = 1 np = 10 -ζ1∆µ = 1 A = 2 τw = 1

τL = 0.5 β1 = 0.1 ρm0 = 1 L∗ = 0.1 τ = 0.1

These results leads to the conclusion that in the fixed cadherin level model we

only achieve unreliable shrinkage and junction collapse but no true case of stepwise

junction shrinkage can be achieved. This spells out the importance of cadherin

turnover in the junction dynamics. We explore the junction shrinkage with turnover

of cadherin in the next section. For details of the analytical solution please refer to

the appendix.

6.5 Junction shrinkage with leaky cadherin level

: Reliable shrinkage

The study of fixed cadherin level does not show reliable stepwise shrinkage and in-

dicates that cadherin turnover might be important for reliable shrinkage of the cell
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junction. Here we use the description given by the equations Eq.6.4-6.7 with con-

stitutive relations described in Eq.6.9-6.11 and propose an active force dependent

turnover dynamics for cadherin referred as leaky cadherin dynamics here. We con-

sider extraction of cadherin monomers driven by contractile forces from actomyosin

flow. This is incorporated here via the source term for cadherin monomer S1, taken

in the following form

S1 = −β2gR(ρm)ρ1 (6.16)

where gR is a response function which facilitates cadherin monomer extraction in re-

sponse of the junctional pulse (∆J). This response function takes value as gR = 1 and

gR = 0 in presence and absence of the pulse respectively. The proportionality con-

stant β2 determine the amount of monomer extraction and can in principle depend

on local chemical regulation or contractile force exerted by junctional actomyosin.

Here gR is defined in such a way that it requires a threshold active force (F c) to

initiate extraction of cadherin monomers. We define this force as F c = F a(ρm = ρcm)

where ρcm is a parameter of the system. Finally gR is given by

gR(ρm) =
1

2
(1 + tanh(s(ρm − ρcm))) . (6.17)

Here s is a positive constant that controls sensitivity of the response function. The

sharpness of the transition of gR from 0 to 1 increases with increasing s.

It is noteworthy that we do not consider direct turnover of cadherin trans-clusters

(Sc = 0) as the cadherin trans-clusters are formed by cadherin molecules from op-

posing cell membranes, it seems unlikely that they can be directly added or removed

to/from the membrane without breaking the trans cluster into monomers. But ex-

traction of monomer will result in reduction of the steady state cadherin cluster

amount via aggregation-fragmentation dynamics. Now we rewrite the resulting sys-

tem as
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L̇ = −L− L0

τL
+ F a ,

ρ̇m = − 1

τm
(ρm − ρm0) + ∆J(t) ,

ρ̇1 = − 1

τc
(ρ1 − ρ10)− β2gR(ρm)ρ1

ρ̇c = − 1

τc
(ρc − ρc0) . (6.18)

With this description now we probe the junction shrinkage dynamics with E-

cadherin extraction.

6.5.1 Permanent change in junction length: Effect of a sin-

gle pulse

Actomyosin pulsation and flow appear periodically and remodel the vertical junction

in successive shrinkage steps during germband extension to drive the process of cell

intercalation. Thus a proper description of the junctional pulse signal ∆J should

contain multiple pulses. Despite the above fact, we shall first consider a single pulse

(∆J with np = 1) to understand its effect on the junction length. We analytically

derive the amount of length shrinkage (δL) caused by a single pulse of duration τp

to be

δL =
β1n(0)

2

(
e−κτp − 1

)
. (6.19)

Here κ = β2gR
(1+α)(1+τcβ2gR)

with α = eγ1ζ1∆µAτm(1−χp) and n(0) denotes the total

amount of cadherin before arrival of the pulse. This change in junction length is a

direct result of reduction in steady state cadherin trans-cluster amount (ρc0) in the

junction. This reduction in trans-cluster amount will reduce the rest length of the

junction resulting permanent change in junction length i.e., δL > 0 (see Fig.6.6a).

We now present the phase diagram from analytical calculations and compare it

with a phase diagram from numerical solution (Fig.6.6b-c) of the system (Eq.6.18).

Note that a pulse of low amplitude (A) and duration (τp) might not exert enough
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contractile force to remodel the junction and the response function gR remains zero

resulting no permanent shrinkage but a transient shrinkage (δL = 0) of the junction

as seen in the reversible phase (Fig.6.6). For details of the analytical treatment See

Appendix.A.8.
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Figure 6.6. Leaky cadherin level produces permanent deformation of junction and
reliable shrinkage: (a) Amount of shrinkage δL for a single pulse becomes non-zero
then increases as we increase the pulse duration (τp). Phase diagram in myosin re-
laxation time (τm) and pulse duration (τp) from (b) approximate analytical solution
and (c) numerical solution shows the reversible or unreliable junction shrinkage (R),
reliable stepwise shrinkage (SS) and junction collapse (JC). Fixed parameters was
taken to be ζ2 = 0, θ = 1, L∗ = 0.5, β1 = 0.2, ρcm = 1.5 and γ1 = 0.1. All other
parameters are given by (Table. 6.2).

