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We study the position distribution of an active Brownian particle (ABP) in the presence of stochastic resetting
in two spatial dimensions. We consider three different resetting protocols: (1) where both position and orientation
of the particle are reset, (2) where only the position is reset, and (3) where only the orientation is reset with a
certain rate r. We show that in the first two cases, the ABP reaches a stationary state. Using a renewal approach,
we calculate exactly the stationary marginal position distributions in the limiting cases when the resetting rate r
is much larger or much smaller than the rotational diffusion constant DR of the ABP. We find that, in some cases,
for a large resetting rate, the position distribution diverges near the resetting point; the nature of the divergence
depends on the specific protocol. For the orientation resetting, there is no stationary state, but the motion changes
from a ballistic one at short times to a diffusive one at late times. We characterize the short-time non-Gaussian
marginal position distributions using a perturbative approach.

DOI: 10.1103/PhysRevE.102.052129

I. INTRODUCTION

Stochastic resetting refers to intermittent interruption and
restart of a dynamical process. Introduction of such a resetting
mechanism to a stochastic process changes both static and
dynamical properties of the system drastically [1]. Study of
resetting is relevant in a wide range of areas including search
problems [2–5], population dynamics [6,7], computer science
[8,9], and biological processes [10–12]. The paradigmatic ex-
ample of stochastic resetting is that of a Brownian diffusive
particle which is reset to its initial position with some rate
[13]. The presence of the resetting drives the system out of
equilibrium, which leads to a lot of interesting behavior in-
cluding nonequilibrium steady states, dynamical transition in
the temporal relaxation, and nonmonotonic mean first passage
time [13–15]. The effect of resetting on various other diffusive
processes has also been studied over the last decade [16–28].
A natural question that arises is what happens when resetting
is introduced to a system where the underlying stochastic
process is active instead of passive diffusion.

Active processes refer to a class of dynamics which are
intrinsically out of equilibrium due to self-propulsion [29–34].
Since the seminal work of Vicsek [35], there has been a huge
surge of interest in active matter systems which show a set of
collective behaviors like flocking [36,37], clustering [38–40],
and motility-induced phase separation [34,41–43]. Theoret-
ical attempts to understand the properties of active matter
focuses on studies of simple yet analytically tractable models,
like Run and Tumble particle (RTP), active Brownian particle
(ABP), and their many variations [31]. In such models, the
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active nature of the dynamics emerges due to a coupling of
the spatial motion with some internal orientation degree of
freedom which itself evolves stochastically. The presence of
an intrinsic timescale associated with the internal orientation
leads to a lot of interesting behavior even at a single-particle
level which includes spatial anisotropy and ballistic motion
at short times [44–46], non-Boltzmann stationary state and
clustering near the boundaries of the confining region [47–53],
and unusual relaxation and first-passage properties [44,54,55].

The first step to study the effect of resetting on active pro-
cesses is to investigate the behavior of a single active particle
under stochastic resetting. Since active particles are character-
ized by both position and orientation degrees, the resetting can
be defined in the phase space instead of position space, which
opens up various possibilities regarding resetting protocols.
The presence of stochastic resetting introduces an additional
timescale given by the inverse of the resetting rate. For active
particles, the interplay between the internal timescale and
that of the resetting is expected to lead to a richer behavior
compared to its passive counterpart. This question was first
addressed in Ref. [56], where the effect of stochastic reset-
ting on a one-dimensional RTP was studied, which leads to
nontrivial stationary distribution and first passage properties.
The first-passage properties of ABP and RTP under various
resetting mechanisms have also been investigated recently
[57–60].

In this paper, we study the effect of stochastic resetting on
active Brownian motion in two spatial dimensions. An ABP
is an overdamped particle with an internal orientation which
undergoes a rotational diffusion. Consequently, in two spatial
dimensions, an ABP is characterized by its position (x, y) as
well as its orientation θ . We study three different resetting
protocols: (1) the position and the orientation of the particle
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are reset to their initial values with rate r, (2) only the position
is reset, and (3) only the orientation is reset. In the first two
cases, i.e., where the resetting protocol involves the resetting
of the position, the particle position reaches a stationary state.
We show that depending on whether the resetting rate r is
larger or smaller compared to the rotational diffusion constant
DR, the stationary position distribution is very different. We
compute exactly the marginal position distributions for the
two liming scenarios, namely, r � DR and r � DR. It turns
out that for protocol (1), the position distribution is strongly
anisotropic for r � DR; while for protocol (2), the distribution
remains isotropic. Moreover, we show that for large r � DR,
in some cases, the stationary distribution diverges near the
resetting position; the nature of the divergence depends on the
resetting protocol.

For purely orientational resetting, i.e., for protocol (3),
the particle does not reach a stationary state but shows an
anisotropic motion with a ballistic to diffusive crossover as
time progresses. We show that at late times, the typical fluctu-
ations of the position around its mean values are characterized
by a Gaussian distribution. In the short-time regime, the po-
sition fluctuations are non-Gaussian; we adopt a perturbative
method to compute the same for small values of the resetting
rate.

In the next section, we define the resetting protocols in
detail and present a brief summary of our results. Sections III
and IV are devoted to the study of the position-orientation re-
setting and position resetting cases, respectively. The behavior
of the ABP under orientation resetting only is discussed in
Sec. V. We conclude with some general remarks in Sec. VI.

II. MODEL AND RESULTS

Let us consider an active Brownian particle moving with
a constant speed v0 on a two-dimensional plane. Apart from
the position coordinates (x, y), the particle also has an internal
degree of freedom, characterized by the orientation θ , which
itself undergoes a rotational Brownian motion. The Langevin
equations describing this active Brownian motion are

ẋ(t ) = v0 cos θ (t ),

ẏ(t ) = v0 sin θ (t ),

θ̇ (t ) =
√

2DRη(t ),

(1)

where η(t ) is a delta-correlated white noise and DR is the
rotational diffusion constant. The coupling between the posi-
tion and orientation degrees leads to the “active” nature of the
motion. The activity, in turn, gives rise to various intriguing
behaviors, including nontrivial position distributions at short
times which crosses over to an effective diffusive behavior at
late times. For the sake of completeness, a brief review of the
behavior of ordinary ABP is provided in Appendix A.

In this paper, we study the effect of stochastic resetting
on the dynamics of such an active Brownian particle. For
active particles, the presence of the internal degree of freedom
gives rise to the possibility of resetting in the phase space,
instead of in position space only. This possibility was first
explored in Ref. [56], where the effect of different resetting
protocols involving position and velocity was studied in the
context of one-dimensional RTP. A similar situation arises for

the case of ABP, which is characterized by the position and
the orientation degrees. In the following, we focus on three
different resetting protocols.

(1) Resetting of the position and orientation: In this
case, the position of the particle, along with its orientation is
reset to the corresponding initial values with rate r. We assume
that the particle starts from the origin, oriented along the x axis
so, at any time t , the particle is reset to x = 0 = y = θ , with
rate r. The system reaches a stationary state in the long-time
limit. We investigate the stationary marginal position distri-
butions as well as the time evolution of the moments of the
position.

(2) Resetting of the position: In the second scenario, we
reset the position of the particle to the origin with rate r, but
the orientation is not affected—it evolves as a free Brownian
motion. In this case also, the ABP reaches a stationary state.
We characterize the moments and the stationary marginal
position distributions.

(3) Resetting of the orientation: In this scenario, only
the orientation θ is reset with rate r, the position degrees are
not affected. In this case, the position distribution does not
reach a stationary state; we study the short-time and long-time
limiting behavior of the marginal distributions along with the
position moments.

Figure 1 shows typical trajectories of an ABP in the
presence of these three resetting protocols. In the first case
(protocol 1), the particle preferably visits the right half-plane
x > 0 because of the resetting of the orientation while, for
protocol 2, the motion looks more isotropic. For protocol 3,
the particle runs along the x axis, away from the origin.

In the absence of resetting, the active Brownian particle
shows an interesting dynamical crossover depending on the
value of the rotational diffusion constant DR. Starting from
the origin, and with θ = 0, at short times t � D−1

R , the motion
is strongly nondiffusive and the position distribution remains
anisotropic with the variance along the x and y directions
showing very different temporal growths [44,45]. At long
times t � D−1

R , however, the motion becomes diffusive and
the typical position fluctuations become Gaussian in nature,
with only the tails retaining signatures of activity [52]. The
presence of stochastic resetting introduces another timescale
r−1, i.e., the inverse of the resetting rate. We expect that the
interplay of the two timescales D−1

R and r−1 would lead to rich
behavior for ABP under resetting.

Figure 2 illustrates the qualitative nature of the 2D sta-
tionary position distribution Pst(x, y) for resetting protocols 1
(upper panel) and 2 (lower panel). The left column shows the
distribution for r � DR, where, in both cases, the distribution
is isotropic. The middle column shows the same for r ∼ DR,
where for protocol 1 the distribution becomes anisotropic. For
protocol 2, the distribution remains isotropic, but the width
decreases as r is increased. The anisotropy becomes stronger
for protocol 1 as r is increased, as can be seen from the right
panel (r � DR). The anisotropy for the position-orientation
resetting arises due to the fact that after each resetting, the
orientation is brought back to θ = 0, and the particle restarts
motion along the x axis. On the other hand, for protocol 2,
i.e., when the resetting does not affect the orientation of the
particle, the stationary distribution remains isotropic for all
values of r and DR.
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FIG. 1. Typical trajectories of an ABP for the three different resetting protocols: position–orientation resetting (a), position resetting (b),
and orientation resetting (c). In all the cases, the particle starts from x = 0 = y along θ = 0.

