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We study the decay rate θðaÞ that characterizes the late time exponential decay of the first-passage
probability density Faðtj0Þ ∼ e−θðaÞt of a diffusing particle in a one dimensional confining potential UðxÞ,
starting from the origin, to a position located at a > 0. For general confining potential UðxÞ we show that
θðaÞ, a measure of the barrier (located at a) crossing rate, has three distinct behaviors as a function of a,
depending on the tail ofUðxÞ as x → −∞. In particular, for potentials behaving asUðxÞ ∼ jxjwhen x → −∞,
we show that a novel freezing transition occurs at a critical valuea ¼ ac, i.e., θðaÞ increasesmonotonically as
a decreases till ac, and for a ≤ ac it freezes to θðaÞ ¼ θðacÞ. Our results are established using a general
mapping to a quantum problem and by exact solution in three representative cases, supported by numerical
simulations. We show that the freezing transition occurs when in the associated quantum problem, the gap
between the ground state (bound) and the continuum of scattering states vanishes.
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Consider an overdamped Brownian particle on a line in
the presence of an external potential UðxÞ, whose position
xðtÞ evolves by the Langevin equation

dx
dt

¼ −
1

Γ
U0ðxÞ þ

ffiffiffiffiffiffiffi
2D

p
ηðtÞ; ð1Þ

where D ¼ kBT=Γ, with kB, T, and Γ being the Boltzmann
constant, temperature, and the friction coefficient, respec-
tively. Thewhite noise ηðtÞhas zeromean and is δ correlated:
hηðtÞi ¼ 0 and hηðtÞηðt0Þ ¼ δðt − t0Þ. For a particle starting
at a local minimum x0 of the potentialUðxÞ, what is the rate
κðaÞwith which the particle crosses over a barrier of relative
height ΔU ¼ UðaÞ −Uðx0Þ, located at a > x0? Estimating
κðaÞ is one of themost important and celebrated problems in
the theory of reaction kinetics, often known as Kramers
problem. It has found immense applications in physics,
chemistry, biology, and engineering sciences (for a review
with nice historical aspects see [1]). Assuming near-
equilibrium position distribution inside the potential well,
the escape rate can be estimated by computing the flux
across the barrier [1–6]. In the low temperature and/or large
barrier limit, it is well approximated by the van’t Hoff–
Arrhenius form [7,8] κðaÞ ∼ e−ΔU=ðkBTÞ.
Another alternative approach [9], that even predates

Kramers, consists in estimating 1=κðaÞ by the mean first-
passage time Taðx0Þ from x0 to a. A quantity that carries
more information is the full distributionFaðtjx0Þ of the first-
passage time to levela starting at x0. Evidently,Taðx0Þ is just
the first moment of the distribution. The cumulative first-
passage distribution Saðtjx0Þ ¼

R∞
t Faðt0jx0Þdt0 is known as

the survival probability, which can in principle be computed

by solving the Fokker-Planck equation for the probability
density with an absorbing boundary condition at x ¼ a
[10–14]. For a confining potentialUðxÞ, usually the Fokker-
Planck operator has a discrete spectra, and hence the survival
probability [and consequently the first-passage probability]
is expected to decay exponentially at late times: Saðtjx0Þ ∼
e−θðaÞt where the decay rate θðaÞ gives another estimate of
the escape rate κðaÞ. While the mean first-passage time
Taðx0Þ can be computed explicitly for arbitrary potential
UðxÞ [10], the decay rate θðaÞ is much harder to compute
and there is no known formula for θðaÞ for general potential
UðxÞ, though there has been recent progress for specific
cases [15–19].
We remark that even though the problem is posed here in

the language of barrier crossing, the first-passage proba-
bility of a diffusing particle in a confining potential has a
much broader applicability ranging from search processes
in animal foraging for food [20,21], all the way to gene
transcription regulation [22]. For example, in the context of
foraging, an animal is typically confined in its home range
and searches for a target (food) located at a distance a (from
its nest) which need not be always large, as in the Kramers
problem. Hence, estimating θðaÞ for all a is a fundamental
problem of broad interest.
For large a, the three estimates of κðaÞ, namely, the