Table 6.2. Parameter values

β2 = 0.1 N0 = 10 −ζ1∆µ = 1 A = 2

τL = 0.5 ρm0 = 1 s = 50 τa0, τf0 = 0.1

6.5.2 Reliable stepwise shrinkage

We now solve the system (Eq.6.18) for a pulse train (np > 1) and obtain stepwise

shrinkage of the junction (see Fig.6.7 a). Note that the dynamic phase of stepwise

shrinkage in this case shows permanent change in junction length. Thus in this de-

scription we achieved reliable stepwise shrinkage through the active force dependent
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cadherin extraction from the junction. This reliable stepwise shrinkage of the junc-

tion is remarkably similar to the observed junction length dynamics in experiments

(Fig.6.1). We present the numerical phase diagram in terms of reversible, reliable

stepwise shrinkage and junction collapse (Fig.6.7b) in force independent cadherin

turnover timescale (τc0) and myosin turnover timescale (τm).
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Figure 6.7. Leaky cadherin level produces reliable stepwise shrinkage bus lacks
robustness : (a) An instance of reliable stepwise shrinkage. (b-c) Phase diagram in
cadherin relaxation time (τc0) and myosin relaxation time (τm) for junction myosin
pulse amplitude (b) A = 1 and (c) A = 10 shows significant loss in stepwise shrink-
age phase pointing towards a lack of robustness in the current description of junction
shrinkage. Phases are reversible or unreliable junction shrinkage (R), reliable step-
wise shrinkage (SS) and junction collapse (JC). Here we take ζ2 = 0, θ = 1, γ1 = 0.5,
ρcm = 2 and the other parameter values used for both the phase diagrams are given
below (Table.6.3).

Table 6.3. Parameter values

β2 = 5 n(0) = 10 −ζ1∆µ = 1.5 τp, τw = 5

τL = 0.2 ρm0 = 1 s = 50 β1 = 10

The topology of the phase diagram in Fig.6.7 is easy to understand. Increasing

myosin turnover timescale (i.e., slow turnover) would increase myosin accumulation

in the junction from a junctional pulse thus it would result in production of higher

amount of active force in the junction. Thus we see a transition from reversible to

stepwise shrinkage to junction collapse with increasing myosin turnover (Fig.6.7b).
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Playing an opposite role, increase in cadherin aggregation-fragmentation timescale

will stabilize a junction collapse to a stepwise shrinkage (Fig.6.7b) as slower cad-

herin dynamics will result in reduced extraction of cadherin. The transition from

reversible to stepwise shrinkage phase does not depend on the cadherin aggregation-

fragmentation but determined by the myosin turnover and the pulse amplitude as

active force increase during a pulse goes as ∼ Aτm.

6.5.3 Timescales in junction shrinkage

So far we have not discussed the actual ranges of the various timescales that we

use in the theoretical description of junction shrinkage dynamics and where the

experimental system resides in the parameter space of these timescales. It is easy to

see that the timescale of pulsation τp, τw is roughly 30-60 s (see Fig.6.4 a) [11, 12].

The timescale for myosin turnover is 5-10 s (from FRAP experiments) and cadherin

turnover timescales are reported to be ∼ 10 s (from FRAP experiments) [93, 92].

The timescale for length relaxation is inferred from local mechanical measurements

in germband cells to be 3-5 s [76]. Thus the relevant regime of timescales for the

junction remodeling dynamics seen in germband cell during intercalation would be

τm, τc, τL << τp, τw. This condition essentially means that the junction relaxation

dynamics is faster than pulsation. So the junction would usually reach a steady

state between any two pulses rendering collective effects of consecutive pulses to be

negligible.

6.5.4 Robustness against noise?

The duration, amplitude and waiting time of the pulses (τp, A, τw respectively) are

emergent quantities resulting from the local dynamics of actomyosin. So stochastic-

ity in the local dynamics (such as molecular mechanisms of actomyosin dynamics,

chemical regulation etc) can result in large pulse to pulse variation of the men-

tioned emergent quantities. This scenario poses a problem of robustness for the

desired reliable stepwise shrinkage feature which is important for a timely comple-

tion of intercalation. We can see an increase in pulse amplitude (keeping everything

else same) reduces the reliable stepwise shrinkage phase significantly (see Fig.6.7
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b-c). This clearly states the lack of robustness in the proposed description of junc-

tion shrinkage dynamics. In the next section we extend the current description of

junction shrinkage with the goal of achieving robust stepwise shrinkage or robust

ratcheting.

6.6 Robust and reliable shrinkage requires medial

and junctional myosin working in tandem

The role of actomyosin generated contractile forces in regulating E-cadherin dynam-

ics has been studied [6, 93, 92] but how the active contractile forces effects cell-cell

adhesion and tissue morphogenesis remain poorly understood.

The major active contractile force generator in the germband cell is the myosin

minifilaments and this myosin population in the apical actomyosin layer can be

divided into two different sub-populations, namely the medial myosin pool and the

junctional myosin pool, with different mechanisms regulating various aspect of their

dynamics [12, 89]. A recent study by Kale et al [88] indicates that these two different

myosin pools effect E-cadherin dynamics at the junction differently in germband cell

during intercalation.

The medial myosin activity increases E-cadherin level at the junctions (Fig.6.8)

while the activity of junctional myosin reduces E-cadherin on the vertical junctions

(Fig.6.8) which are undergoing stepwise shrinkage during intercalation [88]. This

might stem from the difference in which medial and junction actomyosin interact

with junction. The medial actomyosin mainly exerts normal forces at the junction

while the junctional actomyosin, producing asymmetric forces at different sides [88]

of the junction, leads to shearing of the junction. This shear stress at the junction

results in stretching of the cadherin trans-bonds [94] which may lead to dissociation

of cadherin trans-clusters. A negative correlation of junctional E-cadherin with

inferred shear stress has been reported [88]. With this discussion in mind we propose

a regulation of cadherin dynamics from both junctional and medial actomyosin and

show that this can provide robustness of the stepwise shrinkage of the junction or

robust ratcheting.
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cadherin trans-cluster

cadherin monomer

Figure 6.8. Medial and junctional myosin work in tandem to produce robust
ratcheting of junction: The medial myosin activity increases E-cadherin level at the
junctions by reducing trans-cluster fragmentation while the activity of junctional
myosin reduces E-cadherin by increasing trans-cluster fragmentation on the vertical
junctions which are undergoing stepwise shrinkage during intercalation.