As mentioned already, for protocol 3, i.e., for orientational
resetting, the particle position does not reach a stationary state.
In this case, the nature of the motion changes from ballistic
at short times to diffusive at late times. This is qualitatively
illustrated in Fig. 3 where P(x, y, t ) is shown for three differ-
ent values of time. At short times (left panel), the distribution
remains strongly anisotropic, similar to the free ABP case.
The anisotropy decreases as time is increased (middle panel),
ultimately reaching a Gaussian-like distribution at late times
t � (r + DR)−1, as we will demonstrate later.

Before going to the details of the computations, we first
present a brief summary of our results.

(i) We show that the position distribution reaches a sta-
tionary state if the resetting protocol involves changing the
position directly, i.e., for protocols 1 and 2. We study the
corresponding stationary marginal distributions and show that
depending on whether the timescale r−1 associated with reset-
ting is larger or smaller than the inherent rotational timescale
D−1

R of the ABP, the stationary distribution has very different
forms.

(i) For protocol 1, the stationary distribution is strongly
anisotropic for r � DR. In this case, the x-marginal distribu-
tion falls off exponentially for large x > 0, while approaching
a finite value near the origin [see Eq. (15)]. The x < 0 region
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FIG. 2. Plot of the stationary position probability distribution Pst(x, y) in the x − y plane for resetting protocols 1 (upper panel) and 2
(lower panel). The darker region corresponds to higher value of the probability density. The left, middle, and right columns correspond to
r = 0.01, DR = 1, r = 1, DR = 1, and r = 10, DR = 1 respectively, with v0 = 1 for all the cases.
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FIG. 3. Plot of position distribution P(x, y, t ) in the x − y plane for orientation resetting for different values of time t = 0.1 (left), t = 1
(middle), and t = 200 (right). Darker regions correspond to higher values of the probability. Here r = 1 = DR and v0 = 1.

remains unpopulated. The y distribution, however, turns out to
be symmetric and shows an algebraic divergence |y|−1/3 near
the origin, while decaying as a compressed exponential for
large |y| [see Eqs. (25) and (26)].

For r � DR, on the other hand, the anisotropy disappears,
both x- and y-marginal distributions attain exponential forms;
see Eqs. (12) and (20).

(iii) For protocol 2, the stationary distribution remains
isotropic for all parameter values. In this case, for r � DR

the distribution is exponential in nature, similar to protocol 1;
see Eq. (35).

For r � DR, the distribution becomes independent of DR

and shows a log divergence near the origin [see Eq. (38)] while
decaying as an exponential for large |x| [see Eq. (39)].

(iv) For the protocol 3, the position distribution does not
reach a stationary state. We show that at late times, the
particle shows a diffusive behavior; the typical position fluctu-
ations are characterized by Gaussian distributions in this limit.
We compute the corresponding effective diffusion constants,
which turn out to be different for x and y components, signal-
ing the presence of an anisotropy even at late times.

At short times, for this protocol, the motion remains bal-
listic. We compute the position distribution for small values
of the resetting rate r, using a perturbative approach. The
perturbative corrections corresponding to x and y distributions
are obtained in Eqs. (54) and (57), respectively.

In the following sections, we study the three protocols
separately and characterize the fluctuations of the position by
computing the moments and marginal distributions.

III. ABP WITH POSITION AND ORIENTATION
RESETTING

The simplest resetting protocol is when both the position
and the orientation of the particle are reset to their initial
values, with rate r. This is referred to as protocol 1 in Sec. II.
For the sake of simplicity, we assume that the ABP starts
at the origin x = y = 0, oriented along the x axis, i.e., with
θ = 0 at time t = 0. Then, at any time t , the ABP is reset to
x = y = 0 = θ with rate r; between two consecutive resetting
events, the particle position evolves according to the Langevin

Eqs. (1). In the following, we refer to this resetting protocol
as position-orientation reset.

We are interested in the position distribution P(x, y, t ) =∫
dθ P (x, y, θ, t ), where P (x, y, θ, t ) denotes the probability

that the particle is at the position (x, y) with orientation θ , at
time t . It is straightforward to write a renewal equation for
P (x, y, θ, t ) which reads

P (x, y, θ, t ) = e−rtP0(x, y, θ, t ) + r
∫ t

0
dse−rsP0(x, y, θ, s),

where P0(x, y, θ, t ) denotes the probability that in the absence
of resetting, the ABP is at a position (x, y) with orientation
θ at time t , starting from x = 0 = y = θ . Here the first term
corresponds to the situation when there are no resetting events
up to time t and the second term corresponds to the probability
that the last resetting event occurred at a time t − s.

A corresponding renewal equation for the position distri-
bution is obtained by integrating over the orientation θ :

P(x, y, t ) = e−rt P0(x, y, t ) + r
∫ t

0
dse−rsP0(x, y, s). (2)

From this renewal equation, the position distribution can, in
principle, be calculated for any time t , if the free ABP dis-
tribution is known. Unfortunately, no closed form for the full
distribution P0(x, y, t ) of an ABP is known so far. However,
the short-time and long-time marginal position distributions
are known explicitly [44,52], and in this section we use these
to investigate the effect of the position-orientation resetting on
an ABP using the renewal Eq. (2).

A. Moments

To get an idea about how the presence of the position-
orientation resetting affects the dynamical behavior of the
ABP, let us first look at the moments of the position coor-
dinates. It is straightforward to see that, in the presence of the
resetting, the moments would also satisfy a renewal equation
similar to Eq. (2). For example, by multiplying both sides by
xn and integrating over x and y, we get

〈xn(t )〉 = e−rt 〈xn(t )〉0 + r
∫ t

0
dse−rs〈xn(s)〉0, (3)
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where 〈xn(t )〉0 denotes the nth moment of the x component
of the position in the absence of the resetting which can be
calculated explicitly for any n [44,61]. The renewal equation
for 〈yn(t )〉 also has a similar form. In the following, we cal-
culate explicitly the first two moments of x and y components
using the known expressions for the same for free ABP (see
Appendix A).

Let us first look at the time evolution of the average posi-
tion. Using Eq. (3) for n = 1 along with Eqs. (A6), we get

〈x(t )〉 = v0

r + DR

(
1 − e−(r+DR )t

)
, (4)

while 〈y(t )〉 = 0 at all times. Here we see evidence of a
timescale emerging as a result of the presence of the resetting.
Clearly, at short times, i.e., for t � (r + DR)−1, the particle
moves along x axis with an effective velocity v0 which is
reminiscent of the free ABP. On the other hand, at late times
the particle reaches a stationary position which comes closer
to the origin as the resetting rate r is increased. Next, we
calculate the second moments using Eq. (3) with n = 2 and
Eq. (A10). The resulting exact (and long) expressions are
provided in Appendix B. Here we explore the behavior of the
mean squared displacement (MSD) σ 2

x (t ) = 〈x2(t )〉 − 〈x(t )〉2

and σ 2
y (t ) = 〈y2(t )〉 in the short time and long-time regimes.

At short times, we have,

σ 2
x (t ) = v2

0

3
rt3 + v2

0

12

(
4D2

R − 5DRr − 4r2
)
t4 + O(t5),

σ 2
y (t ) = 2v2

0

3
DRt3 − v2

0

6
DR(5DR + 3r)t4 + O(t5).

(5)

It is interesting to compare this short-time behavior with that
of ABP in the absence of resetting. Starting from the origin,
oriented along the x axis, for the ordinary ABP, the MSD
along the x direction grows ∼t4 while along y, it shows a t3

temporal growth. In the presence of the position-orientation
resetting, however, we see that both σ 2

x,y grow as t3; while
the resetting changes the leading order behavior of the MSD
along the x direction, it does not affect the same for the MSD
along y.

At long times, the particle is expected to reach a stationary
state, and the MSD does not depend on the time anymore:

lim
t→∞ σ 2

x = v2
0

(
4D2

R + 2rDR + r2
)

r(r + DR)2(r + 4DR)
,

lim
t→∞ σ 2

y = 4v2
0DR

r(r + DR)(r + 4DR)
.

(6)

It is to be noted that the stationary values of the MSD are dif-
ferent for x and y components, indicating that the anisotropy
survives. This is not surprising as the resetting to θ = 0 intro-
duces strong anisotropy at each epoch. Figure 4 show plots of
σ 2

x and σ 2
y as functions of time t for different values of r; as

expected, the MSD saturates faster to its stationary value with
increasing r.

B. Marginal x distribution

Let us consider the marginal x distribution in the presence
of position-orientation resetting. It satisfies a renewal equation

10
-1

10
0

10
1

10
2t

10
-4

10
-2

10
0

10
2

σ2

x

r = 0.01
r = 0.1
r = 1.0
r = 5.0

10
-1

10
0

10
1

10
2t

10
-2

10
0

10
2

σ2

y

r = 0.01
r = 0.1
r = 1.0
r = 5.0

(a) (b)

FIG. 4. Position-orientation resetting: Mean squared displace-
ments of x and y components as a function of time for DR = 1 and
different values of the resetting rate r. Symbols represent the data
from simulations while the solid black curves indicate the analytical
predictions from Eqs. (B2) and (B3). The stationary values decrease
with increasing r (topmost curve corresponds to smallest value of r).
Here v0 = 1.

obtained by integrating Eq. (2) over y,

P(x, t ) = e−rt P0(x, t ) + r
∫ t

0
dse−rsP0(x, s), (7)

where P0(x, s) denotes the x-marginal distribution in the ab-
sence of the resetting. Note that for the sake of simplicity, we
use the same letter P for both the 1 − d and 2 − d position
distributions.