Kramers estimate, the inverse mean first-passage time
1=Taðx0Þ, and the decay rate θðaÞ, all have the Arrhenius
form ∼e−UðaÞ=ðkBTÞ [see [18] for a more refined estimate of
θðaÞ for large a]. However, in many search processes
discussed above, the location a of the barrier (or the target)
is not necessarily large and the three measures may have
differenta dependences, in particular for smalla. Indeed, the
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discrepancy between the last two measures for small a is
expected for compact diffusion [22], which is the case here
since the potential is confining. In this Letter, we study the a
dependence of the three measures for general potentialUðxÞ
and show that indeed for small a, they are quite different
from each other. In particular, we show that θðaÞ for general
UðxÞ displays a rich and robust a dependence, depending on
the tail ofUðxÞ as x → −∞ (see Fig. 1), that is not captured
by the other two measures of κðaÞ. More precisely, we find
(i) if UðxÞ increases faster than jxj as x → −∞, then θðaÞ
increases monotonically as a decreases, (ii) if UðxÞ ∼ jxj as
x → −∞, then there is a critical value of a at a ¼ ac, where a
novel freezing transition occurs, i.e., θðaÞ increases mono-
tonically as a decreases till ac, and for a ≤ ac the decay rate
θðaÞ ¼ θðacÞ, and (iii) if UðxÞ increases slower than jxj as
x → −∞, then θðaÞ ¼ 0 for all a, indicating a slower than
exponential decay with time, of the first-passage probability
(see Fig. 3).
We establish this behavior by mapping to a quantum

problem, where the quantum potential (see Fig. 1) has
always bound states in case (i), while in case (iii) it only has
a continuous spectrum of scattering states. In the borderline
case (ii), the spectrum has a bound state separated by a gap
from the continuum of scattering states for a > ac, and the
gap vanishes as a → aþc (see Fig. 2). In case (i) and case
(ii) with a > ac, where the spectrum has bound states, θðaÞ
coincides exactly with the ground state energy of the
quantum problem. The inverse mean first-passage time
1=Taðx0Þ, in contrast, always increases monotonically
with decreasing a, and hence misses this novel freezing
transition at a ¼ ac (see Fig. 3). This transition is also
consistent with the powerful interlacing theorem derived in
[16,17]; for details see the Supplemental Material [23].
The mapping to the quantum problem makes it evident
that the scenario presented above holds generically
for any confining potential UðxÞ. In addition, we show
the validity of this generic behavior by explicit exact

solution in three representative cases here (for another
example, see [23]).
We start with the Fokker-Planck equation for the

probability density function Pðx; tÞ of the particle to be
at x at time t, without having crossed the level at x ¼ a,

(a)

(b)

FIG. 1. (a) A schematic illustration of classical potentials UðxÞ
whose left tails as x → −∞, increase (i) faster than jxj (red dotted
line), (ii) as jxj (blue solid line), and (iii) slower than jxj (magenta
dashed line). There is an absorbing barrier at x ¼ a (dot-dashed
line). (b) Schematic illustrations of the corresponding quantum
potentials VðxÞ in Eq. (3), whose left tails as x → −∞, (i) diverges
(red dotted line), (ii) approaches a constant (blue solid line), and
(iii) tends to zero (magenta dashed line), respectively. VðxÞ ¼ ∞
for x ≥ a.
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FIG. 2. Schematic diagram of energy levels for the quantum
potential VðxÞ ¼ α2=ð4DÞ − αδðxÞ for x < a and VðxÞ ¼ ∞ for
x ≥ a, for different values of a. The (red) dots represent the
ground state energy for different values of a whereas the (blue)
bands represent the continuum of energy levels from α2=ð4DÞ to
∞. The gap vanishes at a ¼ ac ¼ D=α.

FIG. 3. (a) The (red) solid line plots the analytical θðaÞ vs a in
Eq. (8), for the potential in Eq. (5b) in case (ii), with α ¼ D ¼ 1.
The (blue) points represent the simulation results. The (magenta)
dashed line plots the analytical expression (see [23]) of the
inverse of the mean first-passage time. The vertical (gray) dashed
line marks a ¼ ac. (b) Same plot as in (a) but for the case (i) in
Eq. (5b) with μ ¼ α ¼ D ¼ 1 and b ¼ 2. (c) The (magenta)
dashed line plots the inverse of the mean first-passage time for
case (iii) in Eq. (5b), with α ¼ D ¼ λ ¼ 1 and b ¼ c ¼ e. In this
case θðaÞ ¼ 0 for all a. (d) The (blue) points represent simulation
results for the survival probability Saðtj0Þ for the same potential
as in (c), while the (red) dashed line represents the asymptotic
decay of Saðtj0Þ in Eq. (13).
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∂P
∂t ¼ D