6.6.1 Forces from medial actomyosin stabilize cadherin clus-

ters

For description of robust ratcheting we recall the description given by the equations

Eq.6.18 with constitutive relations described in Eq.6.9-6.10 and propose a modified

aggregation-fragmentation dynamics with both medial and junctional actomyosin

force dependent fragmentation of cadherin clusters with fragmentation time

τf = τf0e
γ1(Fa−Fa0 )e−γ2ζ1∆µ∆M . (6.20)

Here γ2 is a positive constant representing the medial actomyosin force depen-

dence of fragmentation time and ∆M is the medial myosin pulse given by ∆M(t) =

∆J(t + φ). We consider that the medial myosin pulse has the same amplitude and

periodicity of the junctional myosin pulse as both ∆M and ∆J are originating from
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the same actomyosin flow by spatially integrating over myosin density (ρ(x, t)) in the

medial and junctional regions respectively. During the actomyosin flow actomyosin

rich regions start flowing from the medial region towards the junctional region of

the cell. Thus medial pulse precedes the junctional pulse. This delay in ∆J is

represented here by φ (φ > 0) and has been estimated to be ∼ 10 s [12].

Now γ2 being positive the force from medial pulse (−ζ1∆µ∆M) will increase frag-

mentation time of cadherin cluster thereby stabilizing the cadherin cluster amount

in the junction. Higher fragmentation time will result in less amount of cadherin

monomers. Thus a reduction in extraction of cadherin will follow as the extraction

of cadherin is proportional to the available monomer numbers (S1 ∝ ρ1). Note that

there is a overlap in medial and junctional pulse signals controlled by the delay φ.

Also note that the cadherin extraction happens due the myosin influx via junctional

pulse (Fig.6.8) while medial pulse results in reduced extraction via stabilization of

cadherin trans-clusters (Fig.6.8). Thus in the current description the overlap be-

tween ∆M and ∆J controlled by φ will effect cadherin extraction with more overlap

resulting in less extraction of cadherin.

6.6.2 Robustness of stepwise shrinkage : Against external

noise

With the above specified description for junction shrinkage we do see a recovery

of the reliable stepwise shrinkage phase against parameter variation in the myosin

pulse (see Fig.6.9 a-b). This recovery of the stepwise shrinkage phase occurs via

reduction in the cases of junction collapse because of stabilization of E-cadherin

trans-clusters.
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Figure 6.9. Robustness of stepwise shrinkage phase via medial pulse dependent
stabilization of cadherin clusters: Recovery of the reliable stepwise shrinkage phase
in cadherin relaxation time (τc0) and myosin relaxation time (τm) phase diagram,
upon introducing medial myosin pulse dependent stabilization of cadherin trans-
clusters (a) γ2 = 0 (means no effect of myosin pulse on cadherin dynamics), (b)
γ2 = 1. (c) Robustness of stepwise shrinkage against pulse amplitude A calculated
from area of the stepwise shrinkage phase for γ2 = 0 (red) and γ2 = 1 (black) with
φ = 0.25

A
. (d) Robustness of stepwise shrinkage against pulse duration τp calculated

from area of the stepwise shrinkage phase for γ2 = 0 (red) and γ2 = 1 (black) with
φ = 0.25

A
and A = 1. Here we take ζ2 = 0, θ = 1, ρcm = 2, n(0) = 10 and the other

parameter values used for both the phase diagrams are given below (Table.6.4).

Table 6.4. Parameter values

β1 = 2 β2 = 1 −ζ1∆µ = 1.5 τp, τw = 5

τL = 0.2 ρm0 = 1 γ1 = 0.5 L∗ = 0.1

To probe robustness for stepwise shrinkage, first we calculated the phase diagram

in cadherin relaxation time and myosin relaxation time myosin for a single set of
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parameters and define this set as null set and calculate the area for the stepwise

shrinkage phase for the null set given by r0. Now we vary the pulse amplitude

(A) and pulse duration (τp) over a large range of values and calculate the phase

diagram for each values of these parameters and determine the area for the stepwise

shrinkage phase r for all the cases. Finally we compare the ratio of the area of

stepwise shrinkage phase, given by ( r
r0

), for this current description of junction

shrinkage dynamics with ( r
r0

) calculated for leaky cadherin description (Eq.6.18).

From this comparison we can see that with the stabilization of cadherin clusters

from medial pulse we can achieve robustness of the stepwise shrinkage phase over a

few decades of variation in pulse amplitude and pulse duration (see Fig.6.9 c-d).

6.6.3 Robustness of stepwise shrinkage : Against internal

noise

The robustness against noise in myosin or cadherin dynamics (internal noise) can

be probed in the current description of junction shrinkage dynamics. We take an

additive Gaussian white noise in the junctional myosin dynamics and calculate the

robustness from the stepwise shrinkage phase area (Fig.6.10).

Introducing internal noise in the dynamics produce a mixed state (Fig.6.10 a)

of stepwise shrinkage and junction collapse. We see a significant recovery of the

stepwise shrinkage phase area from the medial myosin stabilization of E-cadherin

(Fig.6.10 b) indicating robustness against internal noise.
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Figure 6.10. Robustness of stepwise shrinkage phase via medial pulse dependent
stabilization of cadherin against internal noise: (a) Phase diagram in force indepen-
dent cadherin relaxation time (τc0) and myosin relaxation time (τm) for junction
myosin noise σnoise = 0.5 shows a coexistence phase of stepwise shrinkage and junc-
tion collapse. Usual phases are reversible or unreliable junction shrinkage (R), reli-
able stepwise shrinkage (SS) and junction collapse (JC). (b) Robustness of stepwise
shrinkage against noise strength σnoise calculated from area of the stepwise shrinkage
phase (r) for γ2 = 0 (red) and γ2 = 1 (black). Here we take φ = 0.25

A
, A = 2, ζ2 = 0,

θ = 1, ρcm = 2, n(0) = 10 and the other parameter values used for both the phase
diagrams are given below (Table.6.5). All phase diagrams were averaged over 16
ensembles.