At late times t → ∞, the particle position is expected
to reach a stationary state. We concentrate on the stationary
position distribution, which is given by,

Pst(x) = r
∫ ∞

0
dse−rsP0(x, s). (8)

As mentioned already, no closed form expressions are avail-
able for P0(x, t ). However, the short-time (t � D−1

R ) and
long-time (t � D−1

R ) behavior of P0(x, t ) are known sepa-
rately [44,52]. In the following, we show that these short-time
and long-time behaviors can be used to calculate the distribu-
tion in the presence of resetting in some cases. To this end, let
us first recast Eq. (8) as

Pst(x) = r
∫ ∞

0
due−uP0(x, u/r). (9)

Because of the presence of the e−u factor, the dominating
contribution to the integral comes from u ∼ O(1). Then, de-
pending on whether u/r is large or small compared to D−1

R ,
the dominant contribution comes from the large or short-time
regime of the free ABP distribution. In the following, we
discuss the two limiting cases separately.

1. Small resetting rate (r � DR)

In this case, the typical interval between two consecutive
resetting events r−1 is longer than the rotational timescale
D−1

R , and the particle evolves as a free ABP for a long time
before being reset to the origin. Consequently, the dominant
contribution to the integral in Eq. (9) comes from the regime,
u
r � D−1

R . In other words, we can use the long-time distribu-
tion of free ABP in Eq. (8) to compute the distribution in the
presence of resetting. It has been shown that for t � D−1

R , the
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FIG. 5. Stationary x-marginal distribution for position-orientation resetting: (a) Plot of Pst(x) versus x for different values of r in the regime
r � DR and a fixed DR = 10. The width of the distribution decreases with increasing r. (b) Similar plot in the regime r � DR with DR = 0.01.
(c) The crossover between the two regimes for a fixed value of r = 0.1 and different values of DR. The solid black lines indicate the analytical
predictions [see Eq. (12) for (a) and Eq. (14) for (b)], the symbols show the data from numerical simulations and the red dashed line in
(b) shows the exponential trend at large values of x. For all the plots, v0 = 1.

free ABP distribution admits a large-deviation form,

P0(x, t ) ∼ exp
[
−DRt�

( x

v0t

)]
, (10)

where the large deviation function �(z) = z2

2 + O(z4) [52].
We are particularly interested in the typical fluctuations
around x = 0, and it suffices to take the leading term, which,
when normalized, leads to a Gaussian distribution:

P0(x, t ) =
√

DR

2πv2
0t

exp

[
− DRx2

2v2
0t

]
. (11)

Substituting the above equation in Eq. (8) and performing the
integral over s, we get an exponential stationary distribution
in the presence of resetting:

Pst(x) = 1

v0

√
rDR

2
exp

[
−

√
2rDR

|x|
v0

]
. (12)

This distribution is symmetric around x = 0, and for large x,
falls faster as either r or DR is increased. Figure 5 shows a
plot of the predicted Pst(x) for different (small) values of r
along with the same obtained from numerical simulations; an
excellent match confirms that the prediction (12) is valid for a
substantial range of r.

2. Large resetting rate (r � DR)

In this case, the typical interval between two resetting
events is much smaller compared to the rotational diffusion
timescale of the free ABP dynamics. Consequently, most
trajectories evolve for a short time before being reset to the
origin. In other words, the dominant contribution to the in-
tegral (8) comes from the short-time regime of free ABP. It
has been shown that, at short-times t � D−1

R , the x-marginal
distribution is given by a scaling form

P0(x, t ) = 1

v0DRt2
fx

(v0t − x

v0DRt2

)
, forx � v0t . (13)

Here the scaling function fx(u) is given by the sum of an
infinite series. The explicit form of fx(u) is known and quoted
in Appendix A; we use that to calculate Pst(x) using Eq. (8).
Note that as P0(x, s) is defined only in the regime x � v0s, the
lower limit of the integral becomes s = x/v0. This integral can

be computed explicitly and yields a sum of exponentials,

Pst(x) = r
√

DR

2v0

∞∑
k=0

(−1)k (4k + 1)

22k

(
2k

k

)√
ak + √

ak + r√
ak (ak + r)

× exp

[
−

(√
ak + √

ak + r

)2 x

v0

]
, (14)

with ak = (4k + 1)2DR/8. Note that this expression is valid
for x > 0. In fact, x < 0 is not populated in this case, giving
rise to a strong anisotropy, in contrast to the small r case.
Figure 5(b) compares the analytical prediction (14) with Pst(x)
obtained from numerical simulations for large values of r
which show perfect agreement.

To understand the asymptotic behavior for large x, we note
that for large x, the exponential term with the smallest coef-
ficient, i.e., with k = 0, would contribute. Hence, we expect
that the tail of the distribution will have the form

Pst(x) 
 r

v0

√
2
(√

DR + √
DR + 8

)
√

DR + 8

× exp

[
− x

4v0

(
4r + DR +

√
DR(DR + 8r)

)]
. (15)

The exponential tails predicted in Eq. (15) are indicated by red
dashed lines in Fig. 5(b).

To explore how the stationary distribution looks for
intermediate values of r, we take recourse to numerical simu-
lations. Figure 5(c) shows a plot of same for different values of
r, which shows the crossover from the asymmetric (one sided
exponential for x > 0) to the symmetric (exponential decay
on both sides) distribution. We see that as DR is increased,
the x < 0 region starts to become populated, although the
distribution remains strongly asymmetric, as indicated by the
discontinuity across x = 0. The asymmetry disappears only
for very large DR � r.

To understand this crossover from a strongly asymmetric
to symmetric behavior of Pst(x), we compute the skewness of
P(x, t ):

γ (t ) = 〈x3(t )〉 − 3〈x(t )〉σ 2
x (t ) − 〈x(t )〉3

σ 3
x (t )

. (16)
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FIG. 6. Position orientation resetting: Plot of the steady state
skewness γst as a function of DR for different values of r [see
Eq. (17)]. For small values of DR � r, γst → 2. The algebraic decay
for large DR � r is shown in the inset [see Eq. (18)].

The third moment of x(t ) can be calculated using Eqs. (3) and
(A11). The explicit expression for 〈x3(t )〉 is provided in Ap-
pendix B. However, since we are interested in the stationary
distribution, it suffices to look at the stationary limit of the
skewness γst = limt→∞ γ (t ). Substituting the expressions for
moments and then taking the long-time limit, we get

γst = 2r
√

r(4DR + r)
(
30D2

R + 7DRr + r2
)

(9DR + r)
(
4D2

R + 2DRr + r2
)3/2 . (17)

Figure 6 shows a plot of γst as a function of DR for a set of
values of r. From Eq. (17), it is clear that for small values
of DR � r, γst → 2, which indicates a strongly asymmetric
distribution, as seen in Fig. 5(b). On the other hand, for large
values of DR, we have

γst 
 5

3

(
r

DR

)3/2

. (18)

Hence, in the limit r � DR, the symmetric distribution (γst =
0) is approached with an algebraic decay.

C. Marginal y distribution

The anisotropic nature of the position distribution, as seen
in Fig. 2, indicates that the marginal distribution along y
direction is very different than the same along the x direction,
at least for r � DR. In this section, we investigate the behavior
of the marginal y distribution in the presence of position-
orientation resetting.

The marginal distribution P(y, t ) satisfies a renewal equa-
tion similar to the x component,

P(y, t ) = e−rt P0(y, t ) + r
∫ t

0
dse−rsP0(y, s), (19)

where P0(y, t ) denotes the marginal distribution of ABP in
the absence of resetting. Once again, we focus on the station-
ary distribution, and use the known short-time and long-time
behaviors of the P0(y, t ) to compute the position distribution
in the presence of resetting. As before, we consider the two
limiting cases where the resetting rate is much larger and
smaller than the rotational diffusion constant.

1. Small resetting rate (r � DR)

In this case, as before, we can use the late time expression
for the ordinary active Brownian particle. In fact, at late times
t � D−1

R , free ABP loses the anisotropy, and the marginal
y distribution becomes same as the marginal x distribution.
Thus, the typical y fluctuations are also Gaussian, and we can
use Eq. (11) for P0(y, t ). Obviously, this leads to the same
stationary exponential distribution:

Pst(y) = 1

v0

√
rDR

2
exp

[
−

√
2rDR

|y|
v0

]
. (20)

This analytical prediction is verified in Fig. 7(a), which shows
a plot of the predicted Pst(y) versus y for different values of
r in the regime r � DR along with the same obtained from
numerical simulations.

2. Large resetting rate (r � DR)

Following the same argument as in the previous section,
we expect that in this case, the stationary distribution can be
determined from the short-time behavior of P0(y, s). Note that,
because of the strong anisotropic nature of the free ABP at
short times, P0(y, s) is very different than P0(x, s) used in the
previous section. In fact, it has been shown [44] that, at short-
times s � D−1

R , the y dynamics of the ABP can be mapped to a
random acceleration process and P0(y, s) has a Gaussian form
with variance 2

3v2
0DRs3 [see Appendix A2 for more details].