∂2P
∂x2 þ

∂
∂x ½U

0ðxÞP�; ð2Þ

where we set Γ ¼ 1 for simplicity. Equation (2) holds
in x ∈ ð−∞; aÞ with an absorbing boundary condition
Pða; tÞ ¼ 0 at x ¼ a and also, Pðx → −∞; tÞ ¼ 0. We
assume that the particle starts at the origin at t ¼ 0, i.e.,
Pðx; 0Þ ¼ δðxÞ and the barrier location a ≥ 0 to be on the
right of the initial position of the particle. If a < 0, one can
reverse x and perform a similar analysis. With the trans-
formation [10], Pðx; tÞ ¼ e−½UðxÞ−Uð0Þ�=ð2DÞψðx; tÞ; Eq. (2)
gets mapped to the time-dependent Schrödinger equation
in imaginary time, −∂ψ=∂t ¼ Hψðx; tÞ; where H ¼
−Dð∂2=∂x2Þ þ VðxÞ; with the initial condition ψðx; 0Þ ¼
δðxÞ and the quantum potential

VðxÞ ¼ ½U0ðxÞ�2
4D

−
U00ðxÞ
2

; for x < a: ð3Þ

Here, we assume UðxÞ to be twice differentiable
almost everywhere. The absorbing boundary condition
Pðx ¼ a; tÞ ¼ 0 translates into ψðx ¼ a; tÞ ¼ 0, which in
the quantum problem, corresponds to having an infinite
barrier at x ¼ a, i.e., VðxÞ ¼ ∞ for x ≥ a. The wave
function ψðx; tÞ can be written in the eigenbasis of H, as

ψðx; tÞ ¼
X
E

ϕ�
Eð0ÞϕEðxÞe−Et ð4Þ

where HϕEðxÞ ¼ EϕEðxÞ, and we have used ψðx; 0Þ ¼
δðxÞ. The sum over E includes both the discrete and the
continuous part of the spectrum. When the ground state is
bound and is separated by a finite gap from the rest
of the spectrum, then it follows from Eq. (4), that at
late times Pðx; tÞ ∼ e−E0t where E0 is the ground state
energy. Correspondingly the survival probability Saðtj0Þ ¼R
a
−∞ Pðx; tÞdx ∼ e−θðaÞt with θðaÞ ¼ E0.
Since there is an infinite barrier at x ¼ a, whether the

Hamiltonian H has a bound state or not depends only on
the behavior of VðxÞ as x → −∞. For example, if the
classical potentialUðxÞ increases faster than jxj as x → −∞
such asUðxÞ ∼ ð−xÞγ with γ > 1, then it is easy to see from
Eq. (3) that VðxÞ ∼ ð−xÞ2ðγ−1Þ, and hence, VðxÞ diverges as
x → −∞. In this case, clearly, the quantum problem will
have only bound states. On the other hand, if γ < 1, then
VðxÞ → 0 as x → −∞, indicating that the quantum prob-
lem will only have scattering states. In the marginal case,
γ ¼ 1, VðxÞ approaches a constant as x → −∞, and in this
case, one would expect that a bound state may or may not
exist depending on the value of a. To illustrate this general
scenario, we present below an exact solution for a repre-
sentative UðxÞ whose x → −∞ tails can be tuned as in the
three cases above. More precisely, we choose

UðxÞ ¼ αjxj for − b < x < a; ð5aÞ

with b > 0, and for x < −b,

UðxÞ ¼

8>><
>>:

1
2
μx2 for caseðiÞ

αjxj for caseðiiÞ
c lnð−x=λÞ for caseðiiiÞ

ð5bÞ

where λ > 0 is a length scale and for the sake of continuity
of the potential at x ¼ −b, we set μ ¼ 2α=b and
c lnðb=λÞ ¼ αb (see Fig. 1).
For convenience, we start our analysis for the marginal

case (ii) in Eq. (5b) where UðxÞ ¼ αjxj for x < a and show
explicitly that a freezing transition occurs at the critical
value a ¼ ac ¼ D=α. The cases (i) and (iii) will be
discussed subsequently. The quantum potential VðxÞ from
Eq. (3) is then given by VðxÞ ¼ α2=ð4DÞ − αδðxÞ for x < a
and VðxÞ ¼ ∞ for x ≥ a. In this case, the Schrödinger
equation can be solved either by spectral decomposition as
in Eq. (4) or equivalently by taking the Laplace transform
of the equation with respect to t. In the later case, the
spectral values of E manifest as poles (for the discrete part
of the spectrum) or as a branch cut (for the continuous part
of the spectrum). Skipping details (see [23]), the solution in
the Laplace space ψ̃ðx; sÞ ¼ R

∞
0 ψðx; tÞe−stdt, reads

ψ̃ðx; sÞ ¼
8<
:

1
AðpÞ ½1 − e−pa=D�epx=ð2DÞ for x ≤ 0;

1
AðpÞ ½1 − e−pða−xÞ=D�e−px=ð2DÞ for 0 ≤ x ≤ a;

ð6Þ
where

AðpÞ¼p−αð1−e−pa=DÞ with p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þ4Ds

p
: ð7Þ

It is evident from Eqs. (6) and (7) that there is a branch cut
at s ¼ −α2=ð4DÞ, signaling a continuum of eigenstates
with energy E ≥ α2=ð4DÞ [see Fig. 2]. In addition, for
a > ac ¼ D=α, there is an isolated pole at s ¼ s�ðaÞ ¼
−ðα2 − p�2Þ=ð4DÞ where 0 < p�ðaÞ < α is the nonzero
solution of the transcendental equation Aðp�Þ ¼ 0 (see
[23]), where AðpÞ is given in Eq. (7). This corresponds
to a bound state (which is indeed the ground state) with
energy E0ðaÞ ¼ −s�ðaÞ. Thus, there is a gap in the
spectrum ΔðaÞ ¼ α2=ð4DÞ − E0ðaÞ ¼ p�2=ð4DÞ, between
the ground state and the excited states. Consequently, the
survival and the first-passage probabilities decay as
∼e−θðaÞt for large t where θðaÞ ¼ E0ðaÞ. As a → aþc , the
gap vanishes as ΔðaÞ ∼ ða − acÞ2 (see [23]). For a ≤ ac,
the spectrum has only a continuous part consisting of
scattering states with E ≥ α2=ð4DÞ. By analyzing the
Laplace transform [23] we find that the survival probability
decays as Saðtj0Þ ∼ t−3=2e−α

2t=ð4DÞ for a < ac and
Saðtj0Þ ∼ t−1=2e−α

2t=ð4DÞ exactly at a ¼ ac. Hence, θðaÞ ¼
− limt→∞ t−1Saðtj0Þ is given by
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θðaÞ ¼
� ðα2 − p�2Þ=ð4DÞ for a > ac ¼ D=α

α2=ð4DÞ for a ≤ ac:
ð8Þ

The freezing value θðacÞ ¼ α2=4D also predicts, using the
interlacing theorem [16], where the continuum part of the
relaxation spectrum starts [23]. In contrast, the inverse
mean first-passage time 1=Tað0Þ increases monotonically
with decreasing a (see [23]). Interestingly, a similar non-
monotonic behavior of θðaÞ was recently observed in the
context of the dry friction problem [19]. In Fig. 3(a), we
plot our analytical expression Eq. (8) and compare it with
numerical simulations performed for few values of a,
finding excellent agreement. For comparison, we also plot
1=Tað0Þ (shown by the dashed line in Fig. 3), which
increases monotonically with decreasing a. While this
result is proved here for the specific potential Eq. (5b),
it is clear from the general mapping to the quantum problem
that this freezing transition is robust as long as UðxÞ ∼ jxj
as x → −∞ and its existence should not depend on the
details of UðxÞ in the bulk. We demonstrated this for
another choice of the potential UðxÞ in the Supplemental
Material [23].
We now turn to the cases (i) and (iii) in Eq. (5b). While

calculations in these two cases can also be carried out by
mapping to the quantum problem (which indeed helps
understanding the physics better), computationally it turns
out to be more convenient to use a shorter backward
Fokker-Planck approach [10,13,14] for the survival prob-
ability Saðtjx0Þ where the starting position x0 is treated as
a variable. The first-passage probability is then derived
from the relation Faðtjx0Þ ¼ −∂tSaðtjx0Þ. The backward
Fokker-Planck equation reads

∂Sa
∂t ¼ D

∂2Sa
∂x20 −U0ðx0Þ

∂Sa
∂x0 ð9Þ

with the initial condition Sað0jx0Þ ¼ 1 and the boundary
conditions, Saðtjx0 → −∞Þ ¼ 1 and Saðtjx0 ¼ aÞ ¼ 0.
Skipping details (see [23]), the solution in the Laplace
space S̃aðsjx0Þ ¼

R
∞
0 Saðtjx0Þe−stdt, reads

S̃aðsj0Þ ¼
1

s
½1 − F̃aðsj0Þ�; ð10Þ

where the Laplace transform of the first-passage time
distribution is given by

F̃aðsj0Þ ¼
p

BðsÞ e
−ðαþpÞa=ð2DÞχðsÞ; ð11Þ

with p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4Ds

p
and the expressions of BðsÞ and

χðsÞ—which are different in the cases (i) and (iii)—are
given in [23]. Analyzing F̃aðsj0Þ, we find that s ¼
−α2=ð4DÞ is no longer a branch point.