Table 6.5. Parameter values

β1 = 1 β2 = 0.5 −ζ1∆µ = 0.5 τp, τw = 5

τL = 0.5 ρm0 = 1 γ1 = 0.2 L∗ = 1

6.7 Concluding remarks and future directions

In this chapter we have proposed a theoretical description for the dynamics of junc-

tion shrinkage in terms of integrated quantities (L(t), ρm(t), ρc(t), ρ1(t)) starting

from a local description of displacement field and respective densities (Section.6.2).

The approximate analytical studies of Eq.6.13 and Eq.6.18 successfully captured

the dynamical response of the junction to contractile forces from the myosin pulse.
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Studying the resulting descriptions we determine the important consequence of cad-

herin turnover from the junction: Without cadherin turnover (i.e., in the fixed

cadherin level dynamics) we do not get reliable stepwise shrinkage. The active force

driven extraction of cadherin is essential to produce permanent deformation of the

junction that results in reliable stepwise shrinkage. Further study of the junction

shrinkage dynamics with cadherin turnover reveals the lack of robustness in the step-

wise shrinkage phase against noise in the myosin pulse. This brings out the need

for robustness in stepwise shrinkage dynamics of junction. Here we propose a mech-

anism where contractile forces from junctional actomyosin and medial actomyosin

effect the cadherin dynamics differently (as suggested in the recent work [88]). We

show that this force dependent regulation of cadherin gives rise to a mechanism

which can achieve robust stepwise shrinkage of the junctions against variation in

myosin pulse (external noise) and noisy myosin dynamics (internal noise).

Despite the theory successfully capturing the qualitative nature of the junction

shrinkage during germband extension, we do acknowledge the lack of comprehensive

comparison with in vivo experimental results. Further experiments to explicitly

validate the assumptions in the theory and the predicted results are needed for the

maturation of this current study of junction shrinkage.

End of Chapter
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Chapter A

Appendix

A.1 Strain dependent unbinding

For the turnover of bound myosin filament density, we allow for a possible strain-

induced unbinding of the Hill-form, ku = ku0e
α∇·u. The sign of the coefficient α

can be taken to be either positive or negative (Fig. SA.1 a,b) : α > 0 implies

a local extension (compression) of the mesh will increase (decrease) the myosin

unbinding, while α < 0 implies a local compression (extension) of the mesh will

increase (decrease) the myosin unbinding. The choice α = 0 implies that the myosin

unbinding rate is a constant, independent of mesh deformation. We thus cover all

possibilities.

Changing the sign of α only affects the placement of the phase boundaries, but not

the qualitative aspects of the phases (see Fig. SA.1 b,c). We find that the oscillatory

phase exists, as long as the eigenvalue Im[λ±] < 0, from which get the maximal

(positive) value αmax(B, ζ1, . . .), beyond which there are no oscillations. Thus to get

oscillations for a given set of (other) parameters, we have to set −∞ < α < αmax.

We have taken α > 0 (but smaller than αmax) in all numerical results presented in

the main text.
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Figure A.1. Strain dependent unbinding: effect of α sign. (a)Scehematic describing
the effect of local compression and extension on strain dependent unbinding. (b)
Plot of unbinding rate ku(ε)/ku0 with strain ε, for both positive and negative α.
(c, left and right) Sign of α does not change the qualitative nature of the phase
diagram in the effective elastic stress density versus active stress density (nomalized
to the frictional stress), as long as α < αmax. The color scheme and legend are as in
Fig.3.4, (left) α = −0.5 and (right) α = 0.5. Other parameters are k = 10, c = 0.1
and D = 0.1. Note that the regime of oscillations is larger when α < 0. Numerical
solutions of myosin density (ρb) kymographs showing oscillations with (d) α = −5
and (e) alpha = 3. Other parameter values are B = 8 , −ζ1∆µ = 5.2 , k = 0.2
,D = 0.2.
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A.2 Numerical methods

Since the dynamical equations have nonlinear advection and diffusion, care must

be taken in evaluating the flux due to dissipative and dispersive errors arising from

spatial discretization. We use the finite volume method for spatial discretization

[77], which has been found to be useful for non-linear advection equations [78].

We calculate the numerical flux using the Van-Leer’s flux limiter, which uses

a different formula to calculate the spatial derivative depending on how sharply

the ρb profile changes in space. When the profile changes very fast, the scheme

implements the upwind method [79] which reduces the dispersion error through

numerical diffusion. When the profile changes smoothly the scheme implements a

second order accurate method called Lax-Wendroff method [80]. In our numerical

scheme, the density (ρb or ρ) flux on the interface between ith and (i− 1)th node is

computed as,

f
n+ 1

2

i− 1
2

=
1

2
vi− 1

2
[(1 + θi− 1

2
)ρni−1 + (1− θi− 1

2
)ρni ]

+
1

2
|vi− 1

2
|

(
1−

∣∣∣∣∣vi− 1
2
∆t

∆x

∣∣∣∣∣
)
φn
i− 1

2
(rn
i− 1

2
)
(
ρni − ρni−1

) (A.1)

Here vi− 1
2

= vi−vi−1

2
and

θi− 1
2

=

+1, if vi− 1
2
> 0

−1, if vi− 1
2
≤ 0

(A.2)

rn
i− 1

2
=


ρni−1−ρni−2

ρni −ρni−1
, if vi− 1

2
> 0

ρni+1−ρni
ρni −ρni−1

, if vi− 1
2
≤ 0

(A.3)

The function φ(r) is the Van Leer flux limiter

φ(r) =
r + |r|
1 + |r|

. (A.4)
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The time integration is done with a total variation diminishing (TVD) 3rdorder

Runge-kutta method [81]. All other derivative terms were discretized using a simple

finite difference. The initial conditions were chosen from a uniform random distri-

bution of fixed width about a uniform, unstrained configuration. We used periodic

boundary conditions throughout and a time-space discretization, ∆t = 10−4 and

∆x = 5× 10−2.