Then the stationary y distribution in the presence of resetting
is given by

Pst(y) =
√

3r

2v0
√

πDR

∫ ∞

0
ds

e−rs

s3/2
exp

[
− 3y2

4v2
0DRs3

]
. (21)

It is useful to use a change of variable u = rs, which leads to,

Pst(y) =
√

3r3/2

2v0
√

πDR

∫ ∞

0
du

e−u

u3/2
exp

[
− 3r3y2

4v2
0DRu3

]
. (22)

Clearly, the stationary distribution is a function of the scaled
variable z = r3/2y

v0
√

DR
. In fact, this integral can be computed

exactly using Mathematica and the stationary distribution can
be expressed in a scaling form,

Pst(y) = 2πr3/2

3v0
√

3DR
F

(
r3/2|y|
v0

√
DR

)
, (23)

where the scaling function

F (z) = 3

π2

[
ker1/3

(
2

√
z

3

)2

+ kei1/3

(
2

√
z

3

)2]
. (24)

Here keiν (w) and kerν (w) are Kelvin functions (see Eq.
10.61.2 in Ref. [62]). It can be shown that the stationary
distribution given by Eqs. (23) and (24) is identical to Eq. (19)
of Ref. [27] obtained in the context of resetting of Random
Acceleration Process.

Figure 7(b) shows a plot of the predicted stationary distri-
bution for different (large) values of r along with the same
measured from numerical simulations.

It is interesting to look at the asymptotic behavior of this
stationary distribution. The behavior near the origin can be
obtained using the series expansion of the Kelvin functions.
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FIG. 7. Marginal stationary distribution Pst(y) for position-orientation resetting: (a) Plot of Pst(y) versus y for different values of r in the
regime r � DR and a fixed DR = 10. (b) Similar plot in the regime r � DR with DR = 0.01. The inset shows the algebraic divergence near the
origin [see Eq. (25)]. Panel (c) shows the crossover between the two regimes for a fixed value of r = 1. In all plots, the solid black lines indicate
the analytical predictions [see Eq. (20) for (a) and Eq. (23) for (b)]. The symbols indicate the data obtained from numerical simulations. For
all plots, v0 = 1.

The details are provided in the Appendix C; here we just
quote the final result. As |y| → 0, Pst(y) shows an algebraic
divergence:

Pst(y) = 2πr(
v2

0DR
)1/3

37/6	
(

2
3

)2 |y|−1/3 + O(1). (25)

The inset in Fig. 7(b) shows a log-log plot of Pst(y) near the
origin where this divergence is illustrated.

To understand the decay of the distribution for large |y|, we
use the asymptotic expansion of the Kelvin functions for large
argument; see Appendix C for the details. This exercise leads
to a compressed exponential form for large z:

Pst

(
z = r3/2y

v0
√

DR

)

 3

√
3

4π
√

z
exp

[
−

√
8z

3

]
. (26)

Figure 7(b) shows a plot of Pst(y) versus y for different values
of r � DR obtained from numerical simulations along with
the analytical predictions.

To investigate the crossover between the limiting cases
(r � DR and r � DR), we use numerical simulations. Fig-
ure 7(c) shows a plot of Pst(y) versus y for different values of
DR and fixed r = 1. As expected, the divergence near the ori-
gin disappears as DR is increased. Moreover, we see that with
increasing DR, the width of the distribution first increases, and
then decreases again, consistent with Eqs. (6).

IV. ABP WITH POSITION RESETTING

In this section, we focus on the behavior of the ABP under
resetting protocol II, i.e., the position resetting. In this case,
the particle position is reset to the origin x = y = 0 with rate
r, but the orientation is not affected by the resetting events. As
before, we consider that the particle starts from the origin with
θ = 0 at time t = 0. Hence, at any time t , the θ distribution
remains Gaussian with zero mean and variance 2DRt .

Our objective is to find the position distribution P(x, y, t ).
We can derive a renewal equation for the same in the following
way. Let us consider the evolution of the particle trajectory
during the interval [0, t]. If there are no resetting events during
this interval, the position evolves under ordinary active Brow-
nian motion. For the trajectories with at least one resetting,
let us consider that the time elapsed since the last resetting

event is given by s. Then, the position at time t is dictated
by the free ABP evolution during this interval s, but starting
from some arbitrary orientation θt−s, which itself is dictated
by the Brownian motion of θ . Then the position distribution is
obtained by integrating over all possible values of 0 � s � t ,
and θt−s ∈ [−∞,∞]. Combining all these contributions, we
get the renewal equation

P(x, y, t ) = e−rt P0(x, y, t ) + r
∫ t

0
dse−rs

×
∫ ∞

−∞
dθP θ

0 (x, y, s)
e− θ2

4DR (t−s)

√
4πDR(t − s)

, (27)

where we have used the notation P θ
0 (x, y, s) to denote the

probability that the free ABP is at (x, y) at time s, starting from
an initial orientation θ at s = 0. The structure of the above
renewal equation is different than the same obtained for the
position-orientation resetting [see Eq. (2)], and the behavior
is also expected to be different.

The renewal equations for marginal distribution can be ob-
tained by integrating over either x or y. We will investigate the
stationary marginal position distributions later in Sec. IV B.
In the following, we first look at the moments to get an idea
about the nature of the motion.

A. Moments

The time evolution of the moments of the position can
be obtained from Eq. (27) in a straightforward manner. Let
us first look at the moments of the x position. Multiplying
Eq. (27) by xn and integrating over both x and y, we get a
renewal-like equation for the nth moment of the x component
of the position:

〈xn(t )〉 = e−rt 〈xn(t )〉0

+ r
∫ t

0
dse−rs

∫
dθ〈xn(s)〉θ0

e− θ2

4DR (t−s)

√
4πDR(t − s)

.

(28)

Here 〈xn(s)〉θ0 denotes the corresponding nth moment for the
free ABP, starting from the origin, but oriented along some
arbitrary direction θ and 〈xn(t )〉0, as before, denotes the
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FIG. 8. Position resetting: Variance of x coordinate (a) and y
coordinate (b) as functions of time t for different values of r and
a fixed DR = 1. The symbols correspond to the data from numerical
simulations whereas the solid black lines indicate the analytical re-
sults [see Eqs. (D2) and (D4)]. Value of r increases from the upper
to lower curves. v0 = 1 here.

moment starting from θ = 0. Similarly, we can also write an
equivalent renewal equation for the y moments. The free ABP
moments appearing in Eq. (28) can be calculated exactly, and
Appendix A provides explicit form for n = 1 and 2. We use
these expressions to calculate the first two moments of x and
y for this position-resetting protocol.

Using Eqs. (A5) and (A6) in Eq. (28), we get the time
evolution of the average position,

〈x(t )〉 = v0

DR − r
(e−rt − e−DRt ), (29)

and 〈y(t )〉 = 0. Note that for r = DR, the above equation
remains well defined, with 〈x(t )〉 = v0te−DRt . Clearly, the av-
erage position approaches the origin in the stationary state
t → ∞. At short times, i.e., for t � min(r−1, D−1

R ),

〈x(t )〉 = v0t − v0(r + DR)t2 + O(t3), (30)

indicating that the resetting does not change the effective
velocity to the leading order.

The second moment of the x and y components can also
be calculated exactly using Eq. (28). The explicit expressions
are provided in Eqs. (D1) and (D4) in Appendix D, here we
quote the short-time and long-time behavior of MSDs of x and
y components. At short-times t � min(r−1, D−1

R ), we have

σ 2
x (t ) = v2

0

3
rt3 + v2

0

12

(
4D2

R − 3DRr − 4r2)t4 + O(t5),

σ 2
y (t ) = 2v2

0

3
DRt3 − v2

0

6
DR(5DR + 2r)t4 + O(t5), (31)

indicating a superdiffusive behavior. Moreover, even though
both the variances show t3 growth in this regime, the coef-
ficients are different, which is a signature of the anisotropy
present in the short-time regime. On the other hand, at late
times t � max(r−1, D−1

R ), both σ 2
x (t ) and σ 2

y (t ) reach the
same stationary value,

σ 2
x = σ 2

y = v2
0

r(DR + r)
, (32)

indicating that the anisotropy disappears in the steady state.
Figures 8(a) and 8(b) show plots of σ 2

x (t ) and σ 2
y (t ) for differ-

ent values of r along with the same obtained from numerical
simulations.

In the next section, we discuss the stationary probability
distribution for this position-resetting protocol.

B. Marginal position distribution

In the presence of position resetting only, the position dis-
tribution satisfies the renewal Eq. (27). As before, we focus
on the stationary distribution, which is obtained by taking
t → ∞ limit. Clearly, the first term drops off in this limit.
In the second term, the presence of the e−rs implies that the
dominant contribution of the integrand comes from the regime
s < r−1. For any finite r, then, in the limit of large t , t − s 
 t ,
and the Gaussian factor becomes flat. Now, since P θ

0 (x, y, s)
is a periodic function of θ , we can reduce the θ -integral
over one period, say, to the interval [−π, π ] where θ is
distributed uniformly. The stationary distribution can then be
expressed as

Pst(x, y) = r

2π

∫ ∞

0
dse−rs

∫ π

−π

dθP θ
0 (x, y, s). (33)

The θ integration makes the stationary distribution isotropic
and it suffices to look at the marginal distribution along x axis
only. Integrating over y, we get from Eq. (33):

Pst(x) = r

2π

∫ ∞

0
dse−rs

∫ π

−π

dθP θ
0 (x, s). (34)

We proceed as in the previous section, looking at the two lim-
iting cases, namely, r � DR and r � DR. We also follow the
same reasoning outlined in the previous section, and identify
the region which contributes dominantly to the integral in (34)
in the two limiting cases.

1. Small resetting rate (r � DR)

In this case, the dominant contribution to the integral (34)
comes from the long-time behavior of free ABP distribution
P θ

0 (x, s). At long-times s � D−1
R , the anisotropy disappears,

and the distribution does not depend on the initial orientation
θ . In fact, as mentioned in the previous section, to the leading
order the long-time distribution is a Gaussian (see Appendix
A2). Using this Gaussian form for P θ

0 (x, s) in Eq. (34), we get
an exponential stationary distribution,

Pst(x) = 1

v0

√
rDR

2
exp

[
−

√
2rDR

|x|
v0

]
, (35)

which is same as in the r � DR regime for the position-
orientation resetting case.