In case (i), where UðxÞ ∼ x2 as x → −∞, the quantum
potential VðxÞ in Eq. (3) also diverges ∼x2 as x → −∞.
Hence, the quantum problem has only bound states with
discrete spectrum. By analyzing (see [23]) Eq. (11), we
indeed find that the denominator BðsÞ has an infinite
number of zeros—equivalently, F̃aðsj0Þ has an infinite
number of poles—on the negative line −∞ < s < 0. This
infinite set of poles −∞< ���<s�2ðaÞ<s�1ðaÞ<s�0ðaÞ<0

corresponds to having only bound states with discrete
energy levels EiðaÞ ¼ −s�i ðaÞ with i ¼ 0; 1;…;∞.
Therefore, both the first-passage and the survival
probability decays as Faðtj0Þ ∼ Saðtj0Þ ∼ e−θðaÞt, where
θðaÞ ¼ E0ðaÞ ¼ −s�0ðaÞ. Figure 3(b) plots θðaÞ as a
function of a together with 1=Tað0Þ.
Turning now to case (iii), where UðxÞ ∼ c lnð−xÞ as

x → −∞ in Eq. (5b), we chose, for simplicity, λ ¼ 1 and
c > D. The latter condition ensures that in the absence
of the absorbing wall at a, the stationary Boltzmann
distribution Pðx; t → ∞Þ ∝ e−UðxÞ=D is normalizable, i.e.,R
e−UðxÞ=Ddx is finite. Diffusion in such potentials with

logarithmic tails has been studied extensively in various
contexts such as in the denaturation process of DNA
molecules [24], momentum distribution of cold atoms in
optical lattices [25–27], among many others [28–34]. In
this case, the associated quantum potential VðxÞ → 0 as
x → −∞ from Eq. (3). Therefore, the quantum problem has
only scattering states and no bound state. Indeed, we find
that F̃aðsj0Þ does not have any pole, even when a → ∞.
Anticipating the scattering states to lead to a power-law
decay for Faðtj0Þ at late times, we analyze F̃aðsj0Þ near
s ¼ 0, and from it deduce the asymptotic decay of Faðtj0Þ
for large t. For a noninteger ν ¼ ð1þ c=DÞ=2 ∈ ðn; nþ 1Þ
with n ≥ 1 being an integer, we find the following late
time decay [23]

Faðtj0Þ ¼ νaνt−ðνþ1Þ þ oðt−ðνþ1ÞÞ; ð12Þ

where the amplitude aν can be computed explicitly [23].
Consequently, the survival probability decays as

Saðtj0Þ ¼
Z

∞

t
Faðt0j0Þdt0 ¼ aνt−ν þ oðt−νÞ: ð13Þ

For integer values of ν, there are additional ln t corrections.
Hence, θðaÞ ¼ − limt→∞ t−1 ln Saðtj0Þ is zero for all a,
while 1=Tað0Þ is still nonzero and a monotonic function of
a [see Fig. 3(c)]. In Fig. 3(d), we verify the analytical
prediction in Eq. (13) by numerical simulation.
In conclusion, our main result is that θðaÞ, as a function

of decreasing target location a, has substantially different
behaviors depending on the far negative tail of the con-
fining potential UðxÞ. Far negative tail actually means
jxj ≫ ξ for negative x, where ξ denotes the typical width of
the confining potential near its minimum, e.g., in the
context of animal foraging for food, ξ denotes the size
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of the home range. At first sight, this may look puzzling:
why does the far negative tail of UðxÞ affect θðaÞ for
a ∼Oð1Þ > 0? Qualitatively, if the potential is sufficiently
confining [UðxÞ ∼ jxjγ as −x ≫ ξ with γ > 1], the typical
trajectory remains confined and the particle feels the
presence of the absorbing barrier located at a more
strongly. However, for γ ≤ 1 (where the spectrum of the
associated quantum problem has scattering states), the
typical trajectory wanders off to the far negative side (since
the potential is not sufficiently confining on that side), and
hence the particle becomes more insensitive to the presence
of the absorbing barrier at a > 0. In this Letter, this
qualitative understanding is made precise via the exact
analysis of the associated quantum problem. This led to a
surprising “freezing” transition of θðaÞ at a critical value ac
for γ ¼ 1. We expect this freezing transition to be robust,
e.g., it will hold for finite systems when the system size
L ≫ ξ. Finally, the potentials discussed in the Letter can be
tailored by using holographic optical tweezers and confin-
ing the movements of colloidal particles to a quasi-one-
dimensional line using a microfluidic device [35], leading
to a possible experimental measurement of θðaÞ.
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