A.3 Experimental methods

For fluorescence time-lapse imaging, embryos at stage 7 were dechorionated with

100% bleach and mounted on No. 1 coverslip with halocarbon oil [82]. A 100X, 1.4

N.A oil immersion objective with Nikon spinning disc Eclipse Ti inverted microscope

was used [82]. The system acquires images using the MetaMorph software. Starting

from the most apical plane, 4- 7 z-sections 0.5µm apart were acquired every 1.5−4s

(depending on the experiment) using a single camera. Sum-intensity z-projection of

slices was used for all quantifications, followed by a background subtraction using

the available plugin in Fiji.

A.4 Image analysis : Actomyosin pulsation and

flow

All data analysis are done using customized code written in MATLAB. For realiza-

tion of pulse shape, velocity and skewness pulses were projected on the line of their

movement.
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Figure A.2. Protocol for image analysis of the experiments on the dynamics of
labeled medial myosin. (a,b) We collect the 2d intensity map (I(x, y, t)) of myosin
(green dots) at different times, e.g., t1, t2 (with t2 > t1), within a thin rectangular
strip (green rectangle) chosen so that it is not contaminated by signals at the cell
boundary. After background subtraction, we integrate the intensity I(x, y, t) along
y between the limits ymin and ymax, along each thin rectangular strip (blue). This
gives us the 1-dimensional profile I(x, t) vs. x, as shown schematically here. (c,d)(i)
We carry out the above protocol for the labeled myosin-dense images obtained in
two different experiments. (ii) After background subtracting the intensity maps, we
plot I(x, y, t) in the x− y plane. (iii) The 1D projection I(x, t) is plotted versus x.
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A.5 Junction shrinkage calculations

Dynamics equations for junction length :

To get junction length dynamics, we integrate over space and go to ODE’s.

We first consider the local force balance on a 1D junction given by

Γ (u̇− v) = ∂xσ(x, t) . (A.5)

The stress σ is composed of elastic, dissipative and active contributions:

σ(t) = σe + σd + σa (A.6)

The elastic stress is written σe = B (∂xu− ε0(...)), where ε0 is a reference strain

which, as we develop below, depends on variables such as the cadherin density.

The dissipative stress is σd = η∂xu̇; together, σe and σd specify the viscoelastic

relaxational dynamics of the junction. The active stress is a function of the local

junctional myosin density, σa(ρ).

Assuming negligible movement of junctional actomyosin with respect to the lipid

bilayer (Γ (u̇− v) = 0), force balance implies a spatially homogeneous total stress

(σ = σ0(t)) profile, which could depend on time. By continuity of stress, we identify

σ0 with the boundary stress exerted by neigbouring junctions.

Integrating over the reference coordinate x, which takes values from 0 to LR:

∫ LR

0

σ0 dx = B

∫ LR

0

(∂xu− ε0) dx+ η

∫ LR

0

∂xu̇ dx

+

∫ LR

0

σa(ρ) dx

(A.7)
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we find an ODE for the dynamics of the junction length L, defined as LR+
∫ LR

0
dx ∂xu:

L̇ = −B
η

L−
(
LR +

LR
B
σ0(t) + LRε̄0(...)

)
︸ ︷︷ ︸

L0

+
LR
η
σ̄(a)(ρ) (A.8)

L0 is the rest length of the junction emerging from molecular components of the

junction and phenomenology of the system. Here the overbar indicates an average

over the junction length.

Dynamics equations for junctional myosin :

To derive the dynamical equation for the total junctional myosin (ρm(t)) we start

with the microscopic description of the local bound myosin density at junction

(ρ(x, t)).

∂tρ+ ∂xJ = kb − kuρ+ P (x, t) (A.9)

Here J(x, t) is the current due to diffusion and advection of bound myosin with

the cortex mesh and kb, ku are the binding and unbinding rates respectively and

P (x, t) denotes the myosin influx to junctional myosin density ρ(x, t) coming from

the medial actomyosin flow. Similarly as before if we integrate over the space to

derive an ODE describing the dynamics of total myosin amount ρm =
∫ LR

0
ρ(x, t) dx

we get

∫ LR

0

∂tρ dx+

∫ LR

0

∂xJ dx = kb

∫ LR

0

dx− ku
∫ LR

0

ρ dx

+

∫ LR

0

P (x, t) dx

(A.10)

Rewriting this in terms of ρm we get

ρ̇m = kbLR − kuρm + ∆J(t)− (J(L, t)− J(0, t)) (A.11)

The last term on the right is the boundary perturbations of flux which we assume
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to be have slower dynamics than ρm and ∆J represents the total amount of myosin

that arrives at the junction due to medial myosin pulse P (x, t). So finally we arrive

at

ρ̇m = −
(
ρm − ρm0

τm

)
+ ∆J(t) (A.12)

Here τm = k−1
u and ρm0 = kbLR

ku

Dynamics equations for cadherin clusters : E-cadherin monomers and trans cluster

dynamics is given by

∂tρ
′
1 + ∂xJ1 = −ρ

′
1

τa
+
ρ′c
τf

+ s1(x, t)

∂tρ
′
c + ∂xJc = −ρ

′
c

τf
+
ρ′1
τa

+ sc(x, t) . (A.13)