Figure 9(a) compares the above prediction with the data
from numerical simulations for a set of (small) values of r
and a fixed DR. An excellent match over a large range of r
illustrates the validity of Eq. (35), along with the underlying
assumptions.

2. Large resetting rate (r � DR)

In this case, the stationary distribution is dominated by
the contributions from the short-time trajectories of the free
ABP, but starting from an arbitrary angle θ . As the behavior
of free ABP is ballistic at short times s � D−1

R , as a first
approximation we can use (see Appendix A2),

P θ
0 (x, s) 
 δ(x − v0s cos θ ). (36)
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FIG. 9. Position resetting: Stationary x-marginal probability distribution (a) Plot of Pst(x) versus x for different values of r in the regime
r � DR with DR = 10. The width of the distribution decreases with increasing r. (b) Pst(x) versus x in the regime r � DR with DR = 0.01.
Inset shows the logarithmic divergence near the origin [see Eq. (38)]. (c) Plot of Pst(x) covering both the limiting cases with r = 1 and for
different values of DR. In all plots, the numerical simulation results are indicated by symbols and the solid black lines indicate the analytical
predictions; see Eq. (35) for (a) and Eq. (37) for (b). Panel (c) shows that, for r � DR, the distribution becomes independent of DR. v0 = 1
here.

Using the above equation in (34), and performing the integrals
(see Appendix E for details), we get

Pst(x) = r

πv0
K0

(
r|x|
v0

)
, (37)

where K0(w) is the modified Bessel function of second kind
[62]. Interestingly, within this approximation, the stationary
distribution does not depend on the rotational diffusion con-
stant DR at all in this large r limit. This is in contrast to the
position-orientation resetting, where the limiting distribution
depends on both r and DR. Figure 9(b) shows a plot of Pst(x)
predicted in Eq. (37) for a set of (large) values of r and a fixed
DR along with the same obtained from numerical simulations;
the excellent agreement confirms our analytical prediction.

It is interesting to look at the asymptotic behavior of the
stationary distribution given in Eq. (37). Expanding K0(w)
near w = 0, we find that the distribution shows a logarithmic
divergence near the origin:

Pst(x) = − r

πv0
log |x| + O(1). (38)

The inset in Fig. 9(b) illustrates this logarithmic divergence.
On the other hand, for large x � v0/r, the distribution falls
off exponentially:

Pst(x) 

√

r

2v0|x| exp

[
− r|x|

v0

]
. (39)

It should be mentioned that we have restricted to the lead-
ing order approximate forms for the free ABP to calculate the
position distribution in both the limiting scenarios. We can
improve the range of validity (in r) of the analytical predic-
tions by using next order corrections. However, in that case the
integrals cannot be evaluated analytically and the qualitative
behavior remains the same. Hence we skip this exercise here.

We use numerical simulations to investigate the crossover
of the stationary distribution between the two limiting cases
discussed above. Figure 9(c) shows a plot of Pst(x) for a fixed
r and a range of values of DR; as DR is increased from the
regime DR � r, the divergence near the origin disappears, and
the distribution crosses over to the exponential behavior. The
width of the distribution also decreases continuously as DR is
increased, as expected from Eq. (32).

V. ABP WITH ORIENTATION RESETTING

In this section, we consider the third resetting protocol
where the orientation θ resets to θ = 0 with rate r while the
position does not. In this case, the position distribution does
not satisfy any renewal equation directly but the θ distribution
does. Let P (θ, t |θ ′, t ′) denote the probability that the orienta-
tion takes the value θ at time t given that it was θ ′ at an earlier
time t ′. P (θ, t |θ ′, t ′) satisfies a renewal equation [13],

P (θ, t |θ ′, t ′) = e−r(t−t ′ )P0(θ, t |θ ′, t ′)

+ r
∫ (t−t ′ )

0
dse−rsP0(θ, s|0, 0), (40)

where P0(θ, t |θ ′, t ′) denotes the propagator for the standard
Brownian motion, given by Eq. (A1). At long times, the
orientation reaches a stationary state with an exponential dis-
tribution although the position does not. As before, we look
at the moments of x and y components, and the corresponding
marginal position distributions.

A. Moments

The Langevin Eqs. (1) can be formally integrated to write

x(t ) = v0

∫ t

0
ds cos θ (s),

(41)

y(t ) = v0

∫ t

0
ds sin θ (s),

where we used the initial condition x(0) = y(0) = 0. To cal-
culate the position moments, we need to know the mean and
the autocorrelations of cos θ and sin θ under resetting, which
can be calculated using the propagator (40). The details of this
calculation are provided in Appendix F; here we just quote
the results. As in all the previous cases, 〈y(t )〉 vanishes at all
times due to symmetry. Along the x axis, however, the average
displacement is given by

〈x(t )〉 = v0

r + DR

[
rt + DR

r + DR
(1 − e−(r+DR )t )

]
, (42)

=
⎧⎨
⎩

v0t fort � (r + DR)−1

v0rt

DR + r
fort � (r + DR)−1.

(43)
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FIG. 10. Orientation resetting: Plot of σ 2
x (a) and σ 2

y (b) versus
time t for different values of r with DR = 1 and v0 = 1 The solid
lines correspond to the analytical predictions Eqs. (F6) and (F7). The
red dashed lines indicate the predicted behavior in the short-time and
long-time regimes.

Clearly, the x motion is ballistic at short times with the
velocity v0, which is reminiscent of the free ABP. Unlike the
previous cases considered here, the effective velocity remains
nonzero at late times, however, its value changes to veff =

v0r
DR+r due to the presence of the resetting.

To understand the fluctuations around the mean position,
we also look at the MSD. The exact and long expressions
for 〈x2(t )〉 and 〈y2(t )〉 are provided in Eqs. (F5) and (F7),
respectively, in Appendix F. These analytical predictions are
compared with numerical simulation results in Fig. 10 for
different values of r and a fixed DR. As in the previous cases,
we see that both the x and y variances show a crossover from
a superdiffusive to a diffusive behavior as time t increases.
To understand the nature of these crossovers, we look at the
short-time and long-time behaviors of the mean-square dis-
placements. At very short-times, i.e., for t � (r + DR)−1, we
have

σ 2
x (t ) = v2

0

3
D2

Rt4 − v2
0

30
D2

R(14DR − 5r)t5 + O(t5),

σ 2
y (t ) = 2v2

0

3
DRt3 − v2

0

6
DR(5DR + 2r)t4 + O(t5).

(44)

To the leading order, this behavior is same as that of free ABP
with strong anisotropy between x and y motions [44]. The
effect of resetting appears at higher orders, and it introduces
an additional anisotropy. This is expected, as the resetting
configuration θ = 0 is also strongly anisotropic. The effect of
this anisotropy sustains at late times also—even though both
x and y motions become diffusive, i.e.,

lim
t→∞ σ 2

x 
 2Dx
efft, lim

t→∞ σ 2
y 
 2Dy

efft, (45)

the effective diffusion constants remain very different:

Dx
eff = v2

0D2
R(2DR + 5r)

(4DR + r)(DR + r)3
,

Dy
eff = 2v2

0DR

(DR + r)(4DR + r)
.

(46)

Figure 11 shows plots of Dx
eff and Dy

eff as functions of DR,
for a set of values of r. It is interesting to note that these
effective diffusion constants are nonmonotonic in DR—for
a fixed r, Dx,y

eff reach their corresponding maximum values
for some intermediate values of DR which increases as r is
increased.
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FIG. 11. Orientation resetting: Plots of Dx
eff (a) and Dy

eff (b) versus
DR for different values of r. See Eqs. (46) for the analytical expres-
sions. We have taken v0 = 1.

B. Marginal position distributions

To understand the behavior of the position distribution, let
us first look at a trajectory with n resetting events during the
interval [0, t]. Let us also assume that ti denotes the interval
between the i and (i − 1)th resetting event. At any time t ,
the position (x(t ), y(t )) can be expressed as a sum of position
increments over the intervals ti,

x(t ) =
n+1∑
i=1

x0(ti ), (47)

y(t ) =
n+1∑
i=1

y0(ti ). (48)

Let us remember that, in between the resetting events, the
system evolves as an ordinary ABP and hence, the fluctuations
of x0(ti ) and y0(ti ) follow the distribution P0(xi, yi, ti ), where
we have used the notation xi ≡ x0(ti ) and yi ≡ y0(ti)

As before, we focus on the marginal distributions of x and
y components separately. From Eq. (47), the x distribution in
the presence of orientation resetting can be formally written
as

P(x, t ) =
∞∑

n=0

rne−rt
∫ n+1∏

i=1

dtidxiP0(xi, ti )

× δ

(
x −

n+1∑
i=1

xi

)
δ

(
t −

n+1∑
i=1

ti

)
, (49)

where P0(xi, ti ) denotes the probability that, in the absence
of resetting, the ABP has a displacement xi during the time
interval ti, starting from θ = 0. The y-marginal distribution
also has a similar form,

P(y, t ) =
∞∑

n=0

rne−rt
∫ n+1∏

i=1

dtidyiP0(yi, ti )

× δ

(
y −

n+1∑
i=1

yi

)
δ

(
t −

n+1∑
i=1

ti

)
, (50)

where P0(yi, ti ) denotes the probability that the y component
of the position of the free ABP has a displacement yi during
the interval ti, staring from θ = 0. Let us note that P0(xi, ti )
and P0(yi, ti ) have different functional forms, in particular,
for small ti, even though we have used the same letter for
notational simplicity.
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FIG. 12. Orientation resetting: Plot of the scaled marginal x dis-
tribution at a long time t = 500 for r = 1 and different values of DR.
The solid black line shows the standard normal distribution. v0 = 1
here.