Similarly as before if we integrate over the space to derive an ODE describing the

dynamics of total cadherin monomer and trans-cluster amount ρ1,c =
∫ LR

0
ρ′1,c(x, t) dx

we get

ρ̇1 =
ρc
τf
− ρ1

τa
+ S1

ρ̇c = −ρ1

τa
+
ρc
τf

+ Sc . (A.14)

Here S1,c =
∫ LR

0
s1,c(x, t) dx and ρ1 and ρc are the total amount of E-cad in

monomeric state which does not contribute in mechanical properties of the junction

and total amount of E-cad cluster which contribute to the mechanical properties of

the junction respectively. τa and τf are the aggregation and fragmentation timescale

for E-cad and S1 and Sc are the source/sink term for monomer and cluster respec-

tively.
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A.6 Approximate analytical solutions: Fixed cad-

herin level dynamics (single pulse)

Here we take the total amount of cadherin to be a constant, i.e. ρ1 + ρc = n, with

no source or sink. The dynamical equations in this model are

L̇ = −L− L0(ρc)

τL
+ ζ1∆µρm

ρ̇m = −ρm − ρm0

τm
+ ∆J(t)

ρ̇c = −ρc − ρc0(ρm)

τc(ρm)
. (A.15)

Essential elements and ideas of the conservative model are

• Total amount of cadherin remains conserved : ρ1 + ρc = n, i.e. ṅ = 0. This

implies S1 + Sc = 0 and to keep the analytics simple we take S1, Sc = 0.

• The constraint from the conservation of the total cadherin amount (ṅ = ρ̇1 +

ρ̇c = 0) allows us to reduce the dynamics of monomer and cluster to only the

dynamics of the clusters as given by the above equation (Eq.A.15).

• cadherin fragmentation rate depends on active force at junction : increases

with increasing active force. The fragmentation time is given by τf (ρm) =

τf0e
γ1(Fa−Fa0 ) = τf0e

γ1ζ1∆µ(ρm−ρm0).

• We shall assume τf0 = τa0 = τ to keep the analytics simple without any

qualitative loss of understanding.

• Change in myosin amount ρm will result in change in cadherin cluster amount

ρc as the relaxation timescale τc and the steady state cluster amount ρc0 are
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function of active force and will be respectively given by

τc =
τeγ1(Fa−Fa0 )

1 + eγ1(Fa−Fa0 )

=

(
τα

1 + α

)
(A.16)

and

ρc0 =

(
τc
τa

)
n

=

(
α

1 + α

)
n (A.17)

where α = eγ1(Fa−Fa0 )

• We assume a simpler linear relation for cadherin dependence of rest length

L0(ρc) = L∗ + β1ρc (A.18)

• at very low values of the junction length L→ 0 we assume that the junction has

been remodelled and changed its alignment accordingly through T1 process.

Response of the junction upon arrival of a pulse will certainly depend on the

properties of the pulse-signal ∆J . Properties of the signal ∆J(t) are defined by four

parameters namely the amplitude of the pulse, duration of the pulse, waiting time

between two pulses and noise in the signal, given by A, τp, τw and δ respectively. We

shall use the below defined functional form in this study unless specified otherwise

∆J(t) = A

np∑
i=1

(H(t− ti)

−H(t− (ti + τp)) + δ(t) (A.19)

Where H(t) is an Heaviside step function defined as H(x) = d
dx
max{x, 0} and
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ti = t0 + (i − 1)(τp + τw) where the pulses start from t = t0. For most of the

discussions in this section we consider the pulses are noise free, δ = 0. To understand

the junction shrinkage in a simple manner we have considered pulses of rectangular

shape here but this restriction does not curtail our understanding of the system.

We shall now divide the analysis of junction dynamics for a single pulse (np = 1)

and for a pulse train (np > 1) in two different sections below.

Myosin dynamics : We first solve for with the myosin dynamics as it is not coupled

to length and cadherin dynamics. In the case of a single myosin pulse (n = 1, i.e.

pulse is “ON” while t0 < t < t0 + τp) the solution for ρm will be given by

ρm(t) =



ρm0 + (ρm(0)− ρm0)e−
t
τm for t < t0

ρm0 + (ρm(t0 + τp)− ρm0)e−
t−(t0+τp)

τm for t > t0 + τp

ρm0 +Aτm(1− e−
t−t0
τm )

+(ρm(t0)− ρm0)e−
t−t0
τm otherwise

(A.20)

The important features of myosin dynamics that are evident from the solution are

• If τp →∞ then myosin reaches a steady state at ρm = ρm0 + τmA

• For any finite τp, at the end of the pulse, myosin reaches a value ρm(t0 + τp) =

ρm0 + Aτm(1 − e−
τp
τm ). For limiting cases this value can be approximated as

ρm0 + Aτp (when τp
τm

<< 1) or ρm0 + Aτm (when τp
τm

>> 1).

Cadherin dynamics : Now we consider the dynamics of cadherin cluster (ρc)

dynamics. Note that the instantaneous amount of cadherin cluster ρc depends on

the amount of myosin ρm as the fragmentation rate τf depends on active force F a .

• The cadherin cluster equation can be solved exactly if we assume some ap-

proximations of the nonlinear dependence of fragmentation rate upon active

force. As we know from definition of active force F a < 0 and with a pulse

induced enrichment of total myosin if ρm increases sufficiently, fragmentation
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time will decrease τf << 1 as α << 1. We assume the form for cadherin

relaxation time and ρc0 to be

τc ' ατ

ρc0 ' αn (A.21)

• We also approximate the early change (i.e. t−t0 ∼ small, positive) in ρm upon

arrival of pulse as

ρm(t) = ρm0 + Aτm(1− e−
t−t0
τm )

' ρm0 + Aτm

(
1− (1− t− t0

τm
)

)
= ρm0 + A(t− t0) (A.22)

Here we have set t0 to be t0 >> τm (i.e., e−
t0
τm → 0) to further simplify

calculations without any loss of generality. Now we describe α as

α =

eγ1ζ1∆µA(t−t0) for t− t0 << τm

eγ1ζ1∆µAτm for t− t0 >> τm
(A.23)

With the above described assumptions we write down the exact solution for total
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cadherin cluster ρc as

ρc(t) =



ρc0 + (ρc(0)− ρc0)e−
t
τc for t < t0

ρc0 + (ρc(t0 + τp)− ρc0)e−
t−(t0+τp)

τc for t > t0 + τp

ρc(t0)e−p0ep1(t) + ρc0
γ1ζ1∆µAτ e

p1(t)

× (E(−p0)− E(−p1(t))) for t− t0 << τm

ρc(t
′)e
−t
τc + n

(
eγ1ζ1∆µAτm

1+eγ1ζ1∆µAτm

)(
1− e

−t
τc

)
for t− t0 >> τm

(A.24)

Where p0 = e
eγ1ζ1∆µAt0
γ1ζ1∆µAτ , p1 = e

e−γ1ζ1∆µA(t−t0)

γ1ζ1∆µAτ , E(x) denotes the exponential integral

function given by
∫∞
x

e−t

t
dt and ρc(t

′) defines a intermediate value at t − t0 ∼ τm.

These piecewise solutions approximately trace the dynamics of cadherin clusters.

Length dynamics : With the knowledge of instantaneous values of the amount of

myosin and cadherin clusters we can ask for the response of the pulse in terms of

the length of the junction L. Away from the pulse (i.e., L0 is constant ) the exact

solution will be

L(t) =



L0 + τLF
a

+ (L(0)− (L0 + τLF
a)) e

− t
τL for t < t0

L0 + τLF
a

+ (L(t0 + τp)− (L0 + τLF
a)) e

− t−(t0+τp)

τL for t >> t0 + τp

(A.25)

To understand the response in junction length in terms of the phases defined we can

look at the value of steady state length of the junction Ls at the end of the pulse at

t = t0 + τp.

• Looking at the Eq.A.25, it is clear that before and after the pulse the junction

length reaches a steady state value L0 + τLF
a which remains unaffected by
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the pulse. Thus in the context of conserved model it is not possible to get

ratcheting which gives rise to stepwise shrinkage of the junction. This logic

can be stretched for a pulse train too. In that case away from the pulse train

with n pulses ( i.e., t < t0 and t > t0 + (n− 1)(τp + τw) + τp ) the solution for

length will behave in the very same way.

• We know from solutions of ρm(t) that at the end of the pulse myosin reaches

a value given by ρm0 + Aτm(1 − e−
τp
τm ) and cadherin clusters amount can be

approximated to be
(

α
1+α

)
n where α = eγ1ζ1∆µAτm(1−χp) where χp = e−

τp
τm .

• Now the approximate expression for steady state length of junction at the end

of the pulse can be written as

Ls ' L∗ + β1

(
eγ1ζ1∆µAτm(1−χp)

1 + eγ1ζ1∆µAτm(1−χp)

)
n

+τLζ1∆µ (ρm0 + Aτm(1− χp)) (A.26)

• Now the condition

L∗ + β1

(
eγ1ζ1∆µAτm(1−χp)

1 + eγ1ζ1∆µAτm(1−χp)

)
n

+τLζ1∆µ (ρm0 + Aτm(1− χp)) 6 0 (A.27)

will dictate the resulting junction shrinkage from the pulse will be a junction

collapse when the above condition is true or a reversible shrinkage when Ls > 0.

• Phase diagrams constructed from the above expression (and other analysis like

these) will significantly deviate from the true results when relaxation of length

and cadherin is slower than the timescales of pulsation (i.e., τL, τc & τp, τw).
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A.7 Approximate analytical solutions: Fixed cad-

herin level dynamics (pulse train)

Now we consider a pulse train (np > 1 in Eq.A.19) instead of a single pulse. It can

be understood from the single pulse results that if the temporal separation between

pulses (τw) is large enough then all the results of single pulse analysis will hold

for the pulse train too, i.e., the response of the junction remains similar as seen

in single pulse and they just repeat the same response of reversible shrinkage or

junction collapse with every coming pulse. However when τw is small the response

of the junction from a coming pulse will depend on the previous pulse too. Below we

elaborate these concepts and try to understand the junction dynamics at τw small

limit.

• When τm, τc << τp, τw the effect of the pulse train can essentially be under-

stood as mere repetitions a of single pulse in time. The phase diagrams and

the approximate solutions wont change in this case.

• When τm, τc > τp, τw myosin (ρm) and cadherin cluster (ρc) relaxation is slower

compared to the timescales of the pulsation and the resulting dynamics can be

understood using the piecewise solution of ρm and ρc in presence and absence

of pulse. The piecewise solutions for ρm for the first pulse will be

ρm(τp) = ρm0 + Aτm(1− χp)

ρm(τp + τw) = ρm0 + Aτm(1− χp)χw (A.28)

The above relations are derived from the solution ρm(t) = ρm0 + Aτm(1 −
e
−t
τm ) + (ρm(0) − ρm0)e

−t
τm and assuming ρm(0) = ρm0 for the first equation

and taking ρm(0) = ρm(τp) for the second equation and pulse starting time is

taken to be t0 = 0 throughout in this section. Here χp = e
−τp
τm and χw = e

−τw
τm .