It is hard to compute the marginal distributions from the
above equations exactly, as the explicit form for the position
distributions in the absence of resetting is not known. How-
ever, as we will see below, we can still understand the different
behaviors in the short- and long-time regimes.

Let us first focus at the long-time regime. As indicated
by the moments, we expect a diffusive motion for both x
and y components in this regime. For simplicity, let us first
consider the x component. From Eq. (47), we see that the
net displacement along the x direction is given by a sum of
n + 1 random variables, namely, the displacements during the
intervals ti. Since, after each reset, the orientation θ is brought
back to its initial value, and the time evolution starts afresh,
the variables x0(ti ) are independent and generated from the
free ABP distribution (of course, the duration ti are different).
Even though the distribution of xi is not known explicitly, its
moments are all finite. Over a large time interval t , the number
n of the resetting events is typically large, with 〈n〉 = rt . For
t � r−1, then x(t ) is a sum of a large number n of independent
random variables. From the central limit theorem, we can then
expect that x(t ) has a Gaussian distribution,

P(x, t ) = 1√
2πσ 2

x (t )
exp

[
− (x − μx(t ))2

2σx(t )2

]
, (51)

where μx(t ) = 〈x(t )〉 and σx(t )2 are the mean and variance
given by Eqs. (43) and (45) (with large t). Note that this
prediction is independent of the value of r; for each r, there
exists some t � r−1 above which we expect a Gaussian distri-
bution, albeit with different r-dependent means and variances.
Figure 12 shows a plot of σx(t )P(x, t ) vs (x − μx(t ))/σx(t ) for
r = 1, t = 500, and different values of DR; a perfect collapse
verifies the prediction.

The same argument can be applied to y(t ), from Eq. (48),
and we expect

P(y, t ) = 1√
2πσ 2

y (t )
exp

[
− y2

2σy(t )2

]
, (52)
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FIG. 13. Orientation resetting: Plot of the scaled marginal y dis-
tribution at a long time t = 500 for r = 1 and different values of DR

obtained from numerical simulations. The solid black line shows the
standard normal distribution. v0 = 1 here.

where σ 2
y (t ) is the large t behavior obtained from Eq. (45).

We also observe a perfect collapse for P(y, t ), as depicted in
Fig. 13, which verifies our prediction.

In the short-time regime, the average number of resetting
events is small and we can expect small r contributions to
dominate. From Eq. (49), one can adopt a perturbative ap-
proach, that is, for small r we compute the distribution at short
times. In fact, to obtain the leading order correction introduced
by the resetting, we truncate the sum after n = 1, which is
equivalent to keeping linear order in r (apart from the e−rt

factor). We then get

P(x, t ) = e−rt [P0(x, t ) + rP1(x, t ) + O(r2)]. (53)

Here P0(x, t ) is the short-time marginal x distribution for the
active Brownian particle without resetting given in Eq. (A13)
and P1(x, t ) is the leading order correction due to resetting:

P1(x, t ) =
∫ t

0
dt1

∫ b(t1 )

a(t1 )
dx1P0(x1, t1)P0(x − x1, t − t1). (54)

The limits on the x1 integral are determined from the condition
that P0(x, t ) is nonzero only in the region −t � x � t and are
given by

a(t1) = max(−t1, x − t + t1), b(t1) = min(t1, x + t − t1).

(55)

Using Eq. (A13), the integrals in Eq. (54) can be evaluated
numerically with arbitrary accuracy. The resulting P(x, t ),
which is expected to be valid in the regime t � D−1

R , is plotted
in Fig. 14 for different (small) values of DR and a fixed
(small) values of r and t along with the same obtained from
numerical simulations. The analytical prediction matches well
with the results from simulations, indicating that the perturba-
tive approach works fairly well in this regime. The position
distribution appears similar in shape to that in the absence of
resetting, with a peak near x = v0t . However, quantitatively
they are different, as can be seen from the plot—we have
included the corresponding curves for r = 0 as dashed lines
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FIG. 14. Orientation resetting: Plot of the marginal x distribution
at a short time t = 2 for r = 0.1 and different values of DR. We have
taken v0 = 1.

for easy comparison. Clearly, the effect of resetting becomes
more pronounced away from the peak.

We follow the same perturbative procedure to compute the
y-marginal distribution also. From Eq. (50), we write, to the
leading order in r,

P(y, t ) = e−rt [P0(y, t ) + rP1(y, t ) + O(r2)], (56)

with

P1(y, t ) =
∫ t

0
dt1

∫ b̃(t1 )

ã(t1 )
dy1P0(y1, t1)P0(y − y1, t − t1). (57)

As before, the integration limits are obtained from the condi-
tion that −t1 � y1 � t1 and t1 − t � y − y1 � t − t1:

ã(t1) = max(−t1, y − t + t1), b̃(t1) = min(t1, y + t − t1).

(58)

We obtain P1(y, t ) by numerically evaluating the integral
in Eq. (57). As before, we restrict ourselves in the regime t �
D−1

R , so the short-time expression of P0(y, t ) [see Eq. (A15)]
is applicable. The resulting marginal distribution P(y, t ) is
plotted in Fig. 15 for a set of values of DR with a fixed
(small) r = 0.1 and t = 1 along with the same obtained from
numerical simulations. The distribution has a single peak at
the origin, similar to the r = 0 case (indicated by dashed lines)
in shape. However, the correction due to resetting makes it
non-Gaussian, the difference with r = 0 case is clearly visible
near the peaks.

VI. CONCLUSIONS

We study the position distribution of an active Brownian
particle in 2D under stochastic resetting. An ABP is charac-
terized by its position as well as an internal orientation. We
show that depending on whether the resetting protocol affects
the position degrees of freedom or the orientational degree,
the ABP shows a wide range of rich behavior. In particular,
we study three different resetting protocols, namely, resetting
both position and orientation to their initial value, resetting
only the position, and resetting only the orientation. We find
that in the first two cases the position reaches stationary states.
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FIG. 15. Orientation resetting: Plot of the marginal y distribution
at a short time t = 1 for r = 0.1 and different values of DR. The solid
black lines correspond to the analytical prediction Eq. (56) and the
dashed red lines correspond to Gaussian (r = 0) curves. We have
taken v0 = 1.

We show that the interplay between the timescales due to
resetting and the rotational diffusion leads to a set of different
regimes—depending on whether the resetting rate r is smaller
or larger than the rotational diffusion constant DR, the sta-
tionary distributions take very different shapes. Using renewal
approach, we compute exactly the marginal distributions of
the x and y components in the limiting cases r � DR and
r � DR.

In the first case, i.e., when both the position and orientation
are reset to their initial value, we find that, for small resetting
rates r � DR, the marginal distributions Pst(x) and Pst(y) are
exponential in nature, with the same decay exponent. On the
other hand, for r � DR, the position distribution becomes
strongly anisotropic. The marginal x distribution is nonzero
only for x > 0 in this case, with an exponential decay at the
tail and approaching a finite value near the origin x → 0+. The
y distribution, which is symmetric, shows a very different be-
havior, with an algebraic divergence near the origin (|y| → 0)
and a compressed exponential decay at the tails.

For the position-resetting case, the position distribution is
isotropic for all values of r and DR. For r � DR, the distri-
bution turns out to be exponential in nature. For large values
of r � DR, the position distribution shows a logarithmic di-
vergence near the origin, while decaying exponentially at the
tails.

In the third case, i.e., when the resetting protocol affects
only the orientation of the ABP, the position of the particle
does not reach a stationary state but continues to increase
along the x direction with an effective velocity. However, the
nature of the motion changes from ballistic at short times,
to diffusive at late times (t � (r + DR)−1). We show that,
at late times, the typical position fluctuations around the
mean are characterized by Gaussian distributions for both x
and y components, albeit with different effective diffusion
constants. At short times, the position distribution remains
strongly non-Gaussian, which we characterize using a pertur-
bative approach for small resetting rates.

The resetting of a particle in position space can be thought
of as the effect of switching on and off an external trap, in
the spirit of Refs. [23,28]. On the other hand, the orientation
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resetting can be envisaged as the effect of an external mag-
netic field on magnetic active particles [60,63–66], which is
switched on at random times. In general, it is interesting to
study what happens when the position and orientation reset-
ting can occur independently of each other. Another obvious
open question is how the persistence properties of the ABP
are affected in the presence of such resetting mechanisms. It
would be also interesting to see how introduction of a resetting
mechanism affects other active particle models and if a gen-
eral picture emerges. The behavior of active particles under
different resetting protocols, e.g., resetting of the position to
an extended region instead of a fixed point or the effect of fi-
nite resetting time, present another intriguing set of questions.

The effects of various resetting protocols on passive Brow-
nian particles have recently been realized experimentally
using optical traps [22,67]. It would be intriguing to see if it is
possible to design experimental protocols to verify our analyt-
ical predictions about resetting in active Brownian particles.
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APPENDIX A: BRIEF REVIEW OF ACTIVE BROWNIAN
MOTION IN 2D

For the sake of completeness, we provide a brief review
of the free ABP dynamics in this Appendix. In the absence
of resetting, the position and orientation of the ABP evolves
following the Langevin Eqs. (1). We assume that at time t = 0
the particle starts from the origin x = y = 0, oriented along
some arbitrary direction θ = θ0. As the orientation evolves
following an ordinary Brownian motion, the probability that
the orientation is θ at time t , given that it was θ ′ at some earlier
time t ′ is

P0(θ, t |θ ′, t ′) = 1√
4πDR(t − t ′)

exp

[
− (θ − θ ′)2

4DR(t − t ′)

]
.