Following similar calculations we can calculate the the value of ρm at the end
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of nth pulse (at t = n(τp + τw)) to be

ρnm = ρm0 + Aτm ((1− χp)Sn + χp)

Sn =
n∑
k=0

e−k
(τp+τw)

τm (A.29)

=

(
1

1− χpχw

)(
1− (χpχw)(n+1)

)

• The resulting dynamics for ρm for a large train of pulses (n → large) can be

calculated from the above results at time when n(τp + τw) is large compared

to τm. The value of ρm will periodically change between a high ρHm and a low

value ρLm given by

ρHm = ρm0 + Aτmφ
H

ρLm = ρm0 + Aτmφ
L (A.30)

φH = 1−
(

1− χp

1− χpχw
+ χp

)
χp

φL = 1−
(

1− χp

1− χpχw
+ χp

)

• The cadherin cluster amount ρc will also decrease and increase with increasing

and decreasing ρm in a periodic way between a high ρHc and a low value ρLc

approximately given by

ρHc '

(
eγ1ζ1∆µAτmφL

1 + eγ1ζ1∆µAτmφL

)
n

ρLc '

(
eγ1ζ1∆µAτmφH

1 + eγ1ζ1∆µAτmφH

)
n (A.31)

• Now we can estimate the dynamics of length and plot the approximate analytic

phase diagrams. From these piecewise solution of ρm and limiting cases of ρc
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we can estimate the effective rest length at the maximum of myosin ρm during

nth pulse (i.e., at t = (n− 1)(τp + τm) + τp) to be

Ls ' L∗ + τLζ1∆µρnm + β1ρc(ρ
n
m)

• Now it can be such that the very first pulse (n = 1) in the pulse train makes

the effective rest length very small (Ls1 → 0) signifying a junction collapse.

The condition for this will be given by Ls1 6 0. If Ls1 > 0 then there can be

two possible outcomes in course of the whole pulse train, first if Ls1 > 0 for

n→∞ then the resulting phase is reversible shrinkage secondly there can be

cases where the junction totally shrinks (Lsn → 0) upon receiving finite number

(n) of pulses.

• The second case will look like ratcheting but it is actually a reversible shrinkage

and if pulse train is smaller than n pulses (for which Lsn → 0) then after pulses

stop the length of the junction will return to the value of steady length in

absence of any pulse (L∗+β1ρc0 + τLF
a
0 ) within a time t ∼ τm, τc. We call this

second case pseudo-ratcheting (PR) and the condition for this will be Lsn 6 0.

When written in terms of parameters these conditions Ls1 6 0 and Lsn 6 0 will

be given by Eq.A.33 and Eq.A.34 respectively.

L∗ + τLζ1∆µ(ρm0 + Aτm(1− χp))

+β1(1− e−
τp
τc )

(
eγ1ζ1∆µAτm(1−χp)

1 + eγ1ζ1∆µAτm(1−χp)

)
n

+β1

(
e−

τp
τc

2

)
n 6 0 (A.32)

(A.33)
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L∗ + τLζ1∆µ(ρm0 + Aτmφ
H)

+β1

(
eγ1ζ1∆µAτmφH

1 + eγ1ζ1∆µAτmφH

)
n 6 0 (A.34)

A.8 Approximate analytical solutions: Leaky cad-

herin level dynamics

Myosin dynamics :

The dynamics of ρm is same as discussed in conservative model and given by (Eq.A.20)

Cadherin dynamics :

In this case (ṅ 6= 0) total amount of cadherin decreases when a pulse arrives if

the myosin increases enough (ρm > ρcm) during the “ON” period of the pulse (i.e.,

t0 < t < t0 + τp) to trigger the structural reorganization / extraction. Now the

amount of cadherin cluster amount ρc will decrease as myosin ρm increases with a

coming pulse through two different ways, (i) firstly due to active force dependent

enhanced fragmentation of clusters into monomer, this process has been discussed

in details in the previous section, (ii) then due to possible extraction triggered by

accumulation of myosin.

• To calculate the net cadherin loss during the pulse we solve the steady state

of cadherin monomer ρs1 to be

− 1

τc

(
ρs1 −

n

1 + α

)
− β2gRρ

s
1 = 0 (A.35)

Here α = eγ1ζ1∆µAτm(1−χp) and the equation for n

ṅ = −
(

β2gR
(1 + α)(1 + τcβ2gR)

)
n (A.36)
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• Solving the above equation for n, we get

n(t) = n0e
−κt (A.37)

κ =
β2gR

(1 + α)(1 + τcβ2gR)

Where n0 = n(0). Now we calculate the total cadherin at the end of the pulse

n(τp) = n0e
−κτp .

• It is important to note that the above solutions are true in the parameter

regime where ρ1 and ρc relaxation is faster compared to the timescale of ex-

traction i.e., τc < κ−1.

Length dynamics :

The length dynamics will be dictated by the rest length L0 and will be affected by

the changes in ρm and ρc. Approximate phase diagrams can be analytically predicted

from conditions discussed below.

• The condition for reversible shrinkage will be e−κτp = 1 given that Ls > 0 in

absence of pulse.

• If the condition is true then the resulting phase will be stepwise shrinkage.

e−κτp < 1 (A.38)

• Junction collapse will happen when steady state length Ls 6 0 at the end of

the pulse (t = τp).

L∗ + β1

(
α

1 + α

)
e−κτpn0 + τLζ1∆µ(ρm0 + Aτm(1− χp)) 6 0 (A.39)

permanent deformation of junction :
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The remodelling of L0 through extraction of cadherin represents the structural

reorganization of the junction and cause a permanent/plastic deformation ∆L in

the junction. The amount of this permanent deformation can be calculated from

the cadherin dynamics and its effect in rest length of the junction. Here we calculate

this ∆L for a single pulse

∆L = Ls1 − Ls0
=

β1n0

2

(
e−κτp − 1

)
(A.40)
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