(A1)

In the following, we quote the results for the moments and
distribution of the position components x and y of the ABP.

1. Moments of the position components

The moments of the position coordinate x, y can be ob-
tained in a straightforward manner [44] using the Brownian
propagator for the orientation θ given in Eq. (A1). Here we
compute the explicit expressions for the first two moments
for arbitrary values of the initial orientation θ0. Integrating
the Langevin Eqs. (1) and taking average over all possible
trajectories, we have

〈x(t )〉θ0
0 = v0

∫ t

0
ds〈cos θ (s)〉θ0

0 ,

(A2)

〈y(t )〉θ0
0 = v0

∫ t

0
ds〈sin θ (s)〉θ0

0 ,

where we have used the superscript θ0 to denote the initial
orientation. From Eq. (A1), we have

〈cos θ (s)〉θ0
0 =

∫
dθ cos θ (s)

e− (θ−θ0 )2

4DRs

√
4πDRs

= cos θ0e−DRs, (A3)

and similarly,

〈sin θ (s)〉θ0
0 = sin θ0e−DRs. (A4)

The average positions can be computed using the above equa-
tions in Eqs. (A2),

〈x(t )〉θ0
0 = v0

DR
cos θ0(1 − e−DRt ),

(A5)
〈y(t )〉θ0

0 = v0

DR
sin θ0(1 − e−DRt ).

Equations (A5) are used in Sec. IV A to compute the first
position moments in the presence of the position resetting.

For computing the moments in the presence of the position-
orientation resetting, we need the ABP moments for θ0 = 0.
In this case, Eqs. (A5) reduce to

〈x(t )〉0 = v0

DR
(1 − e−DRt ),

(A6)
〈y(t )〉0 = 0,

which have been used in Sec. III A to compute the average
positions.

Next, we look at the second moments. From Eqs. (1), we
can write

〈x2(t )〉θ0
0 = 2v2

0

∫ t

0
ds

∫ s

0
ds′〈cos θ (s) cos θ (s′)〉θ0

0 ,

〈y2(t )〉θ0
0 = 2v2

0

∫ t

0
ds

∫ s

0
ds′〈sin θ (s) sin θ (s′)〉θ0

0 .

(A7)

The two-point correlations 〈cos θ (s) cos θ (s′)〉θ0 and
〈sin θ (s) sin θ (s′)〉θ0 can be calculated exactly using Eq. (A1);
for s > s′, we get

〈cos θ (s) cos θ (s′)〉θ0
0 = 1

2 e−DR (s−s′ )[1 + e−4DRs′
cos 2θ0],

〈sin θ (s) sin θ (s′)〉θ0
0 = 1

2 e−DR (s−s′ )[1 − e−4DRs′
cos 2θ0].

(A8)

Now, substituting Eqs. (A8) in Eqs. (A7) and evaluating the
integrals, we get

〈x2(t )〉θ0
0 = v2

0

12D2
R

[12(DRt + e−DRt − 1)

+ (3 + e−4DRt − 4e−DRt ) cos 2θ0],

〈y2(t )〉θ0
0 = v2

0

12D2
R

[12(DRt + e−DRt − 1)

− (3 + e−4DRt − 4e−DRt ) cos 2θ0]. (A9)

These expressions have been used in Sec. IV A to compute the
variances in the presence of position resetting.
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Once again, for calculating the variances in the position-
orientation case, we need the expressions for θ0 = 0,

〈x2(t )〉0 = v2
0t

DR
+ v2

0

12D2
R

[e−4DRt + 8e−DRt − 9],

〈y2(t )〉0 = v2
0t

DR
− v2

0

12D2
R

[e−4DRt − 16e−DRt + 15],

(A10)

which were obtained in Ref. [44]. The above results are used
in Appendix B to obtain Eqs. (B1) and (B3). It is also straight-
forward to calculate the third moment of x(t ) using Eq. (A1).
For θ0 = 0, it turns out to be

〈x3(t )〉0 = 1

240D3
R

[5e−DRt (120DRt + 169) − 4e−4DRt

−e−9DRt + 720DRt − 1340]. (A11)

This expression is used in Eq. (17) to compute the skewness;
see also Appendix B.

2. Position distribution

In the absence of resetting, the position distribution of
the ABP is given by P0(x, y, t ) = ∫

dθ P0(x, y, θ, t ) where
P0(x, y, θ, t ) denotes the probability that the ABP has the po-
sition (x, y) and orientation θ at time t . P0(x, y, θ, t ) evolves
according to the Fokker-Planck equation:

∂P0

∂t
= −v0

[
cos θ

∂P0

∂x
+ sin θ

∂P0

∂y

]
+ DR

∂2P0

∂θ2
. (A12)

Formally, the above equation can be solved using Fourier
transformation with respect to position coordinates and the
Fourier transform of P0(x, y, θ, t ) can be expressed in terms
of an infinite series of Matthieu functions [68]. Unfortunately,
the Fourier transform cannot be inverted analytically, and no
closed form expression for the position distribution is avail-
able. However, marginal position distributions for the x and y
components, starting from θ = 0, in short-time and long-time
regimes are known separately. For the sake of completeness,
we quote these expressions here.

In the short-time regime (t � D−1
R ), the marginal x distri-

bution can be expressed in a scaling form,

P0(x, t ) = 1

v0DRt2
fx

(v0t − x

v0DRt2

)
, (A13)

where the scaling function is given by

fx(u) = 1

2
√

πu3

∞∑
k=0

(−1)k (4k + 1)

22k

(
2k

k

)
e− (4k+1)2

8u . (A14)

The y-marginal distribution, on the other hand, has a Gaussian
form in this short-time regime:

P0(y, t ) =
√

3

2v0

√
πDRt3

exp

[
− 3y2

4v2
0DRt3

]
. (A15)

At late times t � D−1
R , the anisotropy goes away, and it has

been shown in Ref. [52] that in this regime both x and y
marginal distribution admits a large deviation form, which is
quoted in Eq. (10).

a. Initial orientation θ0 �= 0

Next we look at marginal position distribution starting
from any arbitrary θ0 �= 0. In this case, we can substitute
θ (t ) = θ0 + φ(t ) in Eqs. (1) where φ(t ) undergoes a standard
Brownian motion with φ(0) = 0.

At short times, φ(t ) ∼ √
t is small, and to the leading order

we can approximate sin φ(t ) 
 φ(t ) and cos φ(t ) 
 1. In this
regime, the Langevin Eqs. (1) reduce to

ẋ(t ) 
 v0[cos θ0 − φ(t ) sin θ0], ẏ(t ) 
 v0[sin θ0

+φ(t ) cos θ0]. (A16)

Clearly, for nonzero θ0 both x and y components have system-
atic drifts. To a first approximation, the position distribution
can then be written as,

P θ0
0 (x, y, t ) = δ(x − v0t cos θ0)δ(y − v0t sin θ0), (A17)

where we have used the superscript θ0 to denote the initial
orientation. The above expression, when integrated over y,
gives the x-marginal distribution quoted in Eq. (36). Note that
here the fluctuation of the orientation is completely neglected.
A better approximation is, of course, when the effect of DR is
included, in which case the marginal distributions would be
Gaussian. However, as shown in the Sec. IV B, Eq. (A17) suf-
fices for computing the stationary distribution in the r � DR

limit for the position resetting.
In the long-time limit t � D−1

R , on the other hand, the
position distribution does not depend on the initial value of
orientation and we expect the typical fluctuations to be Gaus-
sian in nature, as given by Eq. (11),

P θ0
0 (x, t ) =

√
DR

2πv2
0t

exp

[
− DRx2

2v2
0t

]
. (A18)

APPENDIX B: EXACT COMPUTATION OF MOMENTS
FOR POSITION-ORIENTATION RESETTING

In this Appendix, we present the exact analytical expres-
sions for the higher moments of the x and y components of
position in the presence of position-orientation resetting. We
can calculate the second moment of x(t ) from Eq. (3) as

〈x2(t )〉 = 2v2
0 (2DR + r)

r(DR + r)(4DR + r)

+ v2
0

3DR
e−rt

[
e−4DRt

4DR + r
+ 2e−DRt

DR + r
− 3

r

]
. (B1)

Using Eqs. (4) and (B1), we obtain the variance σ 2
x =

〈x2(t )〉 − 〈x(t )〉2:

σ 2
x = v2

0

(
4D2

R + 2rDR + r2
)

r(4DR + r)(DR + r)2
+ v2

0e−rt

[
e−4DRt

3DR(4DR + r)

− e−(2DR+r)t

(DR + r)2
+ 2(4DR + r)e−DRt

3DR(DR + r)2
− 1

rDR

]
. (B2)

The short-time and long-time limiting behaviors obtained
from the above equation are quoted in the main text.

Similarly, we also calculate the variance σ 2
y , which is

nothing but the second moment for the y component. Using
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Eq. (A10) in the renewal equation, we get

σ 2
y = 〈y2(t )〉 = 4v2

0DR

r(DR + r)(4DR + r)

− v2
0

3DR
e−rt

[
e−4DRt

4DR + r
− 4e−DRt

DR + r
+ 3

r

]
. (B3)

To calculate the skewness of P(x, t ), we need the third
moment. Using the expression of 〈x3(t )〉0 given by Eq. (A11)
along with Eq. (3), we get

〈x3(t )〉 = v3
0

240D2
R

[
1440D2

R(3DR + r)(6DR + r)

r(DR + r)2(4DR + r)(9DR + r)

+ 5e−(DR+r)t

(DR + r)2

(
269DR + 149r + 120DR(DR + r)t

)

− e−rt

(
720

r
+ 16e−4DRt

4DR + r
+ 9e−9DRt

9DR + r

)]
. (B4)

The exact time-dependent expression for skewness γ can be
obtained using Eqs. (4), (B2), and (B4); we omit the rather
long expression and quote the stationary value γst in Eq. (18)
obtained by taking the limit t → ∞.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF Pst(y)
FOR POSITION-ORIENTATION RESETTING

To find the behavior of Pst(y) for small and large values of
y, we use the asymptotic expansion of the Kelvin functions
appearing in Eq. (24). From the series expansion near w = 0,
we have

ker1/3(w) = 	(1/3)

27/6
w−1/3 + O(w1/3),

kei1/3(w) = −	(1/3)

27/6
w−1/3 + O(w1/3).

(C1)

Inserting the above expressions in Eq. (24) along with
Eq. (23), we get an algebraic divergence of Pst(y) near y = 0
which is quoted in Eq. (25).

On the other hand, for large values of the argument w, we
have (see Sec. 10.67 in Ref. [62]),

ker1/3(w) = e−w/
√

2

√
π

2w
cos

(
w√

2
+ 7π

24

)
+ O

(
1

w3/2

)
,

kei1/3(w) = e−w/
√

2

√
π

2w
sin

(
w√

2
+ 7π

24

)
+ O

(
1

w3/2

)
.

Using the above expressions along with Eqs. (24) and (23),
we get the large z behavior of the scaling function quoted in
Eq. (26).

APPENDIX D: EXACT COMPUTATION OF MOMENTS
FOR POSITION RESETTING

In this Appendix, we provide the explicit expressions for
the second moments of the position in presence of the re-
setting protocol II, i.e., for only position resetting. Using the
renewal Eq. (28) for n = 2, along with Eqs. (A9) and (A10),

we get

〈x2(t )〉 = v2
0

DR

[
2(DR − r)e−(DR+r)t

(3DR − r)(DR + r)
− 2(2DR − r)e−rt

r(4DR − r)

+ DRe−4DRt

(4DR − r)(3DR − r)
+ DR

r(DR + r)

]
. (D1)

The variance can be calculated using the above equation along
with Eq. (29) and is given by

σ 2
x (t ) = v2

0

[
2e−(DR+r)t

(3DR − r)(DR + r)

(
4D2

R

(DR − r)2
− r

DR

)

− 2e−rt (2DR − r)

rDR(4DR − r)
− (e−2rt + e−2DRt )

(DR − r)2

+ e−4DRt

(4DR − r)(3DR − r)
+ 1

r(DR + r)

]
. (D2)

To get the behavior in the short-time regime, i.e., for t �
min(r−1, D−1

R ) we can use the Taylor series expansion around
t = 0. The resulting expansion is quoted in Eq. (31). On
the other hand, in the t → ∞ limit the variance reaches the
stationary value quoted in Eq. (32).

The variance of y(t ) also satisfies the renewal Eq. (27),

〈y2(t )〉 = e−rt 〈y2(t )〉0 + r
∫ t

0
dse−rs

×
∫ ∞

−∞
dθ〈y2(s)〉θ0

e− θ2

4DR (t−s)

√
4πDR(t − s)

, (D3)

where 〈y2(t )〉0, the second moment of ABP starting with θ =
0 is given by Eq. (A10) and 〈y2(t )〉θ0, the second moment of
ABP starting with arbitrary orientation θ is given in Eq. (A9).
Using these expressions in Eq. (D3) we have

〈y2(t )〉 = v2
0

r(DR + r)
+ v2

0

[
4e−(DR+r)t

(3DR − r)(DR + r)

− 4e−rt

r(4DR − r)
− e−4DRt

(4DR − r)(3DR − r)

]
. (D4)

The short-time behavior is quoted in Eq. (31) in the main text.

APPENDIX E: POSITION RESETTING: MARGINAL
DISTRIBUTION FOR r � DR

In this Appendix, we provide the details of the calculation
leading to Eq. (37). Substituting P θ

0 (x, s) from Eq. (36) in
Eq. (34), we get the stationary distribution:

Pst(x) = r

2π

∫ ∞

0
dse−rs

∫ π

−π

dθδ(x − v0s cos θ )

= r

v0π

∫ ∞

0
dse−rs

∫ π

0

dθ

| cos θ |δ
(

x

v0 cos θ
− s

)
.

(E1)
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Here, in the second step, we have used the fact that cos θ is an
even function of θ . Now, for x > 0, the δ function contributes
only when cos θ > 0, i.e., 0 � θ � π

2 . Thus, evaluating the s
integral, we have, for x > 0,

Pst(x) = r

v0π

∫ π/2

0

dθ

| cos θ | exp

[
− rx

v0 cos θ

]

= r

v0π
K0

( rx

v0

)
. (E2)

Here K0(z) is the modified Bessel function of the sec-
ond kind. For x < 0, on the other hand, the s integral in
Eq. (E1) is nonzero only when π/2 � θ � π . In this case,
we have

Pst(x) = r

v0π

∫ π

π/2

dθ

| cos θ | exp

[
− rx

v0 cos θ

]

= r

v0π
K0

(
− rx

v0

)
. (E3)

Combining Eqs. (E2) and (E3), we get the complete marginal
distribution quoted in Eq. (37).

APPENDIX F: EXACT COMPUTATION OF THE
MOMENTS FOR THE ORIENTATION RESETTING

To compute the moments of the position coordinates in the
presence of the orientation resetting,we start from Eqs. (41).
Taking statistical average over all possible trajectories of θ ,
we get

〈x(t )〉 = v0

∫ t

0
ds〈cos θ (s)〉,

〈y(t )〉 = v0

∫ t

0
ds〈sin θ (s)〉. (F1)

The averages appearing on the right-hand side can be
computed using the renewal equation (40) for P (θ, t ).
We have

〈cos θ (s)〉 =
∫ ∞

−∞
dθ cos θP (θ, s)

= DR

DR + r
e−(DR+r)s + r

DR + r
,

and 〈sin θ (s)〉 = 0. Using the above expression in Eq. (F1),
we get the mean x position which is quoted in Eq. (43).
Obviously, 〈y(t )〉 = 0.

b. Variance of x(t ) and y(t )

From Eqs. (41), we have

〈x2(t )〉 = v2
0

∫ t

0
ds

∫ t

0
ds′〈cos θ (s) cos θ (s′)〉,

〈y2(t )〉 = v2
0

∫ t

0
ds

∫ t

0
ds′〈sin θ (s) sin θ (s′)〉.

(F2)

To compute the position moments, we first need to calculate
the autocorrelations appearing in the above equations. Let us

first consider the two-time correlation of cos θ ; for s > s′ we
have

C(s, s′) ≡ 〈cos θ (s) cos θ (s′)〉
=

∫
dθdθ ′ cos θ cos θ ′P (θ, s|θ ′, s′)P (θ, s′|0, 0),

where the propagator P (θ, s|θ ′, s′) satisfies the renewal
Eq. (40). Using Eq. (40) in the above equation and performing
the integrals, we get, for s > s′,

C(s, s′) = r2

(DR + r)2
+ 2DR

4DR + r
e−(DR+r)s−3DRs′

+ rDR

(DR + r)2
(e−(DR+r)s′ − e−(DR+r)s)

+ D2
R(2DR + 5r)

(4DR + r)(DR + r)2
e−(DR+r)(s−s′ ). (F3)

Repeating the same exercise for sin θ , we get

〈sin θ (s) sin θ (s′)〉 = 2DR

4DR + r
e−(DR+r)(s−s′ )[1 − e−(4DR+r)s′

].

(F4)

Using the above expressions, it is straightforward to
calculate the second moments. For the x component,
we get

〈x2(t )〉 = v2
0

(r + DR)2

[
r2t2 + 2DRt

(
2D2

R + 9rDR + r2
)

(DR + r)(4DR + r)

]

+ 4v2
0e−(4DR+r)t

3(4DR + r)2
− 6v2

0D2
R(2D2

R + 16rDR + 5r2)

(DR + r)4(4DR + r)2

+ 2v2
0e−(DR+r)t

(DR + r)3

(
rDRt + 4D3

R + 33D2
Rr − 2r3

3(DR + r)(4DR + r)

)
.

(F5)

The MSD σ 2
x (t ) = 〈x2(t )〉 − 〈x(t )〉2 is then given by

σ 2
x (t ) = 2v2

0D2
R(2DR + 5r)t

(DR + r)3(4DR + r)

+ 4v2
0e−(4DR+r)t

3(4DR + r)2
− v2

0D2
Re−2(DR+r)t

(DR + r)4

+ 4v2
0e−(DR+r)t

(DR + r)3

(
rDRt + 8D3

R + 18D2
Rr − r3

3(DR + r)(4DR + r)

)

− v2
0D2

R(28D2
R + 104rDR + 31r2)

(DR + r)4(4DR + r)2
. (F6)

Similarly, we also calculate the second moment of the y
component:

〈y2(t )〉 = 4v2
0DRt

(DR + r)(4DR + r)
− 4v2

0DR(5DR + 2r)

(DR + r)2(4DR + r)2

+ 4v2
0

3

[
e−(DR+r)t

(DR + r)2
− e−(4DR+r)t

(4DR + r)2

]
. (F7)

The short-time and late-time behavior of the MSDs along x
and y are quoted in Eqs. (44) and (46), respectively.